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Abstract—Despite their ubiquity in many important big-data applications, graph analytic kernels continue to challenge modern
memory hierarchies due to their frequent, long-latency, pointer indirect accesses to vertex property data. Such accesses exhibit poor
locality and variable reuse that trouble cache replacement policies, and consequently increase memory bandwidth pressure.
Specialized graph-tailored prefetching mechanisms, processor designs, and memory hierarchy engines have been developed to
tolerate the long latencies of such accesses. However, these approaches are either too bandwidth-intensive, require invasive hardware
changes that inhibit general-purpose computation flexibility, or rely on software preprocessing that limits true speedup.
This work introduces Graphfire, a flexible memory hierarchy approach that learns different access patterns in graph processing and
exploits the synergy of specialized fetch, insertion, and replacement optimizations for problematic indirect accesses without relying on
software or ISA support. More specifically, Graphfire identifies when these irregular accesses occur and employs tailored access
granularities, data-aware insertion, and frequency-based replacement accordingly. It achieves up to a 1.79× speedup (geomean 1.3×)
and these improvements scale due to bandwidth efficiency; with 64 cores, Graphfire yields up to a 71.33× speedup (geomean 63.32×)
over a single baseline core and allows memory-bound graph analytic codes to scale far beyond prior work.

Index Terms—graph analytics, cache, memory hierarchy.
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1 INTRODUCTION

FOR decades, caches have played a significant role in
improving CPU performance, reducing off-chip mem-

ory access latency as well as processor-memory traffic [16],
[43]. Many widespread applications, including linear alge-
bra routines for dense neural networks, demonstrate access
regularity that benefits from the logic and structure of
modern cache designs. However, graph analytics remain an
important domain of applications where even state-of-the-
art cache management techniques continue to struggle.

Graph applications are gaining importance for machine
learning and data analytics [13], [41]. Many kernels in this
domain have unpredictable memory access patterns that
arise from pointer indirection [5]. These irregular memory
accesses correspond to the structure of the graph input, as it
is traversed on a per-vertex basis in order for the application
to gather and compute data about the graph. Unfortunately,
such irregular accesses have very little temporal and spa-
tial locality. Modern datasets, e.g. social networks, are also
significantly larger than the last-level cache (LLC), leading
to thrashing at all levels of the memory hierarchy. Lastly,
the irregular accesses themselves have variable reuse, which
troubles heuristic- and learning-based replacement policies
that rely on recency or temporal access sequences. As a
result, graph applications frequently perform expensive, off-
chip memory accesses, whose long latencies can dominate
application runtimes and limit scalability.
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When irregular access patterns are coupled with massive
networks, software-only optimizations are unlikely to suc-
ceed efficiently. Instead, performance optimizations must
utilize hardware to reduce long-latency DRAM accesses. A
large body of work has spanned cache management tech-
niques [17], [18], [39]. These approaches range from design-
ing heuristics to capture cache-friendly and cache-averse
accesses, to predicting reuse and re-reference intervals, dead
blocks, and per-workload access patterns. However, none of
these techniques consider specific access patterns of graph
applications and instead focus on those that are well-known
and common in more regular workloads, e.g. streaming,
strided, thrashing, mixed, etc. Thus, any hardware over-
heads these techniques incur are wasted when they are
applied to graph analytics.

GRASP [15] proposed the first step towards domain-
specialized LLC management for graph analytics, but incurs
software preprocessing costs for degree-based graph re-
ordering [14]. Software preprocessing renders the technique
less practical for large graphs, e.g. in many application
scenarios where the input graph is only processed once [5],
or when the graph is not even fully traversed, e.g. in search
algorithms. To our knowledge, there exists no memory
hierarchy approach for graph applications that learns and
optimizes for their access patterns with no software support.

With the goal of optimizing cache performance for graph
applications, our work makes the following key observa-
tions: (i) The memory hierarchy must specialize for the prob-
lematic indirect accesses (PIAs) to alleviate their bottlenecks.
(ii) To be software-agnostic, a lightweight mechanism must
automatically identify PIAs, which can be achieved on a per-
instruction basis. (iii) While PIAs are irregular, a subset of
them have high reuse, so the LLC must retain them.
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Our Approach: Given these observations, this paper
presents Graphfire1, a flexible, hardware-based memory
hierarchy approach that (i) learns when PIAs occur in graph
applications and (ii) optimizes their performance through
tailored fetch, insertion, and replacement policies. Through
an adaptive hardware locality predictor that monitors L1
cache accesses, Graphfire learns different access patterns on
a per-PC basis and classifies them to identify which instruc-
tion(s) perform the PIAs. With this knowledge, Graphfire
decides when to exploit the synergies between caching poli-
cies optimized for the PIAs. More specifically, these data-
aware policies address issues in three main thrusts:

Fetch: All primary loads in graph applications are either
streaming or pointer indirect, which presents a challenge for
the memory hierarchy as they have different cacheline size
needs. Fetching PIAs at word–rather than line–granularity
improves cache utilization while allowing streaming ac-
cesses to continue benefiting from locality.

Insertion: Streaming contiguous accesses have no reuse
once they fill a cacheline and thus require little cache space.
Having these accesses bypass lower memory hierarchy
levels devotes more cache space to high-reuse PIAs. This
lowers their chances of being evicted from the LLC without
harming the performance of more regular accesses.

Replacement: Despite their poor locality, a subset of
PIAs have high reuse and benefit from caching [7], but
their reuse distances are often too long to protect them
from eviction. When the LLC is reserved for PIAs cached
at word granularity, frequency-based replacement is signif-
icantly more effective at learning and retaining PIAs with
high reuse, unlike across-the-board temporal locality.

Our work advances these F-I-R policies individually.
More importantly, we are the first to note they need to
be employed together for their full impact. Furthermore,
they require only modest hardware additions and enable
Graphfire to offer domain-specialized improvements while
retaining excellent performance of other workloads. To sum-
marize, this work’s main contributions are:

1) We introduce a novel hardware locality predictor that
learns graph application access patterns online and
classifies them with no software or ISA support.

2) We develop a flexible memory hierarchy design that
caters to PIAs by exploiting synergies between:
(F) Tailored access granularities alleviate poor cache
utilization. (I) Data-aware insertion reserves space
for even more PIAs to fit in the LLC. (R) Frequency-
based replacement leverages the additional LLC
space to better learn and retain high-reuse PIAs.

3) We evaluate Graphfire on widely used workloads
and achieve: (i) Single-core speedups up to 1.79×
(geomean 1.3×) on in-order and 1.6× (geomean
1.2×) on OoO over state-of-the-art approaches.
(ii) Scalable performance improvements through
memory-level parallelism and reduced DRAM con-
tention: 63.32× speedup with 64 cores, much im-
proved over the baseline speedup of 47.04×.

Overall, with nimble workload adaptation and lightweight
hardware requirements, Graphfire offers important ad-
vances for graph analytics and data processing workloads.

1. Graphfire = Graph fetch, insertion, and replacement.

1 while worklist not empty:
2 for v in worklist:
3 process_vertex(v)
4 start = vertex_ptr[v]
5 end = vertex_ptr[v+1]
6 for neib in neighbors[start:end]:
7 process_edge(neib)
8 neib_data = property_array[neib]
9 if update_neib(neib_data):

10 property_array[neib] = neib_data
11 updated = true;
12 if updated:
13 add_to_worklist(neib)

Fig. 1. Graph processing kernel example.

2 MOTIVATION

2.1 Memory Access Patterns in Graph Processing

Graph applications are notorious for irregular memory ac-
cesses that arise from data traversals. State-of-the-art, work-
efficient algorithm implementations perform graph traver-
sals iteratively through two nested kernel loops and utilize
the Compressed Sparse Row (CSR) format to efficiently
store the input dataset as one-dimensional dense arrays [45].
Pointer indirect accesses occur in the vertex property array,
which stores per-vertex results, e.g. distances or ranks [6].
CSR arrays store graph information, e.g. vertex and edge
locations, but are accessed regularly and/or infrequently.

Fig. 1 presents pseudocode for graph processing kernels.
The outer loop (lines 2-5) iterates through a worklist of
vertices (for the current algorithm iteration) while the inner
loop (lines 6-13) analyzes the current vertex’s neighbors to
potentially update their data, depending on the objective of
the algorithm. If a neighbor is updated, it is added to the
worklist for the next algorithm iteration (lines 12-13). The
algorithm terminates when the worklist is empty (line 1), i.e.
the graph has been traversed and updates have stabilized.

Memory access patterns in graph algorithms can be
classified on a per-PC basis, assuming in-order processor
execution. Instructions in the outer loop occur infrequently
relative to those in the inner loop, particularly for graphs
with high edge to vertex ratios. Accesses are either streaming
or indirect. This yields four different access patterns:

Infrequent, Streaming: These accesses appear in the
outer for loop or inside a conditional in the inner loop and
have a streaming behavior. As line 2 of Fig. 1 shows, the
algorithm iterates through a worklist of vertices and loads
each vertex index in a streaming fashion. However, this
access does not exhibit good locality because each access
can be separated by several memory accesses in the inner
loop of the kernel.

Infrequent, Indirect: These pointer indirect accesses ap-
pear in the outer for loop or a conditional in the inner loop.
The current vertex v indexes into the vertex_ptr array
to load its neighbor list indices (lines 4-5) and determine
the number of inner loop iterations. The first load to the
starting index (line 4) is pointer indirect, while the second
(line 5) has locality. Another indirect access arises from con-
ditionally updating vertex property data (line 10). However,
these irregular accesses do not have a significant impact on
performance, as they occur infrequently. We focus on the
primary memory accesses, i.e. those that are executed in every
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TABLE 1
Applications and inputs used in our evaluation and their properties.

Applications Input Type Vertices Edges Avg / Max Deg. Prop. Array Footprint %
(BFS / SSSP / PRD / PR)

Breadth-First Search (BFS) Kronecker (Kron) synthetic, power-law 2.1M 64M 30 / 102440 1.55 / 1.38 / 1.48 / 3.00
Single Source Shortest Paths (SSSP) LiveJournal (LiveJ) real-world, social 4.8M 69M 14 / 20293 3.08 / 2.47 / 2.82 / 5.80
PageRank-Delta (PRD) Orkut (Ork) real-world, social 3.1M 117M 38 / 32998 1.25 / 1.13 / 1.20 / 2.43
PageRank (PR) Pokec (Pok) real-world, social 1.6M 30M 18 / 8763 2.41 / 2.02 / 2.25 / 4.60

Wikipedia (Wiki) real-world, web 1.8M 40M 21 / 6975 2.14 / 1.83 / 2.01 / 4.11
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Fig. 2. PIAs (orange) are frequently accessed despite their small mem-
ory footprint relative to other data structures.

inner loop iteration, as their access latencies significantly
impact application runtime.

Primary Streaming Accesses (PSAs): These accesses
occur in the critical path of the inner for loop and perform
a streaming load or store to neighbor indices (line 6). These
are true streaming accesses that exhibit both temporal and
spatial locality and they occur frequently and regularly.
Thus, they are cache-friendly and do not contribute to data
supply bottlenecks. We refer to these accesses as primary
streaming accesses (PSAs) to describe these characteristics.

Primary Indirect Accesses (PIAs): These accesses also
occur in the critical path of the inner for loop and perform
a pointer indirect load (highlighted in line 8) to the vertex
property array in order to load data for a given neighbor.
Because these indirect accesses occur in every loop iteration
and have long latencies that incur performance costs, they
are responsible for the data supply bottlenecks of graph
applications. We refer to them as primary indirect accesses
(PIAs) and detail their characteristics in the next section.

2.2 The Problems with PIAs
The vertex property array, the primary source of PIAs, com-
prises a very small percentage of the application’s total
memory footprint. The far right column of Tab. 1 presents
percentages for different application/input combinations.
These percentages depend on application data demands
(worklist sizes) and input sizes. On average, the vertex
property array is only 3.06% of the total memory footprint.

Fig. 2 shows that despite their relatively small data
footprint, the PIAs themselves comprise a large fraction of
the total number of accesses in the application. Frequent
updates must be made to the vertex property array as the
application traverses the graph. Combining irregularity with
frequency yields a memory latency performance bottleneck.

Fig. 3 breaks down the total memory latency into PIAs
vs. other memory accessses. Among all applications and
inputs, the latencies of the PIAs average 88% of the total
memory latency, comprising the main application perfor-
mance bottleneck. Thus, innovations within the memory
hierarchy are necessary to account for the lack of regularity
and locality exhibited by these references.

Lack of Locality: Unfortunately, the irregularity of PIAs
causes them to exhibit poor locality. On average, 54.1 (L1),
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Fig. 3. PIAs (orange) dominate total memory access latency due to their
frequency and irregularity.

Target

(a) Many PIAs have low access
frequency; few have very high.

Target

(b) PIA reuse distances vary sig-
nificantly.

Fig. 4. Graphfire focuses on retaining vertices with high frequencies and
low reuse distances (red).

59.9 (L2), and 59.5 (L3) bytes are unused in a 64B evicted
cacheline for the application/input combinations above.
Thus, fetching an entire cacheline’s data for PIAs is wasteful.

Interference Between Access Patterns: The coexistence
of different memory access patterns in the same cache set
can hurt performance. PIAs can be evicted by PSAs or
other infrequent accesses, leading to several conflict misses,
particularly PIAs with high reuse that should be retained
in the LLC [6]. PIAs are the primary eviction candidates
in the LLC due to their irregularity and frequency. On
average, 21% of their evictions are caused by other types of
accesses. Removing this interference can improve the cache
performance of PIAs.

Variable PIA Reuse: Fig. 4 presents PIA access and
reuse histograms when BFS runs on a Kronecker network.
This captures the power-law trend of many real-world
datasets [22]. Fig. 4a shows that few vertices are accessed
frequently, while most are accessed infrequently. Vertices
with high reuse should not be evicted by low-reuse PIAs.
Fig. 4b illustrates the variability in PIA reuse distance. Many
are reused, but most reuse distances are too long (relative to
cache associativities) to protect PIAs from eviction. Thus,
the replacement policy for PIAs should adapt to vertex
characteristics.

2.3 Tailoring Cache Management for Graph Analytics

Motivated by the preceding data, Graphfire (i) automatically
classifies different access patterns on a per-instruction basis
through online learning, (ii) identifies when problematic
indirect accesses occur, and (iii) leverages synergistic cache
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optimizations to alleviate the performance bottlenecks these
accesses create. These specializations within the memory
hierarchy allow graph applications to achieve improved
cache performance, and consequently significant overall
speedups, on general-purpose hardware.

3 LEARNING MEMORY ACCESS PATTERNS

3.1 Re-Reference Table for Online Locality Prediction
Graphfire learns different memory access patterns of graph
applications on a per-PC basis in order to identify and
specialize for PIAs. It accomplishes this through a decou-
pled hardware-based locality predictor that learns online by
monitoring L1 cache accesses in parallel with cache opera-
tions. This predictor uses a re-reference table (RRT) to track
reuse from spatial locality for each memory instruction’s
accesses. Each RRT entry contains four fields: (1) the PC,
(2) a utilization value (UV ), (3) the L1 cache set ID the PC
most recently accessed, and (4) a frequency value. With each
L1 access, the predictor is indexed by its PC and updates the
RRT entry’s UV , cache set ID, and frequency.

Cacheline Utilization: Each PC’s UV is between 0 and
N , where N + 1 words fit in a cacheline (N = 15 with
64B cachelines). Upon an L1 hit, the predictor checks the
cache set ID stored in the PC’s entry. If it matches the cache
set accessed, then the entry’s UV increments. If it does not
match or the access missed in the L1, then the UV decre-
ments. After each access, the set ID is updated accordingly.
A PC must access the same cacheline at least twice in a row
to increase its UV . Thus, the UV signifies spatial locality;
UV = N indicates that the PC fully utilizes cachelines it
accesses, while a UV = 0 indicates poor utilization.

Since graph applications exhibit primarily either stream-
ing or indirect accesses, UV s quickly stabilize to values of
0 or N and the predictor uses these values to classify PCs
as streaming or indirect accesses. If UV > N+1

2 − 1, the PC
has accessed at least half of the same cacheline contiguously
(cache-friendly). Otherwise, the PC corresponds to either a
pointer indirect or infrequent, streaming access pattern with
long reuse distances.

PIA Identification: The RRT entry’s frequency value is
a saturating counter that increments with each PC access.
If the value saturates, the PC corresponds to a primary
memory access. Therefore, a PC that performs PIAs has
a low UV and high frequency. To give time for UV s
to stabilize and frequency values to accumulate, a global
counter times a “learning” phase, during which no PIA
cache optimizations are used. If this counter saturates and
a PIA has been identified, Graphfire uses its predictor to
apply cache optimizations on a per-PC basis. If no PIA
has been identified, which may occur in more dense and
regular applications, the counter resets to continue learning.
The counter also resets when a new PC is inserted into the
RRT, as a new part of the program has been reached. This
adaptive learning is particularly useful for multi-phase and
co-located applications, demonstrated in Sec. 7.

When a non-graph application is being executed, the
RRT can be disabled entirely via a global on/off switch
(determined by an OS or API call), which will prevent
any memory access from being identified as a PIA. This
effectively disables Graphfire, which can be useful when an

application does not have irregular accesses with variable
reuse, or the input graph has already been preprocessed and
reordered. Overall, Graphfire has a flexible design.

3.2 RRT Performance
We evaluate the predictor’s accuracy with graph kernels and
multi-phase applications (Sec.6) running on five different
networks (Tab.1). We measure accuracy by the percentage
of PIA and PSA PCs learned correctly. The predictor learns
primary accesses quickly, i.e. within 5-10 iterations of a
kernel loop, and identifies both access types with 100%
accuracy. Thus, Graphfire robustly learns per-PC memory
access patterns based on their locality to identify the PIAs.

Hardware Overhead: Given a 32KB L1 cache with 64B
blocks and 8-way set associativity, each RRT entry requires:
(i) 64-bit PC, (ii) 4-bit RRV saturating counter, (iii) 8-bit
cache set ID, and (iv) 3-bit frequency saturating counter.
Therefore, each entry stores 10B. The number of entries
necessary to capture the primary memory accesses depends
on the workload. Large applications with many memory
instructions can have a bounded RRT that only tracks the
most frequently occurring PCs (PSAs and PIAs), while those
not captured are labeled infrequent and irregular. Graph
processing kernels have only a few PIA PCs. In our evalu-
ated kernels and multi-phase applications, 32 entries is more
than sufficient, leading to a 320B hardware overhead. Nev-
ertheless, the RRT size can be increased, e.g. 2048 entries, to
track more static loads and still occupy less than 1% of the
area devoted to each core’s caches.

4 CACHE POLICIES FOR PIAS

With its knowledge of PIAs, Graphfire optimizes fetch, in-
sertion, and replacement policies to mitigate long latencies.

4.1 Fetch: Tailored Access Granularity
Unlike streaming accesses, PIAs poorly utilize cachelines.
Based on the observation that loads in graph applications
are overwhelmingly streaming or indirect, Graphfire tailors
access granularities accordingly. Streaming accesses exhibit
high predictability and spatial locality that benefits from
prefetching and large cachelines. On the other hand, PIAs
are unpredictable and poorly utilize large cachelines, incur-
ring many cold and capacity misses. Therefore, upon identi-
fication of a PIA, Graphfire fetches data at word granularity.

4.2 Insertion: Data-Aware Caching
Streaming accesses in graph applications have poor, if any,
temporal locality once they contiguously fill a cacheline.
PSAs load neighbor indices for the current vertex to process,
which is often not processed again. Therefore, the L1 cache
is sufficient for the PSAs. Contrarily, the PIAs’ data footprint
is significantly larger than the LLC capacity and interference
from other accesses, e.g. streaming, create conflict. Despite
their irregularity, a subset of the PIAs have high reuse that
benefit from caching if more space is available for them.

Graphfire exploits PSAs’ low cache capacity require-
ments and other non-PIAs’ low frequencies to reserve as
much space as possible, i.e. the L2 and L3, for the PIAs.
Thus, all non-PIA accesses bypass these caches because they
do not gain much benefit from them. This prevents other
accesses from evicting high-reuse PIAs from the LLC.
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Fig. 5. Graphfire utilizes a STMU at each cache level to encapsulate fine-
grained data operations (blue arrows). A cache sends a merged block
of multiple sub-blocks to its STMU for any fine-grained data operation.
The STMUs can also communicate fine-grained data with one another
in the event of sub-block misses and evictions (green arrows). Upon
insertion of new data in the hierarchy, the RRT predicts whether the
memory access is streaming or irregular (PIAs), which decides whether
to insert a normal (64B) block or sub-block (orange arrows).

4.3 Replacement: Frequency-Based Eviction
PIAs can be considered on a per-vertex basis during replace-
ment. Real-world, power-law graphs have few high-degree
vertices and many low-degree vertices (Fig. 4), creating
many opportunities for low-degree PIAs to evict those with
high degrees. Given the distribution of vertex degrees, high-
reuse PIAs can be learned with access frequency. Frequency-
based replacement (FBR) is usually not effective for modern
caches because counters do not have enough time to ac-
cumulate before their corresponding cachelines are evicted.
However, Graphfire’s fetch and insertion techniques effec-
tively increase the LLC capacity by improving cache utiliza-
tion, creating significant opportunity for FBR to learn high-
reuse PIAs. Thus, Graphfire applies FBR in the lower cache
levels instead of relying on recency. Meanwhile, because
the L1 primarily caches PSAs, LRU effectively evicts fully
utilized cachelines of contiguous data.

5 MEMORY HIERARCHY DESIGN

To flexibly support fine-grained data fetches for PIAs in
graph applications, Graphfire utilizes two types of cache
blocks: (1) normal 64B cache blocks and (2) merged blocks,
64B of coalesced, non-contiguous sub-blocks that store data
for fine-grained accesses. Sub-blocks can be 4B (integers
or floats) or 8B (doubles or longs); each merged block
has a granularity bit g that is set based on the memory
instruction’s data type. To perform operations on these
specialized merged blocks, Graphfire introduces a sub-tag
matching unit (STMU) for each cache to utilize. This mech-
anism employs hierarchical tags for fine-grained accesses
to allow non-contiguous sub-blocks to share a cacheline
without incurring any tag overhead.

Fig. 5 presents an overview of the memory hierarchy
design. For fine-grained accesses, each cache interfaces with
its STMU, which performs operations on merged blocks
(blue arrows). The STMUs can also communicate with one
another (green arrows). Upon insertion of new data from
DRAM, the RRT predicts whether the memory access is
streaming or irregular. The data is inserted as a normal (64B)
block or a sub-block in a merged block (orange arrows).
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Fig. 6. The STMU requires modest cache modifications (red) to support
merged blocks via hierarchical tags. Each cache block has an additional
“f” bit to denote whether it is fine-grained or not and whether to use the
base (lower k comparators disabled) or full tag for search. By default,
this bit is set to 0 (normal cache block) and enabled only when a merged
block (predicted by the RRT) is inserted into the cache. An additional
multiplexer is used to raise a partial hit if the block is fine-grained (“f” bit
enabled).

5.1 Hierarchical Tags with Sub-Tag Matching Units

To prevent sub-block metadata from imposing area over-
head and requiring significant cache modifications, the
STMU stores sub-block metadata inside the original data
block. Fig. 6 illustrates the minimal cache modifications
(red) necessary to support this design. The k least significant
bits of the original tag make up the flex-tag, which combine
with the block offset to create a sub-tag that identifies a par-
ticular sub-block stored in a merged block. The remaining
bits of the original tag not used in the flex-tag make up the
base-tag, which determines which cache block (way) a sub-
block resides in for a given set. Therefore, all sub-blocks of a
given merged block share the same base-tag (as opposed to
the original tag) and are identified by their distinct sub-tags.

The cache performs first-level tag matching at block (e.g.
64B) granularity, and the STMU performs second-level tag
matching at sub-block granularity. If the requested data is
present in the cache, this results in either a normal (block ac-
cess) or partial (sub-block access) hit, depending on whether
the access was predicted as streaming or irregular. One fine-
granularity bit f per cache block distinguishes fine- from
coarse-grained accesses and is set by the RRT’s prediction.
This bit’s value never changes for the remainder of the
block’s lifetime in the memory hierarchy; the block can
experience either a normal or partial hit until it has been
evicted from all caches. Thus, data for a given address can
never be cached in a sub-block and block simultaneously.
Note that the caches do not use PCs; only the RRT interfaces
with the instruction cache.

The STMU operates on a block comprised of K data sub-
blocks, each with its own sub-tag and status bit metadata
(dirty/valid/coherency), which are necessary for sub-block
matching. Because the metadata resides inside the original
data block, some capacity is sacrificed. More specifically,
a data block fits up to blksize/(subblksize + subblktag +
subblkmetadata) sub-blocks as opposed to blksize/subblksize.
Graphfire maintains the same base tag size across the cache
hierarchy, so each cache level has a different number of flex-
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cache. Thus, the STMU outputs a hit signal and the 4B (or 8B) data
requested (upon a load hit).

Eviction Logic
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Fig. 8. To update a merged block with a new sub-block in the event of
a sub-block miss, the STMU looks at the metadata of the K sub-blocks
to select an eviction candidate, if the merged block is full, and replace it
with the new sub-tag and data, or simply insert the new sub-block. The
evicted sub-block is sent to the lower level cache if it is dirty.

tag bits, where the L1 (largest original tag) has the most and
the LLC (smallest original tag) has the least. Despite this
capacity sacrifice, our approach benefits PIAs that otherwise
would waste most of the cacheline if they were accessed at
block granularity; our results demonstrate this.

For example, a 2MB, 16-way LLC has 64B cache blocks
(2048 sets). The original tag contains 47 bits (11 index bits
and 6 block offset bits). If each sub-block has 4B of data
and there are 2 flex-tag bits, then base tags have 45 bits and
sub-tags jave 2+6 = 8 bits. Therefore, 22×2(6−2) = 64 sub-
blocks can share the same base tag and match to the same
merged block. Furthermore, each sub-block requires 32 +
8 + 10 = 50 bits of storage (assuming 10 bits of metadata),
allowing 10 4B sub-blocks to fit in a 64B block in the LLC.

5.2 STMU Operations

All fine-grained operations are forwarded to and encapsu-
lated by each cache’s STMU, so the original cache behavior
remains unchanged. The STMU effectively acts as an en-
coder/decoder unit that intercepts 64B accesses between
cache levels to access or insert 4B (or 8B) of data as a
sub-block. To accomplish this, the STMU supports three

new merged block (64B)sub-block data
4B to insert

000 0000000 0000 … 0000…

granularity 
bit 

(4B or 8B)

block-tag
sub-tag to insert

g 000 000000000

flex-tag

STMU

STMU Insertion:

insert as first sub-block

Fig. 9. To insert a sub-block as part of an entirely new merged block in
the event of a merged block miss (base tag not found), the STMU resets
all sub-block tags and data (to zeroes) and inserts the new sub-tag and
data in the first respective locations.

operations, (1) Search, (2) Update/Evict, and (3) Insert when it
receives a (64B) input merged block.

Search: Fig. 7 displays how the STMU searches for a
sub-tag inside an input merged block (that comes from
its corresponding cache) to check for a sub-block hit. The
STMU compares K sub-tags to the input sub-tag in parallel,
similar to how a normal cache performs a search, in order
to determine if there is a sub-block hit or miss. In the case
of a load hit, the 4B data requested is returned. For STMU1,
this data is sent to the L1 cache to be delivered to the core,
which allows the core to remain unmodified. For STMU2
and STMU3, the data is sent to the upper level STMU, i.e.
STMU1 and STMU2, respectively. In the case of a store hit,
the sub-block data corresponding to the located sub-tag is
updated and the returned (stale) data is not used.

Update/Evict: Fig. 8 presents how the STMU updates a
sub-block in a merged block. This occurs when there is a
sub-block load miss and the sub-block data fetched from a
lower level STMU needs to be inserted, or a store miss. If the
merged block is full (all sub-block locations are occupied),
the STMU looks at the K sub-blocks’ metadata to identify
an eviction candidate, using the Least Frequently Used
policy, and replaces it with the new sub-block. Otherwise,
the STMU simply inserts the new sub-block into an empty
location. If there is an eviction candidate and it is dirty, then
it is sent to the lower level STMU.

Insert: Fig. 9 shows how the STMU inserts a new merged
block with a new sub-block in the event that there was
a merge block miss, i.e. the base tag was not present in
the cache. The STMU resets all sub-block tags and data to
zeroes and inserts the new sub-block tag and data into the
first sub-tag and data locations. This insertion of a merged
block could potentially evict a normal (64B) block or another
merged block. If the latter occurs, then the STMU evicts
each of the dirty sub-blocks in the evicted merged block
individually. This can be performed asynchronously with
respect to the memory hierarchy operations on the critical
path of a memory access.

Conceptually, the STMU performs normal cache op-
erations on sub-blocks. These operations incur additional
latencies that add to the existing cache latencies. However,
the extra cycles are significantly outweighed by the many
lower cache-level/DRAM access cycles saved when using
fine-grained accesses to improve cache performance.
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hit (base tag match) followed by an STMU hit (sub-tag match).
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Fig. 11. A request for a PIA can experience a partial hit in the L1 and
miss in STMU1. Therefore, the request goes to the L2 and experiences a
partial hit (inclusive caches). The request is then followed by an STMU2
hit or miss. If there is a hit, the fetched data is sent to STMU1, which
updates the merged block and sends the data to the L1 to be delivered
to the core. If there is a miss, then the request is sent to the L3.

5.3 Cache and STMU Interactions

Many different cache and STMU interactions can take place.
We describe and illustrate common scenarios that occur.

L1 Hit: Fig. 10 illustrates a normal L1 hit vs. a partial
L1 hit that involves the STMU1. (1) L1 Normal Hit: A 4B
request 1 experiences a normal L1 hit 2 because the full
tag was present 3 , so the data is sent to the core 4 . This
access could not have been a PIA and only incurs the L1
access latency (4 cycles — see Tab. 2).

(2) L1 Partial Hit+STMU1 Hit: A 4B request 1 experi-
ences a partial L1 hit 2 because the base tag was present
and the full tag was not. The merged block with the partial
hit is sent to STMU1, which searches for and locates the sub-
tag (hit) 3 and provides the data to the core 4 . This access
was for a PIA and incurs both the L1 access latency and the
STMU1 latency (4+2 cycles — see Sec. 5.7).

L1 Partial Hit+STMU1 Miss: Fig. 11 presents scenarios
that can result from an STMU1 miss. A 4B request 1

experiences a partial hit 2 , but experiences an STMU1 miss
(sub-tag not present) 3 , triggering an L2 access 4 . This
access must be fine-grained due to the partial L1 hit, so it
experiences a partial L2 hit, assuming an inclusive cache 5 ,
and the merged block is sent to STMU2. This access can
either hit 6 or miss in STMU2. The latter results in an access
to the L3, which would result in a partial hit and access to

L1 Miss:

L1 miss, 
req to L2

2

3

insert new 
merged 

block

L2
L2 partial hit

STMU2

STMU2 
hit

insert in L1

64B

64B

4B

STMU1

core
1

4B req

L1

serviced 4B data

4B

6

7

5
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Fig. 12. A request for a PIA results in an L1 miss because the base
tag was not present (and consequently neither was the original tag).
However, the request experiences a partial hit in the L2, which can be
followed by either an STMU2 hit or miss. Following a hit, the requested
sub-block data is sent to STMU1, which creates and inserts a new
merged block with the new sub-block. This merged block is then inserted
into the L1 and the data is delivered to the core.

STMU3. Both scenarios incur the access latencies of the L1
and L2 caches, as well as the latencies of their respective
STMUs (4+2+11+3 cycles).

With an STMU2 hit, STMU1 receives the fetched data
and updates the merged block that experienced the initial
STMU miss 7 . This can result in a sub-block eviction,
which would be handled as an update to STMU2. STMU1
then provides the L1 with the updated merged block 8

and the L1 delivers the requested data to the core 9 .
Note that if the STMU2 hit prevents an L2 (and possibly
L3) miss due to Graphfire’s increased effective L2 capacity,
then it saves 29 cycles (no 34-cycle L3 access) or 229 cycles
(no 34-cycle L3 and 200-cycle DRAM access). The worst-
case access latency when Graphfire is enabled corresponds
to 258 (4+2+11+3+34+4+200) cycles, where the STMUs are
responsible for only 9 (2+3+4). Since Graphfire significantly
reduces DRAM accesses, this worst case occurs much less
frequently.

L1 Miss: Fig. 12 presents scenarios that can result from
a normal L1 miss. A 4B request 1 experiences an L1 miss
(both base and original tag not present), so it accesses the
L2 2 . Either a partial hit 3 , normal hit (before bypassing
has been enabled), or L2 miss (both base and original tag
not present) followed by an L3 access occurs. If a normal L2
hit occurs, then the data is propagated up the hierarchy and
delivered to the core. If a partial L2 hit occurs, the STMU2
access can result in a hit 4 or miss, which is followed by an
L3 request. If an STMU2 hit occurs, STMU1 creates a new
merged block (since the base tag was missing in the L1)
and inserts the sub-block from STMU2 5 . This new merged
block is then sent to the L1 6 , which can evict a normal
or merged block. If a merged block is evicted, then STMU1
asynchronously handles the eviction of the individual sub-
blocks. The L1 delivers the requested data to the core 7 ,
creating a 20-cycle (4+2+11+3) access. Again, STMU hits
prevent memory accesses that would access lower cache
levels and potentially DRAM in a conventional hierarchy,
shortening many access latencies despite STMU overheads.
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Fig. 13. Speedup comparisons for varying LLC flex-tag bits, normalized
to 1 flex-tag bit. On average, 2 bits is most performant; it strikes a
balance between mapping flexibility and sufficient sub-block storage.

5.4 Predicting PIA Reuse
Graphfire retains high-reuse PIAs via frequency-based re-
placement. Thus, each sub-block maintains a frequency
count. A normal cache requires additional data to support
high frequency counts, but the STMU allows flexible storage
within the data block. Thus, additional bits are used for
the frequency counts at the expense of a sub-block. Stor-
ing one less sub-block per merged block incurs negligible
performance loss and 6 frequency bits per sub-block main-
tains sufficiently high counts to distinguish between PIAs
with variable reuse for graphs of varying sizes (Sec. 7.7).
At the sub-block level, this incurs no additional hardware
overhead, so FBR is used for any sub-block eviction. At the
block level, 6-bit counters only require about 1% overhead.

5.5 Flex-Tag Size
The number of flex-tag bits, k, determines the increase in
the number of sub-blocks that can share the same block, e.g.
k = 2 yields 4x more mapping flexibility. Furthermore, since
each cache level has different index bit mappings, different
sub-blocks in each level can compose a merged block, simi-
lar to how cache sets contain different normal blocks in each
level. Merged blocks in different levels simply have different
sub-block metadata, which is handled by the STMUs. Thus,
the L1, L2, and L3 values of k are independent of each other;
they simply determine the mapping flexibility at each level.

A larger flex-tag provides greater flexibility, but increases
sub-tag size, which decreases the number of sub-blocks that
can fit in a block. To study this trade-off, we varied the
number of flex-tag bits in the LLC (has the greatest impact
on performance due to its size). For design simplicity, we
maintained the same base tag size across all 3 levels and
adjusted k in the L1 and L2 based on the LLC parameter.
Fig. 13 presents speedup comparisons of Graphfire oper-
ating with different LLC flex-tag sizes, where runtimes are
normalized to the configuration with 1 LLC flex-tag bit. 2
flex-tag bits (and therefore 7 in L1 and 4 in L2) is consistently
the most performant across multiple application and input
combinations (described in Sec. 6), as it strikes an effective
balance between mapping flexibility and sub-block storage.

5.6 Cache Coherence
Graphfire maintains coherence at full block granularity,
similar to prior works [21], [44]. This design decision avoids
modifications to the coherence protocol and maintains the
directory’s operations for normal blocks. When the directory
receives a coherence request for a merged block, it queries
the STMUs (corresponding to sharers of the block) to per-
form sub-block coherence updates. Coherency state bits of
sub-blocks are embedded in their metadata, so the STMUs
can encapsulate all sub-block coherence operations without

impacting the directory capacity or structure. Thus, the only
necessary directory modification is the addition of a fine-
granularity bit f per cache block, similar to the caches.

Upon a cache miss, the lower level STMU(s) provide
the sub-block to insert. The STMU provides the sub-tag,
which is appended to the base-tag to form a full tag for
directory lookups. STMUs perform fine-grained invalida-
tions/updates if a sub-block’s address has been modified
by another core. As STMUs perform all operations on sub-
blocks, Graphfire does not add complexity to the coherence
protocol for managing sub-blocks nor any new messages or
states, and does not increase cache coherence traffic.

In-cache directories (even if sparse) pose no issues. Say
a core C2 reads from a fine-grained address cached by
core C1 (in S state). To add C2 to the sharer’s list, its L1
cache controller queries the directory (in L3), sees the full
block in S state, and adds C2 to the list (using a pointer
if directory is sparse). The directory does not know if the
address is cached in a normal or merged block in C2’s L1.
If C1 later writes to that address, it experiences a partial hit
and its STMU1 upgrades the sub-block coherency state from
S to M (metadata update). The directory sends invalidations
to all sharers, including C2 (as normal). When C2’s L1
receives the invalidation, it experiences a partial hit and its
STMU1 invalidates the sub-block (metadata update). In the
directory, the full block state changes from S to I (as normal).

5.7 STMU Overheads

We used Cacti v7.0 [28] to obtain upper bound estimates
for area, power, and timing. Each STMU resembles a very
small, 64B total, fully-associative cache (a mere 0.19% of the
32KB L1 storage). We conservatively modeled 16 ways, each
containing a 4B sub-block (Fig. 7) and measure the STMU
area to be 0.0065mm2 (3.3% of the L1 area). Caches mod-
ifications to support the STMUs are even more negligible
and accounted for in our pessimistic modeling. The dynamic
energy per STMU access is 0.0011nJ (4.65% of the L1 energy).
Lastly, while the access latency of the L1 is 0.6048ns (0.471ns
data + 0.133ns tag), the STMU1 requires 0.187ns. Thus, we
conservatively model the STMU1 latency to be 2 cycles (1-
cycle access + 1-cycle L1 data update), and the STMU2 and
STMU3 latencies as 3 and 4 cycles respectively.

6 METHODOLOGY

Applications: This work analyzes three of the most wide-
spread graph processing primitives [8], [10], [38]: (1) BFS,
(2) SSSP, and (3) PageRank (listed in Tab. 1). All naturally
and efficiently fit the graph processing model (Fig. 1) and
thus are bottlenecked by PIAs. Our evaluation uses imple-
mentations from the competitive graph DSL, GraphIt [45].
For PageRank, we study both the push-based, work-efficient
(PRD) and pull-based, topological implementations (PR).

To measure the predictor’s ability to adapt to worklist
and working set changes, we also evaluate graph kernels in
the context of three multi-phase workloads: (1) Direction-
Optimizing (DO) BFS [8] is a state-of-the-art BFS imple-
mentation that alternates between pull- and push-based
phases to minimize the edges traversed in each iteration.
(2) Graph-Sparse and (3) Graph-Dense mimic modern data



IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , 2021 9

Kron LiveJ Ork Pok Wiki Avg Kron LiveJ Ork Pok Wiki Avg Kron LiveJ Ork Pok Wiki Avg Kron LiveJ Ork Pok Wiki Avg0.75
1.0

1.25
1.5

1.75
2.0

Sp
ee

du
p

LRU DRRIP SHiP-PC Hawkeye DBR Fine-Grained Graphfire

BFS SSSP PR-Delta PR
Fig. 14. Speedup comparisons of Graphfire with state-of-the-art and graph-specialized cache management policies. Through automatically
identifying PIAs and exploiting synergies between its techniques, Graphfire significantly outperforms all prior cache management policies without
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TABLE 2
OoO vs. In-Order Core Models and Memory Hierarchy Parameters

Parameter OoO In-Order

Issue Width 4 1
Instr. Window/ROB/LSQ 128 / 128 / 128 -
Branch Prediction Gshare [25] Gshare [25]
Frequency / Tech. Node 2GHz / 22nm 2GHz / 22nm
Area (mm2) 4.5 0.47

Memory Hierarchy Parameters

L1 32KB / Private / 8-way / 4-cycle latency
L2 256KB / Private / 8-way / 11-cycle latency
L3 single-core: 2MB / Private / 16-way / 34-cycle latency

multi-core: 512KB/core / Shared / 16-way / 34-cycle latency
STMUs 2-cycle (L1), 3-cycle (L2), 4-cycle (L3) latency
DRAM DDR3L / 24 GB/s BW / 100ns latency

analytic workloads, e.g. Graph Neural Networks [40], com-
prised of graph traversals to gather node/edge features for
sparse (SPMV) or dense (SGEMM) matrix processing.

Datasets: Graph application behavior highly depends on
input. We select a synthetic power-law Kronecker network
that enables quantitative analysis with different data char-
acteristics and also real-world inputs, i.e. social and web
networks from LiveJournal, Orkut, Pokec, and Wikipedia,
to demonstrate our contributions in a practical setting. The
data footprint of each input is much larger (50−100×) than
the LLC size. Tab. 1 specifies the inputs and their properties.

Simulator: We utilize MosaicSim [24], a cycle-driven
simulator for hardware-software co-design explorations
and heterogeneous systems. MosaicSim has been validated
against real systems and enables detailed analysis for mem-
ory hierarchy tailoring to graph application access patterns.
We configured it to use DRAMSim2 [30].

System Parameters: Our evaluation mainly focuses on
in-order cores to highlight Graphfire’s efficacy and per-
formance achieved even with simple, low-power systems.
However, our techniques are core-agnostic and we demon-
strate this with a (Haswell-like) out-of-order core model.
Tab. 2 presents the two evaluated core models (top) and
modeled memory hierarchy (bottom). All evaluated systems
have a streaming prefetcher for the L1. In multi-core config-
urations, the LLC has a static NUCA design with a 512KB
local bank per core.

Replacement Policies: We evaluate Graphfire against the
following state-of-the-art and domain-specialized policies:

DRRIP [18] targets mixed access patterns, where ref-
erences can have a near-immediate or distant re-reference
interval. DRRIP performs set dueling to apply SRRIP, a scan-
resistant policy that prioritizes references with longer or no
reuse distances for replacement, or BRRIP, a thrash-resistant
policy that aims to keep the working set in the cache.

SHiP [39] learns re-reference intervals of a signature, e.g.
PC, memory region, or instruction sequence. By tracking
saturating re-reference counters that are updated based on
per-signature hits and misses, SHiP learns which signatures
have an immediate or distant re-reference interval. We focus
on SHiP-PC, which most closely relates to the RRT.

Hawkeye [17] leverages a Belady’s algorithm variant to
predict whether a LLC reference is cache-friendly or not.
By using access pattern history, Hawkeye learns individual
reference behaviors to determine which ones benefit from
caching. It then prioritizes cache-averse lines for eviction
knowing (based on history) which lines’ lifetimes overlap.

GRASP [15] introduces domain-specialized cache man-
agement for graph analytics. It correlates PIA reuse to vertex
degree and leverages RRIP to make replacement decisions.
GRASP relies on software reordering to identify groups
of high-degree vertices and rearrange them together, while
the hardware knows where high-degree vertices are stored.
GRASP is implemented on top of Degree-Based Group-
ing (DBG) [14]. To evaluate hardware-only degree-based
replacement (DBR), we model GRASP without software
reordering and annotate each PIA with its vertex degree. For
each cacheline accessed by PIAs, insertion and hit policies
are based on the degree of the vertex most recently accessed. In
practice, annotations incur additional storage and accesses,
but this idealized model evaluates DBR without software
reordering.

Fine-Grained We model the baseline with LRU and
4B cachelines to evaluate fine-grained access effects in the
absence of Graphfire’s other policies.

7 RESULTS

7.1 Application Speedups

Fig. 14 compares runtime performance speedups (normal-
ized to LRU) between Graphfire, DRRIP, SHiP-PC, Hawk-
eye, and individual replacement and fetch techniques DBR
and Fine-Grained. Graphfire outperforms all state-of-the-
art techniques, achieving up to a 1.79× speedup (geomean
1.3×) over LRU, while prior techniques have negligible
improvements. This is because these techniques focus on
the binary problem of immediate vs. distant re-reference
interval prediction instead of variable fine-grained access
reuse. While DRRIP makes replacement decisions based on
individual cacheline accesses, it does not learn different
access patterns and its operations are too coarse-grained
for the PIAs. SHiP-PC learns which PCs are associated with
immediate re-reference intervals (PSAs), but treats all PIAs
equally because they share the same PC. In fact, SHiP-PC
prioritizes them all for eviction due to their irregularity even
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Fig. 16. Comparisons between average percentages of “hot” (high-
reuse) vertices retained in the LLC (left) and percentages of PIA misses
saved in the LLC (right). Graphfire retains significantly more “hot” ver-
tices and consequently saves significantly more PIA misses compared
to prior techniques.

though many of them benefit from being retained in the
cache. Hawkeye faces the same problem and requires more
hardware to support its history-based learning.

DBR tailors its replacement policy to variable PIA reuse
by prioritzing low-degree vertices for eviction, but wastes
cacheline space with coarse-grained PIAs and allows all
accesses, both streaming and indirect, to thrash in the LLC.
The fine-grained baseline also suffers from a lack of data-
aware caching, as cache-friendly PSAs experience perfor-
mance degradation and occupy the LLC, which removes
available space for the PIAs. Thus, tailored fetch, insertion,
and replacement policies are not effective if applied individ-
ually, especially when they are not data-aware. Graphfire
attributes its significant performance gains to both learning
distinct access patterns and optimizing for the PIAs by ex-
ploiting synergies between its graph-specialized techniques.

7.2 Effects of Graphfire’s Cache Policies
Fig. 15 illustrates how Graphfire’s composition of tailored
fetch, insertion, and replacement policies is key to improv-
ing graph analytic performance. First, the STMU enables
fine-grained fetch (F) for the PIAs to improve cache uti-
lization. Data-aware insertion (I) addresses LLC interference
by reserving the cache for PIAs. Lastly, frequency-based
replacement (R) for fine-grained sub-blocks leverages the
opportunity (provided by F+I) for per-vertex specialization
to accommodate the variable reuse exhibited by PIAs. Each
policy builds on the prior for significant performance gains.

Last-Level Cache Utilization: Improved LLC utilization
is necessary for Graphfire’s performance gains. We measure
utilization as the percentage of cacheline data accessed be-
fore the line is evicted. Graphfire cannot achieve 100% uti-
lization due to metadata storage for the STMU, but achieves
67.18% on average (max. possible is 68.75%). Its techniques
together to fit more PIAs in the LLC. Prior works suffer
because they achieve only 7.04% utilization on average.

High-Degree PIA Retention: To evaluate Graphfire’s
ability to retain high-reuse PIAs, we define a “hot” vertex

as one of the N most frequently accessed, where N ver-
tices fit in the LLC (524288 4B-vertices fit in 2MB). This
quantifies how well Graphfire caches such vertices. Fig. 16
(left) compares the average percentages of “hot” vertices
retained. Graphfire’s techniques together retain up to 49.6%
(avg. 29.9%), outperforming prior works while only using
68.8% of cachelines. This highlights that FBR succeeds when
specialized fetch and insertion increase the effective LLC
size.

PIA Miss Rate Reduction: Graphfire’s primary goal is
to improve performance through PIA specialization. Fig. 16
(right) highlights that Graphfire on average reduces 21.7%
of PIA misses in the LLC, while prior works are not nearly as
successful. Graphfire thus achieves up to a 3.92× reduction
(geomean 1.83×) in DRAM accesses, which improves mem-
ory bandwidth efficiency by up to 2.28× (geomean 1.41×).
Graphfire can synergize with aggressive latency tolerance
approaches, e.g. prefetching, by alleviating bandwidth con-
sumption to provide additional performance improvements.

7.3 Scalability

When bandwidth is limited in a multi-core system, many
latency tolerance mechanisms suffer. Fig. 17 compares the
average bandwidth usages (GB/s) (top) and performance
speedups (bottom) of Graphfire and LRU on the Kronecker
network (we focus on this input to avoid redundancy)
when scaling from 1-64 cores, normalized to LRU. With
more cores, both techniques exploit more memory-level
parallelism (MLP), consuming more bandwidth.

While both techniques demonstrate performance im-
provements due to MLP, LRU nears the memory bandwidth
limit of 24 GB/s at 64 cores, limiting its scalability, while
Graphfire reduces DRAM accesses to be more bandwidth-
efficient. Graphfire not only consistently outperforms LRU
despite synchronization overheads, but also scales with
more parallelism. With 64 cores, it achieves up to a 71.3×
speedup (geomean 63.3×) over the single-thread baseline,
while LRU achieves up to 64.9× (geomean 47×).

7.4 Software Reordering

Software reordering aims to exploit structural properties
of graphs to improve locality. Sophisticated techniques re-
quire many application executions to amortize preprocess-
ing costs [5]. Even lightweight techniques, e.g. DBG [14],
are less effective when a fraction of the graph is traversed.
Search algorithms, e.g. BFS, traverse the graph until they
find desired data. In such cases, reordering can be costly, es-
pecially if the graph is very large. Graphfire as a hardware-
based alternative avoids such preprocessing costs.
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Fig. 17. Average BW (top) and speedup (bottom) comparisons between Graphfire and LRU when scaling from 1 to 64 cores on the Kron input. All
speedups are normalized to single-thread LRU performance. As LRU reaches the BW limit, it stops reaping benefits from memory-level parallelism
and its scalability suffers. Meanwhile, Graphfire performance gains scale due to its improved bandwidth efficiency, offering more improvements with
more parallelism.
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Fig. 20. Speedup comparisons of Graphfire with state-of-the-art on
multi-phase applications. Graphfire accelerates sparse phases without
degrading dense phases, yielding significant speedups overall.

Fig. 18 compares Graphfire to DBG software reordering
and GRASP, whose replacement policy heavily relies on
DBG. All runtimes were measured when the application
runs on its densest and most representative frontier, with
performances normalized to LRU. When factoring in pre-
processing costs, Graphfire outperforms both reordering-
based techniques, achieving up to a 1.52× speedup (ge-
omean 1.21×) over DBG, while GRASP does not offer
significant improvements over DBG. In some cases, reorder-
ing even hurts performance. Graphfire’s locality predictor
identifies PIAs with 100% accuracy even with a reordered
graph, as no reordering scheme can consistently utilize at
least 50% of cachelines similar to streaming contiguous
PIAs. However, Graphfire’s cache policies are designed for
PIAs with poor locality, so it does not make sense to incur
the cost of reordering and use Graphfire.

7.5 Adaptability

Graphfire’s techniques are agnostic to the core model. Fig. 19
shows that Graphfire offers significant speedups over prior
works in an OoO setting (solid colored bars), achieving
up to 1.6× speedup (geomean 1.2×). Graphfire offers im-
provements on top of OoO core structures, e.g. wide issue
queues, ROBs, and LSQs, but as pointed in [6], these struc-
tures are underutilized when executing graph applications.
To explore a more area-efficient configuration, we trade
these structures for greater MLP and perform an equal-area
speedup comparison between 8 in-order cores and 1 OoO
(Tab. II). Thus, Fig. 19 compares to Graphfire running on 8
in-order cores with all runtimes normalized to 1 OoO with
LRU. The in-order configuration is the most performant,
achieving up to a 2.45× speedup (geomean 1.71×).

General-Purpose Workload Performance: Graphfire tar-
gets sparse and irregular graph analytic workloads that
lack spatial locality. Therefore, its techniques are specifically
designed for fine-grained memory accesses and naturally
are not expected to be amenable to traditional, cache-
friendly applications. We evaluate our approach with the
entire Parboil benchmark suite [34], SPEC2006 workloads,
and additional sparse linear algebra applications SPMM and
Sparse-Dense Hadamard Product (SDHP) [36]. Four work-
loads, MRI-Q, SAD, SGEMM, and TPACF, experience no
performance effects and three workloads, CUTCP, SPMM,
and SDHP, experience < 10% slowdowns relative to LRU.
The remaining workloads experience 22-88% performance
slowdowns. These slowdowns arise because the RRT is not
currently designed to recognize all (cache-friendly) memory
access patterns, though it could be combined with prefetch-
ers to become more robust. For applications with varying
amounts of cache-friendly locality, Graphfire should simply
be disabled as described in Sec. 3.1, or their performances
can suffer.
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Fig. 21. Speedup comparisons of Graphfire with graph-specialized
prefetcher DROPLET (all on an OoO core). Graphfire significantly out-
performs DROPLET, which has low prefetch accuracy for PSAs used to
prefetch PIAs.

Multi-Phase Adaptation: Graphfire still retains high
performance for many dense workloads at low area, un-
like prior graph acceleration work. This is useful for
graph analytic kernels that involve dense computations,
e.g. over vertices. To evaluate the RRT’s robustness and
adaptability in these scenarios, Fig. 20 compares Graphfire
to prior techniques on multi-phase applications DO BFS,
Graph+Sparse, and Graph+Dense. Graphfire outperforms
all prior techniques across the board, achieving up to a
1.61× speedup (geomean 1.22×). DO BFS begins and ends
with work-efficient push-based phases, but primarily has
bandwidth-efficient pull-based phases that exhibit more lo-
cality. Graph+Sparse and Graph+Dense alternate between
graph (SSSP) and matrix (SPMV/SGEMM) computations on
a per-vertex basis. The RRT identifies all primary access
patterns accurately and quickly adapts to worklist and
working set changes. Graphfire targets graph phases (and
improves sparse phase cache utilization) without harming
dense phases, ultimately benefiting multi-phase and co-
located workloads.

7.6 Prefetching
Pattern-based prefetchers for temporal access sequences and
spatial locality prediction [11], [20] do not target PIAs. Re-
cent work explored pointer-based prefetching for irregular
accesses [32], [42], but these works struggle with variable
indirect access patterns in graph applications or require
significant training. Even graph-tailored prefetchers [2], [3],
[6] struggle with timeliness and accuracy due to varying
amounts of computation and control flow.

Fig. 21 compares Graphfire (with and without the base-
line L1 stream prefetcher) to DROPLET [6] a state-of-the-
art data-aware decoupled prefetcher for graph analytics. By
using an L2 streaming prefetcher for PSAs, it aims to fetch
PIAs early. Because DROPLET’s design is informed by OoO
execution characterizations, we measure all runtimes using
1 OoO and normalize to no prefetching. Both Graphfire
configurations consistently outperform DROPLET, which
averages 63.3% streaming access prefetch accuracy that
harms PIA prefetch accuracy. Prefetching does not reduce
DRAM access frequency. In contrast, Graphfire reduces the
frequency and latency of PIAs without requiring invasive
hardware specializations, e.g. to support address calculation
and address snooping modules, and prefetch buffers. These
overheads far surpass Graphfire’s, e.g. [3] uses full in-
order cores (orders of magnitude larger than STMUs) as
programmable prefetchers.

7.7 Sensitivity to Graph Size
To evaluate Graphfire’s performance on varying graph sizes,
Fig. 22 compares the percentages of “hot” vertices retained
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Fig. 22. Comparisons between “hot” PIA retention percentages in the
LLC for Kron networks of varying sizes (x-axis shows PIA footprint,
which is always larger than LLC capacity). Graphfire always caches hot
vertices better.

by LRU and Graphfire as Kronecker networks grow in size
from 220−224 nodes (400MB - 7GB) whereas the LLC always
stores 2MB. Graphfire consistently demonstrates significant
improvements over LRU and all state-of-the-art approaches,
which perform similarly (not shown due to space). For all
application/dataset pairs, Graphfire advances state-of-the-
art and yields speedups ranging from 1.11 − 1.79×. These
speedups attribute to Graphfires improvement of cache uti-
lization, which fits many more PIAs in the LLC, lowers the
probability of PIAs thrashing the cache, and retains a much
greater fraction of the hot PIAs regardless of the graph size.

With larger graphs, it is more difficult for counters to
learn access frequencies. Massive graphs are very chal-
lenging for any caching technique; e.g. using a 2MB LLC
in this experiment to cache 64MB of PIAs (from a ∼7GB
graph) leads to thrashing amongst the PIAs alone. However,
Graphfire’s alleviates thrashing effects with more success
than state-of-the-art caching policies. Multi-core architec-
tures are most suitable for such large graphs where the reuse
distances between vertices consistently exceeds the cache
capacity. With these systems, Graphfire can leverage their
aggregate LLC capacities to yield even more improvement.

8 DISCUSSION

Adaptive Cache Lines: In other domains, accesses may
benefit from varying sub-block sizes. The STMU’s flexible
design can manage sub-block sizes beyond 8B via a “gran-
ularity” bit in each merged block’s metadata (the g bit in
Fig. 7-9). By allocating more than 1 bit to this field, the STMU
can support more sub-block sizes, e.g. {4B, 8B, 16B, 32B}.

Prefetch-Aware Caching: Graphfire offers opportuni-
ties for additional performance improvements via prefetch-
ing. For example, an indirect memory access prefetcher,
e.g. IMP [42], can interface with the STMU to cache
more prefetches and consequently eliminate more PIA cold
misses. Domain-specific prefetchers can also synergize with
the RRT to identify spatial locality non-speculatively and
further enhance locality prediction.

9 RELATED WORK

Cache Partitioning: Many techniques aim to improve cache
utilization by reserving different parts of the cache for
different threads, cores, or applications [9], [12], which is
beneficial for simultaneous workload execution. Graphfire
instead tailors its insertion scheme at a finer granularity
to focus on heterogeneous access patterns within a single
graph application. XMem [37] dedicates partial or full cache
areas to blocks with high-reuse so they cannot be evicted
by other accesses. This is only practical when all high-reuse
blocks fit in the cache. Large graphs with thousands of high-
degree vertices require more than the LLC capacity.
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Partial Cachelines: Several works tailor to spatial local-
ity [21], [44] by offering complex designs or high metadata
overheads to support a wide range of cacheline sizes. Tag-
split cache [23] divides tags to support coarse and fine-
grained accesses for GPGPUs, but incurs area overhead to
store partial cacheline tags. Decoupled sector caches [31]
share tags between cachelines from different sectors. Graph-
fire avoids tag sharing with hierarchical tags. IMP [42]
focuses on PIAs, but requires partial cachelines to remain
continuous, limitating their performance gains.

Cache Replacement Policies: Sophisticated variants of
LRU, LFU, RRIP, and other cache efficiency metrics [18],
[29], [43] rely on static metrics that do not adapt well to
varying, distinct access patterns and especially the variable
reuse of PIAs in graph analytics. More recent approaches
aim to learn varying access patterns through history-based
techniques or via machine learning [19], [33], [35], which
can require long, computationally intensive offline training.
Unfortunately, even intelligent learning schemes can be inef-
fective for graph applications as PIAs rarely, if ever, exhibit
patterns to learn, making such policies potentially costly.
Graphfire instead exploits synergies between PIA-tailored
policies to non-speculatively focus on problematic accesses.

P-OPT [4] proposes an architecture solution that uses
the transpose of a graph’s adjacency matrix, referred to as
the Rereference Matrix, to implement Belady’s MIN replace-
ment policy. Constructing the Rereference Matrix incurs
a preprocessing cost, while Graphfire remains software-
agnostic. Furthermore, Fig. 14 and 15 demonstrate that
replacement alone offers limited speedup, as even an op-
timal policy cannot prevent high-reuse PIAs from being
evicted if too many (more than the associativity) map to
the same set. Improving cache utilization is key to creating
more performance opportunity for tailored replacement.

Graph-Tailored Memory Hierarchies: Domain-specific
memory subsystem designs augment hardware with spe-
cialized engines or accelerators. These modules perform
computations or alter traversal scheduling to exploit power-
law properties or graph locality [1], [26], [27]. As a result,
such approaches require significant hardware modifications
within the caches themselves, as well as ISA changes, which
are difficult to implement in general-purpose systems.

10 CONCLUSION

This work presents Graphfire, a flexible, fully hardware-
based memory hierarchy approach that learns and op-
timizes for irregular accesses in graph applications. By
leveraging the key observations that PIAs require special-
ized treatment, can be identified in hardware, and have a
subset that benefit from caching, Graphfire learns distinct
memory access patterns on a per-PC basis to identify PIAs
and synergizes data-aware fetch, insertion, and replacement
policies tailored to them. This results in considerable perfor-
mance improvements and bandwidth efficiency over state-
of-the-art techniques, allowing graph applications to scale
on general-purpose, multi-core, shared-memory systems,
where software can run quickly and unchanged. This work
is a timely contribution for big data processing, as graph
algorithms at the heart of data analytics must keep up with
ever-growing modern network trends.
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