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A B S T R A C T   

Solar heterogeneous photocatalysis was used to remove trihalomethanes (THMs) from drinking water. THMs, 
mainly trichloromethane (TCM), tribromomethane (TBM), bromodichloromethane (BDCM) and dibromo-
chloromethane (DBCM) are one of the main class of disinfection by-products (DBPs). THMs were determined by 
HSGC-MS with detection limits (LODs) ranging from 0.5 μg L− 1 to 0.9 μg L− 1 for TCM and BDCM, respectively. 
Results show that a great proportion of THMs present in water are finally transferred to air as a result of their 
high volatility in the order TCM > BDCM > DBCM > TBM. The use of band-gap semiconductor materials (TiO2 
and mainly ZnO) used as photocatalysts in combination with Na2S2O8 as electron acceptor and sulfate radical 
anion (SO4

•-) generator enhanced the photooxidation of all THMs as compared to photolytic test. The time 
required for 50% of THMs to disappear (DT50) from water calculated for the most effective treatment (ZnO/ 
Na2S2O8) were 12, 42, 57 and 61 min for TCM, TBM, BDCM, and DBCM, respectively. Therefore, solar het-
erogeneous photocatalysis can be considered as an interesting strategy for THMs removal, especially in sunny 
areas like Mediterranean basin.   

1. Introduction 

As Leonardo Da Vinci said half a millennium ago, “Water is the driving 
force of all nature”. Water is an essential natural resource for the sus-
tainability of the life in our planet and disinfection treatment of drinking 
water (DW) is vital to supply pure water to citizens. The need to make 
water drinkable entails the inevitable disinfection to inactivate micro-
organisms (Kwarciak-Kozłowska, 2020). Chemical and physical 
methods used for water disinfection mainly include chlorination (Cl2, 
NH2Cl, NHCl2, ClO2 and/or NaClO3) ozonation (O3), UV light, potas-
sium permanganate (KMnO4), and/or nanofiltration (Dubey et al., 2020; 
Srivastav et al., 2020; Sinha et al., 2021). However, the appearance of 
many hazardous disinfection by-products (DBPs) is a noticeable concern 
worldwide (Prasad, 2020), especially in those methods involving chlo-
rination, which is the typical method of disinfection to compare with 
other treatments. According to Chaukura et al. (2020), about 700 DBPs 
have been evidenced in DW. Chlorine (used as an oxidant over the last 
100 years) is the main consistent disinfectant due to its 

cost-effectiveness, easy achievement, and lasting residual on the water 
supply network (Sadiq and Rodriguez, 2004). In addition to the chlori-
nation parameters (time and chlorine dose), some factors such as pH, 
temperature, occurrence of other ions (Br− , I− ) or chemical character-
istics of natural organic matter (NOM) such as aromaticity and func-
tionality are well-known to assess the impact on the level of DPBs 
generated (Kim and Yu, 2005; Ates et al., 2007; Al-Omari et al., 2014; 
Dubey et al., 2020; Sinha et al., 2021). 

Among DBPs, trihalomethanes (THMs), haloacetic acids (HAAs) and 
haloacetonitriles (HANs), the three largest classes of DBPs by weight are 
the predominant classes reported in the chlorinated water. In many 
cases their occurrence is above the Maximum Admissible Concentration 
(MAC) in many countries worldwide causing adverse effects on human 
health (Dubey et al., 2020; Srivastav and Kaur, 2020; Sinha et al., 2021). 

THMs are single-carbon substituted halogens (CHX3) where X can be 
fluorine, chlorine, bromine or iodine or a grouping of them. However, 
only trichloromethane (TCM) or chloroform, and brominated THMs 
such as tribromomethane (TBM) or bromoform, bromodichloromethane 
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(BDCM) and dibromochloromethane (DBCM) are significant from the 
point of view of DW pollution. The amount of all these compounds is 
known as total THMs (TTHMs). TCM always has the highest concen-
tration in DW, and frequently represented by more than 90% of the 
THMs. The pattern of THM amounts in chlorinated water is usually as 
follows: TCM > BDCM > DBCM > TBM (Brown, 2009; Durmishi et al., 
2015; WHO, 2017). Valdivia-García et al. (2019) pointed out the strong 
seasonal correlation between THMs levels, water temperature and dis-
solved organic carbon (DOC) demonstrating how climate can influence 
THMs formation. Different analytical techniques are commonly used for 
the detection of THMs in water samples by direct aqueous injection, 
static/dynamic headspace, liquid-liquid extraction, headspace-solid 
phase microextraction or membrane-based sampling using gas chro-
matography (GC) coupled to mass spectrometers (MS) and electron 
capture (EC) as the most widely used detectors (Pérez-Pavón et al., 
2008). 

The widespread use of chlorine as a disinfectant applied as Cl2 or 
hypochlorite salts generates HOCl, which then dissociates into OCl−

(Sadiq et al., 2002). HOCl has a higher reactivity than OCl− , making it 
one of the most active oxidixing species (Frimmel and Jahnel, 2003). If 
Br− and I− initially exist in raw water, HOCl/OCl− oxidises Br− and I− to 
form HOBr/OBr− and HOI/OI− , respectively, producing Br-DBPs and 
I-DBPs by different oxidation/substitution reactions with NOM 
(HOCl/HOBr/HOI + NOM → THMs + other halogenated DBPs). 

The occurrence of Br− and dissolved organic matter (DOM) in DW 
justifies the formation of brominated THMs (Sadiq and Rodriguez, 
2011). Their appearance in DW is a major problem because brominated 
are more hazardous than their chlorinated analogues (Richardson et al., 
2007). Active bromine reacts with NOM more quickly than active 
chlorine, with highly brominated analogues appearing even at moder-
ately low bromide level. Both species react with DOM to generate 
halogenated intermediates (Westerhoff et al., 2004). 

The suitability of DW standards and their scrupulous implementation 
are extremely important issues to protect human health (WHO, 2017; 
Poleneni, 2020; Tsaridou and Karabelas, 2021). The main risk of THMs 
to citizens is the direct ingestion of DW, although other activities such as 
cooking, bathing, showering, etc. resulting from their volatilisation 
constitute an important source of exposure (Richardson et al., 2007; 
Rivera et al., 2012). The potential harmful effects of THMs to humans 
(De Castro Medeiros et al., 2019; Egwari et al., 2020; Sinha et al., 2021) 
led the US EPA to promulgate a MAC for THMs of 80 μg L− 1 in DW (US 
EPA, 1998). Similarly, the EU has established a MAC of 100 μg L− 1 (EC, 
2020). 

To reduce/remove THMs levels from DW, different methods aligned 
with biological or chemical technologies have been developed high-
lighting the notions of preventive action, through disinfectants other 
than chlorine or chlorine dose optimisation, and treatment action 
removing precursor materials by ion exchange resin or membrane 
filtration prior to chlorine addition. Once formed, coagulation/floccu-
lation, adsorption, biological filtration, soil aquifer handling, ozona-
tion/ultrafiltration, Advanced Oxidation Processes (AOPs) or hybrid 
treatment processes are some of the most commonly used methods to 
remove THMs from DW after disinfection (Zainudin et al., 2017; Sinha 
et al., 2021). 

Currently, the development of solar photochemical processes is seen 
to be of dynamic significance, especially those where sunlight is used 
(Tsydenova et al., 2015; Chakrabarti, 2018). AOPs based on photo-
catalysis have proven to be an interesting tool to remove chemical and 
biological contaminants from water (Malato et al., 2009; Miklos et al., 
2018; Aziz and Abu Amr, 2019). They have got substantial interest, 
especially heterogeneous photocatalysis (HP), defined as “chemical re-
actions induced by a solid material (photocatalyst) that absorbs suitable 
radiation and remains unaffected during the process” (Ahmad et al., 
2016; Ahmed and Haider, 2018; Augugliaro et al., 2019). Among 
various semiconductor materials used as photocatalysts, TiO2 (Aziz and 
Palaniandy, 2019; Gopinath et al., 2020) and ZnO (Lee et al., 2016; Ong 

et al., 2018) are the most widely used for environmental solar applica-
tions. The major benefit of these technologies is that they attain the 
abatement/reduction of the pollutants by mineralization, unlike other 
conventional processes where the contaminant is only transferred to the 
environment (Ribeiro et al., 2015). 

Organic pollutants are oxidised by extremely oxidant species, mainly 
hydroxyl radicals (HO•, E0 = 1.9–2.8 V vs. NHE) and others including 
superoxide anion (O2

●-) and hydridodioxygen (HO2
•). In addition, sulfate 

anion radical, SO4
•- (E0 = 2.5–3.1 V vs. NHE) may also be engaged when 

peroxydisulfate (S2O8
2− ) or peroxymonosulfate (HSO5

− ) are used as oxi-
dants for environmental applications (Wacławek et al., 2017; Wang and 
Wang, 2018). Both, HO• and SO4

•- with half-lives of 10− 3 and 30–40 μs, 
respectively, are commonly involved in electron transfer reactions 
although the former may also react via hydrogen-atom abstraction 
(Olmez-Hanci and Arslan-Alaton, 2013). 

Some studies have emphasised the removal of the precursors (mainly 
organic matter) responsible for generating THMs previously to disin-
fection process using AOPs (Sillanpää et al., 2018; Tak and Vellanki, 
2019; Hariganesh et al., 2020; Sinha et al., 2021). However, scientific 
literature on the removal of THMs in DW through solar HP is very scarce. 
With this aim, we have assessed the effectivity of ZnO and TiO2 as 
photocatalysts in combination with Na2S2O8 as oxidant for the treat-
ment of DW polluted with TCM, BDCM, DBCM and TBM under solar 
irradiation and at pilot plant scale in a sunny area such as southeast 
Spain. 

2. Materials and methods 

2.1. Chemicals, reagents and solvents 

Analytical standards of THMs with >97% purity were purchased 
from Alfa Aesar (Karlsruhe, Germany). H2O and CH3OH (both HPLC- 
grade), Na2S2O8, Na2SO4 and Na2S2O3 all of them with a purity >98% 
were supplied by Scharlab (Barcelona, Spain). TiO2 (70 anatase/30 
rutile, 99.5%, BET 55 m2 g− 1, size 32 nm, Eg 3.0 eV) P25 Aeroxide™ and 
ZnO (wurtzite, 99.99%, BET 7 m2 g− 1, size 194 nm, Eg 3.1 eV) were 
provided by Nippon Aerosil Co Ltd. (Osaka, Japan) and Alfa Aesar 
(Karlsruhe, Germany), respectively. The photocatalysts were previously 
characterised by us (Fenoll et al., 2016) for Diffuse Reflectance Spec-
troscopy (DRS), X-Ray Diffractometry (XRD), Field Emission Scanning 
Electron Microscopy (FE-SEM), Energy Dispersive X-Ray (EDX) coupled 
to SEM and surface area following the Brunauer-Emmett-Teller (BET) 
method (Figure SM1). 

2.2. Standard solutions 

A stock standard solution (nominal concentration of 500 mg L− 1 of 
each THM) was prepared in CH3OH. An intermediate solution (10 mg 
L− 1) was prepared also in CH3OH. Calibration standards (0.1–100 ng 
mL− 1) diluted in CH3OH were prepared from the stock solutions directly 
in 20 mL vials. Solutions were kept in the dark at − 18 ◦C for up to 30 
days. Working standard solutions were prepared daily in ultra-pure 
water (18 mΩ). The water was sonicated for 15 min before use to 
remove any volatile components that might have interfered with sub-
sequent analysis. 

2.3. Experimental setup at pilot plant scale 

The experiments were carried out during summer in a pilot facility 
located in a sunny area at the Agricultural Experimental Centre (Uni-
versity of Murcia) located between the coordinates 37◦ 59′ N and 1◦ 08′

W (Murcia, SE Spain). The small prototype used in this experiment (CPC 
technology) includes a mixing tank, a photoreactor module with five 
borosilicate tubes mounted on aluminium reflectors and an ultrafiltra-
tion membrane to recover the photocatalysts, as previously described by 
Vela et al. (2018). A scheme of the prototype is shown in Figure SM2. 
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Water (25 ± 2 ◦C) flows continuously from the tank in a closed circuit to 
achieve a uniform slurry. The values (W m− 2) of VIS-NIR, UVA, UVB, 
and UVC radiation were recorded by a pyranometer Delta Ohm HD 
2102.2 (Caselle di Selvazzano, Italy) integrated in the facility. 

Previously to the beginning of each assay, the DW (Table SM1) ob-
tained from municipal network was strongly stirred by air stripping for 
120 min (24–27 ◦C) with the tank uncovered before use to remove 
volatile organic compounds (VOCs). After this step, TTHMs was esti-
mated to be 29 ± 12 μg L− 1. Coming up next, 150 L of water were spiked 
in the covered tank with the THMs (100 μg L− 1 of each). Once homo-
genised by mechanical shaking (20 min) in the dark, 150 mg L− 1 of TiO2 
or ZnO were added, and the mixture was homogenised (15 min) in dark 
conditions. Finally, Na2S2O8 (250 mg L− 1) used to avoid e− /h+ recom-
bination and generate sulfate radicals (SO4

•-) was added to the tank and 
the cover of the photoreactor module was removed. Water was circu-
lated uninterruptedly to keep the photocatalyst appropriately stirred. An 
air compressor (250 L min− 1) provided air every 20 min (5 min running) 
because dissolved O2 acts as an electron sink, generating O2

•-. During the 
lighting period (10–14 h) several samples were taken from 0 to 240 min. 
A photolytic test (in absence of photocatalysts and oxidant) was also 
performed. Three replications were carried out in each case. 

2.4. Sample collection and preparation 

Water samples were collected from the pilot plant in 500 mL amber 
glass bottles and stabilised by addition of sodium thiosulfate (125 mg 
per 100 mL of water) because it is a satisfactory dechlorinating agent 
that neutralises residual chlorine and prevents bactericidal effect during 
sample transit. Sample bottles were kept cold and immediately refrig-
erated (4 ◦C) until analysis of THMs, which was carried out usually 
within 24–48 h. 

2.5. Headspace extraction 

Screw-top headspace amber glass vials (20 mL) purchased from 
Sharlab (Barcelona, Spain) were used for headspace extractions. The 
total volume of each filtered (0.2 μm) sample was 10 mL leaving a 
headspace volume of 10 mL. In all cases, 1 g of sodium sulfate was added 
to increase volatilisation of the target compounds. After the vibratory 
shaking (10 s on, 60 s off/heating 80 ◦C for 30 min) period of the vials, 
the headspace was sampled, using a 2.5 mL syringe (1 mL injection 
volume), which was kept at 35 ◦C between aspiration and injection of 
the samples. Between samples, the syringe was flushed with N2 for 10 s. 

2.6. GC-MS conditions 

A Thermo Trace Ultra gas chromatograph equipped with a Polaris Q- 
Ion Trap mass spectrometer (Thermo Fisher Scientific, Waltham, MA, 
USA) using electron impact (EI) ionization at 70 eV and coupled to an 
autosampler TriPlus was used for analysis of THMs. The chromato-
graphic column TR-V1 (30 m × 0.25 mm ID x 1.4 μm) coated with 6% 
cyanopropylphenyl polysiloxane was obtained from Thermo Fisher 
Scientific. The initial oven temperature was 50 ◦C (held for 2 min), 
raised up 220 ◦C at 10 ◦C min− 1 (held for 2 min). The PTV injector 
(splitless, 30 s, 1/30) temperature was 250 ◦C, and the temperature of 
the ion source and transfer line was 225 ◦C. The carrier gas flow (Heli-
um, 99.99%) was 1 mL min− 1. The multiplier voltage was 1300 V. A 
solvent delay of 2 min was used. Analyses were run in FS mode (45–250 
m/z). To improve sensitivity, THMs were quantified in selected ion 
monitoring (SIM) mode. Retention times, evaluation of the mass spectral 
data of standards compared to a mass spectral database (NIST2005) and 
detailed diagnostics of ion fragments were used to identify THMs. 
Appropriate monitoring ions were selected based on their relative 
abundance. For each THM several monitoring ions (m/z) were selected 
for quantification and confirmation, as shown in Figure SM3: TCM (83, 
85, 87), TBM (173, 171, 175), BDCM (83, 85, 129) and DBCM (129, 127, 

131). The data acquisition was carried out running Thermo Scientific 
Xcalibur™ software. 

2.7. Statistical analysis 

The statistical software SigmaPlot (Systat, Software Inc., San Jose, 
CA) v.14 was used to fit the experimental data. To assess the influence of 
treatments on the disappearance of THMs from water, an analysis of 
variance (ANOVA) was performed by means of software IBM-SPSS Sta-
tistics (Armonk, NY) v.25 followed by Tukey’s post-hoc test (p < 0.05). 

3. Results and discussion 

3.1. Analytical validation 

The most commonly typical validation characteristics include spec-
ificity, accuracy (recovery, %), precision (RSD, %), linearity range, 
detection limit, quantitation limit, matrix effect and robustness (Mag-
nusson and Ornemark, 2014). The specificity was assessed by examining 
blank water samples (n = 5) for the absence of interferences, which was 
confirmed, and no further interferences were observed in the retention 
time of the target analytes. The linear range of the method was assessed 
by plotting the relative peak area of each compound versus its concen-
tration. Linear calibration curves were obtained for all THMs from 0.1 to 
100 ng mL− 1 as depicted in Figure SM2. The linearity range was assessed 
as a function of positive results of different tests (R > 0.99, normality, 
Durbin-Watson and constant variance). Thus, the curves obtained 
showed linearity throughout the calibration range. Recovery and pre-
cision were assessed by spiking blank samples at different spiking levels 
(2.5, 5 and 25 ng mL− 1). THMs recovery from spiked samples varied 
from 96.1 to 104.8%, with RSD <10% and intra- and inter-day RSD 
<8%. The lowest concentrations of each THM in a water sample that can 
be detected, but not inevitably quantified (LOD, S/N = 3) ranged from 
0.5 ng mL− 1 to 0.9 ng mL− 1 for TCM and BDCM, respectively. On the 
other hand, the lowest THMs concentrations that can be determined 
with satisfactory precision and accuracy (LOQ, S/N = 10) varied from 
1.6 ng mL− 1 to 3.0 ng mL− 1 for the same compounds. The matrix effect 
(ME, %) was calculated by comparing the slopes in the matrix (Sm) using 
blank extracts calibration solutions and pure solvent (Ss) (CH3OH) 
calibration solutions (ME (%) = [Sm/Ss) – 1] x 100). In all cases, MEs 
were less than 20%, demostrating a low matrix influence. To ensure the 
accuracy, calibration standards were run multiple times during analyt-
ical determinations. Therefore, the method was performed accurately. 

3.2. Volatilisation of THMs 

The human exposure pathway to THMs includes ingestion, inhala-
tion and dermal absorption, with volatilisation playing a key role in the 
three (Kim et al., 2004; Thurnau and Clar, 2017). According to 
Richardson (2005), dermal exposure and inhalation trough showering 
can lead to higher levels of THMs in the blood stream than ingestion. 
Therefore, it is assumed that THMs present in water are eventually 
transferred to the air a as result of their high volatility. For this reason, 
and previously to the photocatalytic experiments, we have carried out a 
simple assay under laboratory conditions to determine the volatilisation 
rate of THMs (100 g L− 1). For this purpose, distilled water samples (1 L, 
n = 3) were brought to 22 ◦C by using a thermostatic bath and a 2 L 
round bottom flask open to the atmosphere. As depicted in Fig. 1, the 
percentage of THMs removed after 4 h of stirring in darkness ranged 
from 86% to 54% for TCM and TBM, respectively, which is directly 
related to their Henry’s LC and vapour pressures (TCM > BDCM >
DBCM > TBM), as showed in Table 1. Similarly, Silva et al. (2013) 
showed a linear correlation (r = 0.995) of THM levels in water vs air with 
increasing Henry’s LC. Therefore, it can be predicted that, as TCM is the 
most volatile, the TTHMs content in the aqueous phase would include a 
higher proportion of brominated species, which are more carcinogenic 
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and toxic (Richardson, 2003). Umphres et al. (1983) observed a 78%, 
74%, 59% and 45% decrease in the input concentrations (100 μg L− 1) of 
TCM, BDCM, DBCM and TBM, respectively, at pilot-plant scale (air: 
water = 38:1, water loading = 21 mm s− 1, and bed packing depth = 2.4 
m). As pointed out by Thurnau and Clar (2017), THMs amount has low 
effect on the volatilisation rates, while a linear relationship between 
temperature and volatilisation rate has been verified. Similar results 
were obtained by Pan et al. (2014). 

3.3. Photolytic and photocatalytic kinetics 

Unlike other DBPs, hydrolysis is not a common loss issue for THMs 
(Mabey and Mill, 1978) although it could contribute to their loss at 
elevated temperatures (>65 ◦C), especially for brominated species 
(Zhang et al., 2015a). However, some authors have demonstrated that 
THMs degrade photochemically, although bromine-substituted com-
pounds are more sensitive than chlorinated analogues, ostensibly by 
photo-induced C–Br bond cleavage (Chen et al., 2010; Sinha et al., 
2021). This is probably due to weaker bond-energy of C–Br (285 kJ 
mol− 1) than the C–Cl (327 kJ mol− 1) (Gilday et al., 2015). However, 
chlorinated THMs are more volatile than brominated species, as speci-
fied above. 

Fig. 2 shows degradative curves obtained during the photolytic and 
photocatalytic trials. Mean values (W m− 2) of VIS-NIR, UVA, UVB and 

UVC recorded at noon were 956.3 ± 31.2, 23.8 ± 2.2, 1.5 ± 0.3 and 0.2 
± 0.1, respectively, and a luminous flux per unit area of 101,547 ± 5084 
lx. As can be observed, the use of photocatalysts in tandem with Na2S2O8 
enhanced the photooxidation of all THMs. The removal percentage (R 
%) at time t can be easily calculated as follows: R (%) = 100 – (C/C0 x 
100). As depicted, the percentages removed at the end of the photolytic 
test (240 min) ranged from 92% to 63% for TCM and TBM. The removal 
was in the order: TCM > BDCM > DBCM > TBM. Considering that the 
mixing tank has a headspace of about 250 L and that an air compressor 
was supplying air every 20 min, it is expected that a large proportion of 
THMs was removed by volatilisation during the irradiation time and 
consequently volatilisation will have a higher influence on their disap-
pearance than photolysis. In addition, the percentage of de-chlorination 
and de-bromination measured as amount of Cl− and Br− ions (using a 
Dionex ICS-2100 ion chromatograph, Thermo Scientific, Waltham, MA, 
with an AS19 column and KOH as eluent) released into solution did not 
correlate with the amount of photodegraded THMs. 

When photocatalysts were used, a significant (p < 0.05) higher 
effectiveness was observed for ZnO/Na2S2O8 as compared to TiO2/ 
Na2S2O8 for the degradation of chlorinated species (TCM, BDCM and 
DBCM), while no significant differences (p < 0.05) were detected for 
TBM (Fig. 2). In the case of TCM, only 3% of its initial concentration 
remained in water when ZnO/Na2S2O8 was used after 60 min of treat-
ment, while about 30% of TCM remained at the same time for TiO2/ 
Na2S2O8 system. In the case of TBM, comparable amounts were recov-
ered after 240 min of treatment, 2% and 4% for ZnO/Na2S2O8 and TiO2/ 
Na2S2O8, respectively. A similar photocatalytic oxidation pattern was 
observed for BDCM and DBCM for both photocatalysts, with percentages 
remaining at the end of the experiment (240 min) ranging from 5% 
(BDCM, ZnO/Na2S2O8) to 14% (DBCM, TiO2/Na2S2O8). The primary 
experiments confirmed that the semiconductor amount affects the pro-
cess because degradation increased with increasing load from 50 to 150 
mg L− 1 for both semiconductors (data not shown). A further increase in 
the loading (300 mg L− 1) weakly decreased the degradation rate, 
possibly due to the reversibility interaction between photocatalyst and 
pollutant and/or screening effect. On the other hand, to assess the effect 
of Na2S2O8 on the degradation rate, two assays were carried out using 
different concentrations of the oxidant while conserving TiO2 and ZnO 
loading at 150 mg L− 1. No significant differences (p < 0.05) were 
observed when the concentration of Na2S2O8 was increased from 250 to 
400 mg L− 1 for both. 

According to Liu et al. (2014), the pseudo-first order kinetic model is 
frequently suitable for describing the photocatalytic oxidation rate of 
many organic pollutants using semiconductor materials when substrate 
concentration is low. Thus, the apparent rate constant (k) can be 
calculated from the following equation (Eq. (1)): 

Fig. 1. Remaining percentages of THMs (100 μg L− 1 of each one) from distilled 
water during stirring (240 min) in darkness at 22 ± 1 ◦C. Error bars denote 
standard deviation (n = 3). 

Table 1 
Main physical-chemical properties of the THMs studied (US EPA, 2017).  

Compound 
(CAS) 

Structure Formula Molecular 
weight 

Water solubility (mg L− 1, 
25 ◦C) 

Log 
KOW 

Henry’s Law Constant (Pa 
m3 mol− 1) 

Vapour pressure (Pa, 
25 ◦C) 

Boiling point 
(oC) 

TCM (67-66-3) CHCl3 119.4 7950 2.0 3.72 × 102 2.63 × 104 61 

TBM (75-25-2) CHBr3 252.7 3100 2.4 5.42 × 101 7.20 × 102 149 

BDCM (75-27- 
4) 

CHBrCl2 163.8 3030 2.0 2.15 × 102 7.65 × 103 90 

DBCM (124-48- 
1) 

CHBr2Cl 208.3 2700 2.2 7.93 × 101 2.09 × 103 120  
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−
dC
dt

= kC → Ct = C0e− kt → ln Ct = ln C0 − kt→  ln C0

Ct
= kt (Eq. 1)  

where t is the reaction time (min), C0 the initial concentration (μg L− 1) of 
THMs and Ct the residual concentration (μg L− 1) of them at time t. 

Following the above equation, the time required for X% of THMS to 
disappear (Disappearance Time, DTx) from the water can be calculated 
following Eq. (2): 

DTx = ln
(

100
100 − x

)/

k (Eq. 2) 

The photocatalytic degradation of THMs in DW obeys to a first order 
kinetics. In agreement to this model, the statistical parameters obtained 
after fitting are shown in Table 2. As can be observed the R2 values were 
≥0.98 in all cases with SY/X ≤ 0.2 in the most adverse case. The rela-
tionship kZnO/kTiO2 ranged from 4 (TCM) to 1.2 (TBM and BDCM). For 

both photocatalysts, the degradation rate was in the order TCM > TBM 
> BDCM > DBCM. Following first-order degradation model, calculated 
DT50 values for the most efficient treatment (ZnO/Na2S2O8) were 12, 42, 
57 and 61 min for TCM, TBM, BDCM, and DBCM, respectively. ZnO is an 
attractive photocatalyst because it is more cost-effective (its production 
cost is up to 75% lower than TiO2) and can be excited by a broad UV 
spectrum (245 nm–380 nm) compared to TiO2 (Akhmal Saadon et al., 
2016). One drawback to consider is that TiO2 absorbs a slight fraction of 
the solar spectrum in the UV region (3.6%–5.2%) depending on the 
weather conditions (Zhang et al., 2015b). ZnO is widely used because it 
has a band gap energy (Eg) very similar to TiO2, higher quantum effi-
ciency, deep violet/borderline UV absorption and large excitation 
binding energy (60 meV) (Lee et al., 2016; Ong et al., 2018). 

On the other hand, among different AOPs, sulfate radical-based 
processes (SO4

•--AOPs) have been achieving attention as an operative 

Fig. 2. Exponential decay of THMs during photolytic and photocatalytic experiments using ZnO (150 mg L− 1) and TiO2 (150 mg L− 1) in tandem with Na2S2O8 (1 
mM) under natural sunlight at pilot plant scale. Error bars denote standard deviation (n = 3). 

Table 2 
Kinetic parameters (k in min− 1; DT in min) calculated for the photolytic and photocatalytic degradation of THMs under natural sunlight irradiation according to the 
pseudo-first order model (n = 3).  

THM Photolysis Photocatalysis (ZnO/Na2S2O8) Photocatalysis (TiO2/Na2S2O8) 

R ln C/C0 k SY/X DT50/90 R ln C/C0 k SY/X DT50/90 R ln C/C0 k SY/X DT50/90 

TCM 0.9998 − 0.0127 0.0106 0.02 65/217 0.9779 − 0.2330 0.0569 0.20 12/40 0.9894 0.1450 0.0143 0.12 48/161 
TBM 0.9957 − 0.0375 0.0043 0.03 161/535 0.9874 0.0849 0.0166 0.15 42/139 0.9865 0.1114 0.0135 0.13 51/171 
BDCM 0.9972 − 0.0437 0.0090 0.05 77/256 0.9911 0.1672 0.0121 0.09 57/190 0.9980 0.0782 0.0098 0.03 71/235 
DBCM 0.9994 − 0.0156 0.0054 0.01 128/426 0.9983 0.0829 0.0114 0.04 61/102 0.9978 0.0576 0.0080 0.03 87/288 

SY/X: Standard deviation of the y-intercept (ln C/C0) of the regression line (standard error of estimate). 
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tool to eliminate different emerging pollutants in water (Wang and 
Wang, 2018). In the absence of suitable electron acceptors, the recom-
bination step is the predominant step that limits the quantum yield 
(Ahmed et al., 2011). Na2S2O8 acts as an electron acceptor, avoiding the 
recombination e−CB/h+

VB (Eq. (3)). In addition, Na2S2O8 produces SO4
•- by 

breaking the O–O bond resulting from absorption of heat energy or UV 
light (Eq. (4)), and HO• in accordance with the following equations (Eqs. 
(5) and (6)) (Matzek and Carter, 2016). Finally, SO4

•- and HO• promote 
the mineralization of the THMs (Eq. (7)). 

S2O=
8 + 2H+ + 2e− →2HSO−

4 (Eq. 3)  

S2O=
8 + hν(UV)→2SO•−

4 [φ  =  1.40  mol  Einstein − 1  (λ=  254  nm)]

(Eq. 4)  

SO•−
4 + H2O →SO=

4 + HO• + H+
[
k  =  660  M− 1  s− 1] (Eq. 5)  

SO•−
4 +OH− →SO=

4 + HO•
[
k  =  7x107  M− 1  s− 1] (Eq. 6)  

SO•−
4 +HO• + THMs→SO=

4 + Cl− + Br− + CO2 + H2O (Eq. 7) 

The main concern when using Na2S2O8 as an oxidant is the increase 
in SO4

= due to the transformation of S2O8
= → 2 SO4

= during the photo- 
process. In our case, we have observed an increase in the concentra-
tion of SO4

= from 129 to 230 mg L− 1 (TiO2) and 210 mg L− 1 (ZnO) at the 
end of the treatments. If drinking water contains high SO4

= levels (>500 
mg L− 1) some negative effects such as gastrointestinal disturbances and 
a perceptible taste have been reported. In addition, such levels may 
contribute to corrosion of the supply network. However, no health-based 
guideline value for SO4

= in drinking water has been proposed (WHO, 
2017). 

As mentioned above, the scientific literature on the effectiveness of 
AOPs in reducing THMs is scarce. Hwangbo et al. (2019) found 22% 
dechlorination and 100% debromination as theoretical amount of Cl−

and Br− ions that can be released from photocatalysed THMs using 1 g 
L− 1 of ZnO (pH 7.0 and 365 nm) for 24 h and 90% dechlorination of TCM 
when no brominated analogues are present. Other authors have pointed 
out 92–100% removal of THMs (at 200 μg L− 1 initial concentrations) 
with 0.1% of 40% w/w H2O2 and 90 min of UV exposure (Rudra et al., 
2005). The results achieved by Zhang et al. (2021) indicate that het-
erogeneous Fenton-like process followed by granular activated carbon 
filtration constitutes a suitable technology to remove THMs. Xiao et al. 
(2016) reported that UV/Na2S2O8 is the most cost-effective procedure 
for abatement of other DBPs (I-HAAs) related to other UV-based AOPs. 
Further results indicated the photocatalytic activity of carbon-doped 
g-C3N4 for the removal the TTHMs with the reaction rate constant of 
0.0104 min− 1 (Chang et al., 2019). 

3.4. Cost estimate for water treatment 

A comparison of the treatment cost for both systems (ZnO/Na2S2O8 
and TiO2/Na2S2O8) under the same experimental conditions is showed 
in Table SM2. Bearing in mind that the SE Spain receives about 3000 h of 
sunlight per year, the average of useful minutes of the pilot plant (UM) is 
480 min day− 1, and the number of days of use per year is 240 (according 
to weather conditions), the treatment capacity (TC) of our system was 
calculated according to the following equation (Eq. (8)): 

TC
(
L year− 1)=

(UM x V x 240)
DT90

(Eq. 8)  

where V is the volume of water treated (150 L) and DT90 is the amount of 
time required for 90% of the initial THM concentration to dissipate. In 
our case, the selected DT90 was the corresponding to the compound with 
higher value according to Table 2 (190 min for BDCM and 288 min for 
DBCM in ZnO and TiO2 systems, respectively). 

Consequently, the treatment cost was estimated to be 54 € m− 3 for 

the ZnO/Na2S2O8 system and 78 € m− 3 for the TiO2/Na2S2O8 system. 
The significant differences found in cost between both treatments are 
attributed to the high reaction rate observed for the studied compounds 
by treatment with ZnO. 

4. Conclusions 

THMs such as TCM and other brominated compounds (BDCM, DBCM 
and TBM) are mainly generated as DBPs during chlorination of raw 
water. Although DW chlorination offers many benefits, THMs have 
received the most scientific and regulatory attention owing to their 
widespread occurrence and reported human health concerns. They 
constitute an undesirable group of VOCs formed by the reaction of dis-
infectants with inorganic and organic matter. According to experimental 
models, they are suspected to be genotoxic and carcinogenic substances 
with negative acute reproductive effects that constitute health hazard. 
Therefore, low-cost and environmentally friendly methods are required 
to detoxify DW to avoid damage to the human health and environment, 
prior to its distribution through the water supply network. 

Although THMs are very volatile (the percentage of THMs removed 
after 4 h of stirring in darkness ranged from 86% to 54% for TCM and 
TBM, respectively) and photodegradable compounds, the use of solar 
heterogeneous photocatalysis by means of commercially available 
photocatalysts, such as band-gap semiconductor materials like ZnO and 
TiO2, in combination with a strong oxidant like Na2S2O8 considerably 
enhances their disappearance in DW. The main benefit/advantage of 
AOPs is that they accomplish the abatement or at least the decrease of 
the pollutant content by mineralization, while other conventional pro-
cesses only transfer them from one place to another. The percentages 
removed at the end of the photolytic test (240 min) ranged from 92% to 
63% for TCM and TBM (TCM > BDCM > DBCM > TBM). When pho-
tocatalysts were used, a higher effectiveness of ZnO/Na2S2O8 compared 
to TiO2/Na2S2O8 was observed for the degradation of chlorinated spe-
cies (TCM, BDCM and DBCM), while no significant differences were 
detected for TBM. This is of special interest in countries/areas with 
water scarcity but receiving a great amount of sunshine (a renewable, 
inexhaustible and pollution-free energy source) such as some areas of 
the Mediterranean basin, like SE Spain, although the treatment cost 
ranged from 54 to 78 € m− 3 for the ZnO/Na2S2O8 and TiO2/Na2S2O8 
systems, respectively. 
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