
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 1

Omega-Test: A Predictive Early-Z Culling to
Improve the Graphics Pipeline Energy-Efficiency

David Corbalán-Navarro, Juan L. Aragón, Member, IEEE , Martı́ Anglada, Enrique de Lucas,
Joan-Manuel Parcerisa and Antonio González, Fellow, IEEE

Abstract—The most common task of GPUs is to render images in real time. When rendering a 3D scene, a key step is to determine
which parts of every object are visible in the final image. There are different approaches to solve the visibility problem, the Z-Test being
the most common. A main factor that significantly penalizes the energy efficiency of a GPU, especially in the mobile arena, is the
so-called overdraw, which happens when a portion of an object is shaded and rendered but finally occluded by another object. This
useless work results in a waste of energy; however, a conventional Z-Test only avoids a fraction of it. In this paper we present a novel
microarchitectural technique, Omega-Test, to drastically reduce the overdraw on a Tile-Based Rendering (TBR) architecture. Graphics
applications have a great degree of inter-frame coherence, which makes the output of a frame very similar to the previous one. The
proposed approach leverages the frame-to-frame coherence by using the resulting information of the Z-Test for a tile (a buffer
containing all the calculated pixel depths for a tile), which is discarded by nowadays GPUs, to predict the visibility of the same tile in the
next frame. As a result, Omega-Test early identifies occluded parts of the scene and avoids the rendering of non-visible surfaces
eliminating costly computations and off-chip memory accesses. Our experimental evaluation shows average EDP savings in the overall
GPU/Memory system of 26.4% and an average speedup of 16.3% for the evaluated benchmarks.

Index Terms—Graphics processors, Mobile processors, Portable devices, Hardware architecture, Processor architecture,
Energy-aware systems, Low-power design, Hidden line/surface removal, Visibility determination.

F

1 INTRODUCTION

Mobile devices, such as smartphones, tablets or smartwatches,
have undergone a major evolution over the recent years. Users
increasingly demand more complex applications on these devices,
which requires higher performance at similar energy consumption.
As a consequence, the energy efficiency is one of the most
important aspects in mobile devices [1], [2], especially in graphics
applications such as 3D games, for which the visual quality, richer
graphics details, higher screen resolutions, and smooth movements
are crucial for the best user experience.

Graphics workloads are generally executed in the GPU, which
draws a frame of a scene by executing a set of configuration
commands followed by a set of draw commands. When executing
a draw command, the GPU first reads a set of vertices that model
the geometry in a 3D space and applies some transformations to
combine them into primitives (commonly triangles) projected on
the screen space. Primitives are then discretized by the Rasterizer
into elements known as fragments, for which a color in the screen
is computed by using user-defined programs (a fragment shader)

• David Corbalán-Navarro and Juan L. Aragón are with the Dept. de
Ingenierı́a y Tecnologı́a de Computadores, Universidad de Murcia, Spain.
E-mail: {dcorbalan, jlaragon}@ditec.um.es

• Enrique de Lucas was with Esperanto Technologies, Mountain View,
CA 94040, United States. He is now with Imagination Technologies,
Imagination House, Kings Langley, WD4 8LZ, United Kingdom.
E-mail: enrique.delucas@imgtec.com

• M. Anglada, J.-M. Parcerisa and A. González are with the Departament
d’Arquitectura de Computadors, Universitat Politècnica de Catalunya,
Spain.
E-mail: {manglada, jmanel, antonio}@ac.upc.edu

Manuscript received XXX; revised YYY.

Fragment
ProcessorsDRAM

Vertex
Processors

53% 42%

2%

Other

2%L2

1%

Fig. 1. Power breakdown for the baseline GPU used in our evaluation.

that, among other operations, apply a shading and a lighting model
and map textures.

Previous studies [3], [4] identify the GPU as one of the most
energy-consuming components on current SoCs due to the large
number of computations and memory accesses needed to render
a scene. Figure 1 shows the power breakdown for a conventional
Tile-Based Rendering (TBR) architecture, widely adopted in mo-
bile GPUs [5]. In particular, both the accesses to main memory
and the activity of the Fragment Processors are by far the two
major contributors, responsible for 53% and 42%, respectively, of
the overall GPU power dissipation whereas the Vertex Processors
incur a very minor energy consumption (2%) [6]. This is not sur-
prising since the fragments processed in a scene by the Fragment
Processors commonly outnumber the amount of primitives by two
orders of magnitude (our experimental results show a ratio of
125:1 for the evaluated benchmarks).



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 2

300 cam s3d hwl vcs maz bbr cou gra tru avg
0

10

20

30

40

50

60

70

80

90

100

Visible fragments Occluded fragments
F

ra
g

m
e

n
ts

 (
%

)

Fig. 2. Processed fragments broken down into visible and occluded ones
for the evaluated benchmarks. Occluded fragments represent the overall
amount of overdraw, and hence, a waste of resources.

Given the huge number of fragments to be processed in every
frame and the high computational cost of rendering a single
fragment, it is crucial not to waste precious resources on shading
fragments that will be later occluded by other primitives. For that
reason, the visibility determination is a fundamental task of the
graphics pipeline in order to detect visible and occluded surfaces
[7]. In particular, fragments that appear behind others (for a given
camera viewpoint) are not visible in the final scene. The solution
to the visibility problem is not unique and multiple approaches
can be found in the literature [8], [9], [10] being the so-called
Depth Test (or Z-Test) [11], which performs a visibility test at
the pixel granularity, the most widely implemented technique in
contemporary GPUs.

While the Depth Test ensures the correct visibility determi-
nation regardless of the order in which the scene is processed, it
is often inefficient in the sense that each pixel in the final screen
may be rendered multiple times. This problem is usually referred
to as overdraw, which is very common in games with complex
or poorly optimized scenes. Overdraw occurs when more than one
opaque fragment is drawn in the same pixel position on the screen,
as only the one closest to the camera viewpoint is visible. To be
more precise, in this work we define overdraw as the fraction of
fragments that are processed by the Fragment Processors and are
finally occluded over the total amount of processed fragments.
Overdraw is undesirable, as it represents useless activity, and
an early and accurate visibility determination can significantly
improve the performance and reduce the energy consumption.
Ideally, an optimal system would draw a single opaque fragment
per pixel (or screen position).

However, GPUs heavily suffer from overdraw which directly
depends on the order in which fragments are processed. In a worst-
case scenario, in which primitives arrive in a back-to-front order,
a conventional Depth Test could not avoid the rendering of the
occluded fragments. To provide an insight of the magnitude of
this problem, Figure 2 shows the amount of overdraw for a set
of modern games in a TBR architecture (Section 5 will detail the
evaluation methodology). It can be observed that an average of
38% of the shaded fragments are eventually occluded, with some
games such as Gravity (gra), Sniper3D (s3d) or Hot Wheels (hwl)
reaching an overdraw factor around or over 50%.

In this paper we propose the Ω-Test1, a novel micro-

1. Named after the Z-Test but making an analogy with the Greek alphabet
where Ω is the last letter, as Z is in the Latin alphabet.

architectural technique that attacks overdraw and drastically re-
duces the amount of useless work performed by the Fragment
Processors. Our approach relies on exploiting the frame-to-frame
coherence (i.e., similarity between consecutive frames) [12], [13]
by leveraging information from the Z values of the previous frame
to speculatively detect which fragments will be occluded, instead
of using only information from the current frame’s Z-Buffer.
Our technique does not introduce any error in the final rendered
image since fragments that are wrongly identified as occluded are
detected and eventually rasterized.

The main contributions of this work are the following:

• We propose a mechanism aimed at effectively reducing the
overdraw factor within a scene, decreasing the number of
fragments processed as well as the costly memory accesses
to textures that they would require, hence improving the
energy efficiency of the GPU while decreasing the execu-
tion time.

• We demonstrate that raw results of the Z-Buffer after
rendering a frame are useful for the visibility determination
of the next frame even after applying a coarsening factor
of up to 16×16 to the data.

• We show how to integrate our technique in a TBR graphics
pipeline. Experimental results, for a commercial set of
applications, show that the Ω-Test achieves an average
speedup of 16.3% and energy-delay (EDP) savings of
26.4% for the global GPU/Memory system.

The rest of the paper is organized as follows. Section 2 pro-
vides some background on the graphics pipeline of mobile GPUs,
how the visibility problem is commonly solved, and reviews some
other related works. Sections 3 and 4 describe the proposed
Ω-Test and its implementation details. Section 5 describes our
evaluation methodology whereas Section 6 quantifies and analyzes
the achieved performance and the energy efficiency and, finally,
Section 7 summarizes the main conclusions of the work.

2 BACKGROUND AND RELATED WORK

2.1 Tile-Based Rendering Architectures
The architecture of modern GPUs can be categorized into two
main families depending on how they process a scene: a) Im-
mediate Mode Rendering (IMR), also known as full-framebuffer
rendering; or b) Tile Based Rendering (TBR). While IMR pro-
cesses and renders all the primitives on a per-frame basis, and it is
the common design choice for high-end GPUs, TBR is aimed
at improving the energy efficiency, and thus, it is commonly
implemented in mobile GPUs. The key feature of TBR is that
the screen area is divided in small regions of a fixed size called
tiles. This partitioning is done in a way that allows the tiles to
be individually rendered and benefits from the use of small and
fast on-chip buffers for storing depth and output color values for a
given tile. This dramatically reduces the amount of accesses to the
main memory and the overall energy consumption of the system.
Since our proposal targets mobile GPUs to further improve their
energy efficiency, TBR is the baseline architecture we have chosen
for this work.

Figure 3 shows the graphics pipeline of a TBR architecture,
which is composed of two fundamental phases: the Geometry
Pipeline and the Raster Pipeline. It can be seen that both phases are
serialized, with the Tiling Engine acting as a mediator in between.
This serialization is mandatory since the tile-based processing of



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 3

Tile Cache

Polygon

List

Builder

Tile

Fetcher

Early

Z-Test

Fragment

Processors

Z-Buffer
Texture

Cache

Raster Pipeline

Vertex

Cache

Tiling EngineGeometry Pipeline

Vertex

Fetcher

Primitive

Assembly

Vertex

Processors
Rasterizer Blending

Color

Buffer

Fig. 3. Overview of the graphics pipeline for a TBR architecture, depicting the main stages that graphics workloads pass through.

TBR requires to process all the geometry first to determine which
primitives belong to each tile. Only afterwards, the rasterization
and rendering of the fragments can be done on a per-tile basis.

The Geometry Pipeline starts with a memory access stage to
fetch the vertices of the scene. These vertices are transformed
by geometric operations and assembled into primitives, typically
triangles, which undergo a clipping process: primitives that are
outside of the visible part of the scene (i.e., the part that the
camera captures in its volume of vision, also known as frustum
view) are removed and/or cut accordingly. Additional steps such
as backface culling can also be applied to further reduce the
number of primitives to be processed. Next, the Tiling Engine
sorts the primitives into tiles, i.e., each tile contains a list with
all the primitives that totally or partially fall inside the tile. These
primitive lists (one per tile) are stored in main memory and are the
input data to the Raster Pipeline.

The Tiling Engine is in charge of scheduling the tiles to be
processed by the Raster Pipeline (also referred to as the Raster
Unit). Note that multiple Raster Units can be used to process
different tiles in parallel. The processing of a tile consists of
several stages. First, the rasterizer tests the primitives at a pixel
granularity to determine the pixels covered by them. If a pixel is
covered by a primitive, the rasterizer interpolates the value of the
primitive’s attributes at the pixel’s position.

Fragments are then grouped into groups of 2x2 adjacent
fragments (a quad fragment) that are sent to the next stage of the
pipeline, the Early Z-Test, a stage right before the Fragment Stage
to avoid the shading of already-known occluded fragments. Recall
that the Z-Buffer stores the depths of all the fragments processed
so far. To determine if the current fragment is occluded, its depth
is compared with that stored in the same position of the Z-Buffer.
The resulting quad fragments are sent to the Fragment Stage,
which contains the Fragment Processors. A Fragment Processor
executes a shader program to compute the colors of each quad
fragment which are stored in the Color Buffer. Finally, a Blending
Unit allows for transparency effects by mixing the resulting colors
with those already present in same Color Buffer position.

2.2 Background on Visibility Determination
As cited earlier, the most common approach to determine the
visibility is the Depth Test, performed at fragment granularity.
Modern GPUs typically implement this test in a stage called Early
Z-Test by using a Z-Buffer that stores a value for each position
of the visible area. Each of these values is usually the depth of
the nearest fragment of that position. Thus, when a fragment is
going to be processed, this stage checks whether it is closer to the
camera than the fragment already present at the same position by
comparing both depths. If the current fragment is farther (deeper)
than the existing one in the Z-Buffer, it is discarded, avoiding
costly shading and texturing. Otherwise, the current fragment’s

depth is kept in the Z-Buffer (overwriting the previous depth)
which means that the current fragment is the closest one to the
camera so far.

The Z-Buffer for a tile is built on the fly. Therefore, the Early
Z-Test stage can effectively discard fragments when they arrive in
a front-to-back order, i.e., later fragments that fall behind a closer
one are discarded. However, the Early Z-Test is totally ineffective
to avoid the shading of occluded fragments if they arrive in a back-
to-front order. In any case, the major advantage of an Early Z-Test
is that it always leads to the correct final image regardless of the
order in which fragments arrived to the Fragment Processors. Its
main drawback, on the other hand, is that its effectiveness is far
from optimal since it leaves a significant amount of remaining
overdraw, as it was shown in Figure 2 (average overdraw of 38%).

2.3 Related Work on Visibility Determination
Deferred Rendering. As opposed to traditional forward rendering
schemes, in which the visibility determination and shading are
performed on the fly as a whole, Deferred Rendering (also known
as Deferred Shading) consists of determining the visibility of the
whole scene before shading any fragment. Z-Prepass [14] can be
seen as a basic Deferred Rendering approach since it decouples the
geometry processing from the shading. In particular, Z-Prepass is
a software technique able to eliminate overdraw caused by hidden
surfaces that consists of two rendering passes at the application
level. First, the entire geometry of the scene is calculated and
rasterized with a null fragment shader, so that only the depth
values are calculated and stored in the Z-Buffer. In the second
pass, the depth values are in their final state, which allows the
Early Z-Test to eliminate the overdraw of opaque surfaces.

G-Buffers [15], [16] are also used by applications (in the form
of shader programs) to decouple the geometry processing from
the shading, in addition to add more flexibility for doing lighting
and material computations, as the G-Buffers can be used by the
programmer for whatever needed.

A recent hardware-based Deferred Rendering approach is im-
plemented in the PowerVR architecture [17] by adding a Hidden
Surface Removal (HSR) stage in the traditional TBR pipeline that
avoids performing two rendering passes at the application level.
Instead, HSR iterates over all the fragments within a tile just
calculating their position and depth to build a complete Z-Buffer
before the actual shading pass is performed. This utilization of
a Deferred Rendering scheme in a TBR pipeline is known as
Tile-Based Deferred Rendering (TBDR). Recent academic work
explored different alternatives of TBDR [8]. The main drawback
of the best performing alternative is that it rasterizes all primitives
twice, and so fragments are processed twice as well: once for
calculating the depths in the visibility determination phase, and
again for calculating the rest of attributes to continue down the
pipeline. This forces designers to either increase the pressure over



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 4

Tile

Cache

Tile

Fetcher

Fragment

Stage
Rasterizer

Corrector

Ω-Test

Z-BufferΩ-BufferE-Buffer

Bypass

Primitive-IDs
Queue

Positions-XY
Queue

Early

Z-Test

Ω
-
T
e
s
t

h
a
r
d
w
a
r
e

Fig. 4. Ω-Test implementation over a TBR architecture. The newly added structures and hardware are delimited by a dotted line.

the existing hardware (with the subsequent degradation of the
execution time and energy consumption) or to include significant
extra hardware to perform the extra computations of the HSR stage
(duplicated rasterizer, Early Z-Test, and Z-Buffer) [6].

Contrarily, our proposal does not introduce timing overheads
in the pipeline, and the added structures (Ω-Table, E-Buffer,
correction queues; see Section 3) are small, on-chip buffers. As
a reference comparison point, in [8] it is proposed Visibility Ren-
dering Order (VRO), a technique that attacks overdraw by sorting
objects in a front-to-back order, where authors quantitatively show
that VRO outperforms TBDR. We have compared Ω-Test with
VRO (see Section 6) showing that our approach beats VRO.

Another difference between Deferred Rendering (DR) and Ω-
Test is that while the former requires the second pass to be done
over the whole visible geometry, Ω-Test is highly more selective
by only doing the correction phase (similar to DR’s second pass)
over a small amount of fragments whose visibility is mispredicted.
I.e., only in the worst-case scenario, in which Ω-Test would fail all
the visibility tests, meaning that all the fragments have to be sent to
the correction phase for shading, Ω-Test would totally mimic the
behavior of DR, since in the normal rendering phase (equivalent to
DR’s first pass) it would resolve the visibility of all the fragments
while in the correction phase (equivalent to DR’s second pass) it
would perform the shading. As we will see in the Results Section,
on average, only a small number of fragments have to be corrected,
therefore outperforming a hardware-based DR such as TBDR.

HiZ occlusion culling. On the other hand, IMR GPUs suffer
from a high memory BW utilization since the frame’s Z-Buffer
is stored in DRAM. To overcome this, HiZ (Hierarchical Z)
occlusion culling was proposed [9], [18], [19], [20], [21] to
coarsely cull primitives detected to be occluded in a region of
the screen. This is implemented before the Early Z-Test (which
operates at a fragment-level) and provides an earlier coarse Depth
Test at a primitive-level. Therefore, HiZ culling avoids memory
accesses to the frame’s Z-Buffer by determining the visibility
of primitive “chunks” rather than fragments. For that, a coarse-
grained version of the frame’s Z-Buffer is built on the fly. This
buffer is called Hierarchical Z-Buffer and is computed in a per-
region basis (given that the frame’s Z-Buffer is subdivided into
regions) for which a pair of (Zmin, Zmax) are calculated and stored.
Consequently, primitives are sorted into these regions to perform
the coarse occlusion culling test. This Hierarchical Z-Buffer can
be further subdivided to get a coarser Z-Buffer, and hence the
“hierarchical” term. The first implementation of a HiZ culling
technique was proposed in [9], [18] as a software approach. This
early proposal leveraged complex structures like oct-trees in order
to efficiently determine the visibility of whole objects. Another
HiZ implementation was proposed in [19] which implements a

full hierarchy. In [20] a simpler HiZ was implemented with a
single hierarchy level. In any case, HiZ does not replace the Early
Z-Test stage. Whereas HiZ is mainly aimed at saving memory
BW in IMR GPUs by saving costly accesses to the frame’s Z-
Buffer (in DRAM), a fragment-level Early Z-Test is still required
to avoid the overdraw of occluded fragments. It is important to
note that a HiZ is built on a per-frame basis, therefore it cannot
eliminate as much overdraw if primitives arrive in a back-to-front
order. Contrarily, Ω-Test further reduces overdraw by leveraging
a speculative visibility determination since the Z-Buffer of the
previous frame is used to predict the visibility of the current one.

Other recent works. More recent works leverage frame
coherence to speculatively determine visibility. Visibility Render-
ing Order (VRO) [8] is a technique that sorts objects in a 3D
scene based on the front-to-back order from the preceding frame.
Another recent technique is Early Visibility Resolution (EVR) [10]
which uses the farthest point for each tile in a frame to predict
occluded primitives in the next frame, with the aim of processing
those presumably occluded primitives as the final ones. Both VRO
and EVR use information from the preceding frame to re-sort
the order in which objects/primitives are processed in the current
frame to increase the effectiveness of the Early Depth Test. VRO
solves the visibility problem at the object level while EVR solves it
at the primitive level. Differently, our Ω-Test operates at the much
finer granularity of fragments, being able to overcome not only
inter-object overdraw but also intra-object overdraw, therefore,
capable of outperforming VRO as shown in Figure 12.

3 THE Ω-TEST APPROACH

The proposed Ω-Test slightly modifies the behavior of the Early
Z-Test stage, where the visibility of fragments is determined. After
performing the original Early Z-Test, and updating the Z-Buffer
if necessary, a second test is performed but this time using an Ω-
Buffer, a new structure similar to the Z-Buffer which holds the Z
values corresponding to a given tile of the previous frame. If the Ω-
Test is passed, the fragment can proceed to shading. Otherwise, the
fragment is discarded since it is assumed it will be again occluded
in the current frame (as it was indeed occluded in the previous
frame according to the contents of the Ω-Buffer which corresponds
to the Z-Buffer of the previous frame). Note that, unlike the Z-
Buffer, which may be updated whenever a fragment passes the
Early Z-Test, the Ω-Buffer is never updated regardless of the Ω-
Test outcome. There is no need for such updates because it is the
Z-Buffer the one in charge of keeping the most up-to-date Z values
for the current frame.

Figure 4 shows the modifications made to the baseline TBR
architecture to implement our proposal (delimited by a dotted



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 5

line to better differentiate them). Our technique reduces overdraw
with respect to TBR since each fragment has to pass a second
test. This Ω-Test can be seen as a backup test for the cases
when the traditional Early Z-Test does not work efficiently (e.g.,
when primitives do not arrive in a back-to-front order): we still
have a second resort to discard a potentially occluded fragment
by using the Z value from the previous frame. Due to frame-
to-frame coherence, if a fragment was occluded in the previous
frame, it is highly likely that it will also be occluded in the current
frame. However, this approach does not guarantee that fragments
discarded by the Ω-Test will not be visible in the final image. It
may happen that a fragment that does not pass the Ω-Test is finally
visible (e.g., an object that suddenly appears in front of other
objects) leading to a potential error in the tile. For such cases,
our approach implements a simple error detection and correction
mechanism right after the tile is shaded, which will be further
detailed in Section 4.

To be more specific, three situations may happen regarding
both the Z-Test and the Ω-Test outcomes:

• Case 1: Early Z-Test not passed (regardless of the Ω-Test
result). The fragment is safely discarded as the decision
is based on information from the current frame (Z-Buffer)
and no speculation is done (no errors are generated).

• Case 2: Early Z-Test passed, Ω-Test not passed. The
fragment is speculatively discarded as the decision is based
on information from the previous frame (Ω-Buffer). This
is the only case where a potential error might be generated.

• Case 3: Early Z-Test passed, Ω-Test passed. The fragment
is sent to shading. Still, this could produce a false posi-
tive test which may lead to overdraw if the fragment is
eventually occluded.

A main characteristic of a TBR graphics pipeline is that the
working unit is a tile. However, after finishing the processing
of a tile, the valuable information contained in the Z-Buffer is
discarded. As we want those depth values to be used in the next
frame, the Z-Buffer must be preserved somehow. We employ a
frame-level structure called Ω-Table to store the information of
the Z values of all the tiles from the previous frame. If we had
decided to implement this structure in on-chip buffers, the storage
needs for a frame in Full-HD resolution (1920x1080 pixels) would
be around 8 MBytes, which would contradict the TBR philosophy
that encourages the use of small (on-chip) memories for a better
energy efficiency.

A second solution consists of storing the Ω-Table in DRAM.
The main drawback of such an approach is the intensive use of
main memory because of the extra transfers needed before and
after processing each tile, resulting in prohibitive energy costs (re-
call that DRAM consumes more than 50% of the baseline GPU’s
energy, as reported in Section 1). We quantitatively evaluated this
solution of storing the Ω-Table in DRAM. Unfortunately, the net
effect in the overall system energy consumption was negative,
since the additional DRAM accesses more than offset the benefits
coming from the overdraw reduction, so using DRAM for fully
storing the Ω-Table was also discarded.

To efficiently cope with the storage needs associated to our
approach while not incurring in significant energy costs, our final
solution consists of not storing all the Z values from the previous
frame but a small set of representative ones. Even though this
results in a loss of information, as we will describe next, we
observed that just keeping a few representative values per tile was

Z-Buffer

Ω-Buffer
Ω-Table

Z00 Z01 Z02

Z10 Z11 Z12

Z20 Z21 Z22
Ω00Ω01Ω02

Ω10Ω11Ω12

Ω20Ω21Ω22

Ω00=max(Z00..Z22)

Fig. 5. Compression scheme example for a 3x3 coarsening factor over a
9x9 pixel tile. The Z-Buffer is processed in 3x3 pixel areas as determined
by the coarsening factor. For each area, the maximum is computed and
stored onto the Ω-Buffer. When all the 3x3 areas are processed, the
Ω-Buffer is flushed onto its corresponding position in the Ω-Table.

as efficient as keeping the complete tile’s Z-Buffer. Obviously,
there is a small number of induced errors for not using precise
information but the mechanism for detecting and correcting errors
(see Section 4.3 for additional details) fixes them. In addition,
the incurred overhead from the correction phase pays off with
respect to the saved energy from neither using large on-chip
memories nor relying on DRAM for storing the previous frame’s Z
values. One alternative approach we have not evaluated is a hybrid
implementation where the Z values are stored in DRAM while an
on-chip Ω-Table is still used as a cache for them to support much
higher display resolutions.

There are multiple ways of selecting a set of representative
values to compress the Ω-Table. However, we avoided traditional
compression algorithms because of their hardware complexity and
energy cost. As commented before, the Ω-Test already generates
some errors (that are later corrected) due to the fact it relies
on depths from the previous frame. Therefore, there is no need
to be 100% precise with the information to be used, since our
approach can afford some extra initial errors. I.e., a fast and simple
scheme that loses some information can be more appropriate
for our purposes than a complex lossless compression scheme.
As a trade-off solution, we decided to make use of coarsening
and conventional aggregate functions (e.g., maximum, minimum,
arithmetic mean) to select the set of representative Z values. The
idea of coarsening is to keep a single value for a set of neighbor
pixels based on the observation that neighbor pixels tend to have
the same or very similar depths. On the other hand, aggregate
functions are simple to implement in hardware.

We define a coarsening factor that represents the granularity
level we use to build the Ω-Table. For example, assuming tiles
of 9x9 pixels, a 3x3 coarsening factor will break the tile down
into 9 non-overlapping squares of 3x3 pixels. Then, each of these
3x3 squares will go through the aggregate function. The result
will be a matrix of 3x3 elements containing the resulting values
of the applied aggregate function. Summarizing, we go from a
9x9 matrix down to a 3x3 one, which reduces the storage needs
by a factor of 9x. To better illustrate this, Figure 5 depicts this
compression scheme based on using a coarsening factor followed
by an aggregate function.

As a summary of the storage needs, Table 1 shows the memory
required by the Ω-Table depending on the coarsening factor for a
common HD screen resolution (1280x720 pixels) and 16x16 pixel
tiles. The 1x1 coarsening factor means that all the tile pixels are
stored in the Ω-Table, i.e., equivalent to not applying coarsening.
The 16x16 coarsening factor is the maximum possible for the
assumed tile size (16x16 pixels) and means that the whole tile
is represented by a single pixel. To better understand how the



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 6

TABLE 1
Ω-Table storage needs for some coarsening factors that are possible in

a 16x16 pixel tile and assuming a 1280x720 screen resolution.

Coarsening factor Ω-Table size
1x1 (or no coarsening) 3.52 MiB
2x2 900 KiB
4x4 225 KiB
8x8 56.25 KiB
16x16 14.06 KiB

4 8 16 2 4 8 16 2 4 8 16

min max avg

0

10

20

30

40

50

60

70

80

90

100
Visible fragments Initial errors Occluded fragments

F
ra

g
m

e
n

ts
 (

%
)

B
a

se

Fig. 6. Effect of different coarsening factors (from 2x2 to 16x16) for
3 aggregate functions (min, max, average), showing the fraction of
fragments (normalized to the baseline) that are either visible, appear
as initial errors (that have to be corrected), or are occluded. Each bar
corresponds to the average of the 10 evaluated benchmarks.

Ω-Table size is calculated, let us consider the case of an 8x8
coarsening factor. In this case, only 4 values (2x2 coarse pixels
of 8x8) will be stored. Given that a 1280x720 screen has 3600
tiles (80x45) and provisioning 32 bits for each Z value, the final
size of the Ω-Table will be 56.25 KiB (4 values × 3600 tiles × 4
bytes) resulting in a storage reduction of 64x with respect to not
using coarsening (the 1x1 case in Table 1).

Next, we have measured the amount of initial errors as a result
of using different coarsening factors along with different aggregate
functions (maximum, minimum and average). Figure 6 shows the
fraction of errors with respect to the total amount of processed
fragments (including also the shading and the residual overdraw)
where each bar represents the average of all the evaluated bench-
marks. Let us analyze first how the different aggregate functions
behave. The minimum function keeps the depth of the fragments
closer to the camera, so the Ω-Test is more restrictive and ends up
discarding more fragments than needed. Overdraw is reduced at
the cost of generating too many errors, as it can be seen in Figure
6. On the other hand, using the maximum function makes the Ω-
Test more permissive since we compare against the deepest Z of
the group. Overdraw is not reduced as much as with minimum but
the number of errors is highly reduced. Finally, using the average
as the aggregate function leads to a trade-off between errors and
overdraw. As our goal is to generate as few errors as possible
because of the overhead of the correction phase, we have chosen
the maximum as the aggregate function for the Ω-Table, i.e., the
Z values of a group will be represented by the most distant one to
the camera.

Regarding the coarsening factor, Figure 6 also shows that the
biggest possible coarsening factor of 16x16, when combined with
the maximum aggregate function, does not incur a significant
potential loss (less than 3% of errors). As a result, for the final

design of the Ω-Table we have chosen to use a coarsening factor
of 16x16 which in practice means that each tile will be represented
by only one Z value, in particular the maximum one. This results
in a reduction of the storage needs by a factor of 256x without
significantly penalizing the potential. As for the storage needs,
when using a 16x16 coarsening factor, the size of the Ω-Table
lowers to about 14 KiB (Table 1) which can be easily allocated as
a small on-chip buffer.

In any case, although the use of coarsening leads to a very
good compression ratio, other schemes aimed at reducing the
storage needs with a potentially smaller accuracy degradation
will be considered for future work, such as precision reduction,
quantization and downsampling.

4 EFFICIENT MANAGEMENT OF ERRORS

4.1 Scenarios that may Lead to Potential Errors
The main advantage of the Ω-Test is that it decreases the number
of quad fragments that are executed in the Fragment Processors
by means of speculatively discarding the occluded ones based on
the contents of the Ω-Table. The downside is that it may lead to
some errors. To better illustrate these scenarios, Figure 7 shows
the possible cases that could produce potential errors and how Ω-
Test handles them. Figure 7-(a) shows the initial scene (frame i)
with two overlapping primitives rendered in back-to-front order.
The first of the analyzed cases (depicted in Figure 7-b) illustrates
the case of a primitive moving away from the camera. Recall that
each fragment of a primitive has a Z’ value from the previous
frame (retrieved from the Ω-Table) in addition to its current Z
value. In this particular case, as primitive B has moved backwards,
their fragments will fail the Ω-Test (Z > Z’).

Figure 7-(c) illustrates the case of using a δ margin, a mech-
anism aimed at mitigating errors that will be further explained
in Section 4.2, where a big amount of the errors can be reduced
provided that δ is large enough to mask such backward movement.
Fragments from primitive B will now pass the Ω-Test (Z < Z’ +
δ ) whereas the ones from primitive A that were occluded in the
previous frame will still fail.

Figure 7-(d) shows the opposite movement, i.e., a primitive
that comes closer to the camera (or conversely, when the camera
moves forward making the primitive to become closer). This case
does not generate errors since the current Z values are closer than
those from the previous frame (Z < Z’) and the Ω-Test will pass
as intended. At the most, this case could generate overdraw. As
an example, our benchmarks include racing games such as Beach
Buggy Racing or Hot Wheels (refer to Table 3) where forward
camera movements are usual.

Another case that may lead to potential errors corresponds to
the lateral movement of a primitive, as in Figure 7-(e). In this
example, as primitive B moves from left to right, it hides the
right-side part of primitive A while unveiling its left-side part. In
this case, some fragments from primitive A that were occluded in
frame i become visible in frame i+ 1, leading to potential errors
in the final image.

As a final case, Figure 7-(f) shows how the use of the
maximum aggregate function with the coarsening scheme consid-
erably reduces those lateral-movement-based errors in detriment
of overdraw. In this case, since all the fragments from primitive B
will pass the Ω-Test, no errors will be generated. However, as the
two primitives are rendered in back-to-front order, it will generate
overdraw as in the baseline.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 7

camera

primitive A

primitive B
� value

occluded part

(a)

Z value

errors

� value

(b)

Z value� margin

� value+� margin

errors errors

� value

(c)

(d) (e) (f)

Z value

overdraw overdraw

� value

errors overdraw

� value

overdraw

max. � value

coarsening factor

Fig. 7. Set of scenarios that could produce potential errors in Omega-Test. (a) Initial scene (frame i) with two overlapping primitives rendered in
back-to-front order. (b)-(f) depict the frame i+1 for a number of possible movements of primitive B. Cases (b) and (c) shows the primitive moving
away from the camera which lead to errors as depicted. In case (b) no δ margin is used, thus producing errors in the area that primitive B overlaps
with A. In case (c) a δ margin is used and errors are mitigated, only remaining those in the border of primitive A. Case (d) shows primitive B coming
closer to the camera. This case does not generate errors as current Z values are nearer than the Ω values, thus passing both tests. In cases (e)
and (f) primitive B moves laterally (panning). In case (e) no coarsening is used, producing errors on the area that primitive B unveils from A and
it leaves overdraw on the area it moves to. In case (f) a coarsening with the maximum aggregate function is applied which avoids the errors in (e)
since the Ω values tend to be farther than the Z values (thanks to using the maximum function).

Finally, note that any error, either coming from lateral move-
ments or as a result of using an “aggregated” Z value to represent a
whole tile, is solved by adding a final correction step as described
in Section 4.3.

4.2 Mitigating Errors: the Delta (δ ) Margin
It is very common to have scenes in which the Z-Buffer of many
tiles remains constant across consecutive frames. In this case, our
technique acts ideally because it does not produce errors nor draws
unnecessary fragments. However, as described previously, there
are other scenes in which the objects or the camera move, which
may affect a significant amount of (or all) the tiles in the frame.
As seen in the cases depicted in Figure 7-(b) and Figure 7-(c), a
particular type of movement that potentially lead to errors happens
when objects move away from the camera.

To be able to tolerate such movements while reducing the
amount of errors, we include a small safety margin for the Ω-
Table called delta (δ ) margin. By doing this, we relax the Ω-Test
condition so that it is equivalent to slightly moving the depths of
all the fragments a bit farther. The rationale behind this δ margin
is to be more permissive by not eliminating fragments that belong
to primitives that have slightly moved away from one frame to the
next. By using this safety margin, Ω-Test becomes more flexible
and incurs less errors. On the other hand, the amount of overdraw
is not significantly hurt because this δ margin is very small.

In essence, we are trading errors for overdraw, i.e., the δ

margin helps reduce the amount of errors at the expense of not
being able to avoid some overdraw. To better understand the effect
of using this safety margin, we have analyzed a wide range of δ

values and measured how the amount of errors and the overdraw
factor are affected. It can be observed in Figure 8 that as we
increase δ , more fragments pass the Ω-Test, resulting in higher
overdraw. However, the number of errors is reduced. Contrarily,
smaller δ values are less tolerant to depth changes in the Ω-Buffer,

causing more errors but being more effective at reducing overdraw.
Figure 8 shows that the best δ is 0.0005 for many games (recall Z
values are normalized in the range [0,1] where 0 corresponds to the
near plane and 1 represents the far plane). Note also that frame-to-
frame coherence has a significant influence on δ , because the more
coherence the smoother the movements will be and, therefore,
smaller δ values will suffice.

However, using a static δ for all the games does not provide
the best trade-off, given the high variability that can be found
in games. To cope with this inter-frame variability, we have
implemented a very simple dynamic scheme that defines a δ value
for each frame that is adapted depending on whether the objects
within a frame move away or not.

The adaptive technique changes δ based on frame-level over-
draw/error ratios. We define a cost function (Equation 1) whose
inputs are the number of overshaded fragments and errors. In (1)
co is the relative cost associated to overdraw and ce is the relative
cost associated to errors, always speaking in terms of energy.
Experimentally, we have quantified the cost of correcting an error
to be about 3x higher than shading a fragment, so the adaptive
scheme prioritizes reducing the amount of induced errors with
weights co = 0.25 and ce = 0.75. Finally, o and e represent the
per-frame amount of overdraw and errors, respectively.

cost(o,e) = co ×o+ ce × e (1)

The dynamic δ scheme uses a table of eight δ values (0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5); an index pointing to
the current δ , a variable that indicates in which direction we move
this index, and two global counters to account for the number of
errors and overdraw for the whole frame. The initial value for δ is
set to 0.0005 (since it was the best static δ ). The adaptive scheme
operates as follows. When finishing rendering a frame, the cost
function (1) is evaluated and compared with that of the previous
frame (held in a global register). If the current cost is higher, we



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 8

B
a

se
li

n
e

ε0
.5

ε0
.0

5
ε0

.0
0

5
ε0

.0
0

0
5

ε0 d
yn

300 cam s3d hwl vcs maz bbr cou gra tru

0

10

20

30

40

50

60

70

80

90

100
Visible fragments Initial errors Occluded fragments

F
ra

g
m

e
n

ts
 (

%
)

B
a

se
li

n
e

ε0
.5

ε0
.0

5
ε0

.0
0

5
ε0

.0
0

0
5

ε0 d
yn

B
a

se
li

n
e

ε0
.5

ε0
.0

5
ε0

.0
0

5
ε0

.0
0

0
5

ε0 d
yn

B
a

se
li

n
e

ε0
.5

ε0
.0

5
ε0

.0
0

5
ε0

.0
0

0
5

ε0 d
yn

B
a

se
li

n
e

ε0
.5

ε0
.0

5
ε0

.0
0

5
ε0

.0
0

0
5

ε0 d
yn

B
a

se
li

n
e

ε0
.5

ε0
.0

5
ε0

.0
0

5
ε0

.0
0

0
5

ε0 d
yn

B
a

se
li

n
e

ε0
.5

ε0
.0

5
ε0

.0
0

5
ε0

.0
0

0
5

ε0 d
yn

B
a

se
li

n
e

ε0
.5

ε0
.0

5
ε0

.0
0

5
ε0

.0
0

0
5

ε0 d
yn

B
a

se
li

n
e

ε0
.5

ε0
.0

5
ε0

.0
0

5
ε0

.0
0

0
5

ε0 d
yn

B
a

se
li

n
e

ε0
.5

ε0
.0

5
ε0

.0
0

5
ε0

.0
0

0
5

ε0 d
yn

avg

B
a

se
li

n
e

ε0
.5

ε0
.0

5
ε0

.0
0

5
ε0

.0
0

0
5

ε0 d
yn

Fig. 8. Study of the ratio overdraw (occluded fragments) vs. initial errors for several static δ margins (0.5, 0.05, 0.005, 0.0005 and 0) normalized to
the baseline. The last bar of each benchmark (dyn) corresponds to the dynamic δ implementation.

Corrector

5

5

8

4

E-Buffer

Positions-XY
Queue

MaskX

Primitive-IDs
Queue

5 1
8 1
4 1

ID
#consecutive
quads

1 read

2 decompose quads

3 insert

4 insert

1
0
0
0

8

0
0
1
1

5

ID Mask

0
1
0
0

4

0
0
1
1

y1x1

1
0
0
0

y1x1

0
1
0
0

y1x1

x1 x2

y1

y2

Y

Fig. 9. Correction phase. A number other than −1 in any location of the
E-Buffer indicates an error to be corrected. In this example there are 4
errors in the top-left quad, corresponding to primitives 5, 8 and 4.

change the direction of the index of the δ table, otherwise, we
move the index in the direction shown by the cited variable. If the
table limit is reached, the index saturates.

The dynamic δ scheme is able to effectively reduce the
fraction of errors as intended. In particular, it can be observed in
Figure 8 that the average fraction of errors (over the total amount
of fragments) is just 5.08% thanks to using the dynamic δ scheme.

Another approach we have evaluated is a per-tile δ margin.
However, we have not included this more refined mechanism in
the final implementation due to the storage overhead and the poor
benefit obtained. As each tile needs to store its own δ , 32KiB are
required (assuming FullHD resolution, 16x16 tiles, and 4 bytes
per δ ). The experimental results showed that the initial errors were
reduced, on average, from 5.08% to 5.02% making it not worthy.

4.3 Error Detection and Correction
As the Ω-Test might lead to discarding a fragment which is visible
in the final image, we need a mechanism to detect and correct these
errors. Errors are generated in the Early Z-Test stage where it is
checked whether a fragment must proceed or not to the Fragment
Processors for shading. A fragment that passes the Early Z-Test
but not the Ω-Test (case 2 explained in Section 3) could be a
potential error. However, note that this fragment can be hidden by
another visible fragment rendered on top of it. In this case, the
Ω-Test has avoided an undesired overdraw case, saving useless

E-Buffer Primitive-IDs
Queue

ID
#consecutive
quads

Positions-XY
Queue

MaskX

5

5

8

4

4 4

4

4

7 8

8

8

5 1
8 1
4 3
7 1
8 2

0
0
1
1

y1x1

1
0
0
0

y1x1

0
1
0
0

y1x1

1
0
1
1

y1x2

1
0
0
0

y2x1

0
1
0
0

y2x1

0
0
0
1

y2x1

0
0
1
1

y2x2

Yx1 x2

y1

y2

Fig. 10. Example of the final state of the queues given an E-Buffer of
4x4 pixels (4 quads).

work. However, if no fragment is ever written in that position of
the tile, a gap would be left in the final Color Buffer. Obviously,
these induced gaps cannot be propagated to the Frame Buffer and
a corrective action must take place.

To keep track of the potential errors, some additional data
structures are needed. In particular, we use a two-dimensional
array called E-Buffer, with the same dimensions of a tile, where
each element is associated to a pixel and stores a primitive’s
identifier. Once the Early Z-Test is passed, we perform the Ω-Test.
If the Ω-Test fails, we store the primitive ID in its corresponding
position in the E-Buffer which indicates that this primitive could
potentially cause an error (or gap) in that position. Otherwise, if
the Ω-Test succeeds, we store in the E-Buffer a special ID (a −1
in our case). Therefore, a final −1 in any position of the E-Buffer
indicates that there is no error (or gap) left in that position.

When all opaque primitives have been rasterized and the Early
Z-Test has no more fragments to check, the E-Buffer is in a
final state which identifies where the final errors (non-rendered
fragments) are located. At this point, the correction phase is ready
to be performed. One important thing to note is that this phase is
only triggered if an error is found in the E-Buffer, thus it is not
unnecessarily launched when there are no errors. To quickly verify
this, a global counter is used which is increased when a primitive
ID is stored in the E-Buffer (overwriting a −1); and it is decreased
when a −1 is stored (overwriting a valid primitive ID).

To better illustrate the process, Figure 9 shows how the
Corrector works. First, it reads quad fragments from the E-Buffer



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 9

(step 1©). In this example, the top-left quad contains 4 errors
corresponding to 3 different primitives (IDs 5, 8, 4). For each
different primitive within the quad, a 4-bit (2x2) visibility mask
is generated whose active bits are the pixels that the primitive
occupies inside the quad (step 2©). Thus, a quad can generate up
to four visibility masks in the case there are four errors with four
different Primitive IDs (this is the worst case). These masks along
with the quad position are inserted into the Positions-XY queue
(step 3©). If all the valid primitives of a quad (according to the
visibility mask) are equal (this is the best case and, fortunately, the
most common) another global counter is incremented, indicating
the number of consecutive quads (in scan-line order) from the
same primitive. When a new primitive is found, an entry is
inserted into the Primitive-IDs queue (step 4©), containing both
the ID of the previous primitive and the value of the global
counter (indicating the number of consecutive quads from the
same primitive) which is set to zero again.

To better understand how the Corrector works, Figure 10
depicts an example with an E-Buffer containing different errors.
The entries in the E-Buffer with a number (a primitive ID)
correspond to positions where there is an error for that particular
primitive, whereas empty cells represent a correct pixel (i.e., a
−1). For the sake of visibility, we assume 4x4 pixel tiles. The
final state of the Primitive-ID queue and the Positions-XY queue
for this example is also shown in Figure 10.

As soon as there is a primitive in the Primitive-ID queue, the
Tile Fetcher starts working on the corrections. Under this correc-
tion mode, the Tile Fetcher rather than querying the Tile Cache for
a new primitive, gets it from the Primitive-ID queue. Additionally,
the number of quads of the same primitive is provided by this
queue to tell the Rasterizer how many errors will be corrected.
This mechanism avoids, on the one hand, that the Tile Fetcher
reads the same primitive multiple times when correcting several
quad-fragments from the same primitive and, on the other hand,
to fill the Primitive-ID queue with redundant data.

Under the correction mode, the Rasterizer has a slightly differ-
ent behavior. In particular, only the fragments to be corrected are
generated for a given primitive. That is, if a triangle only has one
erroneous pixel, this is the only fragment that will be generated. To
do that, the Rasterizer calculates the barycentric coordinates of the
first fragment and the X and Y increments, as usual. Note that the
(X,Y) coordinates where the error is located are obtained from the
Positions-XY queue, along with the visibility mask (refer to Figure
9). Then, the quad fragment is sent to the Fragment Processors for
a proper shading. Note that the quads submitted for correction do
not undergo the Early Z-Test because they are known to be visible.

After the correction phase, the graphics pipeline continues
working as usual. When the tile is completely rendered and the
Color Buffer is computed and flushed, the pipeline is ready to
start with a new tile.

Finally, there is a challenging situation that happens when
the Tile Fetcher finds a transparent primitive. A primitive is
considered transparent if its blending attribute is active, meaning
that all the fragments from this primitive have to mix their
rendered colors with the existing ones in the Color Buffer. The
problem is that when the transparent fragment is processed, the
Color Buffer must contain the color of the previously generated
opaque fragment, and if it has been erroneously filtered out by
the Ω-Test, it would be erroneously mixed with a black fragment.
To overcome this situation, the correction phase is triggered as
soon as a transparent fragment arrives in the Early Z-Test stage,

to make sure that any potential error in the opaque geometry
is corrected before processing the transparent fragment. When
the correction of the errors for opaque primitives is done, the
pipeline can continue processing the transparent fragment and the
normal operation of the Tile Fetcher is resumed. This causes a
stall in the pipeline that might hurt the performance. Fortunately,
such interleaving pattern is not usual, as it does not comply with
the OpenGL recommendation about rendering order which states
that transparent primitives must be rendered after opaque ones
to produce the correct output image [22]. In particular, out of
the 10 evaluated benchmarks, only Maze 3D (maz) presents this
uncommon interleaving pattern with a small number of primitives.
As expected, Ω-Test produces the same output as the baseline
GPU, and due to the low occurrence of such interleaving pattern,
the performance of Maze 3D (maz) is not degraded at all as it can
be seen in Figure 13.

5 EVALUATION METHODOLOGY

5.1 Simulator Infrastructure

We have used TEAPOT [23], a simulation framework that includes
a cycle-accurate simulator for GPUs, including models based on
Mali’s Utgard architecture [24]. TEAPOT includes timing and
power models based on well-known tools: McPAT [25] for power
estimation, and DRAMSim2 [26] for modelling DRAM and the
memory controllers. The benchmarks have been run either in a
real smartphone or in an Android Virtual Device (AVD) [27] to
obtain a trace of OpenGL commands. The OpenGL [28] traces
have been obtained with GAPID [29], a graphics debugger that
allows to inspect the graphics commands of animated applications.
In particular, the OpenGL trace is executed with the GAPID replay
tool (gapir) over an instrumented Gallium Softpipe Driver [30]
to obtain the final trace. This trace is consumed by the cycle-
accurate simulator, which produces timing reports and a file of
activity factors. Those activity factors are employed by the power
model to generate a power report.

Table 2 shows the GPU simulation parameters, resembling
the ARM Mali-450 GPU that we have used to evaluate our
proposal. This Table also shows the configuration parameters of
the structures used by the Ω-Test (namely, Ω-Table, E-Buffer,
Primitive-ID queue and Positions-XY queue). All these structures
have been modelled and included in the timing and power model
of the GPU. In particular, their area overhead has been measured
to be 2.29% of the total area of the GPU. As mentioned in Section
3, the biggest structure is the Ω-Table (with a size of 14.06 KiB
thanks to the 16x16 coarsening factor) which corresponds to a
relative area of 1.70% of that of the GPU.

5.2 Benchmarks

Table 3 shows the set of benchmarks we have used in our
experimental evaluations. We employ commercial applications,
which do not require any modification at the software level to
benefit from the Ω-Test. The games have been selected based on
their popularity in number of downloads on the Google Play Store.
Note that we have only considered 3D games since our technique
does not apply to 2D games. Figure 11 shows a single frame for
eight of the evaluated benchmarks to provide an insight of the
complexity present on their scenes.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 10

300 Captain America Sniper 3D Assassin Hot Wheels: Race Off

Beach Buggy Racing Counter Strike Gravity Temple Run

Fig. 11. Images of the evaluated benchmarks showing the complexity of the scenes.

TABLE 2
GPU Simulation Parameters.

Baseline GPU Parameters
Frequency 600 MHz
Voltage 1.0 V
Scale Integration 22 nm
Screen Resolution 1280x720
Tile Size 16x16 pixels

Main Memory
Frequency 400 MHz
Voltage 1.5 V
Latency 50-100 cycles
Bandwidth 4 B/cycle (dual channel LPDDR3)
Size 1 GiB

Queues
Vertex (Input & Output) 16 entries, 136 bytes/entry
Triangle & Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry
Color 64 entries, 24 bytes/entry

Caches
All of 64 bytes/line, 2-way associativity

Vertex Cache 4 KiB, 1 bank, 1 cycle
Texture Caches (x4) 8 KiB, 1 bank, 1 cycle
Tile Cache 128 KiB, 8 banks, 1 cycle
L2 Cache 256 KiB, 8 banks, 2 cycles
Color Buffer 1 KiB, 1 bank, 1 cycle
Depth Buffer 1 KiB, 1 bank, 1 cycle

Non-programmable stages
Primitive assembly 1 triangle/cycle
Rasterizer 1 attributes/cycle
Early Z test 8 in-flight quad-fragments

Programmable stages
Vertex Processor 4 vertex processor
Fragment Processor 4 fragment processors

Ω-Test hardware
Ω-Table 14 KiB
Positions-XY Queue 64 entries, 13 bytes/entry
Primitive-ID Queue 64 entries, 8 bytes/entry
E-Buffer 1 KiB
Corrector 4 quad-fragments/cycle

6 EXPERIMENTAL RESULTS

We have evaluated both a baseline GPU design and a GPU that
implements the Ω-Test with a coarsening factor of 16x16, the
maximum function for “aggregation”, and with the dynamic δ

mechanism for mitigating errors.

TABLE 3
Evaluated benchmark set.

Benchmark Alias Description Downloads (M)
300 300 Hack & slash 10-50
Captain America cam Beat’em up 1-5
Sniper 3D Assassin s3d Shooter 100-500
Hot Wheels: Race Off hwl Racing 50-100
Vegas Crime Simulator vcs Sandbox & Crime 100-500
Maze 3D maz Labyrinth 10-50
Beach Buggy Racing bbr Racing 50-100
Counter Strike cou Shooter 10-50
Gravity gra Action 1-5
Temple Run tru Adventure arcade 100-500

6.1 Overdraw Reduction

Figure 12 shows a first set of results for the Ω-Test approach. In
particular, it reports a breakdown of all the rendered fragments for
each benchmark, differentiating the fraction of occluded fragments
(overdraw –in yellow–), transparent fragments, the induced errors
by the Ω-Test (in red), and the visible fragments (in dark blue). As
our technique is aimed at optimizing the visibility problem, it can
only attack the overdraw fraction. Note that an ideal visibility de-
termination approach would remove this fraction completely. For
comparison purposes, we have evaluated VRO [8], an advanced
Hidden Surface Removal (HSR) technique that sorts objects front-
to-back based on frame-to-fame coherence (see Section 2.3 for
further details). On average, Ω-Test reduces the baseline’s over-
draw by 32.7%, still leaving a residual overdraw of 4.5% that is
unable to eliminate. These initial results show that our proposal
is pretty close to the ideal case, differently to VRO that leaves an
average residual overdraw of 22.2%. Although both VRO and Ω-
Test leverage frame-to-frame coherence to reduce overdraw, they
achieve their goals using quite different strategies. VRO works
at a command granularity by sorting commands so that they are
processed in a front-to-back order. Ω-Test, however, operates at
a much finer granularity (fragment level) which is more effective
since it can avoid the useless shading of occluded fragments in
primitives of the same object (intra-object overdraw) or from
partially overlapping objects. It is worth noting that intra-object
overdraw is significant in the evaluated benchmarks and in mobile
games in general since they typically include complex objects in
a single draw call. For instance, in Hot Wheels (hwl), the whole



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 11

city in the background (made of multiple and complex buildings -
see Figure 11) is a single object rendered in a single draw call. As
expected, there is a lot of intra-object overdraw that VRO cannot
eliminate whereas the proposed Ω-Test can indeed.

On the other hand, errors (i.e., wrongly discarded fragments
that must be indeed shaded) may hurt performance since they have
to be fixed on the correction phase, so it is desirable to reduce
them as much as possible. On this regard, our proposal generates
an average of 5.1% initial errors that are fixed on the correction
phase. As a side note, the average number of errors to be fixed per
tile is, in absolute terms, just 13 out of 256 pixels in a 16x16 tile.

6.2 Speedup and Memory Utilization
Now, let us see the overall net impact on the execution time due
to both the overdraw reduction and the errors that have been fixed.
Figure 13 shows the speedup achieved when the Ω-Test is included
in the graphics pipeline. It achieves an average speedup of 16.3%,
with a maximum speedup of 32.7% for Gravity (gra). Figure
13 also plots a configuration with perfect visibility knowledge
that shows an average upper bound of 17.9% for the speedup;
and the aforementioned VRO which achieves an average speedup
of 12.75%. As expected, Ω-Test is pretty close to the perfect
scenario because of the low residual overdraw it leaves (a mere
4.5%) and beats VRO. Focusing on the realistic Ω-Test, although
it greatly reduces overdraw in many applications, in some cases
the execution time is not reduced in the same proportion. This is
because of the overhead incurred on correcting errors and also due
to the pipeline stall to wait for that correction phase. To provide
an insight on this, it is necessary to look at the accesses that end
up going to DRAM as a result of misses in the Texture Cache
(the equivalent to an L1 in a CPU). As expected, applications with
small textures are more likely to obtain a higher hit rate in the
Texture Cache, therefore, reducing their overdraw does not save
many DRAM accesses, and so we are not saving as much latency.
Contrarily, applications with detailed textures exhibit a lower hit
rate in the Texture Cache and go more frequently to DRAM. As
such, reducing the overdraw factor in these games results in a more
significant impact. This is the case of Gravity (gra), Hot Wheels
(hwl) and Beach Buggy Racing (bbr).

To provide a better insight of this effect, Figures 14 and 15
show the accesses to the Texture Cache, the L2 and DRAM. While
Figure 14 breaks down the accesses to the Texture Cache in hits
and misses (the latter end up going to L2), Figure 15 shows how
many of the memory requests are served by DRAM. Let us focus
on two representative examples: Counter Strike (cou) and Gravity
(gra). First, recall from Figure 12 that they have a similar net
overdraw reduction of 47.9% and 51.8%, respectively. However,
these overdraw reductions are translated into respective speedups
of 17.4% and 32.7%. If we now look at their memory behavior
(Figure 14) we observe that, thanks to using the Ω-Test, there is a
reduction in their overall number of memory accesses (46.2% and
41.2%, respectively) which correlates with the reported overdraw
reduction. However, because of their different texture complexity,
while Gravity reduces its DRAM accesses by 30.3%, Counter
Strike barely reduces them (a mere 3%) as shown in Figure 15.

6.3 Energy Savings
Next, let us focus on the energy savings achieved by the Ω-
Test and reported in Figure 16. It can be seen that our approach
provides average energy savings of 15.17% (and up to 26.9%

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

300

0

10

20

30

40

50

60

70

80

90

100

Occluded opaque fragments Transparent fragments

Initial errors Visible opaque fragments

F
ra

g
m

e
n

ts
 (

%
)

cam

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

s3d

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

hwl

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

vcs

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

maz

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

bbr

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

cou

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

gra

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

tru

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

avg

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

Fig. 12. Breakdown of rendered fragments for the evaluated bench-
marks, comparing the the baseline GPU, VRO and Ω-Test.

300 cam s3d hwl vcs maz bbr cou gra tru avg
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
VRO Ω-Test Perfect Z-Test

S
p

e
e

d
u

p

Fig. 13. Speedup comparison (normalized to the baseline GPU) be-
tween VRO, Ω-Test and a perfect HSR.

B
a

se
li

n
e

Ω
-T

e
st

300 cam s3d hwl vcs maz bbr cou gra tru

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Misses (L2 accesses) Hits

N
o

rm
a

li
ze

d
 T

e
xt

u
re

 C
a

ch
e

 a
cc

e
ss

e
s

B
a

se
li

n
e

Ω
-T

e
st

B
a

se
li

n
e

Ω
-T

e
st

B
a

se
li

n
e

Ω
-T

e
st

B
a

se
li

n
e

Ω
-T

e
st

B
a

se
li

n
e

Ω
-T

e
st

B
a

se
li

n
e

Ω
-T

e
st

B
a

se
li

n
e

Ω
-T

e
st

B
a

se
li

n
e

Ω
-T

e
st

B
a

se
li

n
e

Ω
-T

e
st

Fig. 14. Texture Cache accesses (normalized to the baseline GPU)
broken down into hits and misses that eventually go to L2.

for Gravity –gra–), outperforming VRO which achieves average
energy savings of 9.6%. Games such as Vegas Crime Simulator
(vcs), Gravity (gra) or Beach Buggy Racing (bbr) achieve high
energy savings because of their texture complexity, as explained
before, since much of the cost of the overdraw comes from
eventual DRAM accesses due to misses in the upper cache levels.
Other benchmarks, such as Hot Wheels (hwl) or Counter Strike
(cou) also obtain high energy savings (around 18.7%) but not
because of the poor caching behaviour of their textures and rather



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 12

300 cam s3d hwl vcs maz bbr cou gra tru
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

o
rm

a
li

ze
d

 D
R

A
M

 a
cc

e
ss

e
s

Fig. 15. Total amount of DRAM accesses (normalized to the baseline
GPU) for the evaluated benchmarks.

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

300 cam s3d hwl vcs maz bbr cou gra tru avg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GPU Memory

N
o

rm
a

li
ze

d
 E

n
e

rg
y

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

Fig. 16. Energy savings normalized to the baseline GPU.

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

300 cam s3d hwl vcs maz bbr cou gra tru avg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GPU Memory

N
o

rm
a

li
ze

d
 E

n
e

rg
y-

D
e

la
y

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

B
a

se
li

n
e

V
R

O
Ω

-T
e

st

Fig. 17. Energy-Delay product (EDP) savings normalized to the baseline
GPU for the evaluated benchmarks.

because of the very high amount of overdraw that is indeed
exposed to the baseline TBR architecture, and which our proposal
is able to remove.

As per the energy-efficiency of the overall GPU/Memory
system, Figure 17 reports the Energy-Delay product (EDP) savings
for each benchmark. It can be observed that Ω-Test achieves EDP
savings of 26.42% on average (reaching a maximum of 42.65% in
the case of Gravity –gra–) whereas VRO achieves EDP savings of
20.34% on average.

7 CONCLUSIONS AND FUTURE WORK

Overdraw plays an important role in the performance and energy
efficiency of mobile GPUs, and it is strongly related to the ap-
proach used to resolve the visibility of the different primitives. In
this work we have proposed the Ω-Test, a novel microarchitecture

technique that resolves visibility by using information of the Z-
Buffer from the previous frame. We have shown that our approach
is much more effective for removing overdraw than a traditional
Early Z-Test, which only uses information from the current frame
and whose Z-Buffer must be built from scratch every frame.

Our approach relies on frame-to-frame coherence; however, an
unexpected depth change in a primitive could potentially lead to
an error in the final rendered image. We have included an error
detection and correction mechanism to fix the small amount of
errors that can appear in certain tiles. Finally, to dramatically
reduce the storage needs of the underlying Ω-Buffer, we have also
implemented a coarsening mechanism along with the use of an
aggregate function, which is highly effective and hardly impacts
accuracy. Overall, the Ω-Test reduces the average overdraw of
scenes by 32.7%, which results in an average speedup of 16.3% in
addition to average EDP savings of 26.42% for a set of commercial
representative applications.

As part of the future work, we will consider new compression
schemes for the Ω-Table aimed at reducing the memory usage
needs as well as improving its accuracy, such as quantization,
downsampling and precision reduction. Another path to explore
is a per-tile δ margin to more selectively detect objects moving
around the scene. These two approaches will improve the effi-
ciency of Ω-Test in terms of performance, energy and area cost.
On the other hand, it is common to give control to the applications
over features supported by the GPU (Texture samplers, Occlusion
queries, depth/stencil tests, Variable Shading Rate, etc.) so they
can be tuned to the application needs. With such kind of control,
the application could inform through the render-loop, e.g., about
changes of the transformation matrices, so Ω-Test could more
accurately predict the depth values of the next frame.

ACKNOWLEDGMENTS

This work has been supported by the the CoCoUnit ERC
Advanced Grant of the EU’s Horizon 2020 program (grant
No 833057), the Spanish State Research Agency under grant
TIN2016-75344-R (AEI/FEDER, EU) and the ICREA Academia
program. D. Corbalán-Navarro has been supported by a PhD
research fellowship from the University of Murcia.

REFERENCES

[1] M. C. Shebanow, “An evolution of mobile graphics,”
https://www.highperformancegraphics.org/wp-content/uploads/2013/
Shebanow-Keynote.pdf, accessed June 2021, keynote talk at High
Performance Graphics, 2013.

[2] S. Patil, Y. Kim, K. Korgaonkar, I. Awwal, and T. S. Rosing, “Charac-
terization of user’s behavior variations for design of replayable mobile
workloads,” in International Conference on Mobile Computing, Applica-
tions, and Services. Springer, 2015, pp. 51–70.

[3] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song, S. Yalamanchili, and
W. Sung, “Power modeling for gpu architectures using mcpat,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 19, no. 3, p. 26, 2014.

[4] J. Pool, “Energy-precision tradeoffs in the graphics pipeline,” Ph.D.
dissertation, The University of North Carolina at Chapel Hill, 2012.

[5] T. Akenine-Moller and J. Strom, “Graphics processing units for hand-
helds,” Proceedings of the IEEE, vol. 96, no. 5, pp. 779–789, 2008.

[6] E. De Lucas, “Reducing redundancy of real time computer graph-
ics in mobile systems,” Ph.D. dissertation, Universitat Politècnica de
Catalunya, 2018.

[7] J. Bittner and P. Wonka, “Visibility in computer graphics,” Environment
and Planning B: Planning and Design, vol. 30, no. 5, pp. 729–755, 2003.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 13

[8] E. De Lucas, P. Marcuello, J.-M. Parcerisa, and A. González, “Visibility
rendering order: Improving energy efficiency on mobile gpus through
frame coherence,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 30, no. 2, pp. 473–485, 2018.

[9] N. Greene, M. Kass, and G. Miller, “Hierarchical z-buffer visibility,” in
Proceedings of the 20th annual conference on Computer graphics and
interactive techniques. ACM, 1993, pp. 231–238.

[10] M. Anglada, E. de Lucas, J.-M. Parcerisa, J. L. Aragón, and A. González,
“Early visibility resolution for removing ineffectual computations in
the graphics pipeline,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2019, pp. 635–646.

[11] T. Akenine-Moller, E. Haines, and N. Hoffman, Real-time rendering.
AK Peters/CRC Press, 2019.

[12] H. Hubschman et al., “Frame-to-frame coherence and the hidden surface
computation: constraints for a convex world,” ACM Trans. on Graphics,
vol. 1, no. 2, pp. 129–162, 1982.

[13] A. Wilson, K. Mayer-Patel, and D. Manocha, “Spatially-encoded far-
field representations for interactive walkthroughs,” in Proc. of the 9th
ACM international conference on Multimedia, 2001, pp. 348–357.

[14] E. Haines and S. Worley, “Fast, low memory z-buffering when perform-
ing medium-quality rendering,” J. Graph. Tools, vol. 1, no. 3, pp. 1–6,
Feb. 1996.

[15] “Photo-realistic deferred lighting,” https://www.beyond3d.com/content/
articles/19/, accessed March 2021.

[16] N. Thibieroz and W. Engel, “Deferred shading with multiple render
targets,” Shader X, vol. 2, pp. 251–251, 2004.

[17] I. T. Limited, “PowerVR Hardware. architecture overview for devel-
opers,” http://cdn.imgtec.com/sdk-documentation/PowerVR+Hardware.
Architecture+Overview+for+Developers.pdf, accessed August 2019.

[18] N. Greene, “Hierarchical polygon tiling with coverage masks,” in Pro-
ceedings of the 23rd annual conference on Computer graphics and
interactive techniques, 1996, pp. 65–74.

[19] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff III, “Visibility
culling using hierarchical occlusion maps,” in Proc. of the 24th annual
conference on Computer graphics and interactive techniques, 1997.

[20] S. Morein et al., “Ati radeon hyperz technology,” http://www.
graphicshardware.org/previous/www 2000/presentations/ATIHot3D.
pdf, accessed June 2021, Presented at SIGGRAPH/EUROGRAPHICS
Workshop On Graphics Hardware, 2000.

[21] M. Andersson, J. Hasselgren, and T. Akenine-Möller, “Masked depth
culling for graphics hardware,” ACM Transactions on Graphics (TOG),
vol. 34, no. 6, pp. 1–9, 2015.

[22] D. Shreiner, “Opengl® programming guide seventh edition,” 2010.
[23] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Teapot: a toolset for

evaluating performance, power and image quality on mobile graphics
systems,” in Proceedings of the 27th International ACM Conference on
Supercomputing. ACM, 2013, pp. 37–46.

[24] “Arm mali-450 gpu,” https://developer.arm.com/products/graphics-and-
multimedia/mali-gpus/mali-450-gpu, accessed August 2019.

[25] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2009, pp. 469–480.

[26] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” IEEE computer architecture letters,
vol. 10, no. 1, pp. 16–19, 2011.

[27] “Android sdk,” https://developer.android.com/studio, accessed August
2019.

[28] M. Segal and K. Akeley, “The opengl graphics system: A specification
(version 1.1),” http://delta.cs.cinvestav.mx/∼fraga/Cursos/Graficacion/
2007/OpenGL/opengl1.2.1.pdf.gz, accessed June 2021, silicon Graphics,
Inc, 1999.

[29] “Gapid,” https://developers.google.com/vr/develop/unity/gapid, accessed
August 2019.

[30] “Gallium3d,” https://www.freedesktop.org/wiki/Software/gallium, ac-
cessed August 2019.

David Corbalán-Navarro is a PhD student at
the University of Murcia (UMU), Spain. He re-
ceived his B.S. degree in Computer Engineering
in 2016 and his M.S. degree in New Information
Technologies in 2017, both from the UMU. He
started his PhD in September 2017 when he
also joined the ARCO (Architecture and Com-
pilers) research group at the UPC. His main
research interest is the architecture of graphics
processors with special emphasis on the energy
efficiency of mobile GPUs.

Juan L. Aragón is an Associate Professor at the
University of Murcia (UMU), Spain. In 2003 he
received his PhD degree in Computer Engineer-
ing from the UMU, followed by a postdoc at the
University of California, Irvine. He has also been
a Visiting Researcher at EPFL (Switzerland) and
at Princeton University (USA). He has advised
5 PhD theses and co-authored +50 papers in
major conferences and journals. His research
interests are focused on computer architecture,
with special emphasis on heterogeneous sys-

tems, application-specific accelerators, microarchitecture, and GPUs.

Martı́ Anglada received his M.S. degree in
High Performance Computing in 2015 and his
PhD degree in Computer Architecture in 2020,
both from Universitat Politècnica de Catalunya
(UPC-BarcelonaTech). He joined the UPC-
BarcelonaTech Architectures and Compilers re-
search group in July 2014. His research is fo-
cused on energy-efficient architectures for mo-
bile GPUs.

Enrique de Lucas received his B.S. degree in
Computer Science in 2010 and M.S. degree in
Computer Engineering in 2011 both from Com-
plutense University of Madrid (UCM), Spain.
During 2012 he worked on processor microarchi-
tecture at Intel Labs. By February 2013 he joined
ARCO research group of Universitat Politècnica
de Catalunya (UPC), Barcelona (Spain), where
he completed the PhD degree in 2018. His main
research interests included techniques to exploit
inter-frame coherency and reduce redundancy in

the graphics subsystem for increasing the energy-efficiency of GPUs. By
January 2017 he joined Esperanto Technologies (Spain). Since March
2020 he is GPU Architect at Imagination Technologies, (UK).

Joan-Manuel Parcerisa received his M.S. and
Ph.D. degrees in Computer Science from the
Universitat Politècnica de Catalunya (UPC), in
Barcelona, Spain, in 1993 and 2004 respectively.
Since 1994 he is a full time assistant profes-
sor at the Computer Architecture Department
at the Universitat Politècnica de Catalunya. His
research topics include ultra-low power GPU ar-
chitectures for mobile devices, decoupled ac-
cess/execute architectures, clustered microar-
chitectures, predication for OoO execution and

cache memories.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. N, MONTH YYYY 14

Antonio González (PhD 1989) is a Full Pro-
fessor at the Computer Architecture Depart-
ment of the Universitat Politècnica de Catalunya,
Barcelona (Spain), and the director of the Ar-
chitecture and Compilers research group. His
research has focused on computer architecture
and compilers, with a special emphasis on cog-
nitive computing systems and graphics proces-
sors in recent years. He has published over 370
papers, and has served as associate editor of
five IEEE and ACM journals, program chair for

ISCA, MICRO, HPCA, ICS and ISPASS, and general chair for MICRO
and HPCA. He is a Fellow of IEEE and ACM.


