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Abstract 
The development and application of biological ontologies have increased significantly in recent years. 
These ontologies can be retrieved from different repositories, which do not provide much information 
about quality aspects of the ontologies. In the last years, some ontology structural metrics have been 
proposed, but their validity as measurement instrument has not been sufficiently studied to date. In 
this work, we evaluate a set of reproducible and objective ontology structural metrics. Given the lack 
of standard methods for this purpose, we have applied an evaluation method based on the stability 
and goodness of the classifications of ontologies produced by each metric on an ontology corpus. 
The evaluation has been done using ontology repositories as corpora. More concretely, we have 
used 119 ontologies from the OBO Foundry repository and 78 ontologies from AgroPortal. First, we 
study the correlations between the metrics. Second, we study whether the clusters for a given metric 
are stable and have a good structure. The results show that the existing correlations are not biasing 
the evaluation, there are no metrics generating unstable clusterings, and all the metrics evaluated 
provide at least reasonable clustering structure. Furthermore, our work permits to review and suggest 
the most reliable ontology structural metrics in terms of stability and goodness of their classifications. 
Keywords: Biological ontologies, quantitative metrics, metrics comparison, data analysis  
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1 Introduction  
The development and application of biological ontologies have in-

creased significantly in recent years [24, 36, 41]. Their success lies in the 
combination of four main features present in almost all ontologies: 
standard identifiers for classes and relations that represent the phenome-
na within a domain; a vocabulary for a domain; metadata that describes 
the intended meaning of the classes and relations; and machine-readable 

axioms and definitions that enable computational access to some aspects 
of the meaning of classes and relations [18]. The availability of hundreds 
of ontologies has provoked the need for repository-based initiatives to 
find and share their knowledge easily. Examples of such repositories are 
the OBO Foundry [38], AgroPortal [21], OntoBee [31], the Ontology 
Lookup Service (OLS) [8], AberOWL [17], or BioPortal [43]. The OBO 
Foundry [38] is likely to be the largest initiative that pursues the collabo-
rative development of biomedical ontologies by applying shared model-
ling principles such as open use, collaborative development, non-
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overlapping, strictly-scoped content or common syntax and relations1. In 
this case, the quality of an ontology is checked by hand and related to the 
adherence and application of their set of design principles, which is a 
hard and tedious task. This example illustrates the benefit of the availa-
bility of automatic methods to provide information about the quality of 
the ontologies. 

In general, the quality of an ontology is measured by analysing the 
degree in which the ontology meets its design requirements. The use of 
metrics is a good practice for evaluation processes, which have to be 
objective and reproducible. The community has recognised the necessity 
of reference methods to measure the quality of ontologies [30, 36], but 
there has been no community agreement so far [16]. However, the 
ontology engineering community has proposed both qualitative [13, 34] 
and quantitative approaches [3, 4, 11, 39, 44]. Gangemi et al. [13] pro-
pose a diagnostic task based on ontology descriptions, using three cate-
gories of criteria (structural, functional and usability profiling). Rogers 
[34] applies four qualitative criteria (philosophical rigour, ontological 
commitment, content correctness, and fitness for a purpose). Yao et al. 
[44] and Tartir and Arpinar [39] define a series of metrics for evaluating 
structural properties in the ontology. Works like [3–5] evaluate the 
ontology from a realism-based perspective that demands manual judge-
ment of users. In addition, works like [1, 29, 32, 39, 44] use metrics to 
measure quality-related properties of the ontologies. Those works have 
contributed to propose a set of metrics, mostly dealing with structural 
aspects of ontologies. Unfortunately, the evaluation of the methods and 
the metrics is very limited despite having demonstrated their usefulness 
in particular scenarios. The validity of those metrics as measurement 
instrument has not been sufficiently studied by the ontology engineering 
community. 

In this work we aim at increasing the knowledge about ontology struc-
tural metrics. We study the validity of a set of structural metrics for 
assessing relevant features of ontologies based on the use of corpora of 
ontologies. For this purpose we propose a method for evaluating metrics 
based on the information available in public ontology corpora. This will 
allow to analyse the structural metrics on each ontology repository. In 
our approach, the values of each metric are clustered in five groups by 
analysing the distribution of its values. Each cluster is assigned a quality 
score in the range {1, ..., 5}, analogously to the standard Likert scale 
[26]. Since the method is corpus-based, the clusters may vary for differ-
ent corpora. 

In this framework, the evaluation of structural metrics will be illus-
trated by using the OBO Foundry and AgroPortal repositories, which 
allow to analyse corpora formed by 119 and 78 ontologies, respectively. 
The OBO Foundry repository has been selected because their ontologies 
are supposed to share certain building principles, which makes us think 
that it constitutes a repository of homogeneous ontologies. AgroPortal 
contains vocabularies and ontologies for agronomy, food, plant sciences 
and biodiversity [21], so it allows an analysis not specific of a unique 
corpus and domain. 

The main contributions of this method are: (1) the analysis of the cor-
relations between structural metrics (2) the validation of structural 
metrics by analysing the stability and goodness of the clusters, and (3) 
the identification of the most stable metrics for classifying ontologies. 
We believe that this work allows to generate new insights in the field of 
ontology engineering and to shed light on ontology evaluation methods. 

  
1 http://www.obofoundry.org/principles/fp-000-summary.html  

 

2 Methods 

2.1 Metrics and scaling function  
In this work we focus on 19 ontology structural metrics (Table 1) which 
measure a series of facets of the ontology such as cohesion, the existence 
of multiple inheritance in the ontology, or the richness of the ontology in 
terms of properties or comments. 
The metrics have a function "($) associated, whose domain is an ontol-
ogy and whose ranges are the raw values of the metrics which have 
different units of measurement. The evaluation of the ontology as a 
whole has to consider the values from all the metrics. A scaling function 
is used to bridge the different ranges of the metrics, being a function 
&("($)) that generates an ordered factor of ' = 5 categories in a dynam-
ic scale, which is based on experimental data used as reference, i.e., 
n(f(x)) partitions the range of "($) in 5 non-prefixed continuous inter-
vals that contain all the observed samples in the experimental data. It 
should be noted that we call values to the measurements of the metrics 
and scores to the scaled values. The clustering algorithm needs to know 
which values produced by "($) correspond to the highest categories of 
the factor to associate. Thereby, analogously to the standard Likert scale, 
five predefined scores {1, ..., 5} are used, where 1 is associated with the 
lowest category of the factor, and 5 with the highest one, which is not 
necessarily associated with the highest values of a particular metric. 
An ontology set * = {*!, … , *"} is received as input and generates a 
vector of raw values /#! = 0/$" , … , /$#1 for each metric in 2 =
{2!, … ,2%}. The application of a scaling function transforms /#! 
vectors into a scaled vector 3#! = 03$" , … , 3$#1. This dynamic scale has 
been used to analyse the evolution of ontologies, using as experimental 
data those obtained processing different versions of the same ontology 
[12, 33]. 
From the information of a given experimental dataset, the dynamic scale 
uses the k-means algorithm m times, one for each metric in M, in order to 
find a partitioning of the ontologies into 5 non-empty and non-
overlapping categories. By maximising the compactness of the ontolo-
gies within categories (minimising the intra-cluster variance) and max-
imising the separability between the categories (maximising the inter-
cluster variance) in each iteration, the new centroids are recalculated 
from the previous partitioning and then the new cluster assignment is 
generated by reallocating each /$$ to the nearest centroid. 
Figure 1 graphically shows the application of the dynamic scaling func-
tion using a corpus of ontologies, *, for each metric in M. Specifically, 
(1) shows the graphical representation of the raw values of /#! for all the 
ontologies; (2) depicts the scores of 3#!, i.e., the results of the dynamic 
scaling function for all the ontologies, and (3) displays the 5 categories 
of ontologies for the 2& metric which are determined by the 3#! scores. 

2.2 Correlation between the set of metrics 
The correlations between the set of metrics will be studied using the data 
obtained for all the ontologies. For this purpose, we will calculate the 
Pearson correlation coefficient between all the pairs of metrics using as 
input the raw data obtained for all the ontologies * of a corpus, measur-
ing the strength and direction of the linear relationship between each 
pair. This analysis will allow us to determine whether certain pairs of 
metrics are representing the same ontology quality facet, and to incorpo-
rate new methods which will be useful for validating metrics. 
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2.3 Validation of the clusters obtained us-ing the dynamic 
scale function 

The robustness of the dynamic scale is analysed by using validation 
procedures of non-hierarchical clustering. For this purpose, two im-
portant characteristics of the cluster validation will be performed on the 
clusterings generated by the dynamic scale function: stability of the 
clusters, and validity of the clusters. We describe next the methods used 
for both studies. 

2.3.1 Stability of the clusters 

The stability of the clusters generated by a partitioning algorithm means 
that the clustering is not meaningfully affected by small variations in the 
data, and thus stability may be measured by taking into account changes 
in the clusters (4!, … , 4') when the sample varies [6]. We can apply a 
bootstrap resampling method to assess the stability of each category of 
the dynamic scale clustering, 5#!(4() for 6 = 1, … ,5, for each metric 2&, 
based on a similarity measure between sets, called Jaccard coefficient 
[20], as described by Hennig [14]. In detail, for each category 4(, the 
Jaccard coefficient is the proportion of concordant ontologies between 4( 
and the most similar cluster in one bootstrapped clustering of /#!. 
Thereby, 5#!(4() is the mean of the Jaccard coefficient values of the b 
bootstrap replicates. The number b of bootstrap replications is usually 
chosen according to the computational complexity of the estimators in 
order to achieve more relative reliable and accurate results. Thus, for 
each metric 2& in M, we have computed the category stabilities 5#!(4() 
for 6 = 1, … ,5, by setting 8 = 50, 100, 500 and 1000, respectively. For 
interpretation purpose, we use the 5#!(4() scores to classify the catego-
ries as follows: 

• Unstable: The category should not be trusted when 5#!:4(; ∈
[0, 0.60). 

• Doubtful: A pattern is recognised in the data, but there is uncer-
tainty about which ontologies exactly should belong to the category 
when 5#!:4(; ∈ [0.60, 0.75]. 

• Stable: The category should be trusted when 5#!:4(; ∈
(0.75, 0.85]. 

• Highly Stable: There is high certainty about which ontologies be-
long to the category when 5#!:4(; ∈ (0.85, 1]. 

 
Furthermore, the corresponding category stability scores can be aggre-
gated to form a single stability criterion for each metric that can be used 
to compare the different metrics. Therefore, assuming the same relative 
importance of the categories, the most straightforward aggregation is to 
compute and use the stability mean as global stability index for each 
metric, 5(2&) for C = 1, … ,D. For example, using 1000 replicates, the 
stability of DITOnto categories is (0.84, 0.58, 0.55, 0.66, 0.69) on the 
OBO Foundry repository and it is (0.94, 0.84, 0.78, 0.73, 0.68) on Ag-
roPortal. Hence, the global stability index of DITOnto, 5(EFGH&IJ), is 
0.66 and 0.79, respectively. 

2.3.2 Validity of the clusters 

The validity of the clusters assesses the goodness of the clustering. There 
are several validity indexes available, such as Silhouette width (sil) [35], 
Calinski-Harabasz (ch) [2], Dunn (dunn) [10], and Davies-Boudin (db) 
[9] measurements, which can be used to analyse the quality of the classi-
fication obtained by using the dynamic scale function. They take into 
consideration the compactness of the ontologies into the same category 
and the separability between categories [27], which are two internal 
characteristics for the cluster validation. We focus our attention on the sil 

index to compute and compare the quality of the clustering outputs found 
by the different metrics, because it enables to measure the goodness of 
the classification for both ontologies and metrics. 
Firstly, the sil coefficient for each metric of a particular ontology *) 
represents the degree of confidence in the clustering, and it is given by 

KCL#!(*)) =
*%+,%

-./	(,%,*%)
, for L = 1, … , &, 

where M) is the mean distance between the ontology *) and all other ones 
in the same category, and 8) is the mean distance between the ontology 
*) and the ones of the “nearest neighbouring category”. Its value ranges 
from -1 to 1. Thus, for each ontology *), KCL#!(*)) measures how well it 
has been classified, which can be interpreted as in [35]. A large value 
close to 1 indicates that the ontology tends to be “well-classified”. A 
value close to zero means that the ontology lies equally far away from 
the category assigned and the nearest neighbouring one. A negative 
value close to -1 shows that the ontology is “misclassified”. 
Secondly, the overall goodness of the clustering for a metric 2& is evalu-
ated by the global Silhouette coefficient, which is defined by the mean of 
the sil scores, KNLOOO(2&) = ∑ KCL#!(*))"

)4! &⁄ , for C = 1, … ,D. Kaufman 
and Rousseeuw [22] suggested the interpretation of the global Silhouette 
width score as the effectiveness of the clustering structure, in terms of 
the metrics: 

• There is no substantial clustering structure when KNLOOO(2&) ∈
[−1, 0.25]. 

• The clustering structure is weak and could be artificial when 
KNLOOO(2&) ∈ (0.25, 0.50]. 

• There is a reasonable clustering structure when KNLOOO(2&) ∈
(0.50, 0.70]. 

• A strong clustering structure has been found when KNLOOO(2&) ∈
(0.70, 1.00]. 

Analogously, ch, dunn and db indexes might be also applied to provide 
assessments of the global goodness of the clustering for each metric as 
the global Silhouette width index. However, unlike KNLOOO index, there is no 
consensual threshold for these validity indexes in order to interpret a 
clustering as “misclassified” or “well-classified”. 

2.4 Experimental setup 
In this work we have focused in two corpora of ontologies: the OBO 
Foundry (& = 119) and the AgroPortal (& = 78). For each ontology, we 
searched for its latest version in each repository. The whole description 
of the corpora can be found in Supplementary File 1 and Supplementary 
File 2. 
We applied the OQuaRE platform2 for the calculation of metrics. The n 
sizes of both corpora are just those ontologies correctly processed by this 
platform. This platform uses the OWL API [19] and Neo4j3. We actually 
used a web service to execute the metrics over the ontologies of our 
corpus in its server, and to obtain an XML file with all the results. The 
platform offers the possibility of using two reasoners, ELK [23] and 
Hermit [37]; for this experiment we selected the ELK reasoner, which 
works with the OWL 2 EL profile4. We processed the XML file, extract-
ed the metrics raw scores and used R [40] for performing the statistical 
analysis. In particular, we used the following R packages for the statisti-
cal analysis: corrplot for correlations [42], fcp for stability analysis [15] 
and cluster for Silhouette graphics and validity analysis [28]. 

  
2 http://sele.inf.um.es/oquare 
3 https://neo4j.com/ 
4 https://www.w3.org/TR/owl2\discretionary- profiles/ #OWL_2_EL 
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3 Results 

3.1 Correlations between metrics 
Figure 2 displays the correlations between pairs of metrics, using the raw 
values obtained for the whole ontology set of OBO Foundry (Figure 
2(a)) and AgroPortal (Figure 2(b)) repositories. The most of the pairs of 
metrics have a correlation in absolute value under 0.80. In both reposito-
ries, we have obtained two pairs of metrics with a perfect correlation: 
<CBOnto, CBOnto2> and <PROnto, RROnto>: 

• CBOnto and CBOnto2 are very similar, but CBOnto2 has an addi-
tional factor that includes in the computation the top level nodes of 
the ontologies. The calculation of CBOnto2 using ELK reasoner 
makes this additional factor to be 0, so both metrics have the same 
values on both corpora. This would not happen using an OWL 2 
DL reasoner such as Hermit. 

• Both PROnto and RROnto account for relations. OWL relations 
can be classified in taxonomic and non-taxonomic ones. Each one 
of these two metrics measures the proportion of one of such types, 
which justifies this perfect negative correlation. 

 
The next highest correlated pair is <WMCOnto, WMCOnto2> with a 
correlation close to 1 (0.9996 in OBO Foundry and 0.9881 in AgroPor-
tal). In this case, they measure structural facets related to paths from leaf 
nodes to the root node of an ontology. While WMCOnto takes into 
account the length of the paths, WMCOnto2 takes into account the 
number of them. 
Note that the pair <RFCOnto, NOMOnto> also achieves a correlation 
close to 1 (0.9801 in OBO Foundry and 0.9999 in AgroPortal). Both 
metrics are related with the use of properties. NOMOnto measures the 
mean number of properties use per class, whereas RFCOnto additionally 
uses the mean number of superclasses per class. 
Figure 3 includes the pairs of metrics with correlations higher than 0.8 in 
absolute value for both repositories. The correlation between <CBOnto2, 
INROnto> is due to the fact that both deal with hierarchical relations. On 
the contrary, the correlations <INROnto, NACOnto> and <DITOnto, 
LCOMOnto> are not due to shared facets. 

3.2 Stability of the clusters of the metrics 
Table 2 shows the category stability scores 5#!:4(;, 6 = 1, … ,5, and their 
global stability values 5(2&) for different number b of bootstrap 
replications for the metrics ANOnto and AROnto from OBO Foundry 
and AgroPortal corpora. From both repositories, the global stability 
scores for each metric and for different bootstrap replicates are displayed 
in Figure 4. The convergence of the stability indexes can be observed 
when 500 replicates are used. The detailed results for the rest of metrics 
on OBO Foundry and AgroPortal corpora can be found in Supplemen-
tary File 3. 
According to Figure 4, the global stability of each metric tends to in-
crease smoothly and converge when raising b. In fact, 17 out of 19 
metrics remain in the same stability degree regardless the value of b for 
OBO Foundry and 16 out of 19 metrics for AgroPortal. Moreover, the 
global stability scores obtained a range from 0.66 to 0.86 for OBO 
Foundry (0.61 to 0.88 for AgroPortal), so there are no “Unstable” clus-
terings of the metrics, and specifically 12 (10) of them achieved 5(2&) >
0.75, indicating that the 63.16% (52.63%) of all metrics provided “Sta-
ble” or “Highly stable” clusterings. In detail, 36.84% (47.37%) metrics 
are classified as “Doubtful”, 57.89% (47.37%) are “Stable” and 5.26% 
(5.26%) are “Highly stable” (see Table 3). Conceptually, having stable 

metrics means that the inclusion of new ontologies in the corpus would 
not have a meaningful impact on the current dynamic scaling of the 
metrics. 
All these results support the clusters performed by the dynamic scale 
function with 5 categories, although a detailed analysis on the category 
stability scores shows that there is certain margin of improvement yet 
because if at least one single cluster has 5#!:4(;<0.6, then the clustering 
should be repeated with fewer categories. For example, the global stabil-
ity score of AROnto is 0.69 on OBO Foundry repository, but the catego-
ry 2 is “Unstable” because of its score 0.42 (see Table 2). 

3.3 Validity of clusters of the metrics 
We analyse now the validity of the clusterings of the dynamic scale 
function. For each metric, the Silhouette width index provides validity 
measurements of the ontologies with respect to their classification by the 
scaling function and of the entire clustering. Moreover, this measure can 
also supply complementary information about the validity of those 
categories of the clustering by using the mean value of the ontologies 
belonging to each category. 
Figure 5 shows the partial representation of the Silhouette widths of the 
CROnto, RROnto and WMCOnto metrics. The results of all the metrics 
can be found in Supplementary File 4 and Supplementary File 5. The 
Silhouette plot displays a measure of how close each ontology in one 
category is with respect to ontologies in the neighbouring categories, and 
thus provides a way to visually assess the validity of ontology clusterings 
and categories for each metric. In this case, the global Silhouette width 
ranges from 0.51 to 0.86 in OBO Foundry and 0.57 to 0.95 in AgroPortal 
(see Table 4), so there are no metrics obtaining unstructured clustering 
neither weakly structured. More concretely, 31.58% (42.11%) of the 
metrics supplies categories with “Strong structure” and 68.42% (57.89%) 
of them provides categories with “Reasonable structure” on OBO Found-
ry (AgroPortal). 
Moreover, we can try to identify metric clusters that could be improved 
by analysing the Silhouette width scores of the ontologies. For example, 
the CROnto clustering has a strong structure, KNLOOO(4/H&IJ) is 0.86 in 
OBO Foundry and 0.95 in AgroPortal. Although Silhouette widths of 
ontologies are positive in OBO Foundry, the mean in Category 2 (11 
ontologies) is 0.43, but 1 out of 11 ontologies is close to 0 (see Figure 
5(a)). Ontologies with Silhouette widths close to 0 are considered to be 
in the middle of two categories, and then it is not well-classified by the 
metric. In AgroPortal, each one of Categories 2 to 5 of CROnto only has 
one ontology with Silhouette score 0, so they are not well-classified by 
this metric. In the case of WMCOnto, the clustering structure is different 
in both repositories, KNLOOO(V24H&IJ) is 0.82 in OBO Foundry and 0.57 
in AgroPortal, strong and reasonable structures, respectively. Here, 
Category 5 is also formed by an ontology with Silhouette score 0 in 
OBO Foundry and then it is not well-classifed by WMCOnto. However, 
it is formed by two ontologies with Silhouette score 0.87 in AgroPortal 
and thus both ontologies are well-classifed by WMCOnto. Finally, 
approaches like these can be included to point out the most stable metrics 
for both repositories and to rank the metrics by validity or goodness of 
the clustering according to their silhouette widths, as it is shown in Table 
4. 
 

4 Discussion and Perspectives 
The increasing interest in ontologies makes necessary to develop effec-
tive quantitative methods for ontology evaluation. Reaching a communi-
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ty consensus about which properties are desirable in ontologies is hard, 
and it is even harder to agree on the quality-oriented classifications of the 
values associated with the quantitative measurements that describe the 
quality of an ontology. Besides, it is still a challenge to provide insights 
about whether the evaluation and classification of ontologies using 
structural quality metrics is a valid measuring instrument. In this work 
we have analysed whether a set of selected metrics provides stable 
categories, structured clusterings and well-classified ontologies. In order 
to improve the usefulness of such a set of metrics, we have also dis-
cussed the correlations between them using experimental data obtained 
from two repositories of ontologies. 
The analysis of correlations between metrics may help to optimise the set 
of metrics to use and to prevent biased evaluations when the metrics are 
perfectly correlated and they are measuring similar ontology facets. We 
have found low correlations between the majority of the metrics, which 
is a good indicator and we can say that these correlations are not biasing 
the evaluation. Nevertheless, the correlations do not depend on the 
corpus of ontologies used since we obtain similar results for the two 
corpora analysed here, so we can conclude that these metrics are not ad-
hoc to a particular corpus but they can be reused in several ones. Moreo-
ver, in our study, the analysis of correlations has permitted to identify 
relationships between metrics, for instance, CBOnto and CBOnto2 
provide the same clustering, and PROnto and RROnto provide complete-
ly opposite clusterings for both ontology repositories. These correlations 
can be used to normalise metrics (e.g. CBOnto and CBOnto2) or predict 
the behaviour of others (e.g. WCOnto and WCOnto2). The normalisation 
of metrics would avoid computing unnecessary metrics, which would 
contribute to the performance of the execution, specially in corpora 
including a large set of ontologies. However, we do not recommend to 
remove metrics, but to provide users with mechanisms to select the more 
explanatory metrics. This would enable different profiles of evaluation, 
which could be supported by a pre-analysis of the ontologies considered 
representative of certain domains. 
The stability analysis of the clusterings generated by the metrics on both 
ontology repositories has pointed out that the dynamic scale function 
using the standard Likert scale levels provides clusterings which are not 
“unstable” for all the metrics (see Table 3). Furthermore, according to 
the results shown in Table 4, the global validity scores of the Silhouette 
width indicate that the clusterings obtained for all metrics have strong or 
reasonable structure. Therefore, the evaluation of these ontology struc-
tural metrics seems to indicate that their clusterings are not only stable 
but also well-classified ontologies and well-structured categories. More-
over, the classifications shown can be used to select the most stable 
metrics and the strongest structured metrics for classifying each reposito-
ry. For example, Table 4 shows that 6 out of 19 metrics are classified as 
“Strong” on OBO Foundry and 8 out of 19 on AgroPortal. 13 out of 19 
metrics have the same classification in both repositories. Also, the in-
formation from both repositories can be combined to select the three 
strongest structured metrics (AROnto, CROnto and TMOnto2). These 
metrics are related to the ratio of attributes, individuals and direct ances-
tors, which are relevant ontology features. 
As it has been mentioned, the results obtained in both repositories are 
similar. However, there are some differences due to the content of each 
repository. Consequently, some metrics could be appropriate for certain 
repositories and not for other ones. There is a number of ontologies 
common to the OBO Foundry and AgroPortal repositories. The versions 
of such common ontologies in each repository were different in our 
experimental dataset, and their metrics were different. Hence, they are 
considered different ontologies in our study. 

The results of this study should be useful for different types of users, 
among which we especially mention ontology repository managers and 
ontology users. Repository managers could use our results to select 
which metrics are provided to the users in their repository, and which 
ones could be the most interesting for analysing the repository content. 
Ontology users could drive their attention to the metrics that provide a 
better classification when, for instance, evaluating or selecting ontologies 
for reuse. 
Currently, our method allows to achieve stable and good structured 
categories, but the global stability could be improved by using the opti-
mal number of categories for each metric. A detailed exploration of the 
Silhouette graphics shows that there exist some ontologies doubtfully 
classified in some clusterings (ontologies with low or negative Silhouette 
widths). Moreover, ontology repositories usually store different types of 
ontologies (e.g. top-level vs domain ontologies or domain ontologies 
classified by subdomains). For example, one of the strongest metric is 
CROnto, which deals with individuals, which are not expected in some 
types of ontologies. We suspect that the ontologies of a certain type 
could share different properties, so their optimal classification could be 
different as well. Future work will include these aspects by the compara-
tive analysis of the results for different number of categories for each 
metric, and a comparative study of different repositories and types of 
ontologies. 

Key points 
• We have evaluated relevant properties of the metrics for the eval-

uation of ontologies by using two corpora of ontologies, OBO 
Foundry and AgroPortal. 

• The existing correlations between the metrics analysed would not 
bias the assessment of the quality of the ontologies. 

• The clusterings generated by the dynamic scale are stable and are 
well-structured, which reinforce the usefulness of these metrics. 

• This study is novel in the field of evaluation and classification of 
ontological structural metrics and similar approaches might be used 
for other metrics. 

• This kind of approach may well help users to understand the prop-
erties of the corpus under analysis, which can generate new insights 
in the properties of the ontologies of a repository. 
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Figure 1. Graphical representation of the application of the dynamic scaling function using a corpus. 
  

D
yn

am
ic

sc
al

in
g

fu
nc

tio
n

Corpus of Ontologies

5 categories / 5 clusters

1

Computation
of Metrics

Several
metrics

dynamically scaled metrics scores

original metrics values

2

3

Several
metrics

Several
metrics



 

 
Figure 2 a). Pearson's correlation coefficient between metrics: OBO Foundry. 
 

 
Figure 2 b). Pearson's correlation coefficient between metrics: AgroPortal. 
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Figure 3 a). Pairs of metrics with correlations higher than 0.8 in absolute value: OBO Foundry. 
 
 

 
Figure 3 b). Pairs of metrics with correlations higher than 0.8 in absolute value: AgroPortal. 
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Figure 4 a). Category and global stability scores of ANOnto and AROnto metrics for 
b=50,100,500,1000: OBO Foundry. 
 

 
Figure 4 b). Category and global stability scores of ANOnto and AROnto metrics for 
b=50,100,500,1000: AgroPortal. 
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Figure 5 a). Silhouette graphics of three selected metrics representing different behaviours: OBO 
Foundry – CROnto. 
 

 
Figure 5 b). Silhouette graphics of three selected metrics representing different behaviours: AgroPortal – 
CROnto. 
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Figure 5 c). Silhouette graphics of three selected metrics representing different behaviours: OBO 
Foundry – RROnto.  

 
Figure 5 d). Silhouette graphics of three selected metrics representing different behaviours: AgroPortal – 
RROnto. 
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Figure 5 e). Silhouette graphics of three selected metrics representing different behaviours: OBO 
Foundry – WMCOnto. 
 

 
Figure 5 f). Silhouette graphics of three selected metrics representing different behaviours: AgroPortal – 
WMCOnto. 
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