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Using Machine Learning for predicting the effect
of mutations in the initiation codon

J. Castell-Dı́az, F. Abad-Navarro, M. E. de la Morena-Barrio, J. Corral, and J. T. Fernández-Breis

Abstract— The effect of mutations has been traditionally
predicted by studying what may happen due to the substi-
tution of one amino acid for another one. This approach
may be effective for mutations with impact in the function of
the protein, but ineffective for mutations in the translation
initiation codon. Such mutation might avoid the generation
of the protein. Consequently, specific methods for pre-
dicting the effect of mutations in the translation initiation
codon are needed. We propose a method for predicting the
effect of mutations in the canonical translation initiation
codon based on a biological model that considers specific
features of such mutations, like the distance to a potential
alternative initiation codon. Our predictor has been devel-
oped using tree-based machine learning algorithms and
data extracted from Ensembl. Our final model is able to
detect whether a mutation in the canonical initiation codon
is deleterious or benign with a precision of 44.28% and an
accuracy of 98.32%, which improves the results of state of
the art tools such as PolyPhen, SIFT, or CADD for this type
of mutation.

Index Terms— Bioinformatics, initiation codon, machine
learning, mutation, prediction

I. INTRODUCTION

DNA is in the nucleus of all cells and contains the se-
quence of information that is needed to create proteins. Those
proteins are made outside the nucleus, in the ribosomes, so
the information needs to be transported there by the RNA.
This is done through a process called transcription, where the
information needed is copied from the DNA to the RNA in
the form of transcripts. The ribosome scans the sequence of
the transcript until detecting the translation initiation codon
AUG (ATG in the DNA sequence) in a favorable context. In
this line, Kozak discovered a consensus sequence (also known
as Kozak sequence) around AUG codons that empowers the
recognition as translation initiation site by the ribosome [1].
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The translation initiation codon is the signal in the RNA
sequence which triggers the translation of RNA into protein.
Then, translation can start from that point to generate the
protein.

The DNA may have errors which can be manifested through
changes in the content of the nucleotide sequence. Such
changes are called mutations, which can be due to a number
of factors, and may affect interactions among proteins [2], [3]
or the proteins’ functions itself [4], [5].

In the last decades, different methods for predicting the ef-
fects of mutations have been proposed. SIFT [6] and PolyPhen
[7] are likely to be the most popular tools, and their predictions
mainly use the amino acid conservation levels and the effect
that a substitution of one amino acid could have. Other popular
techniques, such as CADD, use a score to determine the
deleteriousness of a variant by combining different genomic
features extracted from multiple annotations [8]. However,
those methods are not optimal for mutations such as in the
translation initiation codon. Mutations in this codon may cause
the generation of a protein different from the intended one
or the non-generation of any protein. Therefore, this kind of
mutation is not necessarily related to the functions of the new
protein that might be generated. Such kind of mutation may
avoid the translation to protein, because there could be no
starting site [9].

To the best of our knowledge, there are no specific pre-
dictors of the effect of mutations in the translation initiation
codon, which are of particular relevance for the generation of
proteins. A number of 26037 mutations affecting canonical
start codons were identified in the GRCh38 version of the
human genome. This is why the main objective of this paper
is the development of a predictor of the effect of mutations
that affect the canonical translation initiation codon to classify
them as either benign (not harmful) or deleterious (damaging).
To this end, we will follow a machine learning approach,
whose application to biomedical data has increased in the last
years with different purpose, such as predicting protein-protein
interactions [10], predicting S-nitrosylation sites [11], lethal
interactions in cancers [12] or real-time heart diseases [13].

The main difficulty of this dataset comes from the im-
balance found, where 98.5% of the mutations are classified
as deleterious. This imbalance derives from the importance
of the initiation codon in the creation of proteins, as there
are few cases in which a mutation in this codon will be
benign, since it is greatly affecting the resulting protein. This
supports the need for such a tool, since by identifying the
benign mutations in the initiation codon, we might be able to
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understand the mechanisms that palliate the harmful effects of
these mutations.

Our hypothesis is that if the canonical initiation codon is
lost, the translation may begin in the next initiation codon
found in an adequate context [9]. Therefore, we believe that
aspects such as the distance to the alternative initiation codon
from the canonical one or whether the original reading frame is
kept should be taken into account when predicting the effect of
mutations in the translation initiation codon. Larger distances
or not keeping the reading frame increase the chances of
having a deleterious mutation. From the technical perspective,
our predictor will make use of machine learning algorithms,
whose usage in bioinformatics has increased in the last years
because of the availability of larger datasets [14], [15]. Each
script used in this work can be found in the following GitHub
repository: https://github.com/JavierCastellD/
InitiationCodonMutationPredictor.

The remainder of this article is structured as follows. Section
II explain the methods applied in this work to develop the
predictor and the datasets used. We show the results of the
predictor in Section III. The results are discussed in Section
IV. Finally, some conclusions are put forward in Section V.

II. MATERIALS AND METHODS

We propose a method based on machine learning techniques
to obtain a model that is capable of classifying mutations in
the initiation codon as benign or deleterious. Our method has
three main steps (Figure 1):

• Configuration of the process, which mainly includes the
selection of the variables and of the machine learning
algorithm.

• Hyperparameter fine-tuning of the selected machine
learning algorithms to prevent overfitting.

• Obtaining the final performance for our model through a
held out test set.

Fig. 1. The process followed to develop the predictor of the effect of
mutations in the transcription initiation codon.

A. The dataset

The dataset used in this work [16] contains the 26037
mutations observed in the initiation codon in the human
genome (GRCh38 version), and 199 mutations from the goat
genome (ARS1 version). We used the goat genome to increase
the number of instances of benign mutations. The goat data
can be used in combination with the human one since the

transcription and translation genetic mechanism are the same
in both organisms. This necessity came from the extreme
imbalance present in our dataset, as 98.5% of the instances
(25815) belonged to the DELETERIOUS class, while the
remaining 1.5% (421) corresponded to the BENIGN class.
36% of those 421 BENIGN instances came from the goat
genome.

This dataset was obtained from Ensembl release 100 [17]
and it contains the target feature CLASS and 13 features,
six of which are categorical and, the rest, numerical. The
distribution of each variable and its meaning can be seen
in Tables I and II. There were no missing or null values
for any feature of the dataset. Each mutation is classified
as benign or deleterious by considering the minor allele
frequency (MAF) obtained from Ensembl, assuming those with
low frequency (MAF <0.01) to be deleterious [18]. There
might be benign mutations that present low frequency due to
being new, which would be wrongly classified as deleterious,
but this approach has already been previously used as noted
by Niroula and Vihinen [19] ”Variants with allele frequencies
(AFs) ≥ 1% are generally assumed to be benign, assumption
widely used by e.g. predictor developers”, and Dong et al. [20]
”Higher prediction score from deleteriousness prediction tools
indicates higher risk of deleteriousness, while higher MMAF
means that the mutation is common and therefore is oftentimes
less likely to be deleterious”, among other related work [21]–
[24].

We used the results provided by Noderer et al. [25] for
selecting the alternative initiation codon. In this work, the
efficiency of each possible translation initiation site sequences
spanning the -6 to +5 positions was provided, obtaining the
Kozak context [1] an efficiency of 87. Here, we used this
value as a threshold so that we select the first AUG codon
in a context with an efficiency higher than 87 as alternative
initiation codon.

At the beginning of our work, we split our dataset in two
subsets: training and test. The training dataset contained 90%
of the original data (23232 deleterious and 380 benign) and
the test one had the remaining 10% (2583 deleterious and
41 benign). The split was done in a stratified manner, so
each subset contains approximately the same percentage of
samples of each target class as the complete set. The training
subset was used to choose the parameters and fine-tune the
hyperparameters of the model, while the test subset was only
used at the end of the experiment to estimate the performance
of the final model.

B. Selection of algorithms, variables and undersampling

The objective of this phase is to select some machine
learning algorithms, as well as the combination of variables
and percentage of undersampling to use.

When performing feature selection, the number of variables
was determined by using a combination of five statistical tests:
chi-square, ANOVA, mutual information and LASSO logistic
regression with liblinear and saga. This was done in order
to reduce bias, as selecting one over the other depends on the
training set [26]. Our feature selection is based on the one used
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TABLE I
CATEGORICAL FEATURES OF THE DATASET USED IN THIS WORK.

Feature name Meaning
CLASS Type of mutation.
CDS COORDS Coordinates of the mutation in relation to the coding region.
AMINOACID CHANGE Amino acid change due to the mutation.
CODON CHANGE Codon change due to the mutation.
READING FRAME STATUS If the original reading frame was kept.
NO STOP CODON Existence of a stop codon after the alternative initiation codon.
PREMATURE STOP CODON Existence of a premature stop codon after the alternative initiation codon.

TABLE II
NUMERICAL FEATURES OF THE DATASET USED IN THIS WORK.

Feature name Meaning
NMETS 5 UTR Number of ATG in the 5’ UTR of the mRNA.
CONSERVED METS IN 5 UTR Number of ATG in the 5’ UTR of the mRNA in phase with the original codon.
LOST METS IN 5 UTR Number of ATG in the 5’ UTR of the mRNA which are not in phase with the original codon.
CONSERVED METS NO STOP IN 5 UTR Number of ATG in the 5’ UTR of the mRNA in phase with the original codon without a stop codon.
MET POSITION Distance to the alternative initiation codon.
STOP CODON POSITION Distance to the stop codon from the original initiation codon.
MUTATED SEQUENCE LENGTH Length percentage of the resulting protein after the mutation in relation to the original.

in [27]. We developed two very similar techniques (Figure 2)
that both required to ask for a number of features to each
statistical test. In the first technique (AskNGetN), we executed
the five tests, each test returned n features and we selected
the n features with the highest frequency in the results offered
by the five tests. For the second technique (AskNGetAll), we
asked each test for n features and we selected all the features
returned by at least one test. Additionally, we also used
the implementation of Scikit-learn [28] of recursive feature
elimination with cross-validation (RFECV) as a multivariate
feature selection technique. To account for variance in model
initialization and training, we applied repeated stratified cross-
validation to the training set.

Fig. 2. Two feature selection techniques created for this work. For
AskNGetN, each statistical test returns n features, and we keep the n
most frequent. For AskNGetAll, each test also returns n features, but we
keep each feature selected by at least one test.

Besides choosing the number of features, in this step we
also selected the percentage of undersampling to apply, which
affects to how much of the training set corresponds to the
minority class BENIGN. We also studied the use of cost
sensitive learning, in which the weight of the data is influenced

by the class frequency. The following supervised machine
learning algorithms were tested: SVM [29], KNeighbours [30],
AdaBoost [31], Gradient Boosting [32], GaussianNB [33],
Gradient Descent [34], Decision Tree [35], Random Forest
[36], Extremely Randomized Trees [37] and Bagging Classifier
[38]. These algorithms were used with the default hyperparam-
eters according to the Scikit-learn library.

The output of this step was a group of different models
selected by training a combination of machine learning al-
gorithms, number of features, feature selection techniques,
percentage of undersampling, and cost sensitive learning, and
then choosing the most promising ones. In order to determine
which models were the most promising, we focused on the
F1-score using the BENIGN class as the positive class, as
well as in the precision metric to reduce false positives, that
is deleterious mutations misclassified as benign. The selection
procedure consisted in ordering the possible models by their
F1-score, removing those with a precision score of less than
0.45 and choosing the top three of each batch. We did this in
four batches, each one being a combination of cost sensitive
usage and feature selection technique.

C. Hyperparameter fine-tuning

The objective of this step is to fine-tune the hyperparameters
of the models chosen in the previous section. For this, we
selected different values for its hyperparameters and performed
an exhaustive search. Every combination for the values we
selected was tried with the objective of maximizing the F1
value.

For each combination, we performed stratified cross-
validation to preserve the percentage of each class and to avoid
training only with elements of the majority class. To prevent
overfitting, which was likely to happen for the BENIGN class,
we only chose those having a difference between training and
test in the F1-score lower than 0.35. We also established a
minimum of 0.4 for the precision score.
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D. Comparison with SIFT, PolyPhen and CADD
To compare the performance of our method with state of

the art methods such as PolyPhen [7], SIFT [6], or CADD
[8], we used a different version of the whole dataset that only
contained mutations in the translation initiation codon in the
human genome, as PolyPhen and CADD are focused on human
genome, and the list of genomes for SIFT does not contain
the goat (capra hircus). The predictions of these models for
the dataset were obtained from Ensembl.

To keep the variance under 1%, we repeated 1000 times the
train/test split, so that our model was each time trained on the
train set, and then every tool was evaluated on the test set.
As we could only obtain CADD scores for around 50% of the
dataset, we made sure that each instance of the test set had
an available CADD score when performing the train and test
split for the comparison.

III. RESULTS

During the first phase of our experiment almost all machine
learning algorithms were discarded but some of the tree-
based ones: Random Forest (RF), and Bagging Classifier with
Decision Trees (BCDT). Tree-based methods obtained the best
results regardless of the use of cost sensitive learning, but
only two of the feature selection techniques, AskNGetAll and
RFECV, obtained a precision high enough to overcome the
threshold of 45%. The results of this phase are shown in Tables
III and IV, which include the top three performing models
of each batch. An ID was assigned to each combination of
parameters and machine learning algorithm, composed of the
initials of that algorithm and a number.

TABLE III
PHASE 1 RESULTS FOR FEATURE SELECTION TECHNIQUE AskNGetAll.
ML STANDS FOR THE MACHINE LEARNING ALGORITHM, N_var FOR THE

NUMBER OF FEATURES ASKED TO EACH STATISTICAL TEST, US FOR

PERCENTAGE OF UNDERSAMPLING, CS FOR USE OF COST SENSITIVE

LEARNING, AND Acc AND Prec FOR ACCURACY AND PRECISION

RESPECTIVELY.

ML N var US CS Acc F1 Prec
RF1 3 0.05 NO 0.984 0.343 0.539
RF2 4 0.05 NO 0.985 0.312 0.593
RF3 5 0.05 NO 0.985 0.290 0.611
RF4 3 0.05 YES 0.984 0.354 0.553
RF5 4 0.05 YES 0.985 0.325 0.635

BCDT1 4 0.05 YES 0.984 0.298 0.508

TABLE IV
PHASE 1 RESULTS OF COMBINATIONS OF UNDERSAMPLING AND COST

SENSITIVE USAGE BY USING RECURSIVE FEATURE ELIMINATION.

ID US CS Acc F1 Prec
RF6 0.05 NO 0.983 0.372 0.451
RF7 0.05 YES 0.982 0.387 0.465

We applied random undersampling with the following val-
ues: [0.05, 0.1, 0.2, 0.3, 0.4, 0.5]. For the feature selection
techniques AskNGetN and AskNGetAll, we set n to values
between 2 to 5. As for the third feature selection technique,
RFECV, the minimum number of features to be selected was
set to 3.

The optimization of the hyperparameters was studied in the
second phase. For the models chosen in the previous step, we
fine-tuned the following hyperparameters: max depth, which
refers to the maximum depth of the tree; min samples split,
which is the minimum number of samples to split a node;
min samples leaf, which describes the minimum number of
samples to be a leaf node; n estimators, which indicates
the number of trees in the forest; bootstrap, which refers
to whether we are applying bootstrapping samples or not;
and max features, which is the number of features that are
considered when looking for the best split.

For each of those hyperparameters we tested certain values:
max depth with values in [1, 2, 4, 8, 16, 32, 64, 128],
min samples split with values in [2, 5, 10], min samples leaf
with values in [1, 2, 4], n estimators with values in [1, 2,
5, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 750, 1000],
bootstrap with values in [True, False], and max features with
values in [None, sqrt, log2]. We can see the results of the top
performing models of this phase in Table V, being the model
RF1 highlighted as it was chosen as the final model. Those
results were obtained after performing a hundred training and
test splits with cross-validation to reduce variance in order to
make the best decision.

To obtain the definitive performance results for our final
model, we used the whole training set for training and then
the trained model was evaluated with the test set we had set
apart at the beginning of the experiment. This was repeated a
hundred times to reduce the variance of the results under 1%,
but the content of the training and test sets were not changed.
The results were 98.32± 0.02 for accuracy, 25.38± 0.84 for
F1-score, and 44.28 ± 0.84 for precision, with a confidence
interval of 95%.

Finally, we also compared the performance of our final
model with that of PolyPhen, SIFT, and CADD. As we pre-
viously mentioned, we used a different version of our dataset
for this comparison. That version only included mutations of
the transcription initiation codon for the human genome, as
our data for goat genome did not have the needed features to
perform the prediction for PolyPhen, SIFT, and CADD. The
results can be seen in Table VI with a confidence interval of
95%, after repeating the training and testing a thousand times.

We have made available a web form1 so that it can be used
by researchers to test our predictor. This web form has three
different ways of performing the prediction: by features, by
sequences, or by Ensembl transcripts.

For the prediction by features, the user has to input
the value of each of the features of the final predic-
tor: PREMATURE STOP CODON (if there is a premature
stop codon after the alternative initiation codon), READ-
ING FRAME STATUS (whether the original reading frame
was kept), MUTATED SEQUENCE LENGTH (length per-
centage of the mutated protein), LOST METS IN 5 UTR
(number of ATG in the 5’ UTR which are not in phase with the
original codon), STOP CODON POSITION (distance to the
stop codon) and MET POSITION (distance to the alternative
initiation codon). For the sequence one, the input has to be

1http://sele.inf.um.es/initiationMutationPredictor/
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TABLE V
PHASE 2 RESULTS OF VALUES FOR THE HYPERPARAMETERS OF THE CHOSEN MODELS.

ID max depth min samples split min samples leaf n estimators bootstrap max features Acc F1 Prec
RF1 16 5 1 1000 False sqrt 98.39 ± 0.03 26.62 ± 1.26 52.60 ± 2.66
RF6 16 5 2 1000 False log2 98.22± 0.03 24.25± 1.06 43.02± 2.26
RF2 16 5 2 5 False log2 98.29± 0.03 17.77± 1.23 40.39± 2.56
RF3 16 2 2 50 False sqrt 98.47± 0.02 16.93± 1.19 66.26± 2.98

TABLE VI
COMPARISON WITH PolyPhen, SIFT, AND CADD BY USING MUTATIONS

IN THE INITIATION CODON FOUND IN HUMAN GENOME.

Method Accuracy F1 Precision Recall
SIFT 81.99± 0.03 4.49± 0.03 2.36± 0.02 44.94± 0.35
PolyPhen 54.01± 0.03 3.11± 0.01 1.59± 0.01 78.40± 0.28
CADD 84.70± 0.03 7.48± 0.04 3.97± 0.02 65.66± 0.33
Ours 99.04± 0.01 21.28± 0.36 47.85± 0.86 13.91± 0.25

the complementary DNA sequence, the coding region and the
mutated complementary DNA sequence. For the transcript, it
is needed both the Ensembl ID and the codon change, which
is the resulting codon of the mutation. An example of the web
form and the first input option can be seen in figure 3. That
figure shows the data input for the Features tab and the result
of the prediction, which is calculated after clicking on the
evaluate button. In this example, the mutation is predicted to
be deleterious and the confidence of the prediction is 97.52%.

Fig. 3. Web form to perform predictions of mutations in the initiation
codon with different input options: features, sequences, or Ensembl
transcripts.

IV. DISCUSSION

In this paper, we have presented a predictor specific for
mutations that affect the translation initiation codon. Our work
applies the biological model described in [9], which showed
the need of a specific treatment of this kind of mutation. Other
general approaches for predicting the effect of mutations in the
effect of the functions of the protein are not effective in this
case. We have applied and tested different machine learning
algorithms for the development of our predictor, which served
to identify which ones were more appropriate for our study.

The main challenge of our work came from the extreme
imbalance of our data (98.5% of the instances belonging
to the DELETERIOUS class). This means that our predictor
could have a high accuracy by classifying all mutations as
deleterious. We applied different techniques to deal with such
an imbalance. Aside from using undersampling, cost sensitive
learning, and metrics such as precision or F1 to identify how
well our model deals with the minority class, we also tested the
use of oversampling (alone and merged with undersampling),
and the use of data augmentation, with techniques such as
SMOTE [39]. However, we considered that synthetic data was
not adequate for this situation, as we could not guarantee
that the generated data will be correct from a biological point
of view. As for the use of oversampling, during preliminary
testing, the results we obtained were not better than those
of undersampling and we also considered problematic that,
due to the low amount of instances of the minority class, our
classifier might end up learning the same repeated instances,
instead of identifying the differences between them. The usage
of goat data was also intended to help reduce the imbalance of
the dataset, as the number of benign instances increased after
adding the available goat mutations for the initiation codon.
Likewise, we used goat data instead of that of rats or more
genetically known organisms because we could only find in
Ensembl a large enough dataset of this kind of mutation for
the goat.

For this experiment we had to decide the percentage of
undersampling and the values for the number of features for
the feature selection technique, as well as for the different
hyperparameters of the machine learning algorithms. The
undersampling percentage applied ranged from 5% to 50%
in order to reduce imbalance. It is worth mentioning that the
larger the percentage of undersampling, the more data is lost.
Having a perfectly balanced dataset would require to lose more
than 25000 instances of the DELETERIOUS class (about 97%
of all the data). In the end, we found that an undersampling
percentage of greater than 20% led to worse results for most
of the machine learning algorithms we tried.

In order to decide what number of features to test, we
previously performed an statistical analysis using chi-square
and ANOVA, where we found that at least eight features had a
significant relation to the target variable (p value <0.05), five
of which had a p value lower than 0.01. After preliminary
testing we established the range from 2 to 5. For RFECV, we
chose a minimum of 3 features to be selected because we had
to first apply several transformations in our dataset (such as
using one hot encoding to categorical features and min-max
scaling for numerical features) in order to perform RFECV,
which meant that there would be more candidate features.

The results of the first phase revealed that only two of
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the three feature selection techniques allowed for a model
that could fulfill the threshold of precision: AskNGetAll and
RFECV. Using AskNGetN led to a greater overall recall, at
the expense of very low precision and lower than the others
F1-score. The objective of using a threshold was to reduce the
number of possible combinations of values for the parameters.
Apart from acting as a filter mechanism, it also served as a
way of trying to prevent the predictor of only focusing on the
majority class by establishing a minimum accuracy for the
minority class. We focused on precision to reduce the number
of false positives, which are instances of the DELETERIOUS
class predicted as BENIGN. The values of the threshold
were chosen by analyzing our preliminary results. In this first
phase, the training and testing with different subsets was only
repeated fifty times. In the other two phases the experiment
was repeated a hundred times to ensure low variance, as in
this case there were a lot of possible combinations and the
first step had a preliminary nature.

During the second phase, we noticed that there was overfit-
ting only for the prediction of the minority class, with some
instances where the difference between training and testing
for recall or F1 was greater than 50%. We considered that
this was happening due to the low number of instances of
the BENIGN class and because of the way we performed
the exhaustive search of the hyperparameters, as the imple-
mentation used (GridSearchCV from scikit-learn library [28])
applies cross-validation and created small samples sizes. We
reduced the value for the thresholds established in the previous
step looking at the results of each execution. We also found
that models using cost-sensitive learning could not fulfill the
threshold for precision after filtering out those suffering from
overfitting.

Lastly, we compared the performance of our model with
that of PolyPhen, SIFT and CADD for a certain dataset that
only contained mutations in the transcription initiation codon
of human genome. As mentioned in section II, we only had a
CADD score for 50% of all the human instances, with only 117
of those being of the BENIGN class. As the CADD score only
mattered when performing the evaluation comparison, and not
when training the model, we opted for choosing the test set
from among those with an available CADD score. The rest of
the instances that were not part of the test set were considered
as the training set. This particular split, and its corresponding
training and evaluation, was repeated several times to account
for variance in the undersampling and model training.

As shown in table VI, our model obtained better overall
accuracy than the rest, although this metric is not the most
important due to the skewed nature of the dataset towards
deleterious mutations. As for recall, all other tools are able
to obtain better results than ours, but that is at the cost
of precision, and F1-score. That is why we consider our
model to be preferable that theirs, since SIFT, PolyPhen and
CADD obtain scores of 2.36%, 1.59% and 3.97% for precision
respectively, while we achieve a precision of 47.85%. This
means that they are suffering from false positives, where
DELETERIOUS mutations are predicted as BENIGN, which
is far more serious than the opposite (false negatives). That
is because misclassifying BENIGN mutations as DELETERI-

OUS only leads to further tests that could detect the benign
nature of the mutation. A false positive would mean ignoring
a deleterious mutation. We tested our tool in a use case of a
mutation that affects the initiation codon of SERPINC1 [40],
which is the gene encoding antithrombin. By classifying this
mutation with our method, we would be able to correctly
identify it as deleterious, which contrasts with the prediction
given by other tools.

In the comparison with CADD results, we noticed that,
for the human genome dataset, there were differences in the
performance of our model between using stratified cross-
validation or performing the special train/test split (see table
VI). In the case of cross-validation, the recall of our model
increased 20% (30.96% vs 13.91%) at the cost of a 10%
decrease in precision (38.09% vs 47.85%), with an overall
decrease in F1-score of 10% (33.65% vs 21.28%). The results
for SIFT and PolyPhen were not affected by this change in
the test set selection. This might mean that some of those
instances with CADD score affected the model generaliza-
tion capabilities, and not having them available for training,
hindered its performance. It is also worth mentioning that
the results obtained by performing stratified cross-validation
on the dataset with no goat mutations showed an overall
improvement compared to the final performance results shown
in section III. This might mean that by adding goat genome
data, we are actually adding unnecessary noise, or that the
benign mutations added by goat genome made it harder for
the model to generalise them. It is also possible that, due to
the lower number of samples of the BENIGN class, our model
was able to learn them better.

The features used in the final model were:
MUTATED SEQUENCE LENGTH, PREMA-
TURE STOP CODON, READING FRAME STATUS,
LOST METS IN 5 UTR, STOP CODON POSITION, and
MET POSITION. During preliminary testing, we applied the
statistical tests chi-square and ANOVA for the categorical
and numerical features respectively to study the correlation
with the target feature CLASS. Of those features chosen for
the final model, only MET POSITION had a p-value of less
than 0.05, and the rest presented p-values of less than 0.001,
except for STOP CODON POSITION (p-value of 0.0217).
Other features that were not chosen and had an apparent
statistical significance (p-value <0.05) were NMETS 5 UTR
(number of ATGs in the 5’ UTR), CODON CHANGE (the
change of codon due to the mutation), and CDS COORDS
(the coordinates of the mutation in relation to the coding
region).

We also observed that, for our dataset, benign mu-
tations usually have a closer alternative initiation codon
than their deleterious counterparts, with a mean value
of 146 vs 159 respectively for MET POSITION. Ad-
ditionally, benign mutations usually show greater MU-
TATED SEQUENCE LENGTH and with no values above
100%. Thus, benign mutations led to a resulting protein with a
more similar length to the original than deleterious mutations.
Finally, deleterious mutations are usually those that lose the
original reading frame, since only 40% of them keep it.

As future work, having more data available, or at least a less
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imbalanced dataset with more instances of the BENIGN class,
may improve the quality of the predictor, as this has been one
of the main challenges of this work. It might be interesting to
try different techniques to deal with the imbalance such as a
one class classifier [41] or other alternatives based on the use
of neural networks and deep learning [42]–[44].

V. CONCLUSION

We were able to develop a predictor capable of detecting
whether a mutation in the translation initiation codon is
deleterious or benign by using a tree-based machine learning
algorithm such as Random Forest. This model achieved during
the testing process a final performance of 25.38% F1-score, an
accuracy of 98.32%, and a precision of 44.28%. Due to the
low number of instances of BENIGN mutations, the model
classified some of them as DELETERIOUS. However, when
comparing it with other state of the art techniques such as
SIFT, PolyPhen, or CADD, our method outperformed them
for this type of mutations. Looking at the results, we consider
that our working hypothesis holds, since features such as the
distance to the alternative initiation codon were chosen by
the feature selection technique and they helped obtain better
results than previous models.
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