
Softw Syst Model (2018) 17:779–813
https://doi.org/10.1007/s10270-016-0541-1

SPECIAL SECTION PAPER

Quick fixing ATL transformations with speculative analysis

Jesús Sánchez Cuadrado1 · Esther Guerra1 · Juan de Lara1

Received: 12 February 2016 / Revised: 26 May 2016 / Accepted: 9 June 2016 / Published online: 1 July 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Model transformations are central components of
most model-based software projects. While ensuring their
correctness is vital to guarantee the quality of the solu-
tion, current transformation tools provide limited support
to statically detect and fix errors. In this way, the identifi-
cation of errors and their correction are nowadays mostly
manual activities which incur in high costs. The aim of
this work is to improve this situation. Recently, we devel-
oped a static analyser that combines program analysis and
constraint solving to identify errors in ATL model trans-
formations. In this paper, we present a novel method and
system that uses our analyser to propose suitable quick fixes
for ATL transformation errors, notably some non-trivial,
transformation-specific ones. Our approach supports specu-
lative analysis to help developers select the most appropriate
fix by creating a dynamic ranking of fixes, reporting on the
consequences of applying a quick fix, and providing a pre-
visualization of each quick fix application. The approach
integrates seamlessly with theATL editor.Moreover, we pro-
vide an evaluation based on existing faulty transformations
built by a third party, and on automatically generated trans-
formation mutants, which are then corrected with the quick
fixes of our catalogue.

Communicated by Dr. Jordi Cabot and Alexander Egyed.

B Jesús Sánchez Cuadrado
Jesus.Sanchez.Cuadrado@uam.es

Esther Guerra
Esther.Guerra@uam.es

Juan de Lara
Juan.deLara@uam.es

1 Present Address: Computer Science Department, Universidad
Autónoma de Madrid, 28049 Madrid, Spain

Keywords Model transformation · ATL · Transformation
static analysis · Quick fixes · Speculative analysis

1 Introduction

Model transformation is one of the cornerstones of model-
driven engineering (MDE), as it enables the automation of
model manipulations. Hence, methods to detect and correct
transformation errors, as well as to speed up the construction
of transformations, are of great interest for MDE practition-
ers [33].

Many transformation languages and tools have been pro-
posed along the years, and some like ATL [15] or ETL [18]
are widely used by theMDE community. However, they have
not achieved the same level of maturity as supporting tools
for general-purpose programming languages like Java. In this
respect, missing features include static analysers that detect
advanced typing and rule errors, quick fix generators able
to propose corrections to these errors, and tools that help in
understanding the consequences of applying a correction.

The static guarantees that transformation languages pro-
vide vary. For instance, most QVT [32] implementations
statically type the transformation against the source/target
meta-models, but other languages such as ATL or ETL
are dynamically typed. In the latter case, transformations
are prone to typing errors, like accessing a feature that is
defined on a subtype of the receptor object’s type, mistakes
in type declarations, or navigation through possibly null ref-
erences. Other elusive errors that are important to detect
and fix include rule conflicts (i.e., rules with overlapping
applicability conditions, which cause errors in languages like
ATL), unresolved or incorrectly resolved bindings, and con-
formance errors of the generated output models with respect
to the target meta-model (e.g., uninitialized mandatory fea-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-016-0541-1&domain=pdf

780 J. S. Cuadrado et al.

tures) [35]. Nowadays, in most cases, these errors have to be
discovered by manual testing, which is a costly activity with
the risk to be incomplete. Instead, fault localization using
static analysis is an automatic, lighter technique, while facil-
ities to fix typing errors may help to improve the developer
productivity and the transformation quality.

In previous work [35], we built a static analyser for ATL
transformations, named anATLyzer,1 which is able to detect
a wide number of typing and rule errors (about 45 different
types). The analyser is integrated with the standard ATL edi-
tor, so that errors can be detected interactively, while the user
is constructing the transformation. Using the analyser, we
discovered that even transformations considered in a mature
stage, like those in the ATL Use Cases,2 contain errors.

In this work, we extend the analyser with the possibility to
propose and apply quick fixes for the detected errors. Quick
fixes can be used for autocompletion in order to speed up
transformation development, or as a means to correct exist-
ing errors. Depending on the kind of error, quick fixes may
suggest changes in the transformation (e.g., adding filters to
rules or collections, or refine the type of a variable), in the
meta-model (e.g., setting a feature cardinality to optional),
or add transformation preconditions that prevent the transfor-
mation execution for problematic models. In this way, quick
fixes proposed for an error can be selected and applied inter-
actively.

In case of errors that can be fixed in several ways, we
provide a static ranking which shows first the quick fixes
that we have found empirically to solve more errors and
introduce less issues. In addition, to help developers make
better decisionswhen several possibilities exist, and to under-
stand the consequences of applying a fix, we use speculative
analysis [3,28]. This term was coined by the programming
languages community in analogy to speculative execution,
e.g., for branch prediction and cache pre-fetching in pro-
gram execution. It consists in analysing the possible future
states of the program evolution (a transformation in our case),
with the purpose of gathering information about remaining
or introduced errors by a quick fix. This analysis is presented
to the developer who can use it to perform more informed
decisions when applying a quick fix.

We have evaluated several aspects of our approach. First,
we have tested the completeness and validity of our quick
fix catalogue by applying it to a large set of transformation
mutants automatically synthesized from existing third-party
transformations. The aim of this experiment is twofold: (i)
to evaluate the degree in which there are quick fixes applica-
ble for every error found, and (ii) to study how the quick fix
application impacts the quality of the transformation. The

1 http://www.miso.es/tools/anATLyzer.html.
2 http://www.eclipse.org/atl/usecases/, some of these transformations
originated from industrial projects.

latter is analysed by inspecting whether the quick fix actu-
ally solves the targeted error, does (not) produce additional
issues, or solves other problems as a side effect. Second, we
have empirically collected the efficacy of each quick fix (i.e.,
errors solved vs. issues introduced) to create a static ranking
of quick fixes for every error. Then, we compare such a sta-
tic ranking with a dynamic ranking produced by speculative
analysis, taking as a basis the “optimal” quick fix selected
by ATL experts. This experiment is performed over a set of
faulty transformations developed by third parties.

To the best of our knowledge, this is the first work propos-
ing a catalogue of quick fixes for model transformations
which can be used in practical tools.

This paper extends our previouswork [36]with the follow-
ing contributions: we enlarge our catalogue of quick fixes,
including variants and refinements of previously existing
ones; we give a detailed account of all of these quick fixes and
illustrate them with comprehensive examples; we support
speculative analysis; we present a more precise experimen-
tal evaluation; we provide a static ranking of fixes which has
been determined empirically; we provide a dynamic ranking
of fixes created on-demand using speculative analysis; and
we compare the dynamic and static rankings.

The rest of this paper is organized as follows. First, Sect. 2
introduces a classification and conceptualization of quick
fixes and a running example. Then, Sect. 3 explains our
method for static analysis. Section 4 presents our catalogue
of quick fixes classified according to a feature diagram, while
Sect. 5 analyses their impact and introduces our speculative
analysis technique. Section 6 describes our implementation,
and Sect. 7 describes its evaluation. Section 8 discusses
related research, and finally, Sect. 9 ends with the conclu-
sions and lines of future work.

2 Overview and running example

In this section, we provide an overview of quick fixes and
introduce a running example that will be used in the rest of
the paper to illustrate our catalogue of quick fixes.

2.1 Quick fixes: an initial classification

Recommenders are increasingly being used to assist in dif-
ferent software engineering tasks [34]. In particular, code
recommenders assist programmers with coding activities,
like API usage or the application of quick fixes. The actual
recommendation may come from a mix of sources, like the
static analysis of the program being developed, its execution,
or the programmer [31]. In thiswork,we focus on quick fixes,
where information is gathered via static analysis of the ATL
transformation.

We define a quick fix as an automatable solution, and read-
ily applicable, to a problem detected statically. Typically, a

123

http://www.miso.es/tools/anATLyzer.html
http://www.eclipse.org/atl/usecases/

Quick fixing ATL transformations with speculative analysis 781

quickfixprovides a rapidmeans to correct a problem reported
by the IDE as the program (a transformation in our case) is
developed. We found no explicit classification of quick fixes
in the literature, but the following categories have suited our
needs:

1. Repair. These quick fixes remove the targeted prob-
lem, typically adding or modifying expressions in certain
locations, and without any additional input from the
developer. An example is a quick fix adding a condition
to ensure that a navigation expression cannot go through
a null reference. In some cases, the application of this
kind of quick fixes may introduce errors in other loca-
tions. For example, a quick fix changing the type of a
helper’s formal parameter3 to make it compatible with
the actual parameter of an existing helper call (e.g., from
integer to string) may produce an error in other calls that
were coherent with the original helper definition.

2. Template. This type of quick fix generates a piece of code
solving a problem, but there may be missing information
that is only initialized with default values, and the devel-
oper must add the logic to complete the generated code.
For example, a transformationmay refer to a non-existent
helper, and the quick fix creates a template for it, which
the user needs to fill with appropriate code.

3. Heuristic. This corresponds to a suggestion, e.g., propos-
ing a valid name for a collection operation based on
string similarity [6]. Unlike the first type of quick fix,
these suggestions are provided heuristically among sev-
eral possibilities, and their application normally implies
just some replacement.

In practice, quick fixes are used in two ways: either to
correct errors or for code autocompletion. In the former sce-
nario, the developer is reported a problem and applying one
of the available quick fixes solves the problem. In this case,
repair and heuristic quick fixes are most useful. In the case of
code autocompletion, the developer may even make the error
on purpose (e.g., invoking a non-existing lazy rule) and the
proposed quick fix application generates a template that the
developer later completes manually. This is the most com-
mon use of template quick fixes.

2.2 Conceptual overview of our approach

Figure 1 shows the conceptual view of our system. We use
this figure to provide an overview of our approach and as a
guide to read the rest of the paper.

For each kind of problem detected by our static analyser,
there are zero or more associated quick fixes. Section 4
introduces our catalogue of quick fixes, which can be

3 In ATL, a helper is an auxiliary query operation.

hasProblem
0..*

Applica�on
Condi�on

Ac�on

Sta�c
Analysis

accesses1

Modify
Trafo.

Modify
Meta-model

Add Trafo.
Precondi�on

when
0..1

do
1

Language
Construct

impactsOn

*

Quick fix

userReq : BooleanuserRequired : boolean
mul�Proposal: boolean
explana�on: String

Quick fix
Type

variants
1..*

AST
Element

invalidates

instanceOf
1

*

uncovers*
{ordered}

Fig. 1 Conceptual model of our proposal for quick fixes

extended easily via extension points (see Sect. 6). Each
quick fix comprises an optional application condition and
an action. The application condition allows discarding the
quick fix if the problem occurs in a context where it does
not make sense or that the quick fix cannot handle. The
action implements a strategy to fix the problem, which can
be classified according to the affected artefact. In the con-
text of model transformation, quick fixes may target the
transformation implementation (the most common case), the
involved source/target meta-models, or the transformation
specification by adding a transformation precondition. The
latter two possibilities (fixing the transformation contract)
are sometimes preferred over changing the implementation,
as discussed in [29] for object-oriented programs. A classi-
fication of our fixing strategies is shown in Fig. 7.

Quick fixes have access to the information gathered during
the static analysis to implement the application condition and
the action. Section 3 provides an overview of the static analy-
sis process. Some quick fixes, like those of type template,
may require the user intervention to complete the generated
code. Sometimes, a single type of quick fix may provide sev-
eral proposals, which is typically the case of heuristic fixes
that suggest the best-rated solutions to the user. The user is
provided with an explanation of the behaviour of the quick
fix, which can be as simple as a single line or more elabo-
rated. There are also fixes with variants, where each variant
solves a problem in the same way, but generating code in
a different manner. For example, a quick fix may generate
an in-line expression, or alternatively, it may encapsulate the
expression in a helper that is invoked.

The local changes performed by a quick fix may impact
on other locations of the transformation. Our speculative
analysis identifies at runtime the abstract syntax elements
affected by a change, whereas the language constructs likely
impacted by a fix application can be identified empirically
(see Sect. 7.2). Section 5 introduces our speculative analy-
sis technique, which analyses the consequences of applying
available quick fixes for a given problem. We use this
analysis to produce a dynamic ranking of fixes (hence the
ordered annotation in Fig. 1) according to the number of
problems solved/remaining after the quick fix application.

123

782 J. S. Cuadrado et al.

Fig. 2 Excerpts of AD (up) and
Intalio (down) meta-models

OpaqueAction
language: String

Executable
Node

- Intalio meta-model -

- UML AD meta-model -

sequence
 Edges

subpartition
*

inPartition *

Named Element
name: String[0..1]

node *
edge *node * edge *

Activity
Partition

ObjectFlow

Decision
Node

Object
Node

Initial
Node

ControlFlow
Control
Node

ActivityEdgeActivityNode

Activity

NamedBpmnObject
name : String

artefacts *

1
target

 1
source

<<enumerate>>
ActivityType

Task
EventStartEmpty
GatewayParallel
...

Activity
activityType : ActivityType

Vertex

SequenceEdge
Graph

Lane

Artefact

PoolBpmnDiagram

 partition
 *

target incoming
1 *

source outgoing
1 *

activities
 *

 *

vertices *

lanes
 *

pools
 *

In addition, we support a lighter way to order quick fixes
without resorting to speculative analysis. This consists on
a default static order of applicable fixes, derived empiri-
cally from the automated fixing of automatically mutated
transformations. This static ranking is presented in Sect. 5.3,
and its comparison with the dynamic one is discussed in
Sect. 7. The static ranking is intended to provide reasonable
accuracy without delay time, whereas speculative analysis
provides richer information that includes a pre-visualization
of the quick fix result, but it requires some computation
time.

2.3 Running example

To illustrate our quick fix generation techniques, we will use
excerpts of a transformation from UML activity diagram
(AD) to Intalio BPMN,4 partially based on the mappings
introduced in [5]. Figure 2 contains relevant snippets of the
input and output meta-models for this transformation.

Listing 1 shows an excerpt of the transformation, consist-
ing of three context helpers (lines 1–11) and five matched
rules (lines 13–50). A context helper is an auxiliary oper-

4 http://www.intalio.com/products/bpms.

ation defined in the context of a class and can be invoked
on instances of that class. A matched rule is executed for
every input object that matches the input pattern specified in
the from part of the rule and satisfies the filter (if specified).
For example, in line 37, rule initialnode matches any object
compatible with type UML!InitialNode and having an empty
incoming reference. Each rule execution creates the objects
indicated in the rule’s output pattern (to part), together with
trace links to the originating input objects. The features of
the created objects are initialized according to the declared
bindings, using the syntax feature ← OclExpr. For example,
lines 39 and 40 initialize the features name and activityType

of the created object a of type Intalio!Activity.
If the feature is a reference, a mechanism called bind-

ing resolution takes place by looking up the input objects
resulting from OclExpr in the collection of trace links, in
order to retrieve the corresponding target objects. In lines
47 and 48 of the example, references source and target of
the created SequenceEdge are assigned an object of type
UML!ControlFlow.source and UML!ControlFlow.target, respec-
tively. As these types belong to the source meta-model, the
binding resolution mechanism takes place. The type of both
UML!ControlFlow.source and UML!ControlFlow.target is
UML!ActivityNode, which can be transformed by rules opaque-

123

http://www.intalio.com/products/bpms

Quick fixing ATL transformations with speculative analysis 783

action (line 29) and initialnode (line 36). Both rules create
objects compatible with Intalio!Vertex, and hence, the resolu-
tion mechanism yields correct object types for the bindings
in lines 47 and 48.

Listing 1 contains several errors (shown underlined), none
of which are detected at compile time by the standard ATL
IDE. Typically, these errors may remain unnoticed until the
developer executes the transformation with an input model
making the transformation hit the problematic statement.
Instead, our analyser statically detects and reports the fol-
lowing problems, for which we show one illustrative quick
fix. Other quick fixes are possible, as we will show in the
following sections.

– Declared type mismatch (lines 2 and 6). Our static
analyser infers the typeString for the helper toIntalioName,
which is incompatible with the declared type Activity.

1 helper context UML!Action def:
2 toIntalioName : Intalio!Activity =
3 self.name + ’_’ + self.oclType().name;
4

5 helper context UML!Activity def:
6 allPartitions : Sequence(UML!Activity) =
7 self.partition→collect(p | p.allPartitions)→flatten();
8

9 helper context UML!ActivityPartition def:
10 allPartitions : Sequence(UML!ActivityPartition) =
11 self.subpartition→collect(p | p.allPartition)→flatten();
12

13 rule activity2diagram {
14 from a : UML!Activity
15 to d : Intalio!BpmnDiagram (
16 name ← a.name,
17 pools ← a.allPartitions
18)
19 }
20

21 rule activitypartition2pool {
22 from a : UML!ActivityPartition
23 to p : Intalio!Pool,
24 l : Intalio!Lane (
25 activities ← a.node→reject(e | e.oclIsKindOf(UML!ObjectNode))
26)
27 }
28

29 rule opaqueaction {
30 from n : UML!OpaqueAction
31 to a : Intalio!Activity (
32 name ← n.toIntalio
33)
34 }
35

36 rule initialnode {
37 from n : UML!InitialNode (n.incoming→isEmpty())
38 to a : Intalio!Activity (
39 name ← n.toIntalio,
40 activityType ← #EventStartempty
41)
42 }
43

44 rule edges {
45 from f : UML!ControlFlow
46 to e : Intalio!SequenceEdge (
47 source ← f.source,
48 target ← f.target
49)
50 }

Listing 1 Excerpt of the transformation fromUML AD to Intalio. Errors
are shown underlined.

Similarly, the inferred type for the Activity.allPartitions

helper (line 5) is Sequence(ActivityPartition), which dif-
fers from the declared type Sequence(Activity).
Quick fix: change declared type by inferred type. By
applying this quick fix, the helper toIntalioName would
be assigned the return type String, and Activity.allPartitions

would be assigned Sequence(ActivityPartition), solving the
problems.

– Possible access to undefined value (line 3). The name

property is optional in class NamedElement, so in case it
holds an undefined value, it will cause a runtime excep-
tion when applying the + operator.
Quick fix: change the cardinality in the meta-model. By
applying this quick fix, the lower cardinality of attribute
name would change from 0 to 1. This ensures that this
attribute will never be undefined, solving the problem.

– Compulsory feature not initialized (lines 23 and 24).
Rule activitypartition2pool creates objects of typesPool and
Lane, but it does not initialize their mandatory attribute
name.
Quickfix: generate adefault value.Byapplying this quick
fix to the error in line 23, the binding name ← ” would be
added to the created Pool, providing a default value for
name and solving the issue. Applying the quick fix to the
error in line 24 would solve the problem for the created
Lane.

– Possible unresolved binding (lines 25, 47 and 48). This
issue is signalled when the right part of a binding may
contain objects not matched by any rule. For example,
the OCL expression a.node → reject(...) in line 25 may
contain objects that are not considered by the transfor-
mation. In particular, objects that are instances of any
subtype of ActivityNode except InitialNode and OpaqueAc-

tion, likeDecisionNode in Fig. 2,would not be transformed
by any rule. The same problem applies to the bindings of
lines 47 and 48. These errors are a smell of incomplete-
ness that should be either fixed or documented.
Quick fix 1: add precondition to the transformation. For
the binding in line 25, this quick fix generates an OCL
precondition that discards models in which ActivityParti-

tion objects contain objects different from InitialNode and
OpaqueAction in its node reference.
Quick fix 2: add rule filter. For the bindings in lines 47
and 48, another option would be to generate a rule fil-
ter, disabling the rule execution for ControlFlow objects
connecting ActivityNodes different from InitialNode and
OpaqueAction.

– Feature not found (lines 32 and 39). The invoked feature
toIntalio does not exist, either in the meta-model or as an
attribute (context) helper.
Quick fix: change invocation to the toIntalioName attribute
helper. This heuristic quick fix uses different string com-
parison criteria to find a suitable proposal. In this case, it

123

784 J. S. Cuadrado et al.

ATL
trafo.

meta-
models

1: type
checking TDG

3.1: witness
genera�on

potential
problems

errors,
warnings

3: trafo.
analysis

2: create
dep. graph

annot.
ATL

model

Fig. 3 Overview of static analysis process

uses the longest common substring criterion [6] to sug-
gest suitable feature/helper names.

– Enum not found (line 40). Enum literal #StartEven-

tempty cannot be found in the meta-model. Quick fix:
change to #StartEventEmpty. In this case, themost optimal
proposal is found using the Levenshtein string distance
criterion [6].

3 Transformation analysis

Our system uses static analysis to identify problems and
gather the information required to implement the quick fixes.
This section describes themain parts of our analyser and clas-
sifies the problems it is able to detect. Further information
can be found in [35].

3.1 Static analysis of ATL model transformations

Our static analyser proceeds in three steps, as shown in
Fig. 3. First, it type-checks the transformation, annotating
each node of the abstract syntax with its type. Then, it cre-
ates the transformation dependence graph (TDG), a kind
of program dependence graph [9] which makes control and
data flow explicit and includes information about rule resolu-
tion and rule dependencies. The TDG is the basis to analyse
the behaviour of rules and bindings (e.g., to determine unre-
solved bindings) and to detect rule conflicts. However, some
of the identified problems may not happen in practice, e.g.,
if the program logic prevents the error. In those cases, the
analyser tries to find a witness model that makes the transfor-
mation execute the problematic statement, hence confirming
(or falsifying if it does not exist) the problem. Our current
implementation relies on theUSEValidator [19]model finder
to perform this search.

Figure 4 shows an example illustrating the analysis
process. Each node of the OCL expressions involved in
the transformation is annotated with its inferred type. For
instance, the type of a.node → reject(...) is a collection of
ActivityNode, and thus, the corresponding AST node is anno-
tatedwith a reference to thismeta-class (type-of in the figure).
Given this information, we build the TDG to make the data
and control dependencies between the transformation ele-
ments explicit. Figure 4 shows two relationships recorded by

Fig. 4 Example of static analysis. Solid lines (labelled as “type-of”)
represent inferred type annotations. Dashed lines represent “resolved-
by” binding-rule dependencies and “invoked-helper” call-helper depen-
dencies

the TDG, invoked-helper and resolved-by. For the former,
the calls to toIntalioName5 are linked to the helpers that may
resolve the calls at runtime (only one helper in this case).
For the latter, given a binding, we compute all matched rules
that may resolve it at runtime. In the example, the binding
activities← a.node → reject(...) may be resolved by either the
opaqueaction or the initialnode rules, since their from parts are
subtypes of ActivityNode, the type inferred for the right part
of the binding.

This information enables rule–binding analysis, for
instance, to detect which bindings may be unresolved. In
general, this type of problems cannot be fully confirmed by
the type checker, but are marked as potential problems. In
this example, we are interested in determining if the binding
a.node→ reject(...) may be unresolved for some instances of
ActivityNode. We use the TDG to build an OCL path condi-
tion [35] from the entry points of the transformation to the
possible error location. This condition collects the features
that an input model needs to have to make the transforma-
tion hit the given location and produce a failure. Then, the
analyser uses a model finder to search a model conformant to
the input meta-model and satisfying the computed OCL path
condition. If the finder finds a model, the error is confirmed.
In the example, the entry point is rule activitypartition2pool,
which directly leads to the possibly faulty binding. To assert
whether the right part of the binding may contain objects
not resolved by any rule, we need the following OCL path
condition, which looks for a model with an ActivityPartition

containing some node that is neither an OpaqueAction nor an
InitialNode without incoming edges:

5 We have fixed Listing 1 for this figure.

123

Quick fixing ATL transformations with speculative analysis 785

Fig. 5 Witness model confirming the “possibly unresolved binding”
error in line 25 of Listing 1

1 ActivityPartition.allInstances()→exists(a |
2 a.node→reject(e | e.oclIsKindOf(ObjectNode))→exists(n |
3 not n.oclIsKindOf(OpaqueAction) and
4 not (if n.oclIsKindOf(InitialNode) then
5 n.incoming→isEmpty()
6 else
7 false
8 endif)))

When fed into the model finder, it produces the witness
model in Fig. 5, which confirms that the error can occur in
practice. This model satisfies the OCL constraint as the Activ-

ityPartition object contains a DecisionNode object in its node

reference, and hence, it satisfies the condition in lines 3–8 of
the OCL path condition.

3.2 A taxonomy of errors in ATL transformations

Our analyser is currently able to detect about 45 different
types of errors. Figure 6 shows a feature model summariz-
ing the most important kinds of problems detected, none of
which is reported by the standard ATL IDE. The problems
are classified into rule problems (which are the most specific
to model transformations), style and optimization warnings,
and object-oriented and OCL typing problems.

Rule errors may occur due to conflicts with other rules
(label 0 in the figure), or due to binding problems. Rule con-
flicts arise if two different rules can match the same source
object, causing a runtime exception. Binding problems may
be related to rule resolution (label 1), either because the bind-
ing is unresolved (label 2) or because it is resolved with an

invalid target object (label 3). The ATL resolution mecha-
nism for bindings replaces the source objects by the target
ones in which they were transformed. If there is no rule to
transform the source objects, they are discarded but incur-
ring in an execution penalty, and probably being the smell of
a deeper issue. A related problem occurs when there is a rule
to resolve the binding, but it produces target objects which
are not compatible with the target feature.

Another source of binding problems is related to feature
initialization (label 4), which may occur if a mandatory fea-
ture of a target object is not initialized (label 5), a feature is
initialized from a collection with higher cardinality (label 6,
e.g., a feature with maximum cardinality 1 is initialized from
a collection with cardinality *), or a feature is assigned an
incompatible value (label 17, e.g., a String feature is assigned
an Integer value).

Style/optimization problems include iterating over empty
collections, using “.” instead of “→” to apply a collection
operator (supported by ATL but not conforming to the OCL
standard style), or invoking a flatten operation over a non-
nested collection, among others [35].

Typing problems include referring to a non-existing type
(label 7) like an undefined class name, type declaration mis-
matches (label 8) where the declared type for an expression
does not correspond to the real type of the expression, or
problems with feature accesses or operation/rule calls. The
latter case can be due to an invalid receptor object (label 9),
which may be undefined (label 10) causing a null pointer
exception, or the accessed property may not belong to the
receptor object but to a subtype (label 11). Other sources
of errors include using incorrect feature names (label 12) or
making invalid calls (label 13). The latter problem includes
the use of incorrect operation names (label 14), incompat-
ible parameter types (label 15), or an incorrect number of
parameters (label 16).

In the rest of the paper, we focus on quick fixes for
transformation-specific errors (Rule conflict, Unresolved

Error types

Invalid
type

Rules Typing

Invalid
receptor

Maybe
undefined

Property
in subclass

Rule
conflict

Binding
problem

Rule resolution Feature
initialization

Feature access
or call

Feature
not found

Declaration
mismatch

Unresolved
binding

Invalid
target

Compulsory
feature not
initialized

Assign. from
higher cardi.

Incompatible
types

(left/right)

Invalid
call

Operation
not found

Incompatible
parameter

Invalid
num.params

Style /
Optimizations

f g

e

g k l o

f

n

a b d

m mn

c d h ng

hn

c
1

2 3

4

5 6

7 8

9

k

10 11

12 13

17 14 15 16

a d h h dj j

0

o

18

a

Fig. 6 Classification of typing/rule errors in ATL transformations. Labels a–o correspond to fixing strategies in Fig. 7. Numbers 1–18 are used in
Table 1

123

786 J. S. Cuadrado et al.

Fig. 7 Classification of error fixing strategies. Labels a–m are used in Fig. 6 to refer to the associated fixing strategy

binding, Rule resolution with invalid target, and Feature
initialization) and on errors that typically appear in ATL
transformations although they are not exclusive of ATL
(Invalid receptor,Declaration mismatch, and Feature/ Oper-
ation not found).

4 A catalogue of quick fixes for ATL

Each kind of problem detected by our static analyser has
one or more associated quick fixes. Each quick fix follows a
particular fixing strategy. The set of strategies that we have
considered are summarized in Fig. 7. The figure shows a
feature diagram in which each strategy includes a label that
is used to refer to the fix strategy in a compact way. These
labels are used in Fig. 6 to depictwhich quickfixing strategies
become applicable for each kind of error.

In general, fixingsmay involvemodifying themeta-model
(label n in Fig. 7), creating or modifying an OCL transforma-
tion precondition (label o), or modifying the transformation
itself. Possible transformation modifications include gener-
ating new expressions (a), adapting an existing expression to
a new context (b), restricting the applicability of expressions
(c), or modifying operation/feature calls (d). Rule-related
problems are typically fixed by creating or removing rules
(e, f), modifying rule filters (g), creating or removing bind-
ings (k), or modifying the right part of a binding (l). Other
fixes may involve the creation of a new helper or lazy/called
rule6 (h, qi), or changing a reference to a type (m).

Table 1 contains the current list of quick fixes in our cat-
alogue and the errors to which they apply. In this table, and
in Fig. 6, we group all fix strategies common to several error
types in their common ancestor. For example, Rule resolu-
tion errors (E1) can be of type possible unresolved binding
(E2) and invalid target for resolved binding (E3). Both error
types share five fixing strategies (c, g, k, l, o), while each one
of them has a specific fixing strategy (e and f).Although the
table does not show it, some of these quick fixes have vari-

6 In practice, it is more natural to consider lazy/called rules as opera-
tions.

Table 1 Catalogue of quick fixes. Labels a–o in column Fix Str. corre-
spond to fixing strategies in Fig. 7

Errors (E) and Quick fixes (Q) Fix Str. Type

Rule conflict (E0)

Q0.1 Modify guilty rules filter g R

Q0.2 Remove one guilty rule f R

Rule resolution (E1)

Q1.1 Modify filter of container rule g R

Q1.2 Remove problematic binding k R

Q1.3 Add filter to binding expression c, l R

Q1.4 Generate transformation precondition o R

Q1.5 Generate most general precondition o R

Possible unresolved binding (E2)

Q2.1 Create new rule e T

Invalid target for resolved binding (E3)

Q3.1 Remove guilty rule f R

Q3.2 Choose a different target feature k H

Feature initialization (E4)

Q4.1 Modify feature (cardinality/type) in MM n R

Compulsory feature not initialized (E5)

Q5.1 Assign default value (e.g., empty string) a R

Q5.2 Copy and adapt existing expression b H

Q5.3 Suggest mapping to a similar source feature k H

Assignment from higher cardinality (E6)

Q6.1 Add->first() to collection d R

Invalid type (E7)

Q7.1 Suggest a type from meta-model m H

Q7.2 Add type to meta-model n R

Declaration mismatch (E8)

Q8.1 Change declared type with inferred type m R

Invalid receptor (E9)

Q9.1 Surround problem with “if” c R

Q9.2 Modify filter of container rule g R

Q9.3 Generate transformation precondition o R

Possible access to undefined property (E10)

Q10.1 Change feature lower bound to 1 n R

Access to property defined in subclass (E11)

Q11.1 Create helper h T

123

Quick fixing ATL transformations with speculative analysis 787

Table 1 continued

Errors (E) and Quick fixes (Q) Fix Str. Type

Feature/operation not found (E12, E14)

Q12.1 Suggest existing feature/operation d H

Q12.2 Create context/module helper h T

Q12.3 Create feature in the meta-model n T

Q12.4 Change feature call to
operation call and vice versa

d R

Q12.5 Convert receptor to collection d R

Incompatible parameter (E15)

Q15.1 Create new helper operation h T

Q15.2 Change type of formal parameters j R

Invalid number of parameters (E16)

Q16.1 Add/remove actual parameters d H

Q16.2 Add/remove formal parameters j R

Q16.3 Choose other operation d H

Incompatible types (E17)

Q17.1 Assign value with correct type to feature a R

Style warnings (E18)

Q18.1 Correct invalid expression a R

The Type column uses R for Repair, T for Template and H for Heuristic

ants, e.g., regarding how a generated expression is inserted
in the transformation (in-lined or encapsulated in a helper).

We explain our quick fixes in the next subsections, with
special focus on those more specific to transformations. We
use the quick fix codes in the table to identify each quick fix,
and indicate quick fix variants adding a suffix to their code.

4.1 Fixing rule resolution errors (E1, E2, E3)

Given a binding of the form feature ← expr, the binding res-
olution mechanism looks up in the trace model the source
elements resulting from evaluating expr and assigns their
corresponding target elements to feature. Two main prob-
lems may occur in this process: possible unresolved binding
(E2) and invalid target for resolved binding (E3). The for-
mer is a smell of incompleteness andmay cause performance
penalties because the ATL engine needs to check type com-
patibility and it will output error messages when it cannot
assign the source element to the target feature. The latter
problemmayyield invalid targetmodels. Both problems have
five fix strategies in common (Q1.1 toQ1.5). In addition, pos-
sible unresolved binding can be fixed by creating a rule that
makes the binding resolvable (Q2.1), and invalid target for
resolved binding can be fixed by deleting the rule that is cre-
ating the invalid target element (Q3.1) or choosing a different
target feature for the binding (Q3.2). In all cases, the quick
fixesmake use of the following input from the static analyser:

– T f : type of the feature in the left part of the binding,
– expr : expression in the right part of the binding,

– Texpr : inferred type of expr ,
– R: set of rules that resolve Texpr and are involved in the

problem.

Q1.3: Add filter to binding expression. This strategy filters
the expression expr in order to avoid the resolution of the
problematic elements.

For the possible unresolved binding problem, the filter
selects only the elements that will be certainly resolved by
some rule. In this case, R is the set of rules able to resolve
the binding. For example, in the problematic line25 of List-
ing 1, we have T f = Sequence(I ntalio!Activi t y), expr =
a.node → reject (e|e.ocl I sK indO f (UML!Object
Node)), Texpr = Sequence(UML!Activi t yNode), and
R = {opaqueaction, ini tialnode}.

Then, the quick fix proceeds as follows:

1. Group R by input type, yielding sequence Gr . This
sequence contains sets of rules and is ordered by subtype
relationships (with sibling types given arbitrary order),
where groups of rules with more concrete types take
precedence in the sequence. If a matched rule has more
than one input type, it will not appear in R because ATL
does not consider it as a candidate to resolve bindings.

2. Create a filter expression, filter, as follows. Take the head
of Gr and create an if expression whose condition checks
the type given to the group, and the then branch is the
or-concatenation of the rule filter expressions. The else

branch applies the sameprocedure to the rest ofGr .When
there are nomore groups, the last else branch returns false.

3. (optimization) Simplify the conditionals in filter by omit-
ting checkings when the input type of the rule is the same
as the type of the right-hand side of the binding Texpr .

4. If Texpr is a collection, modify expr to expr→ select(v |

filter(v)).
5. If Texpr is a single value, create let v = expr in if filter(v)

then v else <default value>endif.

Applying this quick fix to the problem in line25 of List-
ing 1 creates the sequence of rules Gr = 〈{opaqueaction},
{ini tialnode}〉. This is so as the input types of the rules in
R (UML!OpaqueAction and UML!InitialNode) are not related by
inheritance, and hence, they are listed in arbitrary order in
the sequence. The resulting binding is therefore:

1 activities ← a.node → reject(e | e.oclIsKindOf(UML!ObjectNode)) →
2 select(v |
3 if v.oclIsKindOf(UML!OpaqueAction) then
4 true −− implicit filter of opaqueaction
5 else
6 if v.oclIsKindOf(UML!InitialNode) then
7 v.incoming→isEmpty() −− filter of initialnode
8 else
9 false
10 endif
11 endif
12)

123

788 J. S. Cuadrado et al.

The condition in line 3 comes from the input type of rule
opaqueaction, and line 4 contains true because the rule has no
filter. The condition in line 6 is added due to the input type of
rule initialnode, while line 7 is created due to the filter of the
rule. Notice that, while this quick fix removes the problem,
the developer is in charge of ensuring that it is semantically
correct.

For the invalid target for resolved binding error, the quick
fix filters out the elements resolvable by rules that produce
incompatible target objects. In this case, R is the set of guilty
rules. The identification of guilty rules is similar to the mech-
anism proposed in [35]. Briefly, we generate a path condition
for each rule that may potentially cause the problem, and use
a model finder to produce a witness model satisfying each
path condition. The rules for which a witness model is found
are marked as guilty and added to R. The generated quick
fix is similar to possible unresolved binding, except that the
filter condition is negated.
Q1.3b:Addfilter to binding expression (variant). The pre-
vious quick fix effectively solves the problem, but makes the
binding expression more complex. This variant of quick fix
Q1.3 creates a helper with the generated filter to enhance the
readability of the binding.

Using this variant, we would extract the filter created for
the binding to the following context helper:

1 helper context UML!ActivityNode def:
2 resolveActivitypartition2poolActivityNode: Boolean =
3 if self.oclIsKindOf(UML!OpaqueAction) then
4 true
5 else
6 if self.oclIsKindOf(UML!InitialNode) then
7 self.incoming→isEmpty()
8 else
9 false

10 endif
11 endif;

While the binding would be rewritten as follows:

1 activities ← a.node→reject(e | e.oclIsKindOf(UML!ObjectNode))→
2 select(v | v.resolveActivitypartition2poolActivityNode)

Q1.1 Modify filter of container rule. This strategy avoids
executing the container rule of a problematic binding for the
objects that cause the problem. For this purpose, the rule
filter is added (and-concatenated) an expression similar to
the one of the previous strategy. However, this quick fix is
applicable only when the right part of the binding is mono-
valued. For multi-valued expressions, we do not prevent the
rule execution altogether on the basis that a few elements of
the expression may cause a problem; in this case, we prefer
using other available quick fixes.

For example, suppose we modify the running example
as follows to include the rule objectnode (we also copy rule
edges from the initial listing for clarity):

1 rule objectnode {
2 from n : UML!ObjectNode
3 to a : Intalio!Artefact
4 }
5

6 rule edges {
7 from f : UML!ControlFlow
8 to e : Intalio!SequenceEdge (
9 source ← f.source,
10 target ← f.target
11)
12 }

In such a case, our analyser reports invalid target for
resolved binding for the two bindings in rule edges. This
is so as the right part of these bindings can be resolved
by rule objectnode, but the type created by rule objectn-

ode is not compatible with the type of the target features
source and target. Thus, for the problem in the first bind-
ing, we have T f = I ntalio!Vertex , expr = f.source,
Texpr = UML!Activi t yNode, and R = {objectnode}. To
obtain set R, the static analyser first computes the set of pos-
sible guilty rules, which are three this case ({opaqueaction,
initialnode, objectnode}). Then, themodel finder is used to dis-
criminate which rules actually cause the problem, selecting
only objectnode. Applying the quick fix adds an additional
condition to the filter of rule edges:
1 from f : UML!ControlFlow (
2 not f.source.oclIsKindOf(UML!ObjectNode)
3)

Actually, the previous algorithm would generate the
expression let v = f.source in if v.oclIsKindOf(UML!ObjectNode)

then false else true endif, but we have an optimization for the
cases that involve only one rule.
Q1.2 Remove problematic binding. This quick fix, which
simply removes the problematic binding, is only applicable
when the lower cardinality of the feature of the target object is
0 in the meta-model. In the error possibly unresolved binding
of line 25 in Listing 1, the lower cardinality of Lane.activities

is zero; therefore, this quick fix is applicable.
Q1.4 Generate transformation precondition. Sometimes,
the problem is not in the transformation itself, which is cor-
rect according to the developer assumptions concerning the
source models. For example, suppose that a possible unre-
solved binding error is notified because some source type
is not matched by any rule, but the developer knows that
the input models will never contain objects of this type, and
hence, the error will never occur in practice. In such cases,
applying this quick fix generates a transformation precondi-
tion that makes those assumptions (in this example, the lack
of objects of certain type) explicit. This precondition serves
as documentation, and in addition, it will be used to feed the
model finder in subsequent invocations in order to discard
problems the precondition rules out. In practice, precondi-
tions are implemented as comments prefixed with “@pre” in
the transformation header, and are processed by anATLyzer

to feed the model finder.
The generation process of preconditions uses a strategy

similar to the generation of path conditions explained in Sect.
3.1, but in this case, we must ensure that every element that
“goes through” the path satisfies exactly one of the input

123

Quick fixing ATL transformations with speculative analysis 789

patterns of the resolving rules. The precondition generated
for the problem in line 25 of Listing 1 is the following:

1 UML!ActivityPartition.allInstances()→forAll(a |
2 a.node→reject(e | e.oclIsKindOf(UML!ObjectNode))→forAll(v |
3 v.oclIsKindOf(UML!OpaqueAction) or
4 if (v.oclIsKindOf(UML!InitialNode)) then
5 v.incoming→isEmpty()
6 else
7 false
8 endif))

This precondition forbidswitnessmodels as theone shown
in Fig. 5. It states the allowed shape of the ActivityPartition

objects and hence solves the problem as well.
Q1.5 Generate most general precondition. The precon-
dition generation method explained above uses the whole
path of the fixed problem. This makes the precondition too
problem specific, which means that it is unlikely that it fixes
similar problems appearing in other rules. Section 5 explores
this issue in more detail. An alternative is to use only the last
part of the path to generate the precondition. Hence, the most
general precondition generated for the problem in line 25 of
Listing 1 is as follows:

1 UML!ActivityNode.allInstances()→forAll(v |
2 v.oclIsKindOf(UML!OpaqueAction) or
3 if (v.oclIsKindOf(UML!InitialNode)) then
4 v.incoming→isEmpty()
5 else
6 false
7 endif)

This precondition is more general than the previous one,
where the restriction does not apply to the ActivityParti-

tion.node collection, but more generally to all ActivityNode

objects. This precondition style aims at documenting the kind
of elements that are not supported by the transformation.
Q1.5b Generate meta-model restriction (variant). This
variant, instead of generating a transformation precondition,
generates an OCL invariant for the meta-model. This fix
should be selected if the user considers that the restriction
is not specific to the transformation but to the source meta-
model in general. The invariant is generated in the context of
T f , the class type of the binding. Hence, in the example, the
following invariant would be generated:

context ActivityNode inv constraint_activitypartition2pool:
self.oclIsKindOf(OpaqueAction) or
if (self.oclIsKindOf(InitialNode)) then

self.incoming−>isEmpty()
else

false
endif

It can be seen that the generation is similar to that for
helpers.
Q2.1 Create new rule (only for possible unresolved bind-
ing). This template quick fix adds a new rule that com-
plements the existing ones so that the binding never gets
unresolved. The input pattern of the new rule uses the type
of the binding expression, the output pattern uses the type
of the assigned feature, and the rule filter takes into account
the filter conditions of the resolving rules in order to avoid a

rule conflict (i.e., two rules matching the same object). Note
that if the type of the assigned feature is abstract, it cannot be
used as output pattern; in that case, we heuristically select a
non-abstract subclass that preferably is not used in any other
rule. An alternative implementation could allow selecting the
specific type manually.

As an example, the quick fix for the possible unresolved
binding problem in line 25 generates the following rule:
1 rule restOfActivityNode2Activity {
2 from n : UML!ActivityNode (
3 not n.oclIsKindOf(UML!OpaqueAction) and
4 not (if n.oclIsKindOf(UML!InitialNode) then
5 n.incoming→isEmpty()
6 else
7 false
8 endif)
9)
10 to a : Intalio!Activity
11 }

The generated rule matches any ActivityNode not matched
by opaqueaction or initialnode and creates an Activity, which
is the kind of object required by line 25. Being a template
quick fix, it requires being completed by providing a value for
the mandatory features of the created object a (e.g., name).
This error can be eliminatedmanually or by applying another
quick fix. As in previous quick fixes, a variant of this quick
fix generates the filter condition in a helper.
Q3.1Remove guilty rule (only for invalid target for resolved
binding). This quick fix removes the guilty rules, identified
as explained above. Although this may result in subsequent
unresolved bindings in other places, we do not check this
situation in the application condition of the quick fix as it is
too time-consuming and thiswill cause a delaywhen showing
the list of available quick fixes. Instead, we use speculative
quick fixes to deal with these cases (see Sect. 5).
Q3.2 Choose a different target feature (only for invalid
target for resolved binding). This is a heuristic quick fix that
changes the target meta-model feature assigned in the bind-
ing for an existing feature whose type is compatible with
some guilty rule. As an example, let us consider that we have
a rule to transform an ObjectNode into an Artefact (lines 1–4
in the following listing) and we are completing the activity-

partition2pool rule to initialize a target reference which will
hold the Artefact objects. Wemay write a binding like the one
in line 9, which will be incorrect because vertices is of type
Vertex.
1 rule objectnode {
2 from n : UML!ObjectNode
3 to a : Intalio!Artefact
4 }
5

6 rule activitypartition2pool {
7 from a : UML!ActivityPartition
8 to p : Intalio!Pool (
9 vertices ← a.node→select(e | e.oclIsKindOf(UML!ObjectNode))
10)
11 l : Intalio!Lane (...)
12 }

This quick fixwill look for references inPoolwhose type is
compatible with the output type declared in the guilty rules

123

790 J. S. Cuadrado et al.

set ({objectnode} in this case). Then, it proposes changing
the reference of the binding to the one that minimizes the
number of guilty rules. In this case, the quickfixwill correctly
propose changing vertices for artefacts.

4.2 Rule conflicts

In ATL, if two or more rules match the same element, there
is a rule conflict. Rule conflicts are not detected statically by
the standard ATL IDE even for simple cases, but the transfor-
mation fails at runtime. Our static analysis is able to report
this situation statically, identifying the set of rules in conflict.
Two quick fixes in our catalogue can solve the problem.
Q0.1Modify guilty rules filter. This quick fix is technically
similar to Q1.1. In this case, given a set of guilty rules, we
extend the filter of each rule by and-concatenating the nega-
tion of the other rules’ filters. In this way, all rule filters are
disjoint, ensuring that no rule conflict can arise.However, this
procedure may yield non-applicable rules in the special case
that one of the rules subsumes another one. For this purpose,
we perform the following checking: if given two conflicting
rules r1 and r2, the filter of r2 subsumes the filter of r1 (i.e., we
have f ilter(r2) �⇒ f ilter(r1)), then we do not add the
negation of r1’s filter to r2’s filter, as otherwise, the modified
filter of r2 could never be satisfied. This is so as (f ilter(r2)∧
¬ f ilter(r1)) ∧ (f ilter(r2) �⇒ f ilter(r1)) is always
false. Checking subsumption is performed by model find-
ing (roughly, checking whether f ilter(r2)∧ ¬ f ilter(r1) is
satisfiable).

As illustration, suppose we extend the running example to
distinguish two further transformation alternatives for initial
nodes: if they receive an accept event action, then they are
transformed into an Intalio activity with type EventStartMes-

sage, while if they receive an accept event action which in
addition has a time event as trigger, they are transformed into
an Intalio activity with type EventStartTimer. The following
two rules implement this behaviour:

1 rule initialnode_message {
2 from n : UML!InitialNode (
3 n.incoming→exists(edge |
4 edge.source.oclIsKindOf(UML!AcceptEventAction))
5)
6 to a : Intalio!Activity (activityType ← #EventStartMessage)
7 }
8

9 rule initialnode_timer {
10 from n : UML!InitialNode (
11 n.incoming→exists(edge |
12 if edge.source.oclIsKindOf(UML!AcceptEventAction) then
13 edge.source.trigger→exists(t |
14 t.event.oclIsKindOf(UML!TimeEvent))
15 else
16 false
17 endif)
18)
19 to a : Intalio!Activity (activityType ← #EventStartTimer)
20 }

Our analyser detects a conflict between these two rules,
since any initial node matched by rule initialnode_timer

will be also matched by rule initialnode_message. In fact,
the filter of initialnode_timer subsumes the filter of initialn-

ode_message. That is, whenever initialnode_timer’s filter is
true, initialnode_message’s filter will be true as well (fil-

ter(initialnode_timer) �⇒ filter(initialnode_message)). Thus,
applying the quick fix adds the negation of the filter of ini-

tialnode_timer to initialnode_message, but not the other way
round. This solves the rule conflict.

The listing below shows the rule that gets modified after
the quick fix application:

1 rule initialnode_message {
2 from n : UML!InitialNode (
3 n.incoming→exists(edge |
4 edge.source.oclIsKindOf(UML!AcceptEventAction))
5 and
6 not n.incoming→exists(edge |
7 if (edge.source.oclIsKindOf(UML!AcceptEventAction)) then
8 edge.source.trigger→exists(t |
9 t.event.oclIsKindOf(UML!TimeEvent))
10 else
11 false
12 endif)
13)
14 to a : Intalio!Activity (activityType ← #EventStartMessage)
15 }

Q0.2 Remove one guilty rule. This quick fix is similar to
Q3.1, as it removes one of the problematic rules. The quickfix
is only applicable if the set of problematic rules includes two
rules, as otherwise, the problem would remain even deleting
one rule. This fix requires the user intervention to interac-
tively select the rule to delete. As an assistance to the user,
we treat the case that one rule subsumes the other in a special
way, highlighting the more specific rule as the most promis-
ing to be deleted.

4.3 Invalid receptor (E9, E10, E11)

This kind of problem appears when the receptor object of a
feature access or operation call can be invalid.We distinguish
two cases: access to an undefined value (i.e., a “null pointer
exception” because the receptor object is null or undefined),
and a special kind of the feature not found problem in which
the accessed feature is defined in a subclass of the receptor
object’s class, but it is missing in other subclasses.
Q9.1 Surroundproblemwith “if”. This quick fix surrounds
the problematic expressionwith a conditional. The generated
condition of the if expression checks that the receptor object
is not undefined (for E10) or it is compatible with the type
that defines the accessed feature (for E11). If the condition is
not satisfied, the else branch contains an appropriate default
value according to the type of the expression (e.g., the empty
string for a String).

The expression self.name + ’_’ + self.oclType().name in line
3 of Listing 1may cause a runtime exception if self.name (the
receptor object of the first + operator) is undefined. Applying
this quick fix generates the following conditional, where the

123

Quick fixing ATL transformations with speculative analysis 791

else branch returns the empty string as the default value of
String expressions:
1 if (not self.name.oclIsUndefined()) then
2 self.name + ’_’ + self.oclType().name
3 else
4 ’’
5 endif

Q9.1bFilter problemwith select (variant).When the prob-
lematic statement is located within a collection operation, it
may be more idiomatic to filter the collection before exe-
cuting the operation. For instance, the following expression
yields a problem because the language feature is defined in
OpaqueAction but not in the ActivityNode superclass.
1 anActivity.node→select(oa | oa.language = ’OCL’)

Applying this quick fix would modify the expression as
follows:
1 anActivity.node→
2 select(oa | oa.oclIsKindOf(UML!OpaqueAction))→
3 select(oa | oa.language = ’OCL’)

Q9.2Modify filter of container rule. The underlying idea of
this strategy is similar to Q1.1. If the problem appears within
a binding, it is possible to avoid the problembypreventing the
rule execution. In this case, the rule filter is modified to avoid
accessing the undefined property. This is a typical idiom in
ATL, in which there are several similar rules dealing with
different variations (e.g., a rule to deal with objects for which
certain property is undefined, and another rule to handle the
definite case).

As an example, assume we have the following rule:
1 rule initialnode_message {
2 from n : UML!InitialNode
3 to a : Intalio!Activity (
4 name ← ’Initial_to_’+n.outgoing→first().name,
5 activityType ← #EventStartMessage
6)
7 }

There is a possible undefined access in line 4 because the
lower cardinality of ActivityNode.outgoing is 0. This quick fix
would add the following filter to the rule (see line 2), making
the access in line 4 unproblematic:
1 rule initialnode_message {
2 from n : UML!InitialNode (n.outgoing→notEmpty())
3 to a : Intalio!Activity (
4 name ← ’Initial_to_’+n.outgoing→first().name,
5 activityType ← #EventStartMessage
6)
7 }

Q9.3 Generate transformation precondition. This quick
fix has the same motivation and is implemented in the same
way as Q1.4.
Q10.1 Change feature lower bound to 1 (only for pos-
sible access to undefined property). This quick fix sets the
lower cardinality of the feature to 1 in the type declaration
of the receptor object, in the source meta-model. Hence, for
a mono-valued feature named feat, navigation expressions of
the form obj.feat.feat’... become safe. If the feature is multi-
valued, expressions of the form obj.feat→first().feat’... become

safe (but not those containing selection operators between
feat and first). In this way, this quick fix allows solving the
problems in the examples presented in the two previous quick
fixes.

As a side effect, this quick fix may cause compulsory fea-
ture not initialized problems in other transformations that
use the same meta-model as target, though our analyser can
detect these problems easily.
Q11.1 Create helper (only for access to property defined in
subclass). The idea of this template quick fix is to emulate the
property for the given class. For this purpose, the quick fix
creates a newcontext helper on the type of the receptor object,
with the same name as the feature and no parameters. The
new helper returns an appropriate default value according to
the type of the feature. This default value can be modified
later by the developer to provide a more sensible value, if
needed. For example, consider the following rule:
1 rule exec2activity {
2 from n : UML!ExecutableNode
3 to a : Intalio!Activity (
4 name ← n.toIntalioName+’_exec_’+n.language
5)
6 }

This rule accesses feature language on objects of type
ExecutableNode, but this feature is only defined in subclass
OpaqueAction ofExecutableNode. Applying this quick fix pro-
duces the following context helper:
1 helper context UML!ExecutableNode
2 def: language : String = ’’;

This fixing strategy guarantees that the call will be always
resolved by either a meta-model feature or helper operation,
which will be selected by the ATL engine using dynamic
dispatch (i.e., looking at runtime the type of the receptor
object).

4.4 Feature initialization (E4, E5, E6)

These problems correspond to incorrect initializations of fea-
tures in rule bindings. For instance, the assignment from
higher cardinality problem (E6) occurs when a binding
assigns a collection to a mono-valued feature (i.e., a feature
with upper bound equals to 1). In such a case, we provide a
quick fix that concatenates the first() operator to the expres-
sion in the right part of the binding in order to retrieve just
the first object in the collection.

Next, we focus on quick fixes for the compulsory feature
not initialized problem (E5) since it is themost common error
in ATL transformations [35]. This problem kind is signalled
when a rule lacks a binding for some feature that ismandatory
in the created object (i.e., a feature with lower bound bigger
than 0). We provide four possible quick fixes to solve this
problem.
Q4.1 Modify feature cardinality in meta-model. This
quick fix sets the lower cardinality of the feature to optional

123

792 J. S. Cuadrado et al.

in the target meta-model. This may cause possible access
to undefined value in other transformations using the same
meta-model as source, or in the current transformation if it
is endogenous.
Q5.1 Assign default value. This is the simplest strategy. It
creates a new binding which assigns an appropriate default
value to the feature according to its type. For primitive types,
we assign the usual default values (e.g., an empty string, 0 for
integers). For objects, we try to assign a target object whose
type is compatible with the feature’s type and that is in the
scope of the rule.

For example, assuming the cardinality of the reference
Pool.lanes to be 1..*, then rule activitypartition2pool is missing
a binding for feature lanes. As the rule creates an object of
type Lane, the fix would modify the rule as follows:

1 rule activitypartition2pool {
2 from a : UML!ActivityPartition
3 to p : Intalio!Pool(
4 lanes ← Sequence{l}
5),
6 l : Intalio!Lane(...)
7 }

Q5.2 Copy and adapt existing expression. This strategy
relies on the same hypothesis as the GenProg system [23]:
“a program that makes a mistake in one location often han-
dles a similar situation correctly in another”. Indeed, recent
empirical studies show that 29–52% of commits are tem-
porally redundant at the token level, meaning that they are
rearrangements of existing code [26].

Inspired by these findings, we seek bindings in other rules
that assign the same feature, and for each candidate bind-
ing, we check whether the variables used in the right part
of the binding are compatible with the variables that can be
accessed from the current rule. A variable in the current rule
is compatible with a variable used in the candidate binding if
the feature calls over the candidate variable can be performed
over the current rule variable. If there are several compatible
bindings, we select one at random, which is copied to the
rule once it is conveniently adapted for it.

For example, in lines 23 and 24 of Listing 1, there
is no binding for the name feature. However, this feature
is assigned in lines 16 (name← a.name) and 32 (name←
n.toIntalio). From these twopossibilities, the secondone is dis-
carded because our analyser detects that it has an error (there
is no feature or operation named toIntalio); hence, only the
former is available to initialize the missing bindings. Apply-
ing this quick fix to line 23 yields:

1 rule activitypartition2pool {
2 from a : UML!ActivityPartition
3 to p : Intalio!Pool(
4 name ← a.name
5),
6 ...
7 }

Note that even if we correct line 32 to obtain the bind-
ing name←n.toIntalioName, it is not offered as an option to

fix the errors in lines 23 and 24. This is so as the context
helper toIntalioName is defined for type Action, and thus, it
cannot be applied to objects of typeActivityPartition (i.e., using
a.toIntalioName in the previous listing would be incorrect).
Q5.3 Suggest mapping to a similar source feature. This
quick fix tries to find a meta-model feature, accessible from
the rule input type, whose name is similar to the assigned
feature and its type is compatible with the feature.

For example, in rule activitypartition2pool, the created Pool

and Lane objects miss the initialization of their feature name.
This quick fix checks the objects in the from pattern (Activ-

ityPartition) to look for attributes similar to “name”. In this
case, similarity is checked by maximal substring contain-
ment. Since ActivityPartition has an attribute name of type
String, the binding name←a.name is synthesized for both cre-
ated objects.

4.5 Declaration mismatch (E8)

This problem is frequent in ATL transformations developed
without any static analysis tool like ours, as ATL does not
check either statically or dynamically variable, parameter,
and return type declarations. While a declaration mismatch
does not cause runtime exceptions when the transformation
is executed, it is a maintenance problem because developers
mayhave expectations according to the declared types,which
may differ from the real ones.
Q8.1 Change declared type with inferred type. This quick
fix replaces the declared type with the type inferred by the
static analyser. In the running example, the return type of
helper toIntalioName in line 2 ofListing 1 (whichwas declared
as Intalio!Activity) is fixed to:

1 helper context UML!Action def: toIntalioName : String =
2 self.name + ’_’ + self.oclType().name;

In some cases, the type inferred by the analyser is richer
than any type that can be expressedwith theATL type system,
for example, when the branches of an if expression have types
that are not related by inheritance. In such cases, we use the
most general type OclAny.

4.6 Feature/operation not found (E12, E14)

In this section, we analyse quick fixes related to accessing
non-existing features or operations. Some of these quick
fixes rely on creating helpers. ATL supports two types of
helpers: attribute helpers and operation helpers. An oper-
ation helper may take parameters, while an attribute helper
acts as a derived attributewhose result ismemoized.ATLalso
distinguishes between context helpers, which are defined in
the context of a class and act as regular polymorphic meth-
ods, and module helpers, which do not have any context and
behave as global functions. For practical purposes, we con-

123

Quick fixing ATL transformations with speculative analysis 793

sider lazy and called rules to bemodule helpers since they are
invoked like module helpers with one or more parameters.
Q12.1 Suggest existing feature/operation. We use several
string distance metrics [6] to look up candidate features
(including both helper and meta-model features) and oper-
ations with a similar name. In first place, we use the
Levenshtein distance, which measures the number of char-
acter edits (insertion, deletion, swap) required to change one
word into another one. This gives good results for spelling
mistakes like writing toIntallioName instead of toIntalioName

(distance 1). If no good proposal is found within a thresh-
old, we switch to “longest common substring” distance,
which favours strings with similar subsequences. This dis-
tance gives good results when names are approximated (e.g.,
perhaps not properly recalled by the developer), like typing
toIntalio instead of toIntalioName. In the case of operations,
we take into account the types of the parameters to narrow
the search and improve the accuracy of the proposal. We also
consider built-in functions, such as collection operations.
Q12.2 Create new context helper (only for calls over an
object). This template quick fix is useful to automatically
create a skeleton of an operation. The fix creates a new
context helper whose context is the class inferred for the
receptor object of the call, and its formal parameters are cre-
ated according to the types of the actual parameters in the
call. The body of the helper is initialized to a default value
according to its return type.
Q12.2 Create new module helper (only for calls over this-

Module). Given a call thisModule.op(par1, . . . , parn), the
quick fix proposes adding a new helper, lazy or called rule.
The heuristic to select between these three options is the fol-
lowing:

– Lazy rule. This option is selected when the problem-
atic call is in a “binding assignment position”, that is, a
location in the right part of a binding that will make the
result of the call be assigned to the binding’s feature. For
instance, if the call is a direct child of the binding (i.e.,
feature← thisModule.call(param)) or if the call is within
the body of a collect. Moreover, the feature initialized by
the binding must be a reference (i.e., it must have a non-
primitive type), the call must have exactly one argument,
and this argument must be a single object.

– Called rule. The same as lazy rules, but either the call
has more than one argument, or it has just one argument
of primitive type or a collection.

– Module helper. Otherwise.

This heuristic reflects the most usual invocation patterns
in ATL. As an example, suppose we modify the binding for
feature pools in rule activity2diagram as follows:

1 rule activity2diagram {
2 from a : UML!Activity
3 to m : Intalio!BpmnDiagram (
4 name ← a.name,
5 pools ← thisModule.allPartitions(a.allPartitions)
6)
7 }

As the transformation does not define a module helper or
rule named allPartitions7 with one parameter, the quick fix
suggests creating the following called rule:

1 rule allPartitions(arg0 : Sequence(UML!ActivityPartition)) {
2 to tgt : Intalio!Pool
3 }

While this is a template quick fix, and so the user should
fill the helper body, the quick fix correctly infers the signature
and return type of the helper.
Q12.3 Create feature in the meta-model (only for calls
over an object). It adds a new feature to the receptor object’s
type. To automate this as much as possible, we try to infer the
type of the feature from the expression in which it appears.
We have defined a set of pre-defined locations for which
it is possible to use other types inferred by the analyser as
the type for the feature. As an example, let us suppose that
OpaqueAction does not have a language feature and we have
the code shown below.

1 helper def: normalize(str : String) : String =
2 str.toUpperCase();
3

4 −− Faulty feature access
5 thisModule.normalize(anOpaqueAction.language)

Since the invalid feature access is in a parameter position
and the types for the normalize helper have been properly
inferred, we can determine that language has to be an attribute
of type String. If the type expected by the faulty expression’s
location is a collection, then we set the upper bound to *,
otherwise to 1 (as in this example). By default, we set the
lower bound to 1. If it is not possible to infer the type, the user
would be asked to introduce the type of the feature through
a dialog.
Q12.4 Change feature call to operation call, and vice
versa. In ATL, the syntax to call an attribute helper requires
no parentheses, as otherwise, it is interpreted as an operation
helper. Thus, a call like activity.allPartitions() causes a runtime
exception if the only helpers defined in the transformation
are those of Listing 1. This is a common mistake among
ATL beginners.

This quick fix proposes replacing an operation call by
an attribute call if there is an attribute with the same name
as the invoked operation. In the example, the call activ-

ity.allPartitions() would be changed to activity.allPartitions.

7 The transformation does define two attribute helpers in the context
of Activity and ActivityPartition, but not a one-parameter helper at the
module level.

123

794 J. S. Cuadrado et al.

5 Impact of quick fixes

The application of a quick fix is a local action targeted to fix-
ing the problem identified at the selected location. However,
the action may have side effects in the form of new prob-
lems appearing in other locations or even existing problems
being automatically fixed. Understanding these side effects
is important both for the tool perspective (e.g., to rank quick
fixes) and for the user perspective who would like to make an
informed decision when determining how the transformation
should be fixed.

As an example, let us consider the possible unresolved
binding problems in lines 25, 47 and 48. If we apply the
quick fix Q2.1 Create new rule to line 25, all three problems
are solved at once. However, if we choose to apply quick
fix Q1.2 Remove problematic binding or Q1.3 Add filter to
binding expression, they will have a local effect, fixing only
the targeted problem in line 25.

On the other hand, if we apply the quick fix Q2.1 to the
problems in lines 47 or 48, it would create a new rule having
Vertex in the to pattern, as this is the most general compati-
ble type (see lines 2–12 in the listing below). This new rule
is resolved by the three mentioned bindings (copied in the
listing below in lines 17, 18 and 25), but now, a new error
is introduced in line 25 since the activities feature is assigned
an incorrect type.

1 −− Generated rule
2 rule ActivityNode2Vertex {
3 from n : UML!ActivityNode (
4 not n.oclIsKindOf(UML!OpaqueAction) and
5 not (if n.oclIsKindOf(UML!InitialNode) then
6 n.incoming→isEmpty()
7 else
8 false
9 endif)

10)
11 to a : Intalio!Vertex
12 }
13

14 −− Fixed bindings
15 rule edges {
16 ... to a : Intalio!SequenceEdge (
17 source ← n.source,
18 target ← n.target
19)
20 }
21

22 −− Problematic bindings
23 rule activitypartition2pool {
24 ... to l : Intalio!Lane (
25 activities ← a.node→reject(e | e.oclIsKindOf(UML!ObjectNode))
26)
27 }

In this example, the best option is adding a new rule by
quick fixing line 25, but the developer may need to try the
different choices manually before reaching this verdict, as
well as undoing the quick fix applications that lead to unsat-
isfactory repairs. Instead of this manual process, it would be
useful to complement the quickfixproposalswith a technique
able to foresee the transformation state that would result from
applying each proposed quick fix.

1 2

3

Fig. 8 Dialog showing the impact of quick fixes applied speculatively
for the problem in line 25 of Listing 1

Therefore, we use speculative analysis to help the user
understand the impact of a quick fix. This is a general tech-
nique to explore the consequences of modifying some piece
of code before the change actually happens [3]. This idea
has been applied to rank quick fixes in the context of Java
and Eclipse [28] by reporting the number of errors left in a
Java project after the application of each possible quick fix.
However, considering the total number of remaining errors
may be misleading when the code has several problems and
a quick fix corrects some of them, but it also introduces new
problems in other locations.

In this work, we have developed a technique that pro-
vides a finer-grained analysis of the impact of a quick fix
application. Our technique automatically detects the fixed
problems and the newly generated ones after applying a quick
fix without actually modifying the transformation text or its
meta-models. The technique is detailed in Sect. 5.1. The
information derived from this analysis can be used for the
following purposes:

– Providing impact information. This information helps
the user understand the consequences of applying a quick
fix. As an example, Fig. 8 shows the dialog that anAT-

Lyzer presents to the user, which contains the list of fixed
and generated problems after speculatively applying the
quick fix. This functionality is explained in Sect. 5.2.

– Ranking quick fixes. Code recommenders typically put
the most valuable recommendations at the top of their
rankings [34]. These rankings are calculated using mod-
els that predict the usefulness for the user. In our case,
we use speculative analysis to provide a ranking where
the fixes that remove more errors are listed first. We call
this ranking dynamic. Alternatively, the ranking could be
calculated statically (i.e., without speculative analysis)

123

Quick fixing ATL transformations with speculative analysis 795

by analysing the actual impact of quick fix applications
on a corpus of existing transformations.We discuss these
rankings in Sect. 5.3.

– Empirical evaluation of quick fix validity. The infor-
mation provided by the speculative analysis can be used
to validate the quick fix implementation and take mea-
surements about its behaviour. Hence, in Sect. 7, we use
our technique to perform an empirical evaluation of the
behaviour of our quick fixes.

– Model transformation repair. Speculative analysis can
be used to implement repair techniques for model trans-
formations. Even though in this work we use speculative
analysis for a single quick fix, it would be possible to
generate a chain of fixes that completely repair a given
transformation. This would require using search strate-
gies to prune the state space in order to speed up the
process. We leave this application for future work.

5.1 Speculative analysis of fixed and generated problems

The speculative analysis of a quick fix application is per-
formed using the procedure sketched in Listing 2. Given a
transformation T and a problem P to be fixed, the speculative
analysis applies every available quick fix systematically to
a fresh copy of the transformation (lines 4–9). Copying the
original transformation is important to avoid interferences
with the user’s working copy. The copy function returns an
exact copy of the abstract syntax tree T’, and also the trace
between the original transformation and the copy. In line 5,
we take into account quick fixes that modify meta-models by
copying them.This implies not only copying themeta-model,
but also replacing every reference to the originalmeta-models
in the abstract syntax tree to the copied version. Next, we
create a copy P’ of the problem which points to the copied
transformation, and the original quick fix is modified to point
to the copied problem. Finally, the quick fix is applied pro-
ducing a modification on the copied transformation T’ (lines
11–12), and this transformation is statically analysed (lines
14–16).

1 Input: transformation T, problem P
2

3 Foreach Q in quickfixesOf(P)
4 T’, Trace <− copy(T)
5 if Q.modifiesMetamodels
6 copyMetamodels(T)
7 end
8 Create P’ that refers to T’ from P
9 Change Q to point to P’

10

11 applyQuickfix(Q)
12 updateTrace(Q, Trace)
13

14 cleanTransformation(T’)
15 staticAnalysis(T’)
16 analyseImpact(T, T’, Trace)
17 end

Listing 2 Speculative analysis procedure.

Fixed transformation

+
Quick fix

(change, add, remove)

Comparison

Impact

AnalysisAnalysis

Transformation
Copy

Trace
Transformation

Fig. 9 Impact computation process

A subtle step is the need to update the trace informa-
tion to reflect the changes made by the quick fix (line 12).
This is particularly important for quick fixes that replace
an AST element for another. Another consistency action
is cleaning up the modified transformation T’ (line 14), as
we need to remove the existing TDG information from the
abstract syntax tree of T’ so that it can be freshly re-typed and
analysed after the quick fix application. The more simplistic
approach of overwriting the existing analysis information
does not work. For example, if the original transforma-
tion has a binding resolved by two rules and a quick fix
removes one of them, the new transformation will have
stale information in the form of a binding with two resolv-
ing rules instead of one. An alternative to removing all
the analysis information beforehand would be to perform
an incremental static analysis, which is part of our future
work.

Finally, we analyse the impact of the quick fix application.
This procedure, which is outlined in Fig. 9, is only possi-
ble when quick fixes are applied over the abstract syntax of
the program. Since this is not the default option provided
by Eclipse, we had to build an infrastructure to support our
approach. Section 6 provides more details.

We analyse the impact of a quick fix application in a
generic way with the algorithm shown in Listing 3. We
assume that every problem has a reference to the abstract
syntax element marked as problematic (element attribute),
and the trace model has an operation getTarget which returns
the abstract syntax element in the copied transformation
that corresponds to a given original element. The intuition
behind the algorithm is that if given a problem in the new
transformation (p′ in T′) we cannot find the correspond-
ing problem in the original transformation, then it is a new
problem (lines 8–16). The other way round, if we cannot
trace a problem in the original transformation to a prob-
lem in the new transformation, then the problem has been
fixed and thus no longer appears in the problem list of the
new transformation (lines 24–37). We check whether two
problems are equal by comparing their problematic AST
elements, but we also check that they are the same type of
problem (lines 13 and 29). This check is needed because
the same AST element may cause more than one prob-
lem.

123

796 J. S. Cuadrado et al.

1 Input: transformation T, copied transformation T’, trace Trc
2 Output: set of newProblems, set of fixedProblems
3

4 newProblems = { }
5 fixedProblems = { }
6

7 −− Detection of new problems
8 Foreach p’ in T’.problems
9 e’ = p’.element

10 found = false
11 Foreach p in T.problems
12 tgt = Trc.getTarget(p.element)
13 if e’ = tgt and p.class = p’.class
14 found = true
15 end
16 end
17

18 if not found
19 newProblems.add(p’)
20 end
21 end
22

23 −− Detection of fixed problems
24 Foreach p in T.problems
25 found = false
26 Foreach p’ in T’.problems
27 e’ = p’.element
28 tgt = Trc.getTarget(p.element)
29 if e’ = tgt and p.class = p’.class
30 found = true
31 end
32 end
33

34 if not found
35 fixedProblems.add(p’)
36 end
37 end

Listing 3 Calculating the impact of a quick fix.

5.2 Presenting impact information

The main application of our speculative analysis is to help
the user reason about the consequences of applying a quick
fix without the burden of modifying the transformation and
undoing the undesired fixings by hand. Without speculative
analysis, the user has to apply the selected quick fix. The
quick fix will change either the transformation or the meta-
models. To inspect the change, the user must locate the place
where the changewasmade. Thismay not be straightforward
until the developer is familiar with the catalogue of fixes. For
example, applying quick fix Q0.1 to repair a rule conflict
may modify two rule filters or just one. After applying the
quick fix, the analyser will update the list of problems, but
if the original transformation contained many errors, it may
be difficult to identify which ones of them have been fixed.
Moreover, if the result of a quick fix is not satisfactory, the
user must undo the quick fix and try another one. This may
not be possible automatically if the quick fix modified the
meta-models.

Hence, our objective is to present the user a concise “pic-
ture” of the state that the transformation would have if the
quick fix is applied. This picture includes five parts: (i)
whether the quick fix will actually fix the targeted problem,
(ii) the complete list of problems that the quick fix will solve,
(iii) the list of generated problems, (iv) the list of remaining

problems, and (v) information about the modifications that
the quick fix will perform on the transformation (e.g., a piece
of generated code).

Figure 8 shows the dialog that realizes this idea. We per-
form our speculative analysis for each available quick fix
(label 1). When the user clicks on the quick fix, the result is
shown in the problem tabs (label 2) and in the text tab (label
3). For usability reasons, each speculative analysis is run in
a separate thread so that the dialog is not blocked during
the computation and the user can inspect the results as they
finish.

To synthesize the piece of text in label 3, we take into
account the type of change performed by the quick fix. Our
quickfixes are implemented using a dedicatedAPI to perform
changes on the ATL abstract syntax model (see Sect. 6). The
different types of change (e.g., deleting an element, inserting
an element into a container, modifying a meta-model fea-
ture) are recorded including information about the modified
or created element (or a copy if it was deleted). This infor-
mation is used by a generic procedure that synthesizes the
piece of text. Hence, any quick fix implemented with our
infrastructure will have this feature for free.

5.3 Ranking quick fix proposals

Speculative analysis provides detailed information on the
problemsfixed, remaining errors and newly introduced errors
that result from the application of a quick fix. This way, the
applicable quick fixes can be ranked according to this infor-
mation, so that quick fixes ranked first will be more likely
selected by the user. However, gathering this information has
some computational cost and depends on the particular error
being solved.

For this reason, we also provide a static ranking of quick
fixes which is offered by default to the developer, without the
need to perform speculative analysis. The ranking has been
derived from empirical evidence of quick fix performance.
In particular, we selected four transformations without errors
and injected errors in them using transformation-specific
mutation operators. This produced 816 mutated transforma-
tions with errors. Section 7.1 contains a detailed description
of the selected transformations and the mutation proce-
dure. Then, we automatically applied all possible quick fixes
to each detected problem and measured how many errors
they fixed and introduced. Each quick fix q f was given as
efficacy score a number between −1 and 1 calculated as
e f f (q f) = (f i xed − new)/(f i xed + new). This way, a
quick fix is ranked higher the more errors it solves and the
less new errors it introduces. Then, we averaged the efficacy
scores across the four evaluated transformations. Quick fixes
with same score were ordered according to higher number
of applicability (i.e., frequency). Table 2 shows the obtained
static ranking. We only show the errors for which more than

123

Quick fixing ATL transformations with speculative analysis 797

Table 2 Static ranking
(empirical) of quick fixes

Problem Quick fix Score

E2: Unres. binding Q1.5 (gen. gen. pre-cond) 1 (125)

Q1.2 (rem. binding) 1 (94)

Q1.1 (modify rule filter) 1 (38)

Q1.4 (gen. pre-cond) 0.96

Q1.3 (add filter to binding) 0.89

Q2.1 (create new rule) 0.37

E3: Invalid target for resolved binding Q1.5 (gen. gen. pre-cond) 1 (122)

Q1.3 (add filter to binding) 1 (76)

Q1.2 (rem. binding) 1 (61)

Q1.4 (gen. pre-cond) 0.82

Q1.1 (modify rule filter) 0.79

Q3.2 (choose different) 0.39

Q3.1 (rem. guilty rule) −0.07

E5: Compulsory feat. not initialized Q5.1 (assign. def. value) 1 (107)

Q4.1 (modify feat. in MM) 1 (99)

Q5.2 (copy & adapt exp.) 1 (79)

Q5.3 (mapping to similar) 1 (30)

E7: Invalid type Q7.1 (suggest from MM) 0.22

Q7.2 (add to MM) 0.17

E10: Possible access to undefined prop. Q9.3 (gen. pre-cond) 1

Q9.1 (surround with if) 0.91

Q9.2 (modify rule filter) −0.04

E11: Access to prop. defined in subclass Q11.1 (create helper) 1

Q12.2 (create cont./mod.) 0.15

Q9.1 (surround with if) −0.2

Q12.1 (suggest existing) −0.45

Q9.3 (gen. pre-cond) −0.55

E12: Feature not found Q12.2 (create cont./mod.) 0.71

Q12.1 (suggest existing) 0.15

E14: Operation not found Q12.1 (suggest existing) 0.81

Q12.2 (create cont./mod.) 4.1

E15: Incompatible parameter Q15.2 (change formal) −0.5

Q15.1 (create operation) −1

E16: Invalid number of parameters Q16.1 (add/rem. actual) 0.6

Q16.2 (add/rem. formal) 0

Q16.3 (choose other) −0.25

one type of quick fix is available. Moreover, we exclude from
the ranking the quick fixes that require user intervention, like
Q0.2 Remove one guilty rule, as they cannot be applied auto-
matically.

A consequence of the chosen efficacy metric is that tem-
plate quick fixes tend to score poorly and are ranked in the
last positions, as they may introduce new issues. For exam-
ple, Q2.1 Create new rule is ranked last among the quick
fixes for E2, because it tends to generate many compulsory
feature not initialized errors (E5). In future work, we might
try to detect the user “mode”: when the transformation is

under heavy construction, then template quick fixes might
be more commonly used, while in the testing phase, repair
quick fixes are more frequent.

We can also observe that the same quick fix is ranked
differently depending on the targeted error, like for E2 and
E3. However, in this case, generating a general precondi-
tion (Q1.5) seems to be less problematic and is applied more
frequently. In Sect. 7.3, we validate our static ranking by
comparison with the dynamic ranking calculated using spec-
ulative analysis.

123

798 J. S. Cuadrado et al.

Fig. 10 Screenshot of the tool

6 Implementation

Our proposal is backed by an implementation atop anAT-

Lyzer [35], our static analyser for ATL that is integrated
with the regular Eclipse/ATL IDE. Quick fixes are available
through the standard facilities provided by Eclipse, com-
plemented with a dedicated analysis view to easily inspect
and fix detected problems (see Fig. 10), as well as a con-
trol dialog to obtain information of the speculative analysis
(see Fig. 8).

The analysis view contains two sections: one with prob-
lems that need to be analysed in batch, and another with
problems that are detected automatically and may need to be
confirmed interactively (see Fig. 10). Batch problems (label
batch analysis) are typically the most costly to calculate and
require the user to start the computation. These include rule
conflict analysis (which uses the model finder to analyse a
possibly high number of rule pairs) and unconnected compo-
nents analysis (which determines whether the transformation
generates a connected model graph or several subgraphs).
The automatically detected problems (label local problems)
refer to problems in the transformation and are detected in
the background. To improve the user experience, the prob-
lems that require confirmation using the solver have to be
triggered by the user (first 3 rows below “local problems”

in the figure). If they have not been confirmed yet, they are
marked with a “[?]” (as in the figure). If they get confirmed
by the solver, they are marked as “[C]”, while if they are
discarded, they are signalled with a “[D]”. Errors show a red
circle icon in the view, while warnings show a yellow circle
icon. In all cases, the errors are also signalled in the code just
like in regular programming IDEs.

For ease of use, the list of available quick fixes for an error
is displayed via a shortcut key (shown in the picture), while
the speculative analysis tool needs to be invoked separately
(Fig. 8). The list of quick fixes in Fig. 10 is ordered according
to the static ranking presented in Sect. 5.3. The idea is to
present first those quick fixes with the highest probability of
being the most suitable ones.

A screencast of the tool, the source code of the project,
and an Eclipse update site are available at http://miso.es/qfx.

Implementation-wise, our quick fixes do not work at the
text level (as standardEclipse quickfixes do), but theymodify
the ATL abstract syntax using a dedicated API that we have
built. This decision, which was originally motivated by the
need to automatically apply quick fixes in our experiments,
provides the necessary infrastructure to support advanced
options like speculative analysis. Working at the abstract
syntax level posed several challenges, such as the need to
build a variant of the ATL meta-model suitable to be easily

123

http://miso.es/qfx

Quick fixing ATL transformations with speculative analysis 799

manipulated using Java code, and the generation of the new
code, which is performed by means of an incremental ATL
serializer built as part of the framework.

Our catalogue of quick fixes is extensible by means of
an Eclipse extension point and a set of pre-defined abstract
quick fixes which provide useful functionality to implement
concrete quick fixes. Quick fixes benefit from the services of
our API to modify the ATL abstract syntax.

7 Evaluation

This section reports on the evaluation of our system. First,
in Sect. 7.1, we evaluate its completeness and validity by
systematically generating mutants of a set of transformations
in order to create a wide range of problems, which we try to
fix with our catalogue of fixes. We evaluate completeness by
assessing whether at least one quick fix is applicable for each
error reported by the analyser, and we evaluate validity by
checking whether an applied quick fix has effectively fixed
the targeted problem.

Then, in Sect. 7.2, we study the impact of each quick fix
application by looking at the problems it fixes or introduces
as a side effect. We have used this information to derive the
static ranking of quick fixes presented in Sect. 5.3.

Finally, in Sect. 7.3, we evaluate the usefulness of our
catalogue of quick fixes and its ranking to repair a set of trans-
formations different from those used in the first experiment,
written by a third party. In this experiment, we record the
fixing strategy of two independent ATL developers to solve
every error. Then, we study whether a quick fix is available
to solve the problem in the same way, as well as the position
of the quick fix in the static and dynamic rankings.

The section concludes with an analysis of possible threats
to the validity of our evaluation (Sect. 7.4) and a general
discussion about our quick fix system (Sect. 7.5).

All the data gathered from the experiments and the arte-
facts used (source code, transformations and mutants) are
available at http://miso.es/qfx_exp_sosym2015.

7.1 Evaluating validity and completeness

We say that a quick fix is valid if it always fixes its targeted
error. An error is completely covered by the quick fix cat-
alogue, if there is always an applicable quick fix. In this
respect, note that even if we implement a quick fix per prob-
lem type, there may be actual problems without any fix due
to the application condition of the fix.

To evaluate the validity and completeness of our quick
fix catalogue, we have performed an experiment based on
applying mutations to generate possibly faulty transforma-
tions, and then using speculative analysis to measure how
many quick fixes are applicable (for completeness) and to

Table 3 Transformations used in the evaluation

Transformation Mut. Ev. Rules/helpers Classes

PNML2PetriNet 318 264 5/0 13/9

UML2Activity 318 210 9/6 248/20

Ant2Maven 242 160 30/0 48/59

Class2Table 260 182 8/4 6/5

Mut. is the number of generated transformation mutants, and Ev. is
the number of mutants evaluated (i.e., a mutant needs to have at least
a problem to be valid for the experiment). Rules/Helpers shows the
number of rules/helpers in the transformation, and Classes shows the
number of source/target classes

determine whether each applicable quick fix resolves the tar-
geted problem (for validity).

We have used four error-free transformations for the eval-
uation: (1) PNML2PetriNet from the Grafcet to PetriNet
scenario in the ATL zoo8, which we used for an initial eval-
uation in [36]; (2) an extended and error-free version of
the UML2Intalio transformation used as running example
in this paper; (3) Ant2Maven from the ATL zoo; and (4)
an extended version of the Class2Table transformation from
the ATL zoo. The two latter transformations were chosen
because they have few and easily fixable problems and the
domains were known for us (i.e., we want to introduce as
little bias as possible when fixing the transformations manu-
ally). Table 3 summarizes the details of the transformations
and the number of mutants generated.

From each transformation, we generated a set of new
transformations obtained by applying one mutation opera-
tor once to the original transformation. Table 4 shows the
transformation-specificmutation operators considered in our
experiment. In this way, for each mutation, the generated
transformation mutant is expected to have only one prob-
lem. In case it contains several problems, we classify them
in a hierarchy so that we only try to fix problems that do not
depend on others. In this way, we avoid the noise introduced
by errors possibly propagated by the depending problem.
Transformation mutants that contained no error were dis-
carded for the experiment.

We run the experiment separately for each of the four
transformations, applying the automation script in Listing 4
to each mutant of the transformations and aggregating the
results obtained in each run.We ruled out from the evaluation
quick fixes that require user intervention, like Q0.2, and did
not consider variants of the quick fixes as they share the
same behaviour. In this experiment, we took advantage of our
speculative analysis to apply a quick fix while keeping trace
links to the original transformation (as explained in Sect. 5.1)
in order to compute the set of fixed and new problems. This is
a key difference with the evaluation performed in [36], where

8 http://www.eclipse.org/atl/atlTransformations/.

123

http://miso.es/qfx_exp_sosym2015
http://www.eclipse.org/atl/atlTransformations/

800 J. S. Cuadrado et al.

Table 4 Mutation operators for
ATL transformations

Type Targets

Creation Binding

Source/target pattern element

Rule inheritance relation

Deletion Rule, helper

Binding

Source/target pattern element

Rule filter

Rule inheritance relation

Operation context

Formal parameter in operation or called rule

Actual parameter in operation or called rule

Argument in operation invocation

Parameter in operation or called rule definition

Variable definition

Type modification Type of source/target pattern element

Helper context type

Helper return type

Type of variable or collection

Parameter type of operation or called rule

Type parameter (e.g., oclIsKindOf(Type))

Feature name modification Navigation expression

Target of binding

Operation modification Predefined operator (e.g., and)

Predefined operation (e.g., size)

Collection operation (e.g., includes)

Iterator (e.g., exists, collect)

Operation/attribute helper invocation

we were not able to accurately determine whether a quick fix
was valid or not.
1 Input: Mutated transformation T
2 Step 0: Run the static analyser on T, obtaining its list of problems Lp
3 Step 1: Confirm or discard potential problems by finding a model

witness
4 If discarded, remove problem from Lp
5 Step 2: Foreach P in Lp
6 Retrieve the set of available quick fixes for P
7 Foreach applicable quick fix Q
8 Discard quick fix if it requires user intervention
9 Count Q as applicable for the problem type of P

10 Apply Q on T speculatively
11 Copy T into Tq
12 Apply Q on Tq
13 Run the static analyser on Tq
14 Confirm or discard problems for Tq, as in step 1
15 Compute the impact to obtain fixedProblems
16 and newProblems
17 If P belongs to newProblems
18 Mark the application of Q as valid

Listing 4 Procedure to perform the experiment based on mutation.

Table 5 shows the results of the experiment by aggregat-
ing the data obtained for the four transformations. For each
problem detected by the analyser, we show the number of
occurrences in all the mutated transformations (#Occ), the

number of applied quick fixes (#Qfx), the average number
of quick fixes per transformation (Avg), and the minimum/-
maximum number of simultaneous quick fix proposals in the
transformations (Min,Max). Column #Valid shows the num-
ber of quick fixes deemed as valid by the speculative analysis,
and Valid? indicates if all proposed quick fixes for the type
of problem are valid. Columns #Fixed and #Gen show the
number of fixed and newly generated problems after apply-
ing the quick fix, i.e., its impact, which will be analysed in
more detail in Sect. 7.2.

The average number of proposed quick fixes for binding-
related problems (E02, E03 and E05) ranges between 3 and
5. In the case of E00, there is only one quick fix that does
not require user intervention and can be automatically eval-
uated. In all cases, the minimum number of applicable quick
fixes is greater or equal to 1. Other typical kinds of prob-
lem in model transformations are E10 Possible access to
undefined property and, in particular for ATL, E11 Access
to property defined in subclass. For these, the average num-
ber of quick fixes is about 3.5 and there is always at least

123

Quick fixing ATL transformations with speculative analysis 801

Table 5 Aggregated results for
the errors and quick fixes in
PNML2PetriNet, UML2Intalio,
Ant2Maven, and Class2Table

Type #Occ #Qfx Avg Min Max #Valid Valid? #Fixed #Extra #Gen

E00 59 59 1.00 1 1 59 104 19

Q0.1 R – 59 – – – 59 Yes 104 45 19

E02 154 455 3.40 1 6 455 837 195

Q1.1 R – 24 – – – 24 Yes 38 14 0

Q1.2 R – 84 – – – 84 Yes 94 10 0

Q1.3 R – 70 – – – 70 Yes 71 1 4

Q1.4 R – 65 – – – 65 Yes 83 18 2

Q1.5 R – 65 – – – 65 Yes 125 60 0

Q2.1 T – 147 – – – 147 Yes 426 279 189

E03 84 431 5.31 1 6 420 650 271

Q1.1 R – 28 – – – 28 Yes 44 16 5

Q1.2 R – 49 – – – 49 Yes 61 12 0

Q1.3 R – 76 – – – 76 Yes 77 1 0

Q1.4 R – 74 – – – 74 Yes 101 27 10

Q1.5 R – 74 – – – 74 Yes 123 49 0

Q3.1 R – 84 – – – 84 Yes 205 121 239

Q3.2 H – 46 – – – 35 No 39 0 17

E05 99 307 3.10 2 4 307 315 0

Q4.1 R – 99 – – – 99 Yes 99 0 0

Q5.1 R – 99 – – – 99 Yes 107 8 0

Q5.2 H – 79 – – – 79 Yes 79 0 0

Q5.3 H – 30 – – – 30 Yes 30 0 0

E06 30 26 0.89 0 1 26 30 3

Q6.1 R – 26 – – – 26 Yes 30 4 3

E07 10 20 2 2 2 20 28 19

Q7.1 H – 10 – – – 10 Yes 14 4 9

Q7.2 R – 10 – – – 10 Yes 14 4 10

E08 43 34 0.82 0 1 34 36 3

Q8.1 R – 34 – – – 34 Yes 36 2 3

E10 75 263 3.5 3 4 263 371 62

Q9.1 R – 75 – – – 75 Yes 90 15 4

Q9.2 R – 38 – – – 38 Yes 53 15 58

Q9.3 R – 75 – – – 75 Yes 102 27 0

E11 15 59 3.94 3 5 38 53 57

Q9.1 R – 7 – – – 4 No 4 0 6

Q9.3 R – 7 – – – 4 No 4 0 15

Q11.1 T – 15 – – – 12 No 12 0 0

Q12.1 H – 15 – – – 6 No 6 0 16

Q12.2 T – 15 – – – 12 No 27 12 20

E12 101 156 1.58 0 2 126 188 81

Q12.1 H – 94 – – – 64 No 86 0 64

Q12.2 T – 62 – – – 62 Yes 102 40 17

E14 118 116 1.07 0 2 107 150 40

Q12.1 H – 59 – – – 50 No 72 13 8

Q12.2 T – 57 – – – 57 Yes 78 21 32

E15 133 13 0.22 0 2 2 2 8

Q15.1 T – 11 – – – 0 No 0 0 2

Q15.2 R – 2 – – – 2 Yes 2 0 6

123

802 J. S. Cuadrado et al.

Table 5 continued
Type #Occ #Qfx Avg Min Max #Valid Valid? #Fixed #Extra #Gen

E16 51 80 1.58 1 3 29 30 12

Q16.1 H – 26 – – – 26 Yes 27 1 7

Q16.2 R – 51 – – – 0 No 0 0 0

Q16.3 H – 3 – – – 3 Yes 3 0 5

E17 201 95 0.87 0 2 95 105 0

Q17.1 R – 95 – – – 95 Yes 105 10 0

E18 8 8 1 1 1 8 8 1

Q18.1 R – 8 – – – 8 Yes 8 0 1

Type is the type of quick fix (Heuristic, Repair, Template). #Occ indicates the number of occurrences of
each problem/quick fix. Avg, Min, and Max show the average number of applicable quick fixes per error, the
minimum, and the maximum, respectively. #Valid is the number of quick fixes identified as valid. #Fixed
and #Gen show the total number of fixed and generated problems. #Extra shows the problems fixed in
addition to the quick fix’s target problem

one applicable quick fix. In the case of problems not specific
of model transformations, our catalogue is less complete as
there are normally only one or two proposals at most, and for
some types of problems, the average number of applicable
quick fixes is low. Nevertheless, our focus when designing
the catalogue has not been on typical problems of object-
oriented languages, as they are substantially covered by IDEs
like Eclipse/JDT or IntelliJ. As a matter of fact, it should be
simple to implement in our tool many of the quick fixes avail-
able in them, since the object-oriented concepts used by ATL
are essentially the same as in mainstream programming lan-
guages. Hence, we can claim that our catalogue satisfies the
completeness criteria for transformation-specific problems,
but it is limited for more general kinds of problems.

Regarding validity, most quick fix applications have fixed
the targeted problem. In general, validity is important to avoid
misleading the user when a quick fix is applied. The only
quick fix types for which the #Occ and #Valid columns differ
are heuristic quick fixes (except for three occurrences in each
quick fix of E11 which are due to our analyser behaving
incorrectly for these three specific mutations). This shows
that our quick fixes for invalid invocations are not precise
enough. We have observed two reasons. On the one hand,
the synthetic changes made by the mutants do not work well
with our string distance heuristics, which are intended to
fix small typos. On the other hand, due to implementation
limitations, we do not take into account typing information
in these particular quick fixes. Finally, checking for validity is
also a way of testing our implementation, as an unexpected
number of non-valid quick fixes is a smell of bugs in the
implementation of the quick fixes.

Table 6 shows the results for the PNML2PetriNet trans-
formation. We present this particular transformation of the
evaluation to allow its comparison with the results obtained
in [36]. We have increased the number of applicable quick
fixes in most cases. In particular, we have more variety of
quick fixes for problems E02, E03, and E05 (i.e., the max-

imum of simultaneous applicable quick fixes is increased,
while the average is similar or greater). For E10, we have
given support to precondition generation. For the other types
of errors, there are also some quick fixes available whose
applicability is similar. We have added new quick fixes, like
Q18.1, which is very useful to correct style problems. More-
over, this evaluation is more robust than the one in [36], since
we can reliably track the fixed and newly generated prob-
lems (columns Fix andGen) and test the validity of quick fix
applications. Altogether, this new evaluation confirms and
generalizes the previous one.

7.2 Evaluating quick fix impact

Wehave used the information obtained in the previous exper-
iment to study the impact of quick fixes. We are interested in
understanding their side effects, that is, which types of quick
fixes tend to cause certain types of problems, and which ones
tend to fix other problems (in addition to the targeted ones).
Fixed problems. Sometimes, the application of a quick fix
solves other problems different from the targeted one as a
side effect. Column #Extra in Table 5 shows the number
of extra errors fixed (i.e., #Fixed - #Extra if the number is
positive, 0 otherwise). These side effects are pervasive for
some quick fixes, like Q2.1 Create new rule which fixes 279
extra problems in 147 applications. Figure 11 shows a heat
map representing which types of problems are fixed by a
given quick fix when applied to a certain kind of problem.
To normalize the data, for each applied quick fix, we count
1 if there is at least one extra problem fixed, and 0 if there is
none. We summarize the different impact relationships next.

Quick fix Q0.1, which adds additional filters to conflicting
rules, may fix E3 Invalid target for resolved binding if some
guilty rule of E3 is one of the fixed conflicting rules.

Quick fix Q1.1 implies modifying a rule filter with an
additional constraint and can be applied over E2 Possible
unresolved binding and E3 Invalid target for resolved bind-

123

Quick fixing ATL transformations with speculative analysis 803

Table 6 Errors detected in mutants of the PNML2PetriNet transforma-
tion, and applied fixes

Prob. Occ Qfx Avg Min Max Val Fix Gen

E00 5 5 1.0 1 1 5 5 0

Q0.1 – 5 – – – 5 5 0

E02 61 138 2.3 1 5 138 257 149

Q1.2 – 17 – – – 17 18 0

Q1.3 – 20 – – – 20 21 4

Q1.4 – 20 – – – 20 24 0

Q1.5 – 20 – – – 20 24 0

Q2.1 – 61 – – – 61 170 145

E03 30 164 5.5 4 6 154 275 124

Q1.1 – 12 – – – 12 16 4

Q1.2 – 9 – – – 9 10 0

Q1.3 – 30 – – – 30 30 0

Q1.4 – 30 – – – 30 50 8

Q1.5 – 30 – – – 30 64 0

Q3.1 – 30 – – – 30 90 96

Q3.2 – 23 – – – 13 15 16

E05 65 202 3.1 2 4 202 210 0

Q4.1 – 65 – – – 65 65 0

Q5.1 – 65 – – – 65 73 0

Q5.2 – 45 – – – 45 45 0

Q5.3 – 27 – – – 27 27 0

E06 9 7 0.8 0 1 7 11 0

Q6.1 – 7 – – – 7 11 0

E07 8 16 2.0 2 2 16 24 19

Q7.1 – 8 – – – 8 12 9

Q7.2 – 8 – – – 8 12 10

E08 9 9 1.0 1 1 9 11 0

Q8.1 – 9 – – – 9 11 0

E10 33 124 3.8 3 4 124 184 55

Q10.1 – 33 – – – 33 48 0

Q9.1 – 33 – – – 33 48 0

Q9.2 – 25 – – – 25 40 55

Q9.3 – 33 – – – 33 48 0

E12 18 26 1.4 1 2 26 31 18

Q12.1 – 18 – – – 18 18 14

Q12.2 – 8 – – – 8 13 4

E14 29 29 1.0 0 2 27 33 14

Q12.1 – 16 – – – 14 20 1

Q12.2 – 13 – – – 13 13 13

E15 36 0 0.0 0 0 0 0 0

E16 14 20 1.4 1 2 6 6 4

Q16.1 – 6 – – – 6 6 4

Q16.2 – 14 – – – 0 0 0

E17 45 4 0.1 0 1 4 4 0

Q17.1 – 4 – – – 4 4 0

E18 6 6 1.0 1 1 6 6 0

Q18.1 – 6 – – – 6 6 0

E00 E02 E03 E05 E06 E07 E08 E10 E11 E12 E14 E15 E16 E17 E18
Q0.1 (E0) 2
Q1.1 (E2) 14
Q1.1 (E3) 4 4 4
Q1.2 (E2) 10
Q1.2 (E3) 10 2
Q1.3 (E2)
Q1.3 (E3) 4
Q1.4 (E2) 2 14 2
Q1.4 (E3) 4 5 14
Q1.5 (E2) 2 35 2
Q1.5 (E3) 9 8 17
Q2.1 (E2) 103
Q3.1 (E3) 8 11 26 5 4 17 2
Q3.2 (E3) 4
Q4.1 (E5)
Q4.1 (E6)
Q5.1 (E5) 8
Q5.2 (E5)
Q5.3 (E5)
Q6.1 (E6) 4
Q7.1 (E7)
Q7.2 (E7)
Q8.1 (E8) 2

Q9.1 (E10) 15
Q9.1 (E11)
Q9.2 (E10) 15
Q9.2 (E11)
Q9.3 (E10) 21
Q9.3 (E11)

Q10.1 (E10) 33
Q11.1 (E11)
Q12.1 (E11)
Q12.1 (E12) 4
Q12.1 (E14)
Q12.2 (E11) 1 2 3 2
Q12.2 (E12) 24
Q12.2 (E14) 6 3
Q15.1 (E15)
Q15.2 (E15)
Q16.1 (E16) 1
Q16.2 (E16)
Q16.3 (E16)
Q17.1 (E17) 6

Fig. 11 Heat map showing the relationships between quick fix types
and fixed problems according to the error types. The smallest number
of fixed problem is assigned white, while the largest number is assigned
dark green (color figure online)

ing. In both cases, when there are problems similar to the one
being fixed within the same rule, they will be fixed at once.
This pattern appears in PNML2Petrinet and UML2Intalio in
the assignment of features from and to for control flow edges
(as in lines 47–48 in Listing 1). This quick fix has also an
impact in other bindings that depend on the modified rule. If
the impacted binding had problem E3 and was resolved by
the modified rule, the quick fix may solve this problem as
well. This possibility is less likely and it has not arisen in our
experiment. In some cases, rule conflicts (E0) may become
fixed as well.

Quick fix Q1.2 removes the problematic binding. If the
bindinghas other binding-related problems, theywill become
automatically fixed (e.g., E6).

Quick fix Q1.3 filters the right-hand part of a binding to
constrain the elements that will be resolved. If the quick fix is
applied for E3, it can fix E2 as a side effect since the binding
filter is ruling out elements that may be the ones causing E2.
However, if the quick fix is applied over E2, it cannot fix E3
because, in this case, the quick fix is using the resolving rule
filters (which may coincide with the guilty rules of an E3 for
the same binding) to force the right-hand part of the binding
to select only the elements satisfying them. This provides a
hint of the order in which we should fix a binding by using
Q1.3: first E3 problems and then E2 if needed.

123

804 J. S. Cuadrado et al.

Quick fixes Q1.4 and Q1.5 generate a precondition. This
has an impact on problems that require confirmation using the
solver. In particular, it can fix problemsE0,E2, andE3. How-
ever, we have found an undesirable scenario which happens
when the generated precondition contradicts other problems
that require confirmation by the solver. As an example, in one
mutant of PNML2PetriNet, we are generating the following
precondition:

1 PNML!NetContentElement.allInstances()→
2 forAll(v | v.oclIsKindOf(PNML!Place))

This precondition is too strong as it rules out every subtype
of NetContentElement different from Place, including Transi-

tion. Thus, any problem caused by an instance of Transition

will be discarded as an actual problem. We are not treating
this case in a special manner in the evaluation. Neverthe-
less, when this happens, the precondition is still useful as a
template for the user. Moreover, one could use the constraint
solver to detect this situation and notify the user.

Quick fix Q2.1 adds a new rule. This tends to solve E2
Possible unresolved binding problems related to the input
type of the generated rule. The heat map shows that this
situation is common.

Quick fix Q3.1 removes a guilty rule detected in problem
E3. Other problems of type E3 affected by the same rule
may become fixed at the same time. Similarly, a rule conflict
problem E0may become fixed if the deleted rule is one of the
conflicting rules. In addition, any problem within the deleted
rule will disappear, no matter its type (E5, E12 and E15 in
the experiment).

Quick fix Q3.2 proposes a target feature with a type com-
patiblewith the guilty rules.Our current implementation does
not check the feature cardinality, and thus, it may provoke
problem E06. This could be easily fixed with Q6.1.

Quick fix Q5.1 initializes a compulsory binding with a
default value. This quick fix only solves the targeted problem,
except in the case of bidirectional references having two com-
pulsory ends, in which case it solves two problems at once.
For example, in the following listing, outgoingArc[1..*] and
from[1] are not initialized, and two problems are reported (in
rules Transition and TransitionToPlace). Since the references
are one the opposite of the other, fixing one of them with
Q5.1–Q5.3 solves both problems.

1 rule Transition {
2 from n : PNML!Transition
3 to p : PetriNet!Transition (
4 ...
5 −− missing ’outgoingArc’ (opposite of from)
6)
7 }
8

9 rule TransitionToPlace {
10 from n : PNML!Arc (...)
11 to p : PetriNet!TransitionToPlace (
12
13 −− missing ’from’ (opposite of outgoingArg)
14)
15 }

Quick fix Q6.1 uses first() to obtain an element of a collec-
tion in the right-hand side of a binding and assign this value to
a mono-valued feature. A troubling issue is that our under-
lying solver (USE Validator) only supports Set types, and
hence, first() is not supported. Our interface with the USE
Validator uses several workarounds to solve this issue, but
sometimes, some results are unreliable9. This arises in the
experiment in the form of Q6.1 fixing E02 Possible unre-
solved binding.

Quick fix Q8.1 replaces a declared type by the inferred
one when they are not compatible. If the original type dec-
laration refers to a missing class, this is fixed as well (2
fixes for E07 Invalid type in the heat map). For example,
in the following listing, replacing allArcs with the inferred
type Sequence(PNML!Arc) also fixes the reference to Invalid-

Class.

1 let allArcs : Sequence(PNML!InvalidClass) = PNML!Arc.allInstances()...

Quick fixes Q9.1 and Q9.2 add an if statement to an
expression that may access an undefined value, or modify
the container rule filter to avoid reaching the problematic
access, respectively. If there are several nested accesses to
the same feature, the quick fix will solve all of them at once.
Our current implementation of Q9.1 puts the if in the out-
ermost location. For instance, for the following code in the
UML2Intalio transformation, lines 1 and 2 are problematic:

1 if anActivity.name.toUpper() = ’MY_ACTIVITY’ then
2 anActivity.name + ’_mine’
3 else
4 anActivity.name
5 endif

If we fix line 2 with Q9.1, a new if expression is placed
around the first if, thus solving both problems at once (as the
following listing shows). Hence, the 15 additional fixes of
E10 for Q9.1 and Q9.2 in the heat map. This may also arise
when the quick fixes are applied to E11, but our mutants have
not generated this scenario.

1 if not anActivity.name.oclIsUndefined() then
2 if anActivity.name.toUpper() = ’MY_ACTIVITY’ then
3 anActivity.name + ’_mine’
4 else
5 anActivity.name
6 endif
7 else
8 ’’
9 endif

Quick fix Q9.3 generates a precondition to ensure that the
value of a “possibly undefined” property is always defined,
solving similar accesses at once. Q10.1 behaves similarly,
but setting the feature lower bound to 0. This latter quick fix
is preferred when the problem is not in the transformation,
but it lies on the meta-model cardinalities.

9 We are not yet able to precisely determine in which circumstances
the solver behaves correctly and in which not. Thus, we notify the user
that the analysis is not completely reliable.

123

Quick fixing ATL transformations with speculative analysis 805

Quick fix Q12.1 is a heuristic quick fix which replaces an
access to a non-existing feature by an access to an existing
feature. If the invalid feature is used in the right-hand side of
a binding, the quick fix may solve problem E05 if it proposes
a feature that needs to be initialized. For example, one of
the mutants contained the following piece of code which has
problemE12because namedoes not exist inBuild.Our system
proposed defaultGoal as a possible fix, which fixed E12 and
E05.

1 rule AntProject2Maven {
2 from a : Ant!Project (...)
3 to
4 −− The mutant replaced MavenProject!Project with Build
5 −− Problem E05 in mp because defaultGoal is compulsory
6 mp : MavenProject!Build (
7 −− Problems E12 because name does not exist
8 name ← a.name,
9)

10 }

Quick fix Q12.2 creates a helper that resolves a call to a
feature not found, fixing the same problem in other locations.
Generated problems. A quick fix may or may not gener-
ate additional problems as a side effect of its application. As
Table 5 shows, some quick fixes never generate new prob-
lems,while others aremore prone to this behaviour. Figure 11
shows a heat map representing which types of problems are
generated by a given quick fix when applied to a certain kind
of problem. Next, we report the more interesting findings.

Quick fix Q0.1 solves a rule conflict but tends to intro-
duce additional E2 Possible unresolved bindings because the
modified rule filters cover fewer cases. Any other problem
existing in the conflicting rule filters is duplicatedwhen copy-
ing the negated filter’s condition. In particular, the mutation
operators which caused E0 are creating other problems in the
original transformation which are duplicated by Q0.1 (e.g.,
E15 and E10 in the heat map). In general, any quick fix that
copies pieces of code to another location may have the same
issue.

Quick fixes Q1.1–Q1.5 resolve binding-rule problems and
do not introduce many problems. Q1.1 introduces some E2
errors because changing a rule filter to make it more con-
strained may have this effect.

Quick fix Q2.1, which adds a new rule, produces many
errors due to uninitialized compulsory features. It is worth
noting that Q2.1 does not introduce rule conflicts because
our implementation takes care of generating adequate rule
filters.

Quick fix Q3.1 deletes guilty rules and hence the genera-
tion of E2 Possible unresolved bindings. A subtle effect of
rule removal is that it may cause E5 Compulsory feature not
initialized. As an example, let us consider this excerpt from
one mutant of the PNML2PetriNet transformation. Before
the removal of TransitionToPlace, the analyser does not raise
problem E5 for outgoingArc because its inverse has already

been initialized (from). However, if we remove this rule, we
are invalidating that condition and causing problem E5.

1 −− Guilty rule. Will be removed by Q3.1
2 rule TransitionToPlace {
3 from n : PNML!Arc (...)
4 to p : PetriNet!TransitionToPlace (
5 −− from is the inverse of outgoingArc
6 from ← n.source,
7 to ← n.target
8)
9 }
10

11 −− PetriNet!Transition has outgoingArc compulsory feature
12 rule Transition {
13 from n : PNML!Transition
14 to PetriNet!Transition
15 }

Quick fix Q3.2 replaces a target feature. If the replaced
feature is compulsory, E5 problems arise. Similarly, if the
cardinality of the new target feature is not compatible with
the right-hand side of the binding, E6 problems appear.

Quick fixes Q7.1 and Q7.2 correct references to invalid
meta-model types. If the proposed meta-model type is incor-
rect, it may trigger even more problems. An alternative for
these quick fixes would be not to use distance metrics, but to
propose the type that is likely to correct more errors.

The behaviour of quick fixes Q12.x to Q16.x is more
unpredictable as they are template quick fixes and some of
them are not valid (see Table 5). In most cases, in addition to
not fixing its error, they introduce additional ones. In other
cases, the quick fixmay be correcting the problem, but it does
not take into account its context. For instance, in a binding
feat ← obj.wrongFeature, if Q12.1 suggests an existing fea-
ture for which there is no resolving rule, then E2 Possible
unresolved binding will be raised. A similar situation occurs
if the new proposed feature has primitive type but the bind-
ing expected an object (or the other way round). This is the
reason for the amount of E17 in the heat map.

Drawing on the experiment, one outcome is that the behav-
iour of quick fixes can be roughly classified as global and
local. Global quick fixes like Q4.1, Q2.1, Q10.1 and Q12.2
may fix many errors at once. In turn, global quick fixes can
be classified as predictable and non-predictable. Quick fix
Q10.1 is predictable because it is straightforward to identify
the locations that will be affected, whereas Q2.1 is non-
predictable because its impact typically depends on OCL
expressions that need to be analysed, likely using a solver. A
local quick fix affects a limited scope, and its ability to fix
many problems at once is small. Examples are Q5.1–Q5.3,
which will likely fix only the targeted problem, even though
it is possible that they fix related problems (e.g., if there are
opposite references).

The heat map for fixed problems, Fig. 11, reveals strong
relationships between rule–binding problems and their asso-
ciated quick fixes. We believe that this is due to the implicit
rule scheduling algorithm of ATL (i.e., all matched rules are
matched “at once”) and the implicit binding resolution algo-

123

806 J. S. Cuadrado et al.

E00 E02 E03 E05 E06 E07 E08 E10 E11 E12 E14 E15 E16 E17 E18
Q0.1 (E0) 5 1 8
Q1.1 (E2)
Q1.1 (E3) 5
Q1.2 (E2)
Q1.2 (E3)
Q1.3 (E2)
Q1.3 (E3)
Q1.4 (E2) 2
Q1.4 (E3) 10
Q1.5 (E2)
Q1.5 (E3)
Q2.1 (E2) 87
Q3.1 (E3) 76 4
Q3.2 (E3) 12 1
Q4.1 (E5)
Q4.1 (E6)
Q5.1 (E5)
Q5.2 (E5)
Q5.3 (E5)
Q6.1 (E6)
Q7.1 (E7) 1 2
Q7.2 (E7) 2 2
Q8.1 (E8) 1 1

Q9.1 (E10) 4
Q9.1 (E11) 1 2 2
Q9.2 (E10) 23
Q9.2 (E11)
Q9.3 (E10)
Q9.3 (E11) 3

Q10.1 (E10)
Q11.1 (E11)
Q12.1 (E11) 1 1 1 5 1 2
Q12.1 (E12) 1 13 3 2 4 31 4
Q12.1 (E14) 3 1 1 3
Q12.2 (E11) 4 3 1
Q12.2 (E12) 1 5 5 1 1
Q12.2 (E14) 2 19 11
Q15.1 (E15) 2
Q15.2 (E15) 2 2
Q16.1 (E16) 2 3
Q16.2 (E16)
Q16.3 (E16) 3
Q17.1 (E17)

Fig. 12 Heat map showing the relationships between quick fix types
and generated problems according to error types. The smallest number
of fixed problem is assignedwhite, while the largest number is assigned
dark red (color figure online)

rithm (i.e., a binding is dynamically resolved according to
the runtime type of its right-hand side).

In the case of generated problems, the heat map in Fig. 12
ismore scattered. There are clear relationships between a few
quick fixes and their generated problems, like Q2.1 and E5,
Q3.1 and E2 or Q9.2 and E2. However, for other quick fixes,

typically heuristic and template ones like Q12.x, the quick
fix behaviour is less clear.

Altogether, this study provides an understanding of the
effects of applying quick fixes to ATL transformations and it
is a cornerstone to build a hierarchy of quick fixes with less
or more constrained application conditions to fix/generate
errors.

7.3 Evaluating usefulness of catalogue and ranking

Next, we report on an experiment to evaluate the useful-
ness of the system to fix errors in real transformations. For
this purpose, we selected 12 transformations from the ATL
zoo (i.e., developed by a third party), whose details are
shown inTable 7. The transformations range from small (e.g.,
Book2Publication with 32 LOC and 1 rule) to medium size
(e.g., Mantis2XML with 505 LOC and 5 rules, or Maven2Ant

with 273 LOC and 30 rules). In addition to cover this size
range, we selected transformations with meta-models or
domains close to the knowledge of the participant developers
and favoured transformations with a low number of errors, or
at least a low number of error types (e.g., Bugzilla2XML and
Mantis2XML have many errors but of the same kind).

Altogether, the selected 12 transformations have 213
errors (all detected statically and confirmed by the solver
when needed), and the types of errors found cover reason-
ably well the range of possible errors our analyser is able to
detect (see Fig. 6).

The goal of the experiment was twofold. On the one hand,
to check to what extent real faulty transformations can be
fixed according to the intention of the developers, using quick
fixes of the catalogue. On the other hand, to evaluate the
utility of the two rankings (dynamic and static) with respect
to the choices made by the developer.

Table 7 Transformations used for the usefulness experiment

Transformation LOC. Rules Helpers Classes Num. errors Error types

BibText2DocBook 171 9 4 21/8 4 E5

Book2Publication 32 1 3 2/1 1 E18

Bugzilla2XML 422 8 7 9/5 82 E5

Class2Relational 87 6 1 5/4 2 E18, E8

Ecore2Class 30 3 0 18/5 2 E2, E10

Families2Persons 42 2 2 2/3 1 E10

JavaSource2Table 59 4 2 5/3 1 E8

KM32EMF 125 10 1 15/20 3 E2, E18, E5

KM32SimpleClass 56 4 0 16/5 9 E2(2), E3, E18(6)

Mantis2XML 505 5 1 10/5 97 E5(95), E17(2)

Maven2Ant 273 30 4 59/48 7 E2, E8(2), E10(2), E12, E18

XML2Book 27 2 1 5/2 4 E2, E3, E10, E18

123

Quick fixing ATL transformations with speculative analysis 807

The experiment was carried out by two developers in
an independent way. In a first step, they were asked to
explain how to solve each one of the identified errorswithout
the assistance of our quick fixes. Then, in a second step,
they were allowed to use the catalogue of quick fixes to
solve the same problems and were asked whether there was
some quick fix equivalent to the solution they had origi-
nally devised, the position of the quick fix in the ranking,
as well as whether the result of the fix was the one they
expected.

After the experiment, the data analysis revealed that both
developers agreed on how to resolve 32 problems (which
is less than the total number of errors because resolving
one issue may resolve others as a side effect), while they
disagreed on the resolution of 6 issues in 3 different trans-
formations. The disagreements concerned the resolution of
errors E2 (possible unresolved binding) and E3 (invalid tar-
get for resolved binding). Both errors required considering
the possibility of receiving inputmodelswith unexpected fea-
tures for the transformation,which could hardly bemapped to
the target model. While one developer decided to use Q1.5
and Q1.4 in these cases (generate general precondition, or
generate precondition), the other decided to use Q1.1 and
Q1.3 (modify rule filter, or add filter to binding expression).
The strategy of the first developer results in not transform-
ing the problematic models, while the strategy of the second
results in transforming only the parts of the model that are
considered by the transformation logic, but neglecting the
problematic parts.

Overall, each developer could not find a suitable quick fix
in 2 cases, in order to solve the same 2 problems, both in the
Maven2Ant transformation. In the first case (E12 Feature not
found), a binding mentioned an undefined property Property-

Name.value. Here, the developers solution was to remove the
binding (as the error seemed a copy/paste error from a similar
rule), but the system only suggested choosing a similar fea-
ture (Q12.1). In the other case (E8 Declaration mismatch),
the system proposed changing the declared type of a helper
by the inferred type (Q8.1), while in this case, the develop-
ers choice was to modify the helper body by adding flatten

operators to the returned collections.
Developers also recorded whether the quick fix applica-

tions had the consequences they expected. This occurred in
all cases but two (the same situation was noticed by both
developers). The first case occurred when fixing an E10 Pos-
sible access to undefined property error with quick fix Q9.1,
in an expression deeply nested in a conditional. This resulted
in a new if condition enclosing the existing conditional, while
the developers’ expectation was that the condition should
have been added to the branch of the conditional containing
the error. In the second case, fixing an E5 Compulsory fea-
ture not initialized error with quick fix Q5.1 resulted in the
initialization of a binding with OclUndefined. However, both

developers were expecting that the fix would also create a
default object in the output pattern of the rule and that this
object was assigned in the binding instead of OclUndefined.

Altogether, both developers could reasonably fix most
errors in the selected 12 transformations. All repair actions
(except 2) could be performed using quick fixes of the cat-
alogue, while in all cases (except 2) this resulted in the
expected behaviour.

Finally, we compare the static and dynamic rankings pro-
vided by our approach, by analysing whether the quick fixes
selected by the developers in our experiment are located in
top positions in both rankings. Table 8 shows the results.
This table contains aggregated information of the errors and
quick fixes applied by both developers (first column); the
average and median of the selected quick fix as calculated
dynamically by the speculative analysis (second column); the
average and median of the selected quick fix as calculated by
the static ranking (third column); the number of quick fixes of
each kind applied (fourth column); and the number of errors
fixed by the quick fix application (fifth column).

Normally, developers tend to look at the first one or two
options of the list of offered fixes. Therefore, we analyse to
what extent the choice made by the developers in the exper-
iment was offered in the first or second positions by both
rankings. We can observe that the fix chosen by the develop-
ers was the first offered by the dynamic ranking in 88.7% of
the cases (55 times), while it was the first of the static rank-
ing in 36% of the cases (36 times). We can also see that the
developers chose the first or second option of the dynamic
ranking in 92% of the cases (57 times), while the choice
was first or second in the static ranking in 82% of the cases.
Hence, these high percentages show the appropriateness of
the rankings for practical use.

The ranking provided by speculative analysis is generally
more accurate (regarding how the choice of the developers
scored in both rankings). As Table 8 shows, the average and
median of the positions in the dynamic ranking is always
lower or equal than for the static ranking, with the exception
of Q1.1 for error E2. More in detail, the dynamic rank was
strictly better than the static one in 32% of the cases (20
times). The static ranking was as good as the dynamic one in
63%of the cases (39 times), while it was better in 4.8%of the
cases (3 times). These are reasonable results, as speculative
analysis checks the consequence of every quick fix, while the
static ranking is made by empirical analysis. However, being
as good as the dynamic over 60% of the times indicates that
the model of the static ranking is an adequate default. It must
be stressed that the advantage of using speculative analysis is
not only its more accurate ranking, but on the wealth of extra
information offered to the developer, as explained in Sect. 5.
On the other hand, the ranking offered by the static ranking is
accessible in a quicker, more agile way through the standard
quick fix tool, which does not require from opening a sepa-

123

808 J. S. Cuadrado et al.

Table 8 Comparing dynamic
and static rankings of quick
fixes. Dyn. rank and Static rank
columns contain the average and
median (with format
average/median) of the ranks
of the selected quick fixes

Errors and quick fixes Dyn. rank Static rank # Quick fixes # Fixed errors

Possible unresolved binding (E2)

Q1.1 4/4 3/ 3 2 2

Q1.3 1,2/1 4,5/5 6 6

Q1.4 2,5/2,5 4/4 2 3

Q1.5 1/1 1/1 2 3

Invalid target for resolved binding (E3)

Q1.1 2/2 5/ 5 1 1

Q1.5 1/1 4/ 4 1 1

Compulsory feature not initialized (E5)

Q4.1 1/1 2/ 2 6 362

Q5.1 1/1 1/ 1 2 2

Declaration mismatch (E8)

Q8.1 1/1 1/ 1 4 4

Possible access to undefined property (E10)

Q9.1 1,4/1 1,8/ 2 10 10

Incompatible types (E17)

Q17.1 1/1 1/ 1 4 4

Style warnings (E18)

Q18.1 1/1 1/ 1 22 22

rate dialog window, with less disruption of the programming
flow.

7.4 Threats to validity

The main threat to the internal validity of the experiment
to determine the validity and completeness of our catalogue
(Sect. 7.1) is that our analyser may report some false pos-
itives (i.e., indicate an error incorrectly). In this case, we
may be cataloguing a correct quick fix application as invalid.
The analyser may also report some false negatives (i.e., fail
to report a true error) which may lead to marking a quick
fix application as valid when it is not. In our experience,
the analyser has a low rate of false positives/negatives (we
present a preliminary evaluation in [35]). Nevertheless, we
have manually checked any suspicious result and performed
many tests to try to avoid this situation. In addition, our
analyser uses amodel finder (USE) based on the “small scope
hypothesis”, which limits the search of witness models to
a given scope. To minimize the number of false negatives
due to this reason, we have used reasonably wide searching
scopes.

Related to the previous issue, our system relies on anAT-

Lyzer to statically spot faults and it uses the TDG to build
the quick fixes. At the same time, the counting of newly
generated problems after applying a quick fix is also per-
formed using anATLyzer as oracle function. Unfortunately, to
the best of our knowledge, there is no other analyser of ATL
with which we can cross-validate the results. This implies

that different versions of anATLyzer (e.g., due to bug fixes)
may provide slightly different values for the experiments and
for our quick fix ranking.

Another threat to internal validity is that mutations could
be biased towards the generation of errors for which we
have available quick fixes. To limit this issue, the muta-
tion operators were developed independently from the quick
fixes. Our solution to this threat has led to a different threat,
which is that our mutation operators are not exercising all
the quick fixes. For instance, Q12.4 Change feature call to
operation call (and vice versa) is never applied. In the same
line, another threat is related to the size and complexity of
the transformations used in the experiment. We have used
four different transformations with different characteristics,
but we cannot claim that all ATL features are present in
these transformations. Nevertheless, we have checked that
all “transformation-specific” quick fixes are exercised at least
once.

Regarding the internal validity of our evaluation of the
impact of quick fixes, one threat is that we are using just first-
order mutations. For instance, we know from our manual
evaluation in Sect. 5.3 that Q4.1 Modify feature cardinal-
ity in meta-model will fix any E04 Feature initialization
problem for the same meta-model feature. However, Fig. 12
does not reveal this because we are mutating a correct
transformation in only one place, while we would need
to remove at least two bindings to enable this effect. For
this, we would need at least second-order mutation opera-
tors.

123

Quick fixing ATL transformations with speculative analysis 809

Regarding the experiment in Sect. 7.3, the main threat
to its internal validity is the possible bias of the developers
towards using quick fixes available in the tool, but which
would not repair the transformation as they planned. To mit-
igate this risk, there were two developers (as opposed to the
experiment in [36], made by one developer only), and their
large agreement in the selection of how to fix the 12 trans-
formations is an indication that they were not biased. As for
the external validity, we might extend the experiment with
more transformations and more developers, to obtain data of
more types of errors and quick fixes. Also, the experiment
was designed to fix already finished (and hopefully tested)
transformations, for whichwe favoured transformations with
few errors. However, the results of the experiment cannot be
generalized to the scenario of creating a transformation from
scratch, for which another experiment would be needed.

For all experiments, there is an internal threat related to
experimenter bias because the experiments have been carried
out by the authors. To minimize the impact, we have split the
work (i.e., analyser implementation vs. mutation operator
implementation) and we have selected transformations writ-
ten by third parties. There is also an external threat regarding
the generalization to other transformation languages, as we
only cover ATL. The features of other transformation lan-
guages may limit or impose additional constraints in some
of the proposed quick fixes.However, provided that a suitable
static analysis phase is available, quick fixes related to OCL
and model navigation are directly applicable to OCL-based
transformation languages, such as QVT or ETL. Languages
such as ETL andRubyTL could also benefit from rule-related
quick fixes.

7.5 Discussion

Next, we comment on our experience using our quick fix
system, beyond the previous empirical analysis.

We have found the system useful to fix many types of
problems, as confirmed by our experiments. However, from
a usability perspective, sometimes the generated code may
be difficult to understand. This is particularly the case of
quick fixes for rule resolution,whichmay generate large filter
expressions because they aggregate the types and filters of
several rules. For some cases, we have optimizations that
generate more compact expressions, and we have quick fix
variants to encapsulate complex expressions. In contrast to
quick fixes for e.g., Java, our code is inherentlymore complex
(i.e., some of our quick fixes copy and adapt pieces of code
from other locations). Hence, more optimizations need to be
studied.

In comparison with established quick fix frameworks,
such as Eclipse JDT or Intelli/J, our proposal would be classi-
fied as a recommendation system for model transformations.
However, some of the problems that the analyser detects are

bugs (i.e., problems that manifest themselves at runtime pro-
voking an incorrect behaviour of the transformation), though
they are uncovered statically. This is generally the case of rule
conflicts, binding resolution and invalid receptor problems.
Hence, part of our proposal can be seen as a lightweight form
of automatic program repair.

We have found our speculative analysis useful to reason
about the consequences of a quick fix. In particular, it uncov-
ers information that ismany times unknown by the developer,
like the implicit effects of modifying a piece of code (even
a simple one). We have thoroughly studied these effects in
Sect. 7.2.

Regarding performance, our system is responsive enough
to be used as an editing facility. Using the model finder is
time-consuming, but we mitigate this problem by pruning
the input meta-model into a so-called error meta-model, as
discussed in [35]. With respect to the speculative analysis,
it typically requires some time to complete the results (e.g.,
around 5 seconds). The total time depends on two main fac-
tors. First, the size of the transformation because its abstract
syntax model is copied once per quick fix.While this process
is typically fast, it may impact the overall performance in
case of very large transformations. Strategies such as copy-
on-demand could be implemented to improve performance.
The second and dominant factor is the number of problems
that require solver confirmation, since the execution time
of the solver varies from a few milliseconds to a few sec-
onds. Nevertheless, our implementation does not block the
user interaction, but it runs the analysis in several execution
threads.

Concerning the applicability of our proposal to other lan-
guages beyond ATL, we believe it is conceptually applicable
to any transformation language, especially to OCL-based
ones. In practice, there are three dimensions that should be
considered to determine the effort required to implement our
system for other transformation languages, namely archi-
tecture, static analysis, and applicability of the catalogue of
quick fixes.

The architecture of our system could be applied to any
transformation language, notably if it is built as an Eclipse
plug-in. The only requirement is that the abstract syntax tree
of the transformation definitions needs to be available for
the quick fixes, since our speculative analysis works at the
abstract syntax level and not at the text level.

On the other hand, if the static analysis provided by a
language is powerful, more advanced and precise quick fixes
can be implemented. Existing transformation languages vary
between strongly typed languages such as Kermeta [14] and
QVT [32], where all types are resolved at compile time and
the abstract syntax is annotated with type information, and
dynamically typed languages such as ATL and ETL [18],
where type checking is performed at runtime. Unfortunately,
these languages do not make available valuable information

123

810 J. S. Cuadrado et al.

such as rule dependencies and helper invocations, which we
expose in our TDG. Our static analyser is specific to ATL;
thus, it cannot be directly reused for other languages, which
limits the adoption of our catalogue by other languages.

Finally, regarding the general applicability of our cata-
logue of quick fixes, next we discuss which quick fixes are
applicable to different model transformation languages. We
will assume that each language provides (or could provide)
a static analyser.

ETL [18] is very similar to ATL. Hence, our catalogue is
easily applicable to ETL with minor adaptations. However,
the fact thatETLhas less constrained imperative featuresmay
make the implementation more difficult, while OCL-related
quick fixes may need to be adapted to the query language of
ETL (EOL).

Regarding the QVT languages, both QVT Operational
(QVTo) and QVT Relational (QVTr) use OCL to navigate
models; hence, quick fixes related to OCL typing are applica-
ble. QVTo does not support the implicit execution of rules;
thus, quick fixes related to rule resolution are not directly
applicable, although they could be adapted to handle prob-
lems related to incomplete mapping rules. Quick fixes for
rule conflicts could also be adapted to ensure the disjunction
of when clauses, while binding-related quick fixes could be
adapted to ensure proper initialization of features. In the case
of QVTr, top rules are akin to ATL matched rules, while
non-top rules are lazy. Quick fixes for rule conflicts and
feature initialization could also be adapted to QVTr as in
QVTo.

Finally, our catalogue is less applicable to languages
which do not use OCL, such as graph-based languages like
Viatra [37] and Henshin [2]. Nevertheless, these languages
could reuse some of our ideas, such us quick fixes for rule
conflicts and feature initialization.

8 Related work

In this section, we focus on recent research on code rec-
ommenders, quick fixes, and automated program repair. We
leave out from this review works on fault localization and
validation and verification of model transformations, and
redirect the interested reader to [33,35] for a revision on
these topics. Most of the works we analyse come from the
programming languages community, as works dealing with
quick fixing or repairing model transformations are virtually
non-existent.

8.1 Quick fixes and code recommenders

Different strategies for proposing and ranking quick fixes
have been studied in the programming community. For exam-
ple, in [28], quick fixes are ranked according to the number

of errors that remain after their application. MintHint [16]
uses statistical correlation analysis to identify expressions
that are likely to appear in patches. BugFix [13] uses ideas
from machine learning to automatically learn from previ-
ous bugs that have been fixed over time, in order to report
a prioritized list of relevant fix suggestions when new bugs
are detected. Fix suggestions are textual descriptions of the
changes needed to remove a bug, and so they must be man-
ually encoded by the developer. Instead, our fixes can be
applied automatically to solve a detected problem, and sim-
ilar to these approaches, we rank them statically according
to their efficacy on a set of transformations, but also dynam-
ically using speculative analysis.

Our tooling includes a facility to visualize the result of
applying a quick fix speculatively. This allows analysing the
impact of a fix before its application. Other systems with
similar functionality include the one presented in [27], which
provides a semi-automatic wizard to see the result of possible
fix alternatives for buffer overflows in C code. Similar to our
approach, the system uses SMT solving to assert whether a
buffer overflow can ever occur in practice, given a potentially
faulty statement. Its quick fixes are empty C code skeletons
where certain values, which are computed by the SMT solver,
limit the index variables to take only values within the buffer
range. On a different area, GoalDebug [1] is a debugging sys-
tem for spreadsheets where users can report expected values
for cells that yield an incorrect value, and the system gen-
erates change suggestions ranked according to a number of
heuristics. Change suggestions can be interactively explored,
applied or rejected.

Altogether, although there are previous works tackling the
generation and ranking of fixes for different areas, there are
few works on this topic in the MDE literature, and none
tackling model transformations that we are aware of.

Solutions for quick fix generation have also been applied
to domain-specific modelling languages (DSMLs). For
example, [12] uses design-space exploration to propose quick
fixes for DSMLs. A quick fix is defined as a set of model
operations that reduces the number of errors. The authors
propose some guidelines for quick fix generation, like rank-
ing quick fixes by their simplicity (offer first those with less
model modifications). In our case, errors are detected by sta-
tic analysis, quick fixes implement pre-defined correction
strategies, and we rank them according to the problems they
introduce.

8.2 Fixing errors in model transformations

Although many efforts have been devoted to the analysis and
verification of model transformations in recent years [33],
works for their automated or assisted repair are scarce.

In [4], the authors synthesizeOCLpreconditions for graph
transformation rules from meta-model integrity constraints.

123

Quick fixing ATL transformations with speculative analysis 811

The generated preconditions ensure rule correctness (i.e.,
the rule application always yields a model conformant to
its meta-model). The work [7] tackles the same problem. In
[17], the authors define the necessary conditions that graph
transformations should fulfil to ensure the satisfaction of
containment constraints. Though these approaches do not
include a fault localization phase, they allow fixing potential
errors a priori. However, the kind of detected errors is limited
(meta-model conformance or graph constraint satisfiability),
and they are restricted to graph transformation. In our case,
the challenge is bigger asATL is dynamically typed andmore
expressive.

In [20,39], the authors present a taxonomy of common
pitfalls in QVT-R transformations. Some of these errors are
detected by executing the transformation using Petri nets. In
our case, errors are detected statically and we provide a suite
of quick fixes to amend them.

The catalogue of refactorings for model-to-model trans-
formations presented in [40] aims at improving transforma-
tion quality. We believe our method can be applicable to the
automated refactoring of ATL transformations, but we leave
this aspect for future work.

8.3 Automated program repair

Automated program repair [22] aims at correcting faulty
programs automatically, where faults are detected by the
dynamic testing of the programs. By relying on dynamic
testing, and different patch search heuristics, program repair
is typically a very time-consuming task. Instead, our quick
fixes are a much lighter technique, aimed to be used inter-
actively, and solving localized problems detected statically.
While automated transformation repair is left for futurework,
we took inspiration from existing works in this area, which
we describe next.

Some representative works in this area include Aut-
ofix [29] (for Objective-C), which uses pre-/post-conditions
and invariants to synthesize repairs; Nopol [8] which rep-
resents traces from successful test executions as an SMT
problem, whose solution can be translated into a source
code patch, and GenProg [21,23,38], which uses genetic-
programming to guide the repair process. From GenProg,
we adapted the heuristic for quick fix Q5.2.

Martinez and Monperrus [25] use repair models extracted
from the analysis of real patches in software repositories and
decorated by a probability distribution that enables reasoning
on the search space of program repair. We used this work as
inspiration for our static ranking of quick fixes. However, we
did not have access to real patches produced by ATL devel-
opers. Instead, our quick fix ranking model was heuristically
built fromautomatically applied quickfixes onmutated trans-
formations.

Works in automated program repair focus on general-
purpose programming language, and handle general prob-
lems for programming languages like infinite loops, memory
allocation errors, overflows or underflows [23,24,27,30].
Instead, we focus on the ATL model transformation lan-
guage. To the best of our knowledge, ours is the first work
targeting the generation of fixes for a model transformation
language. Hence, the range of problems we are able to fix
are transformation-specific on the one hand, and on the other
hand, type-related problems due to the dynamic nature of
ATL.

9 Conclusions and future work

In this paper, we have presented a method based on static
analysis and constraint solving to generate quick fixes for
ATL transformations and a catalogue of such quick fixes. We
have developed a technique to perform speculative analysis,
which provides information on the impact of the application
of each applicable quick fix. Speculative analysis provides a
dynamic quick fix rank, but in addition, we have constructed
a static ranking empirically by the automated application of
quick fixes on transformations. We have evaluated several
aspects of our approach. First, its validity and completeness,
by taking a large set of mutated transformations. In this set,
we show that our catalogue covers a wide range of problems
and that the quick fixes actually fix most of the problems.
Then, a second experiment has shown the usefulness of our
proposal by comparing the repair actions of developers with
respect to the available quick fixes and their rankings. The
implementation of the tool and the detailed results of the
evaluation are available at http://miso.es/qfx and http://miso.
es/qfx_exp_sosym2015, respectively.

To improve the recommendation aspect of the system,
we plan to extend our current static model by taking into
account quick fixes previously selected by the user. We also
plan to tackle automated transformation repair by apply-
ing sequences of quick fixes and providing different search
heuristics. The quick fixes of our catalogue are directed to
syntactically fix a transformation, but they do not consider
semantic issues (the intent of the transformation developer).
In this way, we plan to use transformation contracts, like
those provided by PaMoMo [10,11], as an oracle to test trans-
formation fixes, and then complement the static analysis with
dynamic testing. Finally, in order to provide stronger evi-
dence of the usefulness of the approach, in particular when
developers are defining ATL transformations from scratch,
we also plan to perform a controlled experiment with users.

Acknowledgements Work supported by the SpanishMinistry of Econ-
omy and Competitivity (TIN2014-52129-R), the R&D programme of
the Madrid Region (S2013/ICE-3006), and the EU commission (FP7-
ICT-2013-10, #611125).

123

http://miso.es/qfx
http://miso.es/qfx_exp_sosym2015
http://miso.es/qfx_exp_sosym2015

812 J. S. Cuadrado et al.

References

1. Abraham, R., Erwig, M.: GoalDebug: a spreadsheet debugger for
end users. In: ICSE, pp. 251–260. IEEE Computer Society (2007)

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.:
Henshin: advanced concepts and tools for in-place EMF model
transformations. In: MoDELS, vol. 6394 of LNCS, pp. 121–135.
Springer, Berlin (2010)

3. Brun, Y, Holmes, R, Ernst, M.D., Notkin ,D.: Speculative analysis:
exploring future development states of software. In: FoSER, pp.
59–64. ACM (2010)

4. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Synthesis of OCL
pre-conditions for graph transformation rules. In: ICMT, vol. 6142
of LNCS, pp. 45–60. Springer, Berlin (2010)

5. Cibran, M.A.: Translating BPMN models into UML activities. In:
Business ProcessManagementWorkshops, pp. 236–247. Springer,
Berlin (2009)

6. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string
metrics for matching names and records. In: KDD Workshop on
Data Cleaning and Object Consolidation vol. 3, pp. 73–78 (2003)

7. Deckwerth, F., Varró, G.: Attribute handling for generating precon-
ditions from graph constraints. In: ICGT, vol. 8571 of LNCS, pp.
81–96. Springer, Berlin (2014)

8. Demarco, F., Xuan, J, Berre, D.L., Monperrus, M.: Automatic
repair of buggy if conditions and missing preconditions with SMT.
In: CSTVA, pp. 30–39. ACM (2014)

9. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program depen-
dence graph and its use in optimization. ACM Trans. Program.
Lang. Syst. 9(3), 319–349 (1987)

10. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A.,
Retschitzegger,W., Schönböck, J., Schwinger,W.:Automated veri-
ficationofmodel transformations basedonvisual contracts.Autom.
Softw. Eng. 20(1), 5–46 (2013)

11. Guerra, E., Soeken,M.: Specification-drivenmodel transformation
testing. Softw. Syst. Model. 14(2), 623–644 (2015)

12. Hegedüs, Á., Horváth, Á., Ráth, I., Branco,M. C., Varró, D.: Quick
fix generation for DSMLs. In: VL/HCC, pp. 17–24. IEEE (2011)

13. Jeffrey, D., Feng, M., Gupta, N., Gupta, R.: BugFix: a learning-
based tool to assist developers in fixing bugs. In: ICPC, pp. 70–79.
IEEE Computer Society (2009)

14. Jézéquel, J.-M., Barais, O., Fleurey, F.: Model driven language
engineering with kermeta. In GTTSE’09, vol. 6491 of LNCS, pp.
201–221. Springer, Berlin (2011)

15. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model trans-
formation tool. Sci. Comput. Program. 72(1), 31–39 (2008)

16. Kaleeswaran, S., Tulsian, V., Kanade, A., Orso, A.: MintHint:
automated synthesis of repair hints. In: ICSE, pp. 266–276. ACM
(2014)

17. Köhler, C., Lewin, H., Taentzer, G.: Ensuring containment con-
straints in graph-based model transformation approaches. In:
ECEASST vol. 6 (2007)

18. Kolovos, D.S., Paige, R.F., Polack, F.: The epsilon transforma-
tion language. In: ICMT, vol. 5063 of LNCS, pp. 46–60. Springer,
Berlin (2008)

19. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of
OCL models by integrating SAT solving into USE. In: TOOLS
(49), vol. 6705 of LNCS, pp. 290–306. Springer, Berlin (2011)

20. Kusel, A., Schwinger, W., Wimmer, M., Retschitzegger, W.: Com-
mon pitfalls of using QVT relations - graphical debugging as
remedy. In: ICECCS, pp. 329–334. IEEE (2009)

21. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A system-
atic study of automated program repair: fixing 55 out of 105 bugs
for $8 each. In: ICSE, pp. 3–13. IEEE (2012)

22. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in auto-
matic software repair. Softw. Qual. J. 21(3), 421–443 (2013)

23. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a
generic method for automatic software repair. IEEE TSE 38(1),
54–72 (2012)

24. Logozzo, F., Ball, T.: Modular and verified automatic program
repair. In: OOPSLA, pp. 133–146. ACM (2012)

25. Martinez, M., Monperrus, M.: Mining software repair models for
reasoning on the search space of automated program fixing. Empir.
Softw. Eng. 20(1), 176–205 (2015)

26. Martinez, M., Weimer, W., Monperrus, M.: Do the fix ingredients
already exist? An empirical inquiry into the redundancy assump-
tions of program repair approaches. In: ICSE, pp. 492–495. ACM
(2014)

27. Muntean, P., Kommanapalli, V., Ibing, A., Eckert, C.: Automated
generation of buffer overflow quick fixes using symbolic execu-
tion and SMT. In: SAFECOMP, vol. 9337 of LNCS, pp. 441–456.
Springer, Berlin (2015)

28. Muslu, K., Brun, Y., Holmes, R., Ernst, M.D., Notkin, D.: Specu-
lative analysis of integrated development environment recommen-
dations. In: OOPSLA, pp. 669–682. ACM (2012)

29. Pei, Y., Furia, C.A., Nordio, M., Wei, Y., Meyer, B., Zeller, A.:
Automated fixing of programs with contracts. IEEE TSE 40(5),
427–449 (2014)

30. Perkins, J.H., Kim, S., Larsen, S., Amarasinghe, S.P., Bachrach,
J., Carbin, M., Pacheco, C., Sherwood, F., Sidiroglou, S., Sullivan,
G., Wong, W., Zibin, Y., Ernst, M.D., Rinard, M.C.: Automatically
patching errors in deployed software. In: SOSP, pp. 87–102. ACM
(2009)

31. Proksch, S., Amann, S., Mezini, M.: Towards standardized eval-
uation of developer-assistance tools. In: RSSE, pp. 14–18. ACM
(2014)

32. QVT. http://www.omg.org/spec/QVT/
33. Rahim, L.A., Whittle, J.: A survey of approaches for verifying

model transformations. Softw. Syst. Model. 14(2), 1003–1028
(2015)

34. Robillard, M.P., Walker, R.J., Zimmermann, T.: Recommendation
systems for software engineering. IEEESoftw. 27(4), 80–86 (2010)

35. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Uncovering errors
in ATL model transformations using static analysis and constraint
solving. In: ISSRE, pp. 34–44. IEEE (2014)

36. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Quick fixing ATL
model transformations. In: MoDELS, pp. 146–155. IEEE (2015)

37. Varró, D., Balogh, A.: The model transformation language of the
viatra2 framework. Sci. Comput. Program. 68(3), 214–234 (2007)

38. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically
finding patches using genetic programming. In: ICSE, pp. 364–374.
IEEE (2009)

39. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schön-
böck, J., Schwinger, W.: Right or wrong?—verification of model
transformations using colored petri nets. In: DSM (2009)

40. Wimmer, M., Perez, S., Jouault, F., Cabot, J.: A catalogue of
refactorings for model-to-model transformations. JOT 11(2), 1–40
(2012)

123

http://www.omg.org/spec/QVT/

Quick fixing ATL transformations with speculative analysis 813

Jesús Sánchez Cuadrado is
assistant professor at the Com-
puter Science Department of
the Universidad Autónoma in
Madrid, and a member of the
Miso group at this University.
His research interests are mainly
related to Model Driven Engi-
neering (MDE), notably model
transformation languages, meta-
modelling and domain-specific
languages. On these topics, he
has published several articles in
journals and peer-reviewed con-
ferences, and developed several

tools. His e-mail address is Jesus.Sanchez.Cuadrado@uam.es and his
web-page is http://sanchezcuadrado.es.

Esther Guerra is associate pro-
fessor at the Computer Sci-
ence Department of the Univer-
sidad Autónoma in Madrid, and
an active member of the Mod-
elling and Software Engineer-
ing research group (http://www.
miso.es) at this University. She
has been a doctoral researcher
at the Institute of Theoretical
Computer Science (TU Berlin)
and the University of Rome
“Sapienza”, as well as a post-
doctoral researcher at theUniver-
sity of York (UK). She is inter-

ested in model-driven engineering, primarily in model transformations,
model transformation testing, meta-modelling and domain-specific
modelling languages. Her e-mail address is Esther.Guerra@uam.es and
her web-page is http://www.ii.uam.es/~eguerra.

Juan de Lara is an associate
professor at the Computer Sci-
ence Department of the Uni-
versidad Autónoma in Madrid,
where he leads theModelling and
Software Engineering research
group (http://www.miso.es). He
holds a PhD degree in Com-
puter Science, and his reasearch
interest like in meta-modelling,
multi-level modelling, domain-
specific languages and model
transformation. He has been a
post-doctoral researcher at the
MSDL lab (McGill University),

the institute of theoretical computer science (TU Berlin), the depart-
ment of computer science of the University of Rome “Sapienza” and
theUniversity ofYork (UK).His e-mail address is Juan.deLara@uam.es
and his web-page is http://www.ii.uam.es/~jlara.

123

http://sanchezcuadrado.es
http://www.miso.es
http://www.miso.es
http://www.ii.uam.es/~eguerra
http://www.miso.es
http://www.ii.uam.es/~jlara

	Quick fixing ATL transformations with speculative analysis
	Abstract
	1 Introduction
	2 Overview and running example
	2.1 Quick fixes: an initial classification
	2.2 Conceptual overview of our approach
	2.3 Running example

	3 Transformation analysis
	3.1 Static analysis of ATL model transformations
	3.2 A taxonomy of errors in ATL transformations

	4 A catalogue of quick fixes for ATL
	4.1 Fixing rule resolution errors (E1, E2, E3)
	4.2 Rule conflicts
	4.3 Invalid receptor (E9, E10, E11)
	4.4 Feature initialization (E4, E5, E6)
	4.5 Declaration mismatch (E8)
	4.6 Feature/operation not found (E12, E14)

	5 Impact of quick fixes
	5.1 Speculative analysis of fixed and generated problems
	5.2 Presenting impact information
	5.3 Ranking quick fix proposals

	6 Implementation
	7 Evaluation
	7.1 Evaluating validity and completeness
	7.2 Evaluating quick fix impact
	7.3 Evaluating usefulness of catalogue and ranking
	7.4 Threats to validity
	7.5 Discussion

	8 Related work
	8.1 Quick fixes and code recommenders
	8.2 Fixing errors in model transformations
	8.3 Automated program repair

	9 Conclusions and future work
	Acknowledgements
	References

