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Abstract

Hartmann-Shack aberrometry is a widely used technique in the field of visual optics but, high-speed and accurate process-
ing of Hartmann-Shack images can be a computationally expensive/resource intensive task. While some advancements
have been made in achieving high-performance processing units, they haven’t been specifically designed for processing
Hartmann-Shack images of the human eye with Graphics Processing Units. In this work, we present the first full-
Graphics Processing Unit implementation of a Hartmann-Shack sensor algorithm aimed at accurately measuring ocular
aberrations at a high speed from high-resolution spot pattern images. The proposed algorithm, called PaPyCS (Parallel
Pyramidal Centroid Search), is inherently parallel and performs a very robust centroid search to avoid image noise and
other artifacts. This is a field where the use of Graphics Processing Units have not been exploited despite the fact that
they can boost Adaptive Optics systems and related closed-loop approaches. Our proposed implementation achieves
processing speeds of 380 frames per second for high resolution (1280x1280 pixels) images, in addition to showing a high
resilience to system and image artifacts that appear in Hartmann-Shack images from human eyes: more than 98% of the
Hartmann-Shack images, with aberrations of up to to 4 microns Root Mean Square for a 5.12mm pupil diameter, were
measured with less than 0.05 microns Root Mean Square Error, which is basically negligible for ocular aberrations.
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1. Introduction

Optical aberrations are defined as the difference be-
tween the perfect (flat or spherical) wavefront for an ideal
optical system and the bumpy wavefront generated by a
real optical system. Optical aberrations (defocus, astig-
matism, coma, etc.) cause deviations to the rays of the
light beam, therefore preventing them from converging to
a single focusing point and blurring the image. Wave-
front sensing, i.e., optical aberration measurement, is rou-
tinely performed in a wide range of fields (e.g., Astronomy,
Microscopy, Communications) for different purposes (e.g.,
optical quality determination, instrument calibration, op-
tical design) [4]. Wavefront sensing is also pivotal in most
Adaptive Optics (AO) systems, widely used in astronomy
and vision science. AO aims to dynamically correct the
fluctuating aberrations of a system in real time by means of
a wavefront corrector (deformable mirror or liquid-crystal
modulator) whose shape or refractive index distribution
can be modified point-by-point to reshape the wavefront
[8]. Due to the dynamics of the aberrations, an AO sys-
tem requires very fast wavefront sensing and image pro-
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cessing, therefore, being a computationally intensive pro-
cess. As wavefront sensing involves heavy image analy-
sis and processing, it is an intrinsically parallelizable task
which makes the use of General Purpose Graphic Process-
ing Units (GPGPUs) a perfect candidate to achieve real
time processing speeds.

The Hartmann-Shack (H-S) wavefront sensor, described
in 1971 [29], which is based in the sensor proposed by
Hartmann in 1900 [10], is the most widely used aberration
measurement approach nowadays. The H-S sensor consists
of an array of microlenses, which sample the aperture of
the optical system, and an image detector that records the
spot pattern generated (commonly called the H-S image).
For an ideal system, each microlens focuses the collected
wavefront into its focal point and a regular spot pattern
is recorded (Figures 1a and 1c). For a real system, the
wavefront irregularities cause local slopes over each mi-
crolens, resulting in a distorted spot pattern (Figures 1b
and 1d). The displacement of each spot with respect to
its ideal location (i.e., the focal point of each microlens)
is related to the wavefront’s local tilt, which in turn is
related to the wavefront’s local derivative. The H-S wave-
front sensing operation, therefore, consists of recording the
spot pattern, calculating the position of each spot (i.e., its
center of mass or centroid), computing each centroid dis-
placement in x and y directions and, finally, integrating
these set of local derivatives to finally obtain the wave-
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front shape or aberration map (as that depicted in Figure
5).
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Figure 1: (a) H-S wavefront sensor diagram registering a flat wave-
front. (b) H-S wavefront sensor diagram registering an aberrated
wavefront. (c) Obtained H-S spot image for the perfect wavefront.
The whole eye is shown on top and a zoomed area below. (d)
Obtained H-S spot image for the aberrated wavefront, including a
corneal reflection. Whole eye is shown on top, zoomed area below.

In this paper, our main focus is on measuring the aber-
rations of the human eye. Considering this special optical
system is far from perfect, which results in a limited visual
quality, measurement of the eye’s aberrations, also known
as ocular aberrometry, is a very important field of study.
Over the last two decades, Ophthalmology and Vision Sci-
ence applications have been a catalyst for wavefront sensor
development [18]. There are several commercially avail-
able aberrometers for clinical use, most of them based on
the H-S principle, and many other research apparatuses
and prototypes, recently including binocular and open-
view configurations [6]. In many cases, ocular aberrations
are used for diagnosis and/or prescription of corrective op-
tics but there are also Adaptive Optics systems for ocular
applications [26, 3]. It is important to note that, given the
fact that the human eye is a living system – closed, mobile,

and fragile – ocular aberrometry is somewhat idiosyncratic
and not completely interchangeable with other optics ar-
eas that deal with artificial systems (e.g., telescopes, mi-
croscopes, camera lenses). For example, H-S images from
living human eyes suffer from corneal reflections (which
severely degrade the spot images, as displayed in Figure 1,
right) and brightness irregularities due to crystalline lens
reduced transparency as an effect of aging, in addition to
temporal fluctuations in spot intensity across the pupil due
to the tear film and other factors.

In this paper we present a parallel Hartmann-Shack
wavefront sensing algorithm for accurate yet high-speed
ocular aberrometry. The proposed core algorithm, called
PaPyCS (Parallel Pyramidal Centroid Search) parallelizes
the centroid detection phase while performing a very ro-
bust centroid search, to make the algorithm immune to
the aforementioned issues that degrade ocular H-S spot
images. PaPyCS has been parallelized and optimized for
GPGPUs as it will be detailed in Section 3. In addition to
the spot detection and centroid search phase, polynomial
fitting of the aberration and wavefront map calculation
have been parallelized using the GPU as well. The pupil
tracking algorithm, which is another crucial component in
the process, as we will discuss later, has also been par-
allelized in the GPU. Experimental results show that our
full approach achieves a speedup above 100x compared to
its corresponding sequential implementation. This enables
a high speed processing (up to 380 frames per second on
1280x1280 pixel images), while not sacrificing detection
accuracy (more than 98% of the H-S images with aber-
rations up to 4 microns were measured with RMS-Error
lower than 0.05 microns).

The key contributions of this paper are: developing
a GPU-based high-speed implementation capable of pro-
cessing H-S wavefront sensor images; creating a robust
and accurate centroid detection algorithm based on dy-
namic pyramidal search; implementing a highly-parallel
pupil tracking algorithm for Hartmann-Shack wavefront
sensor images; and developing a parallel high-speed wave-
front map calculation.

The remainder of this paper is organized as follows.
Section 2 provides some background on H-S wavefront
sensing and further motivates this work. In addition, Sec-
tion 2 reviews the most relevant literature on real-time H-S
image processing. Section 3 describes our parallel GPU-
based implementation. In Section 4 we evaluate and report
its performance and accuracy. Finally, Section 5 summa-
rizes the main conclusions of the work.

2. Motivation and Related work

2.1. Background and Motivation

When measuring the wavefront and aberrations of a
living optical system such as the human eye, H-S images
must be processed to first detect the centroid of each spot
of the microlens array, and then the wavefront aberration
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can be reconstructed from the set of spot displacements
– similarly to other artificial optical systems such as tele-
scopes.

However, as mentioned in the previous section, H-S
spot images from a living human eye suffer from an im-
portant number of inherent problems that can seriously
jeopardize the accuracy of the measured aberration. For
example, instead of the typical single-pass arrangement,
an ocular H-S always works in double-pass (i.e., a light
beam is shined into the eye and its retinal reflection acts
as actual source for sensing), and as a consequence, corneal
and crystalline-lens reflections can fall into the H-S image,
degrading the spot image. Furthermore, transparency may
be reduced, especially in older eyes, producing irregulari-
ties in spot brightness. And retinal hazard severely limits
light intensity for ocular uses, posing a constraint to the
signal-to-noise ratio of the spot image. Even in modern
sensors, noise is still a problem which degrades the qual-
ity of the images [12]. The position of the pupil is also
critical for both processing the images and correctly pre-
senting a stimuli or correcting the aberrations. Finally,
when measuring the aberrations of living eyes along time,
it is common to observe temporal fluctuations in spot in-
tensity across the pupil due to inhomogeneities in the tear
film and changes in the ocular media.

Furthermore, while highly distorted H-S images may
be discarded in other applications, this is not typically the
case for highly aberrated eyes, which must be dealt with,
since they belong to real patients. In fact, subjects with
pathologically high levels of ocular aberrations, seriously
degrading their vision, are of a high interest from the point
of view of ocular aberrometry since they have the largest
room for improvement.

For all of the above reasons, it is crucial to rely on a
very robust centroid search algorithm, capable of dealing
with the aforementioned effects to produce highly accu-
rate aberration measurements, yet able to perform at high
speed in order to be effectively used in closed-loop Adap-
tive Optics systems. To that end, in this paper we propose
PaPyCS, a very resilient spot search algorithm, as we will
describe in Section 3.2.1, derived from the time tested al-
gorithm that we proposed in the early 2000’s [27, 11], ca-
pable of yielding very high accuracy for living optical sys-
tems, and as we will report in Section 4, achieving a high
throughput as a result of the highly efficient parallelization
performed in this work.

2.2. Related Work

The Hartmann-Shack wavefront sensor has been widely
used in optics for a relatively long time and there are
a number of published works aimed at speeding-up H-S
image processing, specifically targeting, however, artifi-
cial optical systems, such as telescopes. To the best of
our knowledge, no other previous work has developed a
GPGPU implementation of a Hartmann-Shack processing
system targeted at measuring the aberrations of living hu-
man eyes, performing on the GPU all the necessary tasks

from H-S pupil tracking and spot centroid search, to ex-
trapolating the Zernike polynomials and computing the
wavefront map.

Mocci et al. [17] achieved a very short processing time
by simply using the CPU. However, their implementation
was intended for calibrating lasers, so they could use lower
resolution images and a simpler (faster) spot search algo-
rithm, than those needed for dealing with images from
the human eye. Furthermore, since the laser beam po-
sition was fixed, no pupil tracking was needed. Yu and
Zhang [32, 31] proposed another implementation in a CPU,
achieving 110 frames per second (although just the pro-
cessing could reach up to 1̃66 FPS) on 512x512 pixels im-
ages with 193 microlenses (spots). Again, they did not
perform any pupil tracking and there was a limited preci-
sion due to the low resolution H-S images.

An early GPGPU implementation for searching the
Hartmann-Shack centroids and calculating the Zernike poly-
nomials was developed by Marichal-Hernández et al. [13].
However, this implementation was developed for telescope
optical systems, achieving a 10x speedup for the centroid
search stage and 2x speedup for the wavefront map recon-
struction stage.

One recent high-speed approach was proposed by Pich-
ler et al. [25] using an FPGA (Field Programmable Gate
Array) and an ASIC (Application Specific Integrated Cir-
cuit) implementation. They achieved a high throughput
(operating at 830 Hz) although the resulting accuracy was
limited because of the simple centroid detection algorithm
which was used, in addition to the limited number of pat-
terns available during the training of the neural network.
They compute the brightest spot inside the cell of each
lens (of the microlense array, see Figure 1-(b)) to find its
centroid and calculate its displacement. Then, to recon-
struct the wavefront aberration they proposed to use a
neural network trained to relate the vector of spots dis-
placements with previously generated displacement vec-
tors whose wavefront aberration had been previously cal-
culated. They developed an autonomous system capable
of estimating the wavefront aberration at a high speed.
Again, this approach was aimed at processing H-S images
for artificial lenses (telescopes) and, therefore, the achieved
accuracy (due to the simple spot search algorithm) is not
appropriate for measuring the aberrations of living optical
systems, such as the human eye, which is the target of our
proposal.

Reichenbach et al. developed another approach using
both FPGAs and GPUs to process Hartmann-Shack spot
images [28]. This implementation was also aimed at wave-
front sensing for artificial optical systems (telescopes in
particular). Therefore, it does not include a pupil tracking
step. Nevertheless, an interesting approach was used for
spot centroiding. They proposed a two-stage algorithm:
in the first phase the potential spots are found by search-
ing for the brightest pixels within a given area; and in the
second phase, the rest of spots in the H-S image are cor-
related with those in the list of potential spots, starting
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from a few selected ones (further details of this algorithm
are given in Section 3.2.2). They use an FPGA for spot
centroid search, while the CPU is used for correlating the
spots, and finally, the GPU is used for reconstructing the
wavefront aberration. They achieved a processing speed of
294 frames per second for an array lens producing 100x100
spots in a one megapixel (1024x1024) image. This is the
fastest implementation we have found in the literature,
although it was intended for artificial optical systems, we
will compare our proposed PaPyCS algorithm for process-
ing H-S images against Reichenbach’s approach in terms
of both performance and measurement accuracy.

On the other hand, when measuring the aberrations
of the human eye it is crucial to start by detecting the
center and size of the pupil of the patient, which, unlike
that of artificial systems, typically moves and changes.
While it would be possible to use a secondary camera
for performing pupil tracking, it would increase the com-
plexity of both the optical setup and the processing soft-
ware. A more convenient approach is to track the pupil on
the Hartmann-Shack images themselves. Some specialized
pupil tracking methods have been developed to this end.
The method developed by Meimon et al. [16] consists on
integrating the pixels over each lenslet, thresholding them
and fitting an ellipse to the border detected. Although
this method has been characterized for its high accuracy,
a high-performance version has not been developed. An-
other method was developed by Arines et al. consisting on
thresholding the H-S image and calculating the centroid of
the resulting image [1]. Although this method works for
detecting the center of the pupil when it is completely in-
side the image, it does not work correctly with partially
occluded pupils. Furthermore, it does not measure the
pupil radius. de Castro et al [7] showed a pupil tracking
method in the H-S images using the detected spots and
a metric depending on their brightness to find the pupil.
They were able to build a close loop system showing the
advantages of performing pupil tracking in H-S images.

Additional developments have been carried out by Mauch
and Reger [14, 15] using FPGAs. Their approach uses
a tightly integrated FPGA with a camera to achieve an
impressive rate of 905 frames per second (although the
resolution of the camera is 224x224 pixels). A dynamic al-
gorithm is used to be able to detect big aberrations. First,
the spots are detected using a Connected Components La-
belling algorithm. Later they are reordered to find their
positions relative to the reference system.

In this paper, in order to reduce the complexity of the
whole optical system, we detect and track the pupil di-
rectly on the H-S images. Using a method based on a pre-
vious work of our own [19] where a highly parallel pupil
tracker was proposed to accurately estimate the pupil size
and center, but in that case dealing with images of the
eye illuminated with diffuse infrared light, producing dark
pupils surrounded by the lighter iris. Instead, in this pa-
per we modify that approach to live track the two pupils
directly from the binocular H-S spot images (such as those

shown in Figure 2), using the diffuse component of retinal
reflection that back-illuminates the pupils, outlining them
against the virtually black iris.

3. Parallelizing H-S image processing

This Section describes our full approach for accurately
measuring ocular aberrations in both eyes at a high speed
from high-resolution H-S spot images. All the stages in-
volved in the processing of the H-S images have been par-
allelized: pupil tracking, centroid detection, wavefront cal-
culation, and the aberration map calculation.

Regarding the core algorithm –spot detection and cen-
troid calculation– the proposed PaPyCS (Parallel Pyra-
midal Centroid Search) algorithm evolve from our own pre-
vious work in [27] and [11], back in 2000, where it was
first introduced the pyramidal algorithm for spot centroid
search, as a tool for (off-line) measurement of monocu-
lar aberrations. This preliminary pyramidal algorithm is
now highly parallelized for enabling real-time processing
of both eyes simultaneously. Furthermore, our current ap-
proach has been adapted to the characteristics of current
H-S wavefront sensors, with much higher microlens density
and shorter focal length, resulting in H-S images comprised
of a large number of very sharp and compact spots.

Section 3.1 details the pupil tracking phase. In Section
3.2 our PaPyCS algorithm for searching the centroid of
the spots is described, together with Reichenbach’s algo-
rithm [28] used for comparison purposes. In Section 3.3
the methods used for calculating Zernike polynomial co-
efficients are discussed. Finally, Section 3.4 is devoted to
the parallelization of the final algorithm responsible for
calculating the wavefront map.

3.1. Step 1: H-S Pupil Tracking

When the Hartmann-Shack sensor is used to character-
ize the human eye’s aberrations the system’s pupil must be
tracked so as to analyze the correct area of the H-S image.
While in other artificial setups (e.g., in telescopes) the H-S
spots in the CCD sensor area are static, when dealing with
a human eye, the area of the sensor covered by the spots
is constantly moving. Therefore, knowing the position of
the eye’s pupil is important to analyze the correct area of
the image. Figure 2 shows an example of spot image taken
with a binocular H-S sensor.

H-S images from living eyes show a high variability
in brightness. The pupils of the subjects can also have
different sizes and, in binocular systems, both pupils may
partially overlap each other, or they may fall outside of the
bounds of the camera’s CCD. To correctly track the pupil,
a robust algorithm needs to be developed. Our approach
for H-S pupil tracking is able to operate at high-speed
while overcoming those issues.

Our setup has been designed to work with binocular
H-S images. First, the global H-S image is divided in two
sub-images (Figure 3a shows one of them). The image is
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Figure 2: Binocular H-S sensor image.

then smoothed with a Gaussian filter (radius 4, sigma 4)
as shown in Figure 3b. This is an important step since,
given the nature of the H-S images, most of the light is
concentrated in the spots. However, in this first stage
we want to find the border of the pupil and for that we
need to have a smooth rounded area brighter than the
background outside. A Gaussian filter is appropriate since
it reduces the difference in brightness between the spots
and the surrounding area while maintaining the brightness
of the background.

We have used a thresholding approach to select the
pixels that are inside each pupil (Figure 3c). However,
given the high variability expected in the brightness of
the images, a fixed threshold value is not convenient. To
overcome this issue, we have used the Otsu algorithm [24]
to calculate an appropriate threshold value in each frame.
Furthermore, large differences in brightness can be found
between both pupils, since they might not be equally il-
luminated. Recall that two eyes are indeed two different
optical systems. To avoid the problem of the illumination
difference, we process each pupil independently, calculat-
ing a particular threshold for each one.

After thresholding each pupil, its borders are still too
rough, and not as rounded as expected, to perform the
ellipse fitting step properly. Furthermore, it is common to
have holes inside the thresholded area, as shown in Fig-
ure 3c, that must be removed. To alleviate this problem,
a morphological close operation is applied to smooth the
borders around the thresholded area, as shown in Figure
3d. The resulting image is more suitable for processing
by the ellipse fitting algorithm. The border is designated
with a simple method: an above-threshold pixel is classi-
fied as a border pixel if any of its 8 neighbours is below the
threshold, as shown in Figure 3e. Finally, several ellipses
are fitted using a RANSAC (Random Sample Consensus)
approach [9] to select the ellipse that best fits the border
pixels (Figure 3f). The RANSAC technique is very appro-

priate here since most but not necessarily all the points
are correct border pixels. Therefore, using the complete
set of border points for the ellipse fitting could easily lead
to an incorrect result. The RANSAC method1 not only
overcomes this issue but is also robust to missing parts
(e.g., if part of the pupil falls outside of the CCD, or if it
overlaps with the other pupil). Figure 3f shows the final
best ellipse for this example.

GPU implementation of Pupil Tracking. The de-
scribed pupil tracking approach has been fully parallelized
by using CUDA. Since most of the operations are image
processing functions, they can be parallelized by assign-
ing one thread per pixel. However, in order to achieve
a higher performance we have optimized the implementa-
tion to take advantage of all the resources available on the
GPU. Several operations performed to find the pupil share
the same pattern: they load data from a squared area in
the input image and generate an output value for the out-
put pixel. These operations are the Gaussian filter and the
morphological close (a dilation filter followed by an erosion
filter). Since they share the same memory access pattern,
we have applied the following CUDA optimizations:

1. Separable kernels: Since the Gaussian, dilation and
erosion filters are applied as 2-dimensional square fil-
ters, they can be separated into two 1-dimensional fil-
ters reducing the amount of operations and also the
memory pressure. Instead of having one thread pro-
cessing n2 pixels, each thread processes 2 ∗ n pixels.
There are two phases: first, a 1-d filter is applied hori-
zontally and its output is stored into a temporal image;
second, the 1-d filter is applied vertically producing the
final image. In the first phase all the pixels are pro-
cessed, therefore, the data from each row loaded in the
second phase is the result of applying the filter to n
pixels horizontally.

2. Shared memory: Although the memory pressure is
greatly reduced with the previous optimization, there
are still many threads loading the same data, saturating
and wasting the memory bandwidth. This can be alle-
viated by using the GPU’s shared memory, which has
a much higher bandwidth and lower latency than the
global memory, resulting in higher overall performance.

3. Template unrolling: Loops are a convenient tool for
processing data. However, the ending condition must
be tested in each iteration and the accessed addresses
have to be re-calculated for each iteration. By unrolling
the loop inside the 1-d filter, the ending condition does
not need to be tested anymore and the memory ad-
dresses are known at compile time. However, in order
to apply the loop unrolling optimization, the size of the

1For fitting one ellipse we use 5 points, and a total of 1024 ellipses
are fitted for each pupil.
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Figure 3: (a) Original H-S image. (b) Smoothed image after the Gaussian filter. (c) Thresholded image. (d) Application of a morphological
close to the thresholded image. (e) Borders found on the closed image. (f) Final elliptical pupil found on the image.

kernel input set must to be known at compile time. For-
tunately, we only use a reduced range of radii and these
can be provided at compile time.

4. Reducing memory bandwidth usage: Our H-S im-
ages are grayscale with values between 0 and 255. Con-
sequently the bandwidth consumption can be reduced
by changing the data type from 32-bit integers to 8-bit
unsigned chars.

After pre-processing the H-S image, the ellipse fitting
is performed. First we select the points that will be used
for each fitting. We are using 5 points per fitting and we
are doing a total of 1024 ellipse fittings. The 5 points for
an ellipse are randomly selected from the overall set of

border points. Afterwards, the best fitting is selected as
the one with the most votes from the border points (a vote
is accounted if the ellipse is less than 2 pixels away from
the border point). Some of these operations are computa-
tionally intensive, and to reduce the execution time in the
GPU we have applied the following optimizations:

1. Fast math: Some mathematical operations performed
with high precision such as pow or sqrt can be per-
formed with a lower precision but faster. We have used
this lower precision in the ellipse fitting calculations
without any significant difference in the results.

2. Pre-calculated random numbers: When the points
for each fitting are randomly selected, the random in-
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dices have to be generated within a range (0 to num-
ber of border points-1). Generating random numbers is
an expensive operation that impacts the overall perfor-
mance. As a solution we have decided to pre-calculate
the random indices just once at the beginning, in the
range of [0..1]. When the number of border points is
known, these random indices are scaled to the final
range (0 to number of border points-1). This is much
faster than generating the random points every time,
and the sets of points are still randomly selected and
changed from frame to frame.

3. Reduction with ballot and popc: After fitting the
ellipses the votes for each one of them are counted. This
task has been optimized using the ballot and popc in-
structions. Ballot sets the ith bit of a given integer to
one when the ith thread of a warp is active and provides
a number bigger than zero to the function. So after call-
ing that function each warp has an integer with as many
ones as votes there are in that warp. Finally, the popc
instruction counts the number of bits set to one in an
integer, i.e., the number of votes in each warp. This is
faster than using either atomic operations or the shuffle
instruction.

4. Reducing device-to-host communications: The
last task is selecting the best ellipse fitting, i.e., the
most voted one. In the naive implementation the index
of the best ellipse was copied to the host and then the
best ellipse was copied to the host. However, it is pos-
sible to avoid one memory copy (plus synchronization)
if the best ellipse is copied to a known address in the
device memory where it can be accessed directly from
the host.

3.2. Step 2: Centroid Search

Once the pupil is found, the second step is to detect all
the spots in the Hartmann-Shack image. This is the most
critical phase in the entire wavefront calculation since each
spot’s centroid (or center of mass) must be computed with
the best possible accuracy in order to achieve the most
accurate wavefront reconstruction.

In this paper we propose PaPyCS, a Parallel Pyrami-
dal Centroid Search algorithm, explained in the following
Section 3.2.1. We also evaluate two other centroid search
algorithms for comparison purposes, explained in Sections
3.2.3 and 3.2.2. Note that the three centroid search al-
gorithms evaluated in this paper make use of a sub-pixel
precision to provide the best possible input for the Zernike
polynomials fitting step.

Finally, once the centroids for the H-S image are cal-
culated we can determine their displacement with respect
to a reference position. A reference H-S image, with no
eye in place, is used for calibration purposes. The spots
on this image are searched and their positions saved at
the beginning of the process to be used as reference cen-
troids throughout. Using a reference image also removes

any pre-existing aberration that could be present in the
optical system.

3.2.1. PaPyCS: Parallel Pyramidal Centroid Search

Our pyramidal algorithm divides the H-S image in sub-
apertures. Each image has as many sub-apertures as mi-
crolenses in the lenslet array. As the size of the microlenses
is known (it is a design parameter given by the manufac-
turer), the image can be divided in to small sub-windows
each one theoretically containing one spot. To determine
the position for each sub-window, the reference image is
initially processed to find its centroids, as mentioned be-
fore. These reference centroids are then used as the center
for each one of the search sub-windows. This way we create
a static search mesh where each sub-window of the static
mesh serves as the starting search area for each centroid
in the actual H-S image we want to evaluate (see Figure
4a).

The pyramidal algorithm then starts an exhaustive search
to find the centroid of each spot. While other simpler al-
gorithms just search for the brightest pixel, the pyrami-
dal approach iteratively calculates the center of mass of
the current sub-window, and for the next iteration it re-
centers a smaller sub-window in the current centroid, re-
peating the search. In each iteration, the minimum value
of the pixels within the scanned area is calculated. And
subtracted from each pixel while the center of mass is cal-
culated, which enables a faster convergence towards the
centroid of the spot. When the center of mass of the ith

iteration is calculated, the window side is reduced by 1
pixel, and the next iteration is performed until a mini-
mum scan window of 3x3 is reached. This method has
sub-pixel accuracy since the center of mass is calculated
using float values, and weighted values are considered for
the pixel borders to exclude the sub-pixel region that falls
outside the scanned area, as proposed in [27].

While this iterative approach is very robust against
image noise and helps to reduce the impact of corneal re-
flections, the use of a static search mesh limits the area
where each spot is expected to be found. This might lead
to wrong aberration measurements for strong aberrations,
if the spot falls outside its corresponding microlens cell
(see red points in Figure 4a). To overcome this issue we
propose the use of a dynamic search mesh as follows.

Use of a Dynamic Search Mesh. In order to increase the
the range of measurable aberrations, a dynamic search
mesh is proposed in PaPyCS. In a first stage, a small
static mesh is used to search the centroids just for a re-
duced central part of the pupil, and a preliminary aberra-
tion is calculated for this central area. In a second stage,
this preliminary aberration for the current H-S image is ex-
trapolated to the overall pupil size, its derivatives are used
to predict the likely spot positions, and a new distorted
mesh is created form these positions. A second centroid
search is performed for this dynamically expanded mesh.
This optimization allows us to process H-S images with
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(a) (b)

Figure 4: (a) Static mesh for searching the spots. Blue rectangles show the search windows. Red points show spots outside of their search
window while green points show spots inside. (b) Dynamic mesh for searching the spots. Blue rectangles show the search windows. Green
points show spots inside their search window; magenta points show the center of the static (initial) search windows.

strong aberrations while still using a mesh for finding the
spots, as it can be seen in Figure 4b.

Discarding Stage. As previously hinted, ocular Hartmann-
Shack images can suffer from important amounts of noise
depending on the optical setup and the subject. This noise
can be just a background, which is not a problem for the
pyramidal approach, it can be a corneal reflection, or it
can be the result of dry eyes where the tear film is broken.
Noise and other factors can lead to incorrect spot centroid-
ing which can greatly distort the calculated aberration. To
mitigate the impact of these issues, three criteria have been
used to discard incorrect spots.

1. If a cell is empty or saturated, it should be discarded.
To test if this is the case, the value of the pixel in the
centroid point is compared with the values of the pixels
around it. In particular, it is compared with the mean
value of the eight neighbours around it.

2. Comparing the centroid of a spot with it neighbouring
spots. While strong high-order aberrations can produce
odd displacements of spots, it is usually safe to assume
that spots are not either too close or too far from each
other.

3. Finally, any isolated spot is discarded because it is
complicated to test its centroid against its neighbours.
Furthermore, an isolated spot typically means that the
spots around it are incorrect as well.

GPU implementation of PaPyCS. In order to par-
allelize the pyramidal centroid search at a high level, the
work is divided in spots. Since the work to be performed
within a spot is independent from the rest, PaPyCS can

be parallelized efficiently, contrarily to Reichenbach algo-
rithm, which is inherently sequential (as it is described
in Section 3.2.2). Therefore, each spot is searched by a
group of CUDA threads. The amount of threads working
on each spot is fixed to 32 because the shuffle instruc-
tions are used to share data between the threads working
on the same spot, and also because the scope of the shuf-
fle instructions is limited to threads within the same warp.
The pseudo-code for this high-level parallelization is shown
in Algorithm 1.

Algorithm 1: PaPyCS high-level pseudo-code.

1 Image: Hartmann-Shack image
2 Spots: Array with the coordinates of each spot
3 NumSpots: Number of spots
4 NumSteps: Number of steps for the search
5

6 block(32 * SPOTS PER BLOCK, 1, 1)
7 grid(NumSpots / SPOTS PER BLOCK, 1, 1)
8 SearchSpots<<<grid,block>>>(Image, Spots,

NumSpots, NumSteps)

At a lower level of parallelization, a group (warp) of 32
threads calculates the centroid of one spot. Each thread
processes one part of the scanned window and calculates
the centroid of that area (lines 12-17 in Algorithm 2). To
improve the effective memory bandwidth, vectorized ac-
cesses are used (line 15 in Algorithm 2). However, align-
ment of the accessed memory is not guaranteed, therefore,
the first and last part of the pixels loaded are treated differ-
ently if they are not aligned (lines 14 and 16 in Algorithm
2). Finally, the threads of each group share their results
with each other, adding them using CUDA shuffle instruc-
tions (line 19 in Algorithm 2). With the obtained result,
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Algorithm 2: Kernel of the PaPyCS algorithm.

1 Image: Hartmann-Shack image
2 Spots: Array with the coordinates of each spot
3 NumSpots: Number of spots
4 NumSteps: Number of steps for the search
5

6 currCenter ← GetCenter(Spots, threadId)
7 for i← 0 to NumSteps-1 do
8 pyramidSize ← LensSize− i
9 Each thread computes its partial center of mass

10 partCenter ← (0, 0)
11 minimum ← inf

12 for y ← currCenter.y − pyramidSize
2 + threadId

to currCenter.y +
pyramidSize

2 by 32 do
13

14 [partCenter,minimum] += PartialMassCen-
terMissalignedBeginning(Image, currCenter,
y, pyramidSize)

15 [partCenter,minimum] +=
PartialMassCenterVectorized(Image,
currCenter, y, pyramidSize)

16 [partCenter,minimum] +=
PartialMassCenterMissalignedEnd(Image,
currCenter, y, pyramidSize)

17 end
18 Threads computing the same spot share their

partial results
19 currCenter ← ShuffleMassCenter(partCenter,

minimum)

20 end
21 StoreCenter(Spots, currCenter)

each thread calculates the new centroid and the process is
repeated until the final scanning area is reached (loop in
line 7 in Algorithm 2).

A couple of optimizations that have been applied in
this parallelization process are further described next:

1. Shuffle instructions: After each group of threads has
processed the pixels belonging to its spot, they have to
share their results with each other. By using shuffle in-
structions data can be shared efficiently between the 32
threads of the group. In particular, the shuffle instruc-
tions are used to accumulate the results of each thread
and, finally, thread 0 scatters the centroid position to
the other 31 threads within the warp. The centroid
data is calculated by each thread using 4 parameters:
the sum of the x coordinates weighted by each pixel in-
tensity; the sum of the y coordinates weighted by each
pixel intensity; the total sum of pixel intensities; and
the minimum intensity value within the area. These
four numbers are reduced using the shuffle instructions.
As a side note, the performance has been further im-
proved by interleaving the four shuffle instructions.

2. Vectorized memory accesses: In order to calculate
the center of mass of each spot, the corresponding pix-
els are loaded from global memory one by one. It is
possible to improve the loading of this data by vector-
izing the memory accesses. The data type of a pixel is
uint8 t, i.e., a size of 8 bits per pixel. So, four pixels can
be loaded simultaneously (32 bits) and later separated
into four independent pixels. Address alignment is en-
sured and non-aligned pixels are treated separately. As
a result, memory operations are more efficient and the
total execution time is reduced.

To calculate the dynamic search mesh, a matrix with
the derivatives of the Zernike polynomials is calculated for
the overall pupil size. This matrix is multiplied by the
value of the Zernike coefficients to obtain the theoretical
displacements of the centroids for the given aberration.
These displacements will be used to set the starting search
windows (the so-called dynamic mesh) for the centroids.
The multiplication of the two matrices is performed using
the CUBLAS library [23]. The calculation of the starting
search windows is parallelized by using as many threads
as spots there are in the pupil.

The discarding stage is implemented in several steps.
First, one thread per spot is used to calculate the difference
between the central pixel and the mean value of its eight
closest neighbours. If this difference is bigger than 15 the
spot is copied to the list of valid ones. Otherwise, the
spot is discarded. To test the second criterion, the spots
are copied from the 1D vector where they are stored to
a 2D structure of the same size as the microlens array.
Then each spot is compared with its four neighbouring
spots and, if any of them is either too close or too far,
they are both discarded (again using one thread per spot).
Finally, all the spots are checked and any one of them
found isolated is discarded as well.

3.2.2. Reichenbach’s Algorithm

The algorithm developed by Reichenbach et al. [28]
follows a very different approach from PaPyCS. It starts
by processing the whole image, pixel by pixel, searching for
a local maximum, over a threshold, within areas of 13x13
pixels. This first step is intended to detect all the potential
spots in the image (i.e., all the distinct small areas with
a maximum point). This step fits quite well the SIMD
architecture of a GPU, with different threads working on
different data but running the same instructions.

In a second phase, the rest of spots are correlated with
those in the list of potential spots, starting from a few
selected ones. Given an H-S image of a human eye, it is
known that spot displacements are bigger as we go away
from the center of the pupil. Therefore, central spots are
typically close to their original reference position. Un-
fortunately, corneal reflections are also typically located
around the center of the pupil and they can be easily mis-
detected as spots. In any case a group of 5x5 spots in the
center of the pupil are initially selected and assigned to
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their closest positions in the reference H-S image. From
them, other spots in the pupil are correlated with those in
the list of potential spots. In order to detect a new spot,
two previously calculated ones are used, and from their re-
spective distance and direction an approximated position
is extrapolated for a new spot. Then the closest spot, from
the list of potential spots found in the first step, to this
extrapolated position is selected. This process is repeated,
iteratively, in all directions until the border of the pupil is
reached and no more spots can be found.

One advantage of this algorithm, when compared with
our pyramidal PaPyCS, is its capability to detect spots
that are outside their reference sub-window, which only
happens for very strong aberrations. However, its major
disadvantage is the lack of robustness in the presence of
corneal reflections or when the signal-to-noise ratio is low.
Both situations are very common when dealing with H-S
images from human eyes, although it is not the case for ar-
tificial optical systems (such as telescopes) for which this
approach was designed. Finally, it is worth noting that
Reichenbach’s algorithm is inherently sequential, since the
position of each spot is derived from some previously cal-
culated ones, which makes it hard to parallelize. Also
note that because of its incremental spot searching ap-
proach, any early error (e.g., a corneal reflection being
mis-detected as a legit spot) can be propagated to the rest
of searched spots, leading to higher errors in the calculated
aberration, as it will be seen in the results section.

GPU implementation of Reichenbach’s. In the first
stage of the algorithm, all the potential spots are searched.
To do so the image is divided in tiles and each CUDA block
loads one tile to shared memory. One thread per pixel is
used to test if there is a potential spot in that location,
and if so, it is added to a 1D vector which will contain the
list of potential spots. When this list is finished, an ini-
tial mesh of 5x5 spots is created and the centroid of each
one is determined to be the closest in the list of potential
spots. A parallel search is done to find the closest spot in
the list, with 32 threads working in parallel for each spot
in the mesh. After completing the initial 5x5 mesh, other
spots are iteratively searched for in two steps. First, one
thread per potential spot tests whether its position can be
extrapolated from the previously found spots. If that is
the case, it is added to a list of temporary spots. In a
second step, the closest spot to each one of the temporary
spots from the potential spots is searched, and if any is
found it is stored as a new found spot. This procedure
is repeated for as many steps as spots fit in the chosen
radius of the pupil. One specific CUDA optimization has
been applied:

1. Shared memory: Since many threads in the same
block are accessing the same memory addresses, the use
of shared memory reduces the amount of loads issued
to global memory and greatly reduces the latency of the
load operations.

3.2.3. Center of Mass Algorithm

The third and final centroid search algorithm we eval-
uate in this paper is called the Center of Mass (CoM)
algorithm. This is a very straightforward and naive imple-
mentation, which is not computationally intensive at the
cost of a much lower accuracy. Actually, it can be seen as
a simplified version of the pyramidal PaPyCS algorithm
described in Section 3.2.1. The difference between them
is the way the centroid of each spot is calculated. While
the pyramidal approach performs an iterative converging
search, the center of mass performs only one iteration to
calculate the centroid, starting from the reference H-S im-
age and using the static search mesh. This reduces the
execution time but also degrades its accuracy.

3.3. Step 3: Zernike Polynomials Fitting

Once the centroids of all the spots have been calcu-
lated, the next step is fitting the Zernike polynomial deriva-
tives to the displacements of the spots to obtain the so-
called Zernike coefficients [30, 21, 22, 20] by solving an
overdetermined equation system.

In order to parallelize this step, we have tested two
different methods. The first one consists of using the gels
function from the CUBLAS library, in order to perform
the least squares fitting. The second method consists of
calculating the inverse of the matrix containing the deriva-
tives of the Zernike polynomials and multiplying the result
by the displacements of the spots. Although both meth-
ods pursue the same purpose they achieve very different
accuracy and performance. The gels function is slower but
more accurate than calculating the inversion matrix. To
speedup the processing the inverse has been used in all the
performance and accuracy tests.

3.4. Step 4: Wavefront Map Calculation

While the values of the Zernike coefficients are the most
important data for characterizing a wavefront, it is often
convenient to present the aberrations as an image, the so-
called wavefront map, in order to intuitively convey the
magnitude and distribution of the distortions. An exam-
ple of a wavefront map is shown in Figure 5. Furthermore,
if a closed-loop Adaptive Optics system is running, the
wavefront map might be used to update a spatial light
modulator to dynamically correct the measured aberra-
tion.

Calculating the wavefront map of an aberration is a
computationally-intensive operation, specially when many
Zernike polynomials are used and/or the size of the image
is big. Therefore, a high performance implementation is
required for real-time (or higher) performance. In this
paper we have developed a parallel GPU version of the
wavefront map reconstruction step that will be evaluated
at the end of the results section, in 4.4.

To reconstruct the wavefront map of a given aberra-
tion, the wavefront map of each Zernike polynomial is first
calculated. These calculations are done only once since
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Figure 5: Example of wavefront map.

the result, can be reused. Afterwards, the map of each
polynomial is added, weighted by the value of its corre-
sponding Zernike coefficient. The modulo 1 of the value
of each pixel is calculated and stored in the output image.
Finally, the values of the image are scaled to be between
0 and 255.

GPU implementation. Each step has been parallelized
in our CUDA implementation, using one thread per pixel
processed with two remarkable optimizations:

1. Shared memory: The values of the Zernike coeffi-
cients are used by all the threads. Since these values
are the same for all of them, the use of shared mem-
ory results in a significant improvement. The Zernike
coefficients are loaded once from global memory and
subsequently are accessed from the much faster shared
memory. Moreover, the careful use of CUDA pitched
memory and pinned memory results in additional per-
formance improvements.

2. Half data type: Although calculations are performed
with floating point arithmetic, a high precision is not
required for visualization purposes. Instead of using
float or double, the half data type is used (with a size of
2 bytes), reducing the bandwidth required to load data.
Note that the main bottleneck of the kernels is the huge
bandwidth required to load the wavefront map of each
Zernike polynomial. Operations within the kernel are
still performed using FP (float) arithmetic.

4. Experimental Results

4.1. Evaluation Methodology

In order to measure the performance and accuracy of
the implemented algorithms, several configurations have
been evaluated, varying two main parameters. First, the
number of spots inside the pupil: we have evaluated four
cases (250, 500, 1100 and 2000 spots) with a constant im-
age size of 2560x2560 pixels. Since the image size was

fixed, the area for each spot became smaller as their num-
ber increased. The second varied parameter was image res-
olution: 640x640, 1280x1280 and 2560x2560 pixels. In this
case the number of spots was fixed at 250, hence the area
corresponding to a spot increased with image size. Real
systems may have a wide range of configurations regarding
the number of microlenses used and the number of pixels
in the camera sensor. Therefore, the tested configurations
should be very useful to understand the performance of
the implementations in real systems used in very different
situations.

To properly evaluate the accuracy of the centroid search
algorithms, our first set of H-S images was synthetically
created using MATLAB from a set of given aberrations,
generating a video with 100 H-S images. Although the
aberrations were randomly selected, the weight of each
Zernike order was set to comply with the statistics by
Castejón-Mochón et al. [5] for a population of normal
subjects. To make this first set of synthetic H-S images
more realistic, reflections and brightness maps were added.
Reflections are quite common in a H-S system. Some-
times they can be mitigated but this is not always possi-
ble. These brightness maps were extracted from real H-S
images and emulate local changes in brightness as found in
real images. Finally, random (white) noise was also added
to the whole H-S image.

Actual H-S images from a real H-S system (Figure 6)
have also been used to evaluate both performance and ac-
curacy of the centroid search algorithms. Although, accu-
racy in this case is more difficult to check since the original
aberration is unknown and not readily available for com-
parison as is the case for synthetic images. Still, we took
images from an artificial eye placed in front of the actual
H-S system. As this was a static (non-living) experiment,
only the image noise was expected to change from frame to
frame. We used the variability of the measured aberration
as an indicator of the robustness of our PaPyCS algorithm
against noise and other external artifacts that pollute ac-
tual H-S images (reflections, brightness variations, system
instability, etc.).

The graphic card for testing was a state-of-the art NVIDIA
980 GTX implementing 2048 cores. CUDA version 8.0
was used. The sequential implementation was tested in
an Intel i5-4690 (up to 3.9Ghz) processor which integrates
four physical cores compiling with gcc V7. The OpenCV
library (v3.3.1) [2] was also used in the sequential imple-
mentation for the computer vision functions (Gaussian fil-
ter, threshold, and morphological close) that involved in
the pupil tracking step. OpenCV implements highly op-
timized functions, making use of the AVX vector instruc-
tions whenever possible.

4.2. Performance

It is important to note that all the performance results
showed in this Section include the copy time between CPU
and GPU, or vice versa, whenever a copy is performed (i.e.,
copying H-S images from CPU to GPU, copying Zernike
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Figure 6: Hartmann-Shack open-view setup for human eyes.

coefficients to CPU, or copying wavefront map to CPU,
in addition to any other intermediate copy that the algo-
rithms require).

4.2.1. Speedup

When analyzing the achieved speedup, the results have
been separated in two different categories: varying the
number of spots (Figure 7) and varying image size (Fig-
ure 8). Both figures show, for each of the three evaluated
search algorithms, the speedup achieved (over its own se-
quential implementation) for just the centroid search phase
(Step 2), and also the overall speedup for the whole pro-
cess (i.e., including all the 4 processing steps explained in
the previous Section).

When varying the number of spots, the speedup of the
centroid search step (first three bars of each group) scales
well with an increasing number of spots, as it can be seen
in Figure 7. In particular, the average speedup for the
centroid search phase using the 2000-spots configuration
is 192x, 78x and 66x for PaPyCS, Reichenbach’s and the
Center of Mass (CoM) algorithms respectively.

While it is interesting to analyze the speedup for just
the centroid search step, it is even more relevant to ex-
amine the speedup obtained for the whole process, repre-
sented by the last three bars (of each group) in Figure 7.
Again, the scalability for an increasing number of spots
is very good for the three algorithms, obtaining average
overall speedups of 103x, 65x and 58x (2000 spots con-
figuration) for PaPyCS, Reichenbach’s and the Center of
Mass (CoM) algorithms respectively.

When analyzing the scalability depending on the im-
age size, the results are more complicated, as shown in
Figure 8. Reichenbach’s algorithm scales well, because the
number of working threads is increased as the image size
is increased. However, in PaPyCS and CoM algorithms
each thread is doing more work because the size of the

search window is increased linearly the image size, going
from 32x32 pixels up to 128x128 pixels, while the number
of threads working on each window is the same, 32 threads,
to be able to use the shuffle instructions. Therefore, each
thread is processing a bigger area and the speedup does not
increase with image size. The average speedup obtained
for the Centroid Search phase (2560x2560 configuration) is
115x, 15x and 19x for PaPyCS, Reichenbach’s and CoM
algorithms respectively.

Finally, the last three bars (of each group) in Figure 8
show the speedup for the overall process. In this case, the
weight of the centroid search step is small in comparison
with the rest of operations for the biggest image size (we
will discuss this point in Section 4.2.2 by showing a break-
down of the execution time). Summarizing, the average
overall speedup for the 2560x2560 image size was 47x, 13x
and 14x for PaPyCS, Reichenbach’s and CoM algorithms
respectively.

4.2.2. GPU Time

The speedup is an interesting measurement to show
how well each method fits the GPU architecture, but to
better understand these results it is worth analyzing how
much time is spent on each step of the whole process for
each configuration.

Figure 9 shows the time in milliseconds that each algo-
rithm spends on each task for the GPU implementation,
when considering an increasing number of spots. Note that
as they all share the same implementation for copying,
preprocessing, pupil searching and coefficient fitting, the
same time is reported for those tasks. Only the centroid
search phase changes. One interesting property exhibited
by PaPyCS is that its execution time is mostly indepen-
dent of the number of spots, unlike Reichenbach’s, whose
latency increases as the spot count progresses, making it
less efficient for dense H-S wavefront sensors. In general,
most configurations achieve a throughput of more than
100 frames per second (i.e., less than 10ms per frame) for
high-resolution images (2560x2560 pixels) with up to 2000
spots.

Similarly, Figure 10 shows the time in milliseconds that
each algorithm spends on each task for the GPU imple-
mentation as a function of image size. Focusing on the
centroid search step, the time spent by PaPyCS increases
with image size, especially for the biggest (2560x2560) im-
age, for the same reasons explained above. Reichenbach’s
algorithm also increases its search time but less markedly.

4.3. Accuracy

In Optics the aberration of a wavefront is commonly
summarized by its RMS (Root Mean Square) since Zernike
polynomials are orthonormal to each other, wavefront RMS
equals the square root of the sum of squared Zernike coef-
ficients. However, RMS is also used for calculating the er-
ror of a particular measurement (w.r.t. a reference point).
The later case is also known as RMSE (Root-Mean-Square
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(the number of spots was fixed at 250). P stands for PaPyCS, R
for Reichenbach’s and C for Center of Mass.

Error). When used for calculating the error of a measured
aberration, the RMSE accumulates the squared difference
between the measured Zernike coefficients and their refer-
ence values.

As mentioned previously, in order to properly evaluate
the accuracy of the centroid search algorithms, a series of
H-S images containing 250 spots were synthetically gen-
erated with MATLAB. We evaluated aberrations whose
magnitude, or RMS, ranged from 0.5 to 6 microns, in 0.5
micron steps. The pupil diameter used for the generated
images was 5.12mm. For each aberration we randomly
generated 100 H-S images with the features previously de-
scribed (added noise, brightness map and reflections). As
previously stated, the distribution of the aberrations fol-
lowed the trend of a normal population as reported in [5].

As a first accuracy analysis, after processing all the
generated images with both the PaPyCS and the Reichen-
bach’s algorithms (we have skipped the Center of Mass
algorithm due to its high inaccuracy – it only works ac-
ceptably for low-aberrated and artifact-free H-S images)
we calculated the aberration RMS from each H-S image.
Figure 11 shows the measured RMS values against the

actual (theoretical) ones for the PaPyCS (crosses) and
the Reichenbach’s (circles) algorithms. The aberrations
measured by PaPyCS fall close to the actual values, es-
pecially below 5-micron RMS (which would correspond to
a very strongly aberrated eye). Conversely, Reichenbach’s
algorithm exhibits a much bigger dispersion for the whole
range of aberrations considered.

In a more detailed error analysis, Figure 12 shows the
average RMSE (blue and orange lines) considering the 3rd,
4th and 5th degrees of Zernike coefficients for those images
whose RMSE is smaller than 1 microns. This quality re-
quirement avoids the few outlier cases that highly distort
the average. The graph also shows (with bars) the per-
centage of images that fall within the required [0..1] RMSE
range. PaPyCS achieves a significantly higher amount of
images (96% on average) detected within the [0..1] RMSE
range (vs. 71% for Reichenbach’s). Considering the RMSE
values (blue and orange lines), PaPyCS achieves an aver-
age RMSE smaller than 0.05 microns for aberrations rang-
ing from 0.5 to 4. Reichenbach approach, however, dis-
cards 29% of the H-S images, and those not discarded are
measured with an average RMSE of 0.20 microns. Overall,
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Reichenbach’s incurs 4x more computational error than
PaPyCS. To give an idea of the magnitude of these er-
rors, in [3] it was reported an RMSE of 0.15 microns as
satisfactory for an Adaptive-Optics-corrected eye over a
4.8 mm pupil, similar to that used in our simulations.

Alternatively, Figure 13 shows the error spots detection
expressed in pixels. Only those centroids localized with an
error smaller than 1 pixel were considered. The bars show
the amount of centroids detected within 1 pixel of their
theoretical position. Besides, the average error (in pixels)
of the centroid search is also plotted, being very stable
through the set of images. PaPyCS shows an average er-
ror around 0.18 pixels, whereas Reichenbach’s doubles this
error, which significantly affects the accuracy of the mea-
sured aberration (as it was shown in Figures 11 and 12).
As expected, the amount of correctly detected centroids
(within 1 pixel of error) decreased as the aberration in-
creased: for PaPyCS it went from 200 detected centroids,
for small aberrations, to 165 centroids for a very strong
aberration of 6 microns.

Finally, we evaluated both algorithms with actual H-
S images obtained with a real Hartmann-Shack system
(shown in Figure 6). For this experiment, as there was no
reference image to compare against, an artificial eye was
used and a series of actual H-S images were captured. Fig-
ure 16 shows the temporal variation of the 4th Zernike co-
efficient (which represents the defocus aberration) as mea-
sured by both PaPyCS and Reichenbach’s algorithms. It
can be observed that PaPyCS aberration measurements
are noticeably more stable than those measured by Re-
ichenbach’s. The mean Z4 value obtained by PaPyCS is
−0.0478 and by Reichenbach’s is−0.0493, while their stan-
dard deviation are 0.0011 and 0.0037 respectively. This
experiment illustrates the robustness of our proposed Pa-
PyCS algorithm against external artifacts and experimen-
tal variability typical in real systems.

4.4. Wavefront Map Calculation Performance

Although the wavefront map calculation is a final step
which can be useful or even mandatory for certain applica-
tions, such as those involving a closed-loop adaptive optics
system as explained in Section 3.4, it is typically an op-
tional step, not needed for measuring an aberration which
is perfectly characterized by a set of Zernike coefficients.
For this reason we have separated this step results from
those of the previous phases.

Wavefront map calculation is a very computing inten-
sive operation, but it is also a trade-off between perfor-
mance and resolution. In order to understand how this
trade-off works, a wide variety of configurations have been
tested. The images generated have two variable parame-
ters: image size and number of Zernike coefficients used. A
combination of both has been evaluated in Figure 14. The
logarithmic scale was used to show the big difference in
performance obtained by the CPU version and the GPU
implementation. It can also been observed that perfor-
mance rapidly decreases as either image size or the number
of coefficients are increased.

Finally the speedup obtained by the GPU depending
on image size and number of Zernike coefficients used, is
shown in Figure 15. As it could be expected, the bigger
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the image or the more complex the wavefront description,
the higher the speedup.

5. Conclusions and Future Work

An accurate and high-speed GPGPU implementation
has been developed for processing Hartmann-Shack images
from human eyes in order to dynamically measure their
wavefront aberration. All the necessary steps to automat-
ically process H-S images have been parallelized: pupil de-
termination, centroid search and Zernike coefficient fitting.
Even the wavefront map calculation step has been paral-
lelized to be able to integrate our approach in a closed-loop
adaptive optics setup. While a sequential implementation
is not capable of reaching a speed of 25 frames per second
for real-time processing, unless resolution is severely lim-
ited, our setup and approach delivers 380 frames per sec-
ond when processing H-S images of 1280x1280 pixels con-
taining 250 spots. A comparison with two other state-of-
the-art algorithms showed that PaPyCS is better suited to
process H-S images from human eyes due to its higher re-
silience to system and image artifacts (corneal reflections,

broken tear film, white noise) since more than 98% of the
H-S images with an aberration smaller or equal than 4 mi-
crons were measured with an individual RMSE below 1
micron producing a mean RMSE lower than 0.05 microns.

Improvements are still possible, new synchronization
methods between threads are now available in CUDA (Co-
operative Groups), which could be used to improve the
parallelism of some operations (e.g., thread group syn-
chronization in the iterative expansion of the border of
the Reichenbach’s algorithm). In addition, some current
GPUs include dedicated hardware to perform calculations
on halfs which should speedup the wavefront map calcu-
lation. Since the data is already stored and transferred
using halfs to save both memory and bandwidth, accu-
racy should not be a problem. Also, regarding our pupil
tracking algorithm, some adjustments might be necessary
with different optical configurations if the background light
from the retina is very dim. Finally, our implementation is
being integrated on a second system in the Laboratory of
Optics of the University of Murcia and new challenges will
appear, as they always do, when dealing with real-time
systems used to measure human eyes.
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