
Efficient, semantics-rich transformation and integration
of large datasets

José Antonio Bernabé-Díaza, María del Carmen Legaz-Garcíab, José Manuel
Garcíac, Jesualdo Tomás Fernández-Breisa,∗

aDepartamento de Informática y Sistemas, Universidad de Murcia, IMIB-Arrixaca, CP
30100 Murcia, Spain

bFundación para la Formación e Investigación Sanitarias de la Región de Murcia,
Biomedical Informatics and Bioinformatics Platform, IMIB-Arrixaca, Calle Luis Fontes

Pagán, No 9, 30003 Murcia, Spain
cDepartamento de Ingeniería y Tecnología de Computadores, Universidad de Murcia, CP

30100 Murcia, Spain

Abstract

The digital age is making more datasets available through the Internet, but

their interoperability is still limited. The Semantic Web should play a funda-

mental role to achieve interoperable datasets. The semantic exploitation of data

requires its efficient transformation into semantic formats and the integration

of heterogeneous sources. The scalability of the existing tools for the seman-

tic transformation of large volumes of data is limited or they do not provide a

semantics-rich representation of the data.

The goal of this work is to show how scalable semantic data transformation

processes can be designed and implemented, so addressing the first type of

limitation. We propose to apply High Performance Computing techniques to

overcome the scalability limitation. Our method has been implemented as an

upgrade of the SWIT framework. Additional improvements for supporting the

transformation process in SWIT are also described in this paper. We have

evaluated the new method in two case studies in the area of bioinformatics and

movies. The results show a significant speed up with respect to the original

∗Corresponding author.
Email addresses: joseantonio.bernabe1@um.es (José Antonio Bernabé-Díaz),

mcarmen.legaz@ffis.es (María del Carmen Legaz-García), jmgarcia@um.es (José Manuel
García), jfernand@um.es (Jesualdo Tomás Fernández-Breis)

Preprint submitted to Expert Systems with Applications November 14, 2018

SWIT algorithm. The lessons learned in our work permit to configure semantic

transformation processes efficiently.

Keywords: Semantic Web, High Performance Computing, Data

transformation

1. Introduction

The digital age is making more and more datasets available through the

Internet (Khan et al., 2017). Recent political and scientific decisions such as

the promotion and adoption of FAIR principles (Wilkinson et al., 2016) makes

us believe that the number of datasets available will grow significantly in the5

next years. Heterogeneity is likely to be the major problem for large scale data

management (Gandomi & Haider, 2015). Data suppliers do not only differ in

how they store and provide the data but also in the semantics associated with

the data entities. The semantic interoperability of data is a challenge in diverse

areas such as biomedicine or cyber-physical systems (Jirkovskỳ et al., 2017).10

Consequently, general methods and tools able to exploit efficiently those highly

heterogeneous data are needed.

The Semantic Web (Berners-Lee et al., 2001) provides machine-readable in-

formation whose infrastructure is based on the World Wide Web Consortium

(W3C)1 standards. The Semantic Web offers a natural space for data integra-15

tion and interoperability (Goble & Stevens, 2008), and it has opened a series of

new possibilities for information processing and management in different areas

such as recommender systems (Musto et al., 2017), generation of user interfaces

(Kapłański et al., 2017), or sharing clinical experiences (Roldán-García et al.,

2018). There has been an increase in the amount of resources available in se-20

mantic formats (Abele et al., 2017; Oliveira et al., 2017), but most of them are

still in traditional ones. This is also hampering the use of interoperable data by

knowledge-based systems.

1https://www.w3.org/standards/

2

Linked Open Data is a Semantic Web initiative for publishing and sharing

the web content in a semantic format like RDF. Best practices in the Linked25

Open Data community, which are also reinforced by the FAIR principles for

data management and stewardship, establish that ontologies should be used for

restricting the meaning of RDF triples, since they provide a context/vocabulary

to enrich the data. Ontologies are the cornerstone technology in the Semantic

Web, and they represent common, shareable and reusable specifications of par-30

ticular application domains (Gruber, 1993). OWL (Bechhofer, 2009) is the most

common language to represent ontologies.

In recent years different approaches for getting RDF representations of datasets

have been proposed. These approaches can be classified as follows:

• Syntactic transformation: these methods use a canonical transformation35

from different types of schemas (e.g., XML or relational data) to RDF

(Erling & Mikhailov, 2009; Huang et al., 2015; Wangli et al., 2017). These

approaches have the advantage of simplicity, but the disadvantage that

the transformation is not driven by the semantics of the datasets, since all

the datasets are transformed using the same rules.40

• Ontology-driven transformation: these methods use ontologies to provide

a precise meaning to the RDF data. The transformation rules for each

dataset depend on its semantics. We think that this is the type of trans-

formation of interest for the Web of Data. The first group of approaches,

like Bio2RDF (Hu et al., 2017), use dataset specific transformation scripts.45

Transformation rules are not explicitly shared between datasets, so more

manual effort is required to ensure interoperable transformation processes.

The second group of approaches exploit mappings between data schemas

and ontologies for generating RDF content. Examples of such approaches

are RDB2OWL (Čerāns & Būmans, 2015), Karma (Dimou et al., 2014),50

and our method SWIT (Legaz-García et al., 2016). Ontology-driven trans-

formation enables consistency checking, thus making possible to prevent

the creation of logically inconsistent content.

3

Unfortunately, the scalability of the existing tools for the semantic transfor-

mation of large volumes of data is limited or they do not provide a real semantic55

representation of the data. This is mainly due to the need of applying reasoning

during the process or the amount of operations needed to generate the semantic

dataset, for instance, to guarantee that the logical consistency of the semantic

dataset.

High Performance Computing (HPC) techniques have been frequently used60

in the last years to improve the efficiency and scalability of applications (Bourne

et al., 2015; Le et al., 2018; Cafaro et al., 2018). However, in the area of

semantic systems, the application of HPC techniques has mainly focused on

distributed reasoning over RDF data (Sakr et al., 2018), but not to support

the development of semantic web tools. We aim to contribute to the latter65

one. For this purpose, we propose the application of HPC techniques to the

process of generating semantic datasets. This method has been implemented

in our SWIT tool (Legaz-García et al., 2016; Bernabé-Díaz et al., 2018) for the

semantic transformation and integration of datasets.

The contributions of this paper are: 1) the complete description of the HPC70

SWIT tool, which is a domain independent framework for the efficient genera-

tion of semantics rich repositories; 2) the detailed description of the application

of the HPC techniques to the SWIT algorithm, whose execution time has dras-

tically reduced; and 3) the lessons learned to ease the parallel execution of the

tool. The paper illustrates how semantic web and high-performance computing75

technologies can be leveraged for semantics-rich transformation and integration

of large datasets.

The paper is structured as follows. Section 2 describes the original SWIT

method and the design of its scalable version. The results obtained in two case

studies, namely, orthology and movies, are described in Section 3. Finally, some80

discussion and conclusions are put forward in Section 4.

4

2. Methods

2.1. The original SWIT framework

SWIT transforms relational or XML data into repositories in Semantic Web

formats. SWIT provides semantics-rich, ontology-driven transformation and85

integration of datasets. SWIT repositories are not redundant and are logically

consistent with the axioms of the ontology used in the process. Besides, the

current version of SWIT supports the generation of five-stars open datasets2.

SWIT has been applied in projects related to clinical data, chemical com-

pounds and evolutionary relations between genes. This has allowed identifying90

the performance issue of the method for large volumes of data. SWIT executes

a number of checking operations that consume a high amount of time, more

than expected with large datasets. The complexity should grow linearly with

the number of the entities, but this does not apply in all the cases. As it will

be further detailed, the conversion of the InParanoid database (Sonnhammer &95

Östlund, 2014) (43 GB) required 919 computational hours.

SWIT transformation uses an input dataset, the input schema, an OWL

ontology and two user-defined transformation files. The first file is the mapping

rules, which define how the entities of the input schema are mapped to the

ontology. The second file is the identity rules, which describe when two entities100

are equivalent, so preventing the generation of redundant data. This file is

optional and makes sense when integration is needed.

The SWIT architecture is conceptually shown in Figure 1. The input pa-

rameters are:

• Input instances: XML/relational databases to be transformed into seman-105

tic formats such as RDF or OWL. An input example is presented in Listing

1. Such listing contains data in OrthoXML format (Schmitt et al., 2011),

which will be used in our experiments.

2http://www.w3.org/DesignIssues/LinkedData.html

5

 http://www.w3.org/DesignIssues/LinkedData.html

Figure 1: SWIT architecture. The framework requires the input instances, a mapping rules

file and an ontology.

• OWL ontology: It provides the meaning for the transformed data, and its

semantics ensures the generation of logically consistent data.110

<sp e c i e s name=" Escher i ch ia−c o l i " NCBITaxId="83333">

<genes>

<gene id="1" prot Id="P07118" geneId="valS "/>

</genes>115

</ sp e c i e s>

<sp e c i e s name="Nematocida−p a r i s i i " NCBITaxId="881290">

<genes>

<gene id="2" prot Id="I3EQN8" geneId="NEPG_00863"/>

</genes>120

</ sp e c i e s>

<groups>

<orthologGroup id="1">

<geneRef id="1"/>

<geneRef id="2"/>125

</orthologGroup>

</groups>

Listing 1: Reduced example of an input OrthoXML file.

• Transformation rules: They determine how the input data entities have

to be transformed into ontology individuals. These transformation rules130

are divided into two groups: mapping rules and identity rules.

6

(1) Mapping rules control that the information represented according

to the input schema is correctly transformed. We identify (1) entity

rules, that define how the entities in the input dataset are converted

into OWL individuals; (2) attribute rules, that define the values of135

the data properties of the new individuals; and (3) relation rules,

that define how the new individuals are related between them. An

example of an entity rule is shown in Listing 2. These rules are

first defined by a ‘map’ clause, next the ‘type’ tag specifies the type

of the rule: Arch2Class (entity rule), Arch2Prop (attribute rule) or140

Arch2Rel (relation rule). The clauses ‘class’ and ‘arch/nodepath’ de-

scribe the ontology class of the entities, and the XPath expression

inside <nodepath> describes its location in the input file in the case

of XML data sources. In this example, the execution of the XPath

expression results in creating several individuals of the ontology class145

‘http://purl.org/net/orth#Gene’. For instance, taking the content

of Listing 1 as input data and the mapping rule defined in Listing 2,

SWIT generates two individuals ‘gene_1’ and ‘gene_2’, as the on-

tology class is ‘http://purl.org/net/orth#Gene’ and the ‘nodepath’

clause points to the field ‘id’ from the input file.150

(2) Identity rules are in charge of detecting redundant entities in the

input data (see Listing 3) and avoiding such redundancy in the se-

mantic dataset. An example of the syntax of this rule is shown in

Listing 4, meaning that two individuals of the ontology class ‘Gene’

are the same one if they have the same value for the property ‘iden-155

tifier’ in a non case sensitive comparison.

An identity rule is structured as follows: A <class> clause specifies

the ontology class to which the rule affects. Next, the condition of the

rule is defined: AND/OR. Several <requirement> can be specified

in the domain of the condition clause. The requirements dictate160

which property or relationship cannot have the same value for two

different individuals of the same ontology class. A ‘dataproperty’

7

tag for properties, or ‘objectproperty’ one for relationships can be

used. The additional clause <value> permits to specify whether

the comparison is case sensitive (‘EQUALS’ or ‘EQUALS IGNORE165

CASE’).

<map>

<type>Arch2Class</ type>

<c l a s s><id>ht tp : // pur l . org /net / orth#Gene</ id></ c l a s s>170

<arch>

<nodepath>/ sp e c i e s / genes /gene/@id</nodepath>

</arch>

</map>
175

Listing 2: Class mapping rule for genes.

<gene id="1" prot Id="P07118" geneId="valS "/>

<gene id="2" prot Id="p07118" geneId="VaLs"/>

Listing 3: Example redundant data in an input file.

180

<c l a s s><id>ht tp : // pur l . org /net / orth#Gene</ id></ c l a s s>

<and>

<requirement>

<scope>ALL</ scope>

<dataproperty>ht tp : // pur l . org /dc/ terms/ i d e n t i f i e r</185

dataproperty>

<value>EQUALS IGNORE CASE</value>

</ requirement>

</and>
190

Listing 4: Identity rule for genes.

Once defined all the mapping and identity rules, SWIT generates semantic

data repositories following the OWL ontology. Listing 5 shows the resulting in-

dividual which represents the previous mentioned gene ‘valS’ from Escherichia

8

coli organism. The output generated by SWIT is an RDF/OWL dataset, which

can be obtained as files using RDF/OWL and Turtle syntaxes or directly gen-195

erated in an instance of the Virtuoso triple store3.

<rd f :D e s c r i p t i o n rd f : abou t=" ht tp : // i d e n t i f i e r s . org /gene /83333/

valS ">

<d c t : i d e n t i f i e r rd f : da ta type=" ht tp : //www.w3 . org /2001/200

XMLSchema#s t r i n g ">valS</ d c t : i d e n t i f i e r>

<obo:taxonomy r d f : r e s o u r c e=" ht tp : // i d e n t i f i e r s . org /taxonomy

/83333"/>

<s i o : s y n t h e s i z e r d f : r e s o u r c e=" ht tp : // pur l . org /net / orth#

pro t e in /sIO_000750_0/P07118"/>205

<rd f : t yp e r d f : r e s o u r c e=" ht tp : // pur l . org /net / orth#Gene"/>

</ rd f :D e s c r i p t i o n>

Listing 5: Individual ‘gene valS’ output example.

The major performance limitation of the original SWIT version is the appli-

cation of identity rules in data integration scenarios. For example, InParanoid210

is a database of orthology relations between genes from different species. This

database is distributed as a set of files, and each file contains the relations be-

tween the genes of two particular species. Consequently, a concrete gene may

appear in multiple files. The application of identity rules is fundamental in

this scenario to avoid redundancy. However, the full conversion of InParanoid215

database required of 919 hours (around 38 days) with the original SWIT method.

Therefore, we considered mandatory to improve the execution time to enhance

the utility and productivity of SWIT framework.

2.2. The new SWIT algorithm

High-Performance Computing (HPC) and code modernization techniques220

(Mike, 2017) allows to work at two design levels: Node-level and Cluster-level

(Vladimirov, 2013). The Node-level includes improvement actions such as scalar

3https://virtuoso.openlinksw.com/

9

tuning, vector instructions, memory management and parallelization. Cluster-

level optimizations add the use of multiple servers in a synchronized way. In this

work, we apply node-level optimizations to develop the new SWIT algorithm,225

hereinafter HPC SWIT, whose goals is to decrease the execution time. In each

step the improvements made are:

Scalar tuning: the SWIT kernel has been fully reimplemented to properly

handle the low level features of the new SWIT algorithm, and its code has been

refactored from scratch in C/C++. However, the change of implementation lan-230

guage is not a major optimization. The computational complexity has changed

due to refactoring in HPC SWIT (see Table 1). The major improvement in com-

plexity is the execution of the attribute rules (Arch2Prop) during the creation

of individuals.

Table 1: Computational complexity in the creation of individuals, properties and relationships

for the different versions of SWIT. In HPC SWIT, we improved the performance by including

the property establishment into the individual creation.

Version Individuals Properties Relationships

Original O(nmk) O(n+m(k(m′ + k′))) O(n+m(k(n′ +m′k′)))

HPC O(nmk(n′m′)) - O(n+m(k(n′ +m′k′)))

Vectorization: We have vectorized some SWIT methods by inserting prag-235

mas like #pragma simd when the compiler detected an incorrect data depen-

dence or a multi-versioned chunk of code.

Memory optimizations: We have rearranged how data are stored in the

kernel of HPC SWIT since it determines how fast identity rules are executed. To

handle the search for individuals, we created two differently hashed hash maps.240

One is hashed by the line number (position) of the entity in the input file and its

ontology class, resulting in a hash table easy to compute. This structure acts as

a greedy search algorithm, so it might miss in finding the entity. The second one

has slower access time, because the hash function used the concatenation of the

individual’s ontology class and the IRI (Internationalized Resource Identifier),245

10

which sometimes is not trivial to generate. This map grants no misses upon

searching the individual. When SWIT retrieves an entity, it attempts to access

the first map before proceeding to use the slower one.

The execution of identity rules has been fully redesigned. The original ver-

sion of SWIT used SPARQL queries to detect redundant data, which is not250

efficient for large datasets. These queries take more time to detect equivalent

data as the ontology grows by the addition of new individuals. SPARQL queries

are O(n) for conditional searches. The new algorithm uses two hash maps to

retrieve the individuals when identity rules are applied. One hash map is used

for AND rules and another one is used for OR ones. This technique allows us255

to find individuals in complexity O(1) in the best case or O(m) : m � n for the

worst one. The new algorithm detects equivalent data as follows:

1. Initialization and creation of the individual structure.

2. Process the mapping rules and update the individual with its properties

and relationships.260

3. Check if identity rules must be applied. If so, HPC SWIT extracts each

value from the individual according to the rule requirements. Otherwise,

it stores the individual into the system.

4. If the identity rule has an AND condition, a concatenation with all the

values is created and hashed. If it has an OR condition, each extracted265

value is hashed separately, so several pointers in different positions will

stand for the same entity.

5. Once the hash function returns the position, HPC SWIT accesses it in the

corresponding hash map. At this point, two possible scenarios may occur:

(a) The accessed slot is free: HPC SWIT knows that no individual is270

equivalent to the one processed at the moment with complexity O(1),

whereas the original implementation had O(n), being n the total

number of individuals created so far by the transformation process.

(b) The slot is not free: Hashing might deliver non-unique positions pro-

ducing ‘fake’ collisions. The fact that individuals share a slot does275

11

not necessary mean that they are similar, so we keep a small vec-

tor storing the collided individuals. Then, the desired individual is

found in such vector with complexity O(m), whereas the complex-

ity with the SPARQL-based (SWIT original version) execution was

O(n) : m < n.280

The four described hash map structures store arrays of pointers to individu-

als and not copies, hence coherence is maintained between them if updates are

made on individuals.

Parallelization: The parallelization is achieved at process level by using

the GNU Parallel tool, which permits running one instance of HPC SWIT with285

one file per thread. Hence, parallel computation is only ran when multiple

files are specified. We have considered using other parallel APIs like OpenMP,

which allows explicit parallelization at code level. However, the main problem

of using these APIs is that SWIT algorithm is memory intensive: the algorithm

makes many memory petition calls (malloc, calloc, new), which require mutual290

exclusion to be thread-safe. When a thread performs a memory request, the

rest of the running threads are stalled until the memory call is resolved, slowing

down the execution of the application.

I/O Bottleneck: In order to avoid I/O bottleneck due to how fast the new

implementation attempts to write on disk, we enabled the compression of the295

output data stream using DEFLATE, which relies on the standard zip format.

2.3. Additional improvements to the SWIT framework

• Tabular data: Many open datasets are available in the Internet in tabular

format. We have developed a method for the automatic extraction of

XML Schemas from tabular files, which is able to generate headers in case300

they are not present in the tabular files. Consequently, tabular data is

transformed in SWIT as XML data.

• Flexible URIs: URIs are the identifiers of the data in the SWIT reposito-

ries. The original SWIT method used a base URI for the whole dataset.

12

Consequently, the transformation of data whose value was a URI required305

the generation of a local URI and the inclusion of direct links to exter-

nal datasets was difficult. The new method permits to include a URI

pattern for the entities to be generated by each rule. If this URI is

not specified, then the base URI for the data transformation process is

applied. The new URI for an entity can use parameters. Its struc-310

ture consists of a prefix plus a series of parameters, whose value would

come from the input data entity to which it is bound. For example,

http://www.identifiers.org/taxonomy/$1 would mean that the pre-

fix would be http://www.identifiers.org/taxonomy, which would be

followed by the value of $1. This parameter could be bound to the field315

with the identifier of the organism. If the organism is Homo sapiens, whose

identifier is 9606, then the URI would be http://www.identifiers.org/

taxonomy/9606.

• Support services: Some transformation processes require to obtain addi-

tional information from external resources. This is handled in SWIT as320

additional services. These services are modeled as support services and

their invocation has to be specified in the corresponding mapping rule. So

far, we have created two support services:

– Advanced URI: The desired URI might be retrieved from an external

resource. For example, we wish to use SNOMED CT4 URIs for325

clinical concepts but the source data only contains the label of the

concept. Thus, a generic service for getting the URI associated with

a label in an OWL file (i.e., SNOMED CT) is available now in SWIT.

– External link: Linked Open Datasets are expected to have links to

external datasets, but those links are not usually available in the330

source data. SWIT offers a service to query SPARQL endpoints or

RDF files to get mappings, which are represented as owl:sameAs

4https://www.snomed.org/snomed-ct

13

http://www.identifiers.org/taxonomy/$1
http://www.identifiers.org/taxonomy
http://www.identifiers.org/taxonomy/9606
http://www.identifiers.org/taxonomy/9606
http://www.identifiers.org/taxonomy/9606
https://www.snomed.org/snomed-ct

statements.

2.4. Experimental evaluation method

We have evaluated the new SWIT framework by transforming data from two335

different domains, namely, orthology and movies. The datasets for each use case

are described in the next subsections. A git repository5 is available to ease the

reproducibility of our experiments.

The experimental evaluation has consisted of transforming the datasets with

the original and the new framework, and comparing the transformation times.340

The experiments were run in a server whose specifications are: 2 chips of Intel®

Xeon® E5-2698 v4 with 20 cores each (Hyper-threading of 2), making a total

of 40 physical cores or 80 virtual cores, running at 2,2 GHz and 128 GB RAM

DDR4. The OS is CentOS Linux release 7.2.1511, and the GNU Compiler

Collection (GCC) version is 7.3.0-2.345

2.4.1. Use case 1: orthology data

Orthology is the life sciences field that investigates evolutionary relations

between genes. Such relations are relevant for health research since the conser-

vation of functions across species is usually inferred for genes holding a one-to-

one orthology relation, that is, genes that diverged from a common ancestor by350

a speciation event.

We have used orthology datasets transformed by us in a previous work

(Fernández-Breis et al., 2016):

• Inparanoid6 (Sonnhammer & Östlund, 2014): This resource stores or-

thology relations between pairs of species. It provides one file per pair355

of species. We have used the InParanoid files for the species S.pombe,

C.elegans and G.gorilla, whose sizes are 49 MB, 318 MB and 371 MB.

These three data collections include 50, 233 and 174 files respectively.

5https://bitbucket.org/Neobernad/swit-test
6http://inparanoid.sbc.su.se/download/8.0_current/Orthologs_OrthoXML/

14

https://bitbucket.org/Neobernad/swit-test
http://inparanoid.sbc.su.se/download/8.0_current/Orthologs_OrthoXML/

• TreeFam7 (Schreiber et al., 2013): This resource stores groups of orthologs

for several genomes. We have used the whole database, which is dis-360

tributed in one 612 MB file.

• OMA8 (Altenhoff et al., 2010, 2017): This resource also stores groups of

orthologs for several genomes. We have used the whole database, which

is distributed in one 1, 5 GB file.

The datasets have been mapped to the Orthology Ontology9. We have also365

used mapping rules10, and identity rules11. The identity rules are needed in

InParanoid because the same gene can appear in different files.

2.4.2. Use case 2: Internet Movie Database

The Internet Movie Database (IMDB) 12 offers a series of datasets about

movies, actors or TV series. The following datasets13 (more than 2,7 GB) have370

been used:

• General information about IMDB contents: information such as titles, lan-

guage, type of titles, start/end year for tv series or genres. This informa-

tion is distributed in two files: title.akas.tsv (179,9 MB) and title.basics.tsv

(448,9 MB).375

• Directors and writers are included in the title.crew.tsv file (166,7 MB).

• The episodes information of TV series is contained in the title.episode.tsv

file (90,5 MB).

• The cast of the different movies and TV series is contained in the ti-

tle.principals.tsv file (1,34 GB).380

7http://www.treefam.org/download
8https://omabrowser.org/oma/current/
9http://purl.bioontology.org/ontology/ORTH

10http://sele.inf.um.es/swit/ortho/mappingsOrthoXML.xml
11http://sele.inf.um.es/swit/ortho/identity.xml
12https://www.imdb.com
13https://www.imdb.com/interfaces/

15

http://www.treefam.org/download
https://omabrowser.org/oma/current/
http://purl.bioontology.org/ontology/ORTH
http://sele.inf.um.es/swit/ortho/mappingsOrthoXML.xml
http://sele.inf.um.es/swit/ortho/identity.xml
https://www.imdb.com
https://www.imdb.com/interfaces/

• Information about ratings and votes is available in the title.ratings.tsv file

(14,8 MB).

• Personal information of actors, directors, etc. is offered in the name.basics.tsv

file (535 MB).

The datasets have been mapped to an extended version14 of the Movie On-385

tology15. We have also used mapping rules16, and identity rules17. The identity

rules are needed because the information about a particular content or person

is distributed in various files.

3. Results

3.1. Impact of identity rules on performance390

The negative impact of identity rules on performance for the original SWIT

can be observed in Figure 2, which shows execution times with identity rules

(Original V. W.I) and without them (Original V. N.I). This figure also includes,

for comparison purposes, the execution times for HPC SWIT (labeled as ‘HPC

V.’) with and without identity rules. These results show that the algorithm395

solves the bottleneck of the original SWIT to avoid redundant data.

3.2. Sequential runs

We have evaluated the performance of original SWIT version versus HPC

SWIT considering only single core executions and making use of identity rules.

The execution time for the InParanoid datasets is shown in Figure 3, the ones400

for OMA and TreeFam are shown in Figure 4 and for IMDB datasets in Figure

5.

14http://sele.inf.um.es/swit/imdb/movieontology.owl
15http://www.movieontology.org
16http://sele.inf.um.es/swit/imdb/imdb-mappings.xml
17http://sele.inf.um.es/swit/imdb/identity/

16

http://sele.inf.um.es/swit/imdb/movieontology.owl
http://www.movieontology.org
http://sele.inf.um.es/swit/imdb/imdb-mappings.xml
http://sele.inf.um.es/swit/imdb/identity/

S.pombe C.elegans G.gorilla
0

100

200

300

400

500
2,451.18 32,296.97 70,535.13

51.86

279.16

320.42

11.72

81.42
105

11.79

80.43
101.11

Dataset

S
ec
on

d
s

Original V. W.I
Original V. N.I
HPC V. W.I
HPC V. N.I

Figure 2: SWIT execution comparison using 3 datasets of InParanoid database. Original V.

W.I and HPC V. W.I stands for the original version and optimized sequential version of SWIT

with identity rules, whilst Original V. and HPC V. N.I denotes the usage of these versions

when no identity rules are applied.

S.pombe C.elegans G.gorilla
0

50

100

150

200
2,451 32,297 70,535

11.72

81.42

105

Dataset

S
ec
on

d
s

Original V.
HPC V.

Figure 3: Execution time comparison from

original version of SWIT (Original V.)

and the sequential HPC version (HPC

V.) from S.pombe, C.elegans and G.gorilla

datasets.

OMA TreeFam
0

200

400

600
440,031 1,508,620

315.4

119.67

Dataset

S
ec
on

d
s

Original V.
HPC V.

Figure 4: Execution time comparison

from original version of SWIT (Origi-

nal V.) and the sequential HPC ver-

sion (HPC V.) from OMA and TreeFam

databases.

The execution time of SWIT HPC reaches a minimum speed up of 209x for

S.pombe, 396x for C.elegans collection and a maximum of 671x for G.gorilla in

these three InParanoid files. For the OMA database HPC SWIT is 1395 times405

faster than the original one. The acceleration for TreeFam reaches 12606x, which

means that an execution with a duration of two weeks is decreased to around 2

17

minutes, as the larger the files are the worse the original SWIT performs.

For the IMDB use case we firstly need to perform a conversion from TSV

source data files to XML SWIT’s input format. Figure 5 shows the execution410

time of three of their datasets, including the time required for data conversion.

This conversion time makes SWIT HPC to reach lower speed-up values: 9.21x

for title.crew, 6.80x in title.episode and 7.85x for title.ratings.

9,090.69 3,317.6

735.3

48 38 7
title.crew title.episode title.ratings

0

500

1,000

1,500

2,000

943.9

455.4

87

48 38 7

Dataset

S
ec
on

d
s

Conversion
Original V.
HPC V.

Figure 5: Execution time comparison between the original SWIT and the sequential optimized

version for title.crew, title.episode and title.ratings IMDB datasets.

3.3. Parallel runs

We have also done parallel executions for InParanoid and IMDB. No parallel415

executions were possible for OMA and TreeFam since they provide the database

in one single file. We have employed a number of threads equal to the number of

virtual cores, i.e 80. The execution times for S.pombe, C.elegans and G.gorilla

species are displayed in Figure 6. A summary table of the obtained speed up is

shown in Table 2. The IMDB results are shown in Figures 7 and 8, taking into420

account conversion and transformation times separately.

18

S.pombe C.elegans G.gorilla
0

50

100

150

200
2,451 32,297 70,535

1.1 5.39 6.06

Dataset

S
ec
o
n
d
s

Original V.
Par. HPC V.

Figure 6: Execution time comparison from original SWIT version against parallel HPC version

for S.pombe, C.elegans and G.gorilla collections, using identity rules.

Table 2: Speed up achieved among sequential and parallel HPC version versus original SWIT

with InParanoid data.

Database Dataset Sequential speed up Parallel speed up

InParanoid S.pombe 209, 07x 1964.08x

C.elegans 396, 67x 6195.86x

G.gorilla 671, 79x 11187.17x

OMA 1395.14x Not applicable

TreeFam 12606.01x Not applicable

Additionally, the original SWIT algorithm required 38 days to process the

whole InParanoid database. The size of InParanoid is 43 GB and it generated a

193 GB dataset in RDF format. HPC SWIT accomplishes this transformation

in less than 1 hour (≈ 55 minutes). Regardless I/O issues, the total speed up425

of the transformation is 1003.2x (see Table 3).

19

11,614.8

337.6

10,650.8 9,090.6

148 69 68 48

name.basics title.akas title.basics title.crew
0

1,000

2,000

3,000

4,000

5,000

1,400.9

171
322.9

37.3
161 74 80 53

Dataset

S
ec
on

d
s

Conversion
Original V.

Conversion & Split
Par. HPC V.

Figure 7: Execution time comparison from original version of SWIT and parallel HPC version

for name.basics, title.askas, title.basics and title.crew datasets, using identity rules.

3,317.6

1,318.7

735.3

38

460

7
title.episode title.principals title.ratings

0

500

1,000

1,500

2,000

31

293.4

33
40

500

8

Dataset

S
ec
on

d
s

Conversion
Original V.

Conversion & Split
Par. HPC V.

Figure 8: Execution time comparison from original version of SWIT and parallel HPC version

for title.episode, title.principals and title.ratings IMDB datasets, using identity rules.

The transformation of IMDB datasets delivered several different speed ups.

In order to compute each dataset in parallel, we split the files into several chunks

of 5 MB of XML data. The conversion and split times are considered in the

results labeled as Conversion & Split. The lowest speed-up was obtained for430

title.akas, 1.66x. The maximum one is 101x for title.crew dataset.

20

3.4. I/O Management

Since the size of the output data transformation might be huge (e.g., the

InParanoid database transformation produces 193 GB of output data), we ana-

lyzed the I/O time consumption by varying the number of threads used in each435

transformation of the entire InParanoid database (Figure 9). The percentage of

I/O usage increases with the number of threads, so we can empirically conclude

that HDD access limits the parallel executions of HPC SWIT.

1 2 4 8 10 20 30

Threads

I/
O

 %
 u

s
a

g
e

0
2

0
4

0
6

0
8

0
1

0
0

32.17%
36.42%

44.33%

56.27%
60.05%

80.64%

88.11%

Figure 9: HPC SWIT: I/O usage (%) for InParanoid database varying the thread count.

To overcome this problem, we added a compression method (DEFLATE

algorithm, standard zip) with a compression ratio of ≈27x for RDF/OWL files.440

Since the conversion of the InParanoid database generates an output of 193 GB

and considering an ideal writing bandwidth of 120 MB/s in a standard HDD,

writing this amount of data would take (193 ∗ 1024)/120 = 1646.93 seconds

(or 27 minutes). Taking into account the compression ratio reached, the new

amount of bytes to be written in disk is shrunk to 6.9 GB, which is a volume that445

the HDD can handle easily in a short period of time ((6.9 ∗ 1024)/120 = 58.88

seconds). Table 3 shows the acceleration working out I/O problems. With this

optimization HPC SWITS transforms InParanoid in approximately 8 minutes

and 56 seconds, reaching a total speed up of 6173.28x.

21

Table 3: Execution time comparison transforming the all the InParanoid data collections,

solving the I/O bottleneck.

Version Compression Time (s) Speed up Time (hrs)

Original No 3, 310, 9 Not applicable 919 (≈38 days)

HPC No 3, 300.3 1003.2x 0.91 (≈55 m)

HPC Yes 536.3 6, 173.28x 0.14 (≈8 m 56 s)

We analyzed the impact of compressing the output data on executions with450

less than 80 threads, since compression might be adding up an excessive over-

head in some cases. Figure 10 shows the time required to complete the InPara-

noid transformation from 1 to 80 threads. The figure is split into two groups:

(left) time without compression; (right) time with compression. The execution

of HPC SWIT on a single thread takes longer due to the compression overhead.455

However, from 2 threads onwards, shrinking the output data pays off for all the

scenarios.

1 2 4 8 10 20 30 40 60 80

Threads

S
e

c
o

n
d

s

1
K

5
K

1
0

K
1

5
K

2
0

K

1
3

8
1

9
.6

7
1

4
2

5
5

6
0

4
5

.6
7

5
1

2
2

.3
3

4
3

2
3

.6
7

2
8

9
2

.6
7

3
7

4
6

1
7

0
3

.6
7

3
6

4
8

.3
3

1
4

3
5

.3
3

3
4

6
3

.3
3

8
5

3
.6

7

3
5

1
5

.3
3

6
0

1
.3

3 3
3

1
9

5
7

2

3
3

1
8

5
4

3
.3

3

3
3

0
0

.3
3

5
3

6
.3

3

No Compression

Compression

No Compression

Enabling Compression

Figure 10: HPC SWIT version: Execution times for InParanoid database varying the thread

count, enabling or disabling the compression algorithm.

Figure 11 shows the execution times in sequential and parallel (if applica-

ble) for each database/dataset, calculating the time difference between a run

22

using compression against the same run with compression disabled. This fig-460

ure includes two additional datasets, the orthology related Hieranoid database

(Kaduk et al., 2017) and a private dataset of colorectal cancer, which we have

used in previous works (Fernández-Breis et al., 2013; Legaz-García et al., 2016).

The results show that enabling compression pays off only when the input data is

a large collection that can be processed in parallel (multiple files). For example,465

we achieved an improvement of 43.94% and 515.35% for Hieranoid and InPara-

noid execution times when they are processed in parallel. Compression strongly

benefits InParanoid executions since InParanoid generates almost 200GB of out-

put data and Hieranoid only produces 4.6GB.

O
M
A

Tr
ee
Fa
m

H
ie
ra
no
i-S
eq

H
ie
ra
no
i-P
ar

C
ol
or
ec
ta
l-S
eq

C
ol
or
ec
ta
l-P
ar

In
Pa
ra
no
id
-S
eq

In
Pa
ra
no
id
-P
ar

0

20

40

60

−2.89
−7.09 −6.47

43.94

−3.97

0.76

−3.05

515.35

Dataset

%
T
im

e
d
iff
er
en
ce

fo
r
ea
ch

d
at
a
b
as
e/
d
a
ta
se
t

w
h
en

en
a
b
li
n
g
co
m
p
re
ss
io
n

Figure 11: HPC SWIT: Time difference in percentage, for each dataset/database, between

executions enabling compression or disabling it. The greater the percentage is, the faster the

execution is when compression is enabled.

3.5. Karma and HPC SWIT performance470

Karma (Dimou et al., 2014) is an ontology-driven tool capable of exploit-

ing data schemas and ontologies by using user-defined mappings. Karma has

similarities with SWIT, but also differences:

• Karma has to be used through a GUI.

23

• Karma rearranges the input data into a table-like appearance whilst SWIT475

processes XML data by using XPath queries.

• An input entity in SWIT may be considered an entity, attribute or rela-

tion depending on its semantic context, whereas Karma allows only one

semantic type per input entity.

• Karma mapping rules are created in the GUI, but cannot be reused.480

• SWIT offers detection of redundant data.

Figure 12 shows the execution times for Karma and SWIT with IMDB

datasets. Karma is designed for small data, loading title.basics.tsv file (428MB)

took more than 30 minutes (the upload time only took around 2 minutes), also

the user interface slows down when using large scale data. The RDF transforma-485

tion exceeded a time-out of 2 hours. For title.episode (86MB) and title.ratings

(14MB) Karma run smoothly. Comparing the total time in each tool, the speed

ups against Karma are: 23x for title.basics, 22x for title.episode and 11x for

title.ratings.

7,200

1,519.9

447.2
2,292

113 38

title.basics title.episode title.ratings
0

1,000

2,000

3,000

322.9

31 3380 40 8

Dataset

S
ec
on

d
s

Upload & Load
Karma

Conversion & Split
Par. HPC V.

Figure 12: Karma and HPC SWIT performance, considering load and conversion time de-

pending on the software used.

24

4. Discussion and Conclusions490

4.1. General discussion

The success of initiatives such as Linked Open Data or FAIR will depend

on the availability of efficient tools and methods for generating datasets rich in

semantics, in which ontologies provide the meaning and logical constraints for

the data.495

The starting point for our work was the performance limitation of the orig-

inal version of SWIT framework when large, distributed datasets have to be

integrated. We have described the optimization of the SWIT algorithm by ap-

plying HPC techniques. The new data transformation process included in HPC

SWIT has drastically reduced the transformation time.500

The results show accelerations ranging from 175x to 11631x for orthology

datasets. The transformation of the entire InParanoid database has decreased

the execution time from 38 days to 55 minutes (1003x speed up). We have

obtained a minimum speed up of 1.66x and a maximum of 101x for IMDB

datasets. HPC SWIT time performance was penalized in the IMDB use case by505

the need of transforming TSV data into XML, which could be overcome in the

future. Output data compression also showed to accelerate data transformation

(6173x for InParanoid).

The performance comparison with Karma, which is the most similar software

to SWIT considering ontology-driven data transformation, shows positive results510

for HPC SWIT, with speed up ranging from 11x to 23x for the datasets tested.

Karma was not able to transform large datasets with a time-out of 7200 seconds

(2 hours). HPC SWIT was able to transform such datasets.

4.2. Lessons learned

Our experience with the transformation of datasets of different size and dif-515

ferent ways of distribution have allowed us to learn some lessons and to develop

some heuristics to get the best possible results when using SWIT.

Parallel executions should be run on the maximum number of threads for

small datasets whose overall size is less than ≈150 MB. However, if (1) the

25

dataset is larger, (2) solid state disks are used for storage and (3) there are520

more than 10 cores, then the use of file compression is recommended. In that

case the output transformations of SWIT might slow down the writing speed,

thus increasing the execution time. On the contrary, if the storage unit is a

hard drive disk, file compression is always recommended.

In order to parallelize the transformation of single file databases, we imple-525

mented a tool capable of splitting an XML file into several XML chunks. The

practical experience in the two use cases was different. This approach worked

fine for IMDB datasets but failed for orthology data. This was due to the prop-

erties of the OrthoXML format. A list of several gene and protein identifiers

are grouped by species, followed by a list of orthology groups pointing to gene530

identifiers from the species defined above. In order to deliver a consistent out-

put, the division into many XML files was done depending on the orthology

groups and the species associated. As a result, multiple copies of the same

species were created in different XML files. The volume of data is higher than

the original size of the single file, therefore HPC SWIT required more time to535

process the dataset and the parallel execution was slower. Our recommenda-

tion for the providers of large datasets to be consumed in semantic formats is

to use data formats with zero or few dependencies between different elements

in its content facilitates a fast HPC-driven transformation. Having such fast

transformation processes would also enable on-the-fly semantic data transfor-540

mation process. The distribution format should be taken into account by the

semantic consumers of the datasets because of the implication mentioned in the

transformation of the datasets.

4.3. Limitations and further work

Further work will automate the selection of the optimal configuration for545

the transformation process that is, sequential/parallel, number of cores, use of

compression, etc. For this purpose we will implement the heuristics described in

the previous section. Another limitation regards the definition of the mappings

used by SWIT to generate the datasets. The mappings need to be manually

26

defined. Further work will adapt alignment methods available in our OntoEnrich550

framework (Quesada-Martínez et al., 2015) to suggest matches between the

input schemas and the target ontology.

4.4. Conclusions

The semantic richness of the datasets is crucial for their interoperability. We

have described a method for the efficient, semantics-rich transformation and555

integration of large datasets. High Performance Computing techniques have

proven to be fundamental for the scalability and performance of a semantic web

framework like SWIT. The evaluation of the method shows that the method

is domain-independent and that the speed up is affected by properties of the

source datasets.560

5. Acknowledgements

This work has been partially funded by the Spanish Ministry of Econ-

omy, Industry and Competitiveness, the European Regional Development Fund

(ERDF) Programme and by the Fundación Séneca through grants TIN2014-

53749-C2-2-R, TIN2015-66972-C5-3-R, TIN2017-85949-C2-1-R and 19371/PI/14,565

respectively.

References

Abele, A., McCrae, J. P., Buitelaar, P., Jentzsch, A., & Cyganiak, R. (2017).

Linking open data cloud diagram. http://lod-cloud.net. Accessed on July

23, 2018.570

Altenhoff, A. M., Glover, N. M., Train, C.-M., Kaleb, K., Warwick Vesztrocy,

A., Dylus, D., de Farias, T. M., Zile, K., Stevenson, C., Long, J. et al. (2017).

The oma orthology database in 2018: retrieving evolutionary relationships

among all domains of life through richer web and programmatic interfaces.

Nucleic acids research, 46 , D477–D485.575

27

http://lod-cloud.net

Altenhoff, A. M., Schneider, A., Gonnet, G. H., & Dessimoz, C. (2010). Oma

2011: orthology inference among 1000 complete genomes. Nucleic acids re-

search, 39 , D289–D294.

Bechhofer, S. (2009). Owl: Web ontology language. In Encyclopedia of database

systems (pp. 2008–2009). Springer.580

Bernabé-Díaz, J. A., Legaz-García, M. C., García, J. M., & Fernández-Breis,

J. T. (2018). Application of high performance computing techniques to the

semantic data transformation. In World Conference on Information Systems

and Technologies (pp. 691–700). Springer.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific585

american, 284 , 34–43.

Bourne, P. E. et al. (2015). Biomedicine as a data driven science. In National

Data Integrity Conference-2015 . Colorado State University. Libraries.

Cafaro, M., Pulimeno, M., & Epicoco, I. (2018). Parallel mining of time-faded

heavy hitters. Expert Systems with Applications, 96 , 115–128.590

Čerāns, K., & Būmans, G. (2015). Rdb2owl: a language and tool for database

to ontology mapping. In Proceedings of CAiSE FORUM .

Dimou, A., Vander Sande, M., Slepicka, J., Szekely, P., Mannens, E., Knoblock,

C., & Van de Walle, R. (2014). Mapping hierarchical sources into rdf us-

ing the rml mapping language. In Semantic Computing (ICSC), 2014 IEEE595

International Conference on (pp. 151–158). IEEE.

Erling, O., & Mikhailov, I. (2009). Rdf support in the virtuoso dbms. In

Networked Knowledge-Networked Media (pp. 7–24). Springer.

Fernández-Breis, J. T., Chiba, H., Legaz-García, M. C., & Uchiyama, I. (2016).

The Orthology Ontology: development and applications. Journal of biomed-600

ical semantics, 7 , 34.

28

Fernández-Breis, J. T., Maldonado, J. A., Marcos, M., Legaz-García, M. C.,

Moner, D., Torres-Sospedra, J., Esteban-Gil, A., Martínez-Salvador, B., &

Robles, M. (2013). Leveraging electronic healthcare record standards and

semantic web technologies for the identification of patient cohorts. Journal605

of the American Medical Informatics Association, 20 , e288–e296.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts,

methods, and analytics. International Journal of Information Management ,

35 , 137–144.

Goble, C., & Stevens, R. (2008). State of the nation in data integration for610

bioinformatics. Journal of biomedical informatics, 41 , 687–693.

Gruber, T. R. (1993). A translation approach to portable ontology specifica-

tions. Knowledge Acquisition, 5 , 199–220.

Hu, W., Qiu, H., Huang, J., & Dumontier, M. (2017). Biosearch: a semantic

search engine for bio2rdf. Database, 2017 .615

Huang, J.-Y., Lange, C., & Auer, S. (2015). Streaming Transformation of XML

to RDF using XPath-based Mappings. In Proceedings of the 11th International

Conference on Semantic Systems (pp. 129–136).

Jirkovskỳ, V., Obitko, M., & Mařík, V. (2017). Understanding data heterogene-

ity in the context of cyber-physical systems integration. IEEE Transactions620

on Industrial Informatics, 13 , 660–667.

Kaduk, M., Riegler, C., Lemp, O., & Sonnhammer, E. L. (2017). Hieranoidb:

a database of orthologs inferred by hieranoid. Nucleic Acids Research, 45 ,

D687–D690.

Kapłański, P., Seganti, A., Cieśliński, K., Chrabrowa, A., & Ługowska, I. (2017).625

Automated reasoning based user interface. Expert Systems with Applications,

71 , 125–137.

29

Khan, S., Liu, X., Shakil, K. A., & Alam, M. (2017). A survey on scholarly

data: From big data perspective. Information Processing & Management ,

53 , 923–944.630

Le, B., Huynh, U., & Dinh, D.-T. (2018). A pure array structure and paral-

lel strategy for high-utility sequential pattern mining. Expert Systems with

Applications, 104 , 107–120.

Legaz-García, M. C., Miñarro-Giménez, J. A., Tortosa, M. M., & Fernández-

Breis, J. T. (2016). Generation of open biomedical datasets through ontology-635

driven transformation and integration processes. J. Biomedical Semantics, 7 ,

32.

Mike, P. (2017). What is code modernization? https://software.intel.

com/en-us/articles/what-is-code-modernization. Accessed on July 23,

2018.640

Musto, C., Basile, P., Lops, P., de Gemmis, M., & Semeraro, G. (2017). Intro-

ducing linked open data in graph-based recommender systems. Information

Processing & Management , 53 , 405–435.

Oliveira, J., Delgado, C., & Assaife, A. C. (2017). A recommendation approach

for consuming linked open data. Expert Systems with Applications, 72 , 407–645

420.

Quesada-Martínez, M., Mikroyannidi, E., Fernández-Breis, J. T., & Stevens, R.

(2015). Approaching the axiomatic enrichment of the gene ontology from a

lexical perspective. Artificial Intelligence in Medicine, 65 , 35–48.

Roldán-García, M. d. M., Uskudarli, S., Marvasti, N. B., Acar, B., & Aldana-650

Montes, J. F. (2018). Towards an ontology-driven clinical experience sharing

ecosystem: Demonstration with liver cases. Expert Systems with Applications,

101 , 176–195.

Sakr, S., Wylot, M., Mutharaju, R., Le Phuoc, D., & Fundulaki, I. (2018).

Distributed reasoning of rdf data. In Linked Data (pp. 109–126). Springer.655

30

https://software.intel.com/en-us/articles/what-is-code-modernization
https://software.intel.com/en-us/articles/what-is-code-modernization
https://software.intel.com/en-us/articles/what-is-code-modernization

Schmitt, T., Messina, D., Schreiber, F., & Sonnhammer, E. (2011). Letter to

the editor: SeqXML and OrthoXML: standards for sequence and orthology

information. Briefings in bioinformatics, 12 , 485–488.

Schreiber, F., Patricio, M., Muffato, M., Pignatelli, M., & Bateman, A. (2013).

Treefam v9: a new website, more species and orthology-on-the-fly. Nucleic660

acids research, 42 , D922–D925.

Sonnhammer, E. L., & Östlund, G. (2014). Inparanoid 8: orthology analysis

between 273 proteomes, mostly eukaryotic. Nucleic acids research, 43 , D234–

D239.

Vladimirov, A. (2013). Multithreaded transposition of square matrices665

with common code for intel xeon processors and intel xeon phi copro-

cessors. https://colfaxresearch.com/multithreaded-transposition-

of-square-matrices-with-common-code-for-intel-xeon-processors-

and-intel-xeon-phi-coprocessors/. Accessed on July 19, 2018.

Wangli, Y., Xueyun, Z., & Man, Y. (2017). Research on the transformation670

from relational model to rdf (s) model. Microcomputer Applications, 9 , 003.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,

Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E.

et al. (2016). The fair guiding principles for scientific data management and

stewardship. Scientific data, 3 .675

31

https://colfaxresearch.com/multithreaded-transposition-of-square-matrices-with-common-code-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors/
https://colfaxresearch.com/multithreaded-transposition-of-square-matrices-with-common-code-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors/
https://colfaxresearch.com/multithreaded-transposition-of-square-matrices-with-common-code-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors/
https://colfaxresearch.com/multithreaded-transposition-of-square-matrices-with-common-code-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors/
https://colfaxresearch.com/multithreaded-transposition-of-square-matrices-with-common-code-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors/

	Introduction
	Methods
	The original SWIT framework
	The new SWIT algorithm
	Additional improvements to the SWIT framework
	Experimental evaluation method
	Use case 1: orthology data
	Use case 2: Internet Movie Database

	Results
	Impact of identity rules on performance
	Sequential runs
	Parallel runs
	I/O Management
	Karma and HPC SWIT performance

	Discussion and Conclusions
	General discussion
	Lessons learned
	Limitations and further work
	Conclusions

	Acknowledgements

