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Abstract

We make use of the complex implicit representation in order to
provide a deterministic algorithm for checking whether or not two im-
plicit algebraic curves are related by a similarity. The algorithm has
been implemented in the computer algebra system Maple 2016. The
implementation can be freely downloaded from the webpage of one of
the authors. Examples and evidence of the good practical performance
of the algorithm are given.
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1 Introduction

We say that two algebraic curves are similar when there is a similarity,
i.e. the composition of an isometry and a scaling, transforming one into
the other. In other words, two curves are similar when they have the same
shape, excepts perhaps for the position and the size. In this paper, we ad-
dress the problem of checking whether or not two given algebraic curves are
similar, under the assumption that the coefficients of the curves are rational
numbers of elements of an algebraic extension (and therefore given in exact
arithmetic). For this case, we provide a symbolic, therefore deterministic,
algorithm to solve the problem. In the affirmative case, our algorithm can
also find the similarities transforming one curve into the other.
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The motivation for addressing this problem comes from computer alge-
bra systems. Assume that a database of classical curves is stored in your
favourite computer algebra system. Using the algorithms in this paper, the
system can recognise a certain curve introduced by the user as one of the
curves in the database. For instance, a user of a Dynamic Geometry pack-
age can be interested in checking whether a curve resulting from a certain
construction is, say, a cardioid, a lemniscata, an epitrochoid, a deltoid, etc.

In order to solve the problem, we use the complex representations of
the curves to be compared. Complex representations have already been
used in [23, 25], where the pose-estimation problem is addressed, and in
[13], where the computation of the symmetries of an algebraic planar curve
is studied. In [23] the complex representation is exploited and combined
with numerical strategies in order to give a solution to the problem. In
[25] the transformation to be sought is decomposed into a rotation, which is
approached in a deterministic way, and a translation, which is approximated.
The approach in [13] is deterministic, but they treat a different problem.
In our case, we use the complex representation of the curves to translate
the problem into a bivariate polynomial system of equations with complex
coefficients. Furthermore, except in certain singular cases we can also add
a univariate equation to the system (corresponding to the rotation angle),
which allows to solve the system in a fast and efficient way.

Our problem is related to some applied fields, and in fact some of the
above references appear in these fields. For instance, a central problem in
Pattern Recognition is to classify a given object. If the object to be studied
is represented by a curve, the problem reduces to comparing this curve
with other curves, previously classified and stored in a database. But this
comparison must be carried out up to a similarity. In Computer Vision we
find a close problem, called pose estimation, which has to do with identifying
a certain object in a scene. Geometrically, the problem is equivalent to
recognising a same object in two different positions. In turn, this amounts
to checking if two objects are the same up to the composition of a translation
and a rotation, so that the scaling factor does not change. The problem also
appears in Computer Aided Geometric Design, since recognising similarities
or even partial similarities in an image allows to reduce the amount of space
needed to store it.

In the above references the input is typically a noisy image, sometimes
with occluded parts, and quite often a point cloud; a common strategy is to
adjust first an algebraic curve to the input, so that the comparison is carried
out between algebraic curves that approximate two objects to be compared.
The strategies used so far to solve the problem for algebraic curves are very
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diverse: B-splines [12], Fourier descriptors [20], complex representations [23],
Möebius transformations in the parameter space [1], statistics [8, 14, 16]
(also in the 3D case), moments [21, 24], geometric invariants [26, 28, 29],
Newton-Puiseux parametrizations [19], or differential invariants [4, 5, 27].
The interested reader may consult the bibliographies in these papers to find
other references on the matter; the list is really very long.

Compared to these strategies, besides complex representations, we also
employ usual tools in the field of computer algebra, like resultants, gcds
and polynomial system solving. Our method has been implemented in the
computer algebra system Maple 2016; the code can be freely downloaded
from [9]. Our experiments confirm that the algorithm is efficient and fast.

It is worth, however, to compare our results with those of two recent
papers, namely [11] and [3]. In the case of [11], the authors also consider
a deterministic point of view to solve the more general problem of checking
whether two rational curves, in arbitrary dimension, are related by an affine
or projective transformation. However, the implicit case is not addressed in
[11]. In [3], the problem of deterministically finding the symmetries of a given
implicit algebraic curve or the similarities relating two given algebraic curves
is investigated using certain properties and harmonic functions, in special the
fact that the Laplacian operator commutes with orthogonal transformations.
We can emphasize three main differences between our paper and [3]: (1)
our algorithm is fully implemented in the computer algebra system Maple,
and the implementation can be downloaded and freely used from [9]; even
though the ideas in [3] are sound and fast, a complete implementation is
not available. (2) The algorithm in [3] is not easy to adapt for curves with
approximate coefficients, i.e. with floating point coefficients; even though a
complete analysis of the case of curves with approximate coefficients is out
of the scope of this paper, we believe that our algorithm is better suited
for that. (3) The algorithm in [3] cannot be adapted to the more general
problem of checking whether or not two given implicit algebraic curves are
related by an affine, non-necessarily orthogonal, transformation, since the
Laplacian operator does not commute with non-orthogonal transformations.
Our algorithm, however, is again better suited for that, even though, again,
a complete analysis would require a separate paper.

The structure of the paper is the following. Preliminaries are introduced
in Section 2. In Section 3 we give an overview of the method, and show
how to perform the first steps. In Section 4 we provide the algorithm itself.
Details of the experimentation carried out in Maple, as well as examples and
timings are provided in Section 5. Our conclusions and some future lines of
work are provided in Section 6. Additionally, the paper has one appendix,
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where we provide the proofs of several tehnical results in the paper.

2 Preliminaries.

We consider two plane algebraic curves C1 and C2 implicitly defined by two
real, square-free polynomials (i.e. without irreducible factors of multiplicity
higher than one) f(x, y) and g(x, y) of the same degree n, with coefficients in
a field K, where K is either Q or an algebraic extension of Q. Additionally,
we will assume that all the irreducible factors of f, g define real curves,
i.e. curves with infinitely many real points. Thus, a curve like f(x, y) =
(x2 + y2)(x2 − y2 − 1), which has one factor, namely x2 + y2, not defining a
real curve, would be excluded from our study. Finally, we assume that C1, C2
are not either lines or circles. We will justify these assumptions further in
this section. Moreover, we will write

f(x, y) = fn(x, y) + fn−1(x, y) + · · ·+ f0(x, y),

where for p = 0, 1, . . . , n, fp(x, y) represents the homogeneous form of degree
p of f ,

fp(x, y) =

p∑
j=0

ap−j,jx
p−jyj .

Analogously,

g(x, y) = gn(x, y) + gn−1(x, y) + · · ·+ g0(x, y), gp(x, y) =

p∑
j=0

bp−j,jx
p−jyj .

In this paper we will use the complexification of the curves C1, C2 (see [13]).
In more detail, given the mapping (x, y)→ z = x+iy between the Euclidean
plane and the complex line, the inverse of this mapping is

x =
z + z̄

2
, y =

z − z̄
2i

, (1)

where z̄ denotes the conjugate of the complex number z. Using this inverse
map, the polynomial f(x, y) is transformed into F (z, z̄),

F (z, z̄) = f

(
z + z̄

2
,
z − z̄

2i

)
=

= Fn(z, z̄) + Fn−1(z, z̄) + · · ·+ F0(z, z̄),
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where Fp(z, z̄), for p ≥ 1, is a homogeneous polynomial of degree p in the
variables z, z̄, i.e.

Fp(z, z̄) =

p∑
j=0

αp−j,jz
p−j z̄j . (2)

We will refer to F (z, z̄) as the complex implicit representation of C1. One can
check that for p = 0, 1, . . . , n, fp(x, y) gives rise to Fp(z, z̄) and conversely.
We will say that a term in F (z, z̄) has bidegree (n−k, k) if it can be written
as ξ · zn−kz̄k, with ξ ∈ C.

Analogously, applying (1) to g(x, y) we reach G(z, z̄),

G(z, z̄) = Gn(z, z̄)+Gn−1(z, z̄)+ · · ·+G0(z, z̄), Gp(z, z̄) =

p∑
j=0

βp−j,jz
p−j z̄j .

(3)

Definition 1 An affine map h : R2 −→ R2 is a similarity if it is bijective
and there exists a real number r > 0 such that for each pair of points x,y,

‖h(x)− h(y)‖2 = r · ‖x− y‖2

where ‖ · ‖2 denotes the Euclidean norm. We refer to r as the ratio of the
similarity.

Notice that if r = 1 then h is an (affine) isometry, i.e. it preserves
distances. Planar isometries are completely classified [7]. Under the compo-
sition operation, similarities form a group, and isometries form a subgroup of
this group. Furthermore, any similarity can be decomposed into an isometry
and a uniform scaling, where r is the similarity ratio.

Definition 2 Two curves C1, C2 are similar if and only if there exists a
similarity h such that h(C1) = C2.

Notice that Definition 2 implicitly considers C1, C2 as embedded in C2:
indeed, if h(C1) = C2, every real or complex point (x, y) ∈ C1 satisfies
that h(x, y) ∈ C2, and conversely. Thus, for instance the curves defined by
f(x, y) = (x2+y2+1)(x2−y2−1) and g(x, y) = (x2+y2+3)(y2−x2−1) are
not similar according to Definition 2: their real parts are certainly similar
(two mutually orthogonal hyperbolas), but the complex parts do not match.
This is the reason to require that C1, C2 do not have factors defining non-real
curves. Under this assumption, every similarity is, in fact, a similarity of
the real parts of C1, C2.
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Let us justify now why we require that C1, C2 do not have multiple com-
ponents. Under this assumption and since C1, C2 are algebraic, using Study’s
Lemma (see Section 1.3 of [10]) we can translate the geometric property of
being similar into the following algebraic property:

g(h(x, y)) = λf(x, y), λ ∈ R. (4)

However, this translation does not necessarily work if C1, C2 have multiple
factors. Consider for instance the curves defined by f(x, y) = x2(x + 1)y,
and g(x, y) = x(x+ 1)2y. Even though the varieties defined by both curves
are the same, the identity map h(x, y) = (x, y), which is, in particular, a
(trivial) similarity does not satisfy Eq. (4). So we need the assumption
on C1, C2 being square-free to benefit from Eq. (4). Notice that we can
always check whether or not a bivariate polynomial p ∈ K[x, y] is square-
free by checking whether gcd(p, px, py) = 1, where px, py represent the partial
derivatives of p with respect to x, y. For the computation of this gcd when
K is an algebraic extension, the interested reader can check [17].

In particular, since h is affine, Eq. (4) guarantees that f, g have the
same degree, which is another of our assumptions. Finally, we require that
C1, C2 are not lines or circles, because in that case the number of similarities
between them is finite; in particular, if C1, C2 are not symmetric then there
exists at most one similarity mapping one onto the other [1].

A similarity can either preserve or reverse the orientation. In the first
case we say that it is orientation-preserving, and in the second case we say
that it is orientation-reversing. By identifying R2 and C, any orientation-
preserving similarity can be written as h(z) = az + b, where a, b ∈ C. In
the same way, any orientation-reversing similarity can be written as h(z) =
az + b. In each case, the ratio r of the similarity is equal to |a|.

Under our assumptions and taking advantage of Eq. (4), the curves
C1, C2 are related by an orientation-preserving similarity h(z) = az + b, if
and only if there exists λ ∈ R, λ 6= 0, such that

G(az + b,az̄ + b) = λ · F (z, z̄) (5)

Also, C1, C2 are related by an orientation-reversing similarity h(z) = az̄+ b,
if and only if there exists λ 6= 0 such that

G(az̄ + b,az + b) = λ · F (z, z̄) (6)

Notice that in the orientation-preserving case, h(z) = az + b is the
composition of: (1) a rotation around the origin, of angle equal to θ, where
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a = |a| · eiθ; (2) a scaling, where the scaling factor is |a| and the center is
the origin; (3) a translation of vector b. In the orientation-reversing case,
h(z) = az + b is the composition of: (1) a symmetry with respect to the x-
axis; (2) a rotation around the origin, of angle equal to θ, where a = |a| ·eiθ;
(3) a scaling, where the scaling factor is |a| and the center is the origin; (4)
a translation of vector b.

In the following sections, we will focus on orientation-preserving similar-
ies, since this case already captures the main aspects of our approach. The
interested reader can check [2] for further details on the orientation-reversing
case.

3 Overview of the method and first steps.

Equations (5) and (6), with a, λ 6= 0, provide necessary and sufficient condi-
tions for C1, C2 to be similar. In the orientation-preserving case, comparing
the terms in zm−j z̄j , 0 ≤ j ≤ m, 0 ≤ m ≤ n at both sides of (5), we obtain
a polynomial system S, of at most N =

(
n+2
2

)
equations with complex co-

efficients in the variables a,a, b, b, λ. In turn, this yields a real polynomial
system in five variables, λ and the real and complex parts of a and b, of
degree n+ 1, where n is the degree of C1, C2. Then C1, C2 are related by an
orientation-preserving similarity iff this polynomial system is consistent and
has solutions with a, λ 6= 0. This provides a naive way to check if C1, C2 are
related by an orientation-preserving similarity.

In order to improve this approach, we will proceed in the following way:

(i) Compute the rotation: if C1, C2 are related by an orientation-preserving

similarity h(z) = az + b, the curves C(n)1 , C(n)2 , defined by the forms
of highest degree of C1, C2, i.e. the polynomials fn(x, y), gn(x, y), are
related by the (also orientation-preserving) similarity h̃(z) = az. Com-

paring C(n)1 , C(n)2 we can capture the rotation angle θ (see Subsection
3.1). More precisely, calling ω = tg(θ), we can write a = r · (1 + iω).
Furthermore, we can compute a polynomial P such that P (ω) = 0,
i.e. ω is a real root of P . Similarities with θ = π

2 ,−
π
2 must be studied

separately.

(ii) Rewrite the constant λ: by comparing appropriate terms at the left
hand-side and the right hand-side of Eq. (5), we can write λ in terms
of a,a, i.e. in terms of r, ω.

(iii) Rewrite the variable b: again by comparing appropriate terms at the
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left hand-side and the right hand-side of Eq. (5), we can write b in
terms of a,a, i.e. in terms of r, ω.

(iv) Reduction to an advantageous bivariate system: Taking (i), (ii), (iii)
into account, Eq. (5) gives rise to a polynomial system in just two un-
knowns, r, ω, where ω is a solution of a univariate equation computed
in (i). This system can be efficiently solved, thanks to the condition
P (ω) = 0, so the orientation-preserving similarities can be efficiently
computed.

The scheme (i)-(iv) shows the generic situation. Some special situations
must be treated differently. We want to point out that some of the manipu-
lations carried out in (ii) and (iii) are similar, although not identical, to the
ones used in [23, 25].

3.1 Computing the angle.

Let C(n)1 , C(n)2 be the curves defined by the forms fn(x, y), gn(x, y) of highest
degree of the polynomials defining C1, C2. From Eq. (5), we have that

C(n)1 is transformed into C(n)2 by the similarity h̃(z) = az. Furthermore,
since fn(x, y) and gn(x, y) are homogeneous polynomials of degree n, both

C(n)1 , C(n)2 are the union of n possibly complex lines, counted with multiplicity,
intersecting at the origin. Let L1, . . . ,Ln be the lines corresponding to the
curve fn(x, y) = 0, and let M1, . . . ,Mn be the lines corresponding to the
curve gn(x, y) = 0. If C1 and C2 are similar, the Mi’s are the result of
rotating the Li’s about the origin by an angle equal to θ, where θ is the
angle of the rotation involved in the similarity.

Fig. 1 illustrates this idea: in this case, both C(n)1 , C(n)2 are the union of
four real lines, shown in different colors. Lines of the same color at the left
and the right of Fig. 1 are related by h̃(z) = az; the angle θ is also shown.

By comparing the forms fn(x, y), gn(x, y), in general we will find finitely
many values for θ, that need to be tested afterwards. In order to show how
to find these values, let a = |a| · eiθ = |a| · (cos θ + i sin θ), θ ∈ (−π, π].
Whenever cos θ 6= 0, we can write a = r · (1 + iω), where r = |a| · cos θ and
ω = tg(θ). The values where cos θ = 0, i.e. θ = −π

2 ,
π
2 need to be examined

separately.
When cos θ 6= 0 and except in one, exceptional, situation, we can com-

pute a polynomial P satisfying P (ω) = 0, i.e. such that ω is a real root of P .
In order to compute P , let us assume that x is not a factor of either fn(x, y)
or gn(x, y); if x is such a factor, the analysis is easier. Under this assumption,
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Figure 1: Capturing the rotation.

both fn and gn have factors corresponding to lines y = mx. In the case of
fn(x, y), the m’s are the (possibly complex) roots of p(y) = fn(1, y); in the
case of gn(x, y), the m’s are the (possibly complex) roots of q(y) = gn(1, y).
Now θ = γ2 − γ1, where γ1 is the angle formed by one of the Li’s and
the positive x-axis, and γ2 is the angle for the corresponding Mi. Writing
γ2 = γ1 + θ and denoting m = tg(γ1), m̃ = tg(γ2), from the tangent angle
addition formula we get

m̃ =
m+ ω

1−mω
.

Notice that mω 6= 1, because we can assume that we are relating two linear
factors of fn(x, y) and gn(x, y) different from x. Since m̃ is a root of q(y)
and m is a root of p(y), writing

Q(ω, y) := q

(
y + ω

1− yω

)
(7)

and taking the resultant of Q(ω, y) and p(y) with respect to y, we get

P (ω) = Resy (p(y),num(Q(ω, y))) = 0, (8)

where “num” denotes the numerator of the expression in brackets; observe
that by well-known properties of resultants, the degree of P (ω) is n2. Thus,
whenever cos(θ) 6= 0, the real roots of P (ω) are the tentative values for
ω = tg(θ).

One can wonder if the polynomial P (ω) in (8) can be identically zero, in
which case the advantage of having a univariate equation is lost. The answer
is affirmative, as shown by the following proposition, proven in Appendix I.

Proposition 3.1 The polynomial P (ω) in (8) is identically zero iff p(y)
and q(y) are both divisible by y2 + 1.
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The polynomials p(y) and q(y) are both divisible by y2 +1 when fn(x, y)
and gn(x, y) both contain the factor x2 +y2. In fact, the idea behind Propo-
sition 3.1 is that the form x2 + y2 is invariant under any rotation about the
origin.

Remark 1 If fn(x, y), gn(x, y) are not multiples of x2 + y2, we can remove
the factor x2 + y2 from both fn, gn, and proceed as before with the resulting
polynomials. It is only when fn(x, y), gn(x, y) are powers of x2 + y2 that we
cannot compute ω this way.

3.2 Rewriting λ.

The goal here is to write λ in terms of a,a. Since

G(az + b,az̄ + b) = · · ·+ βn−j,j(az + b)n−j(az̄ + b)j + · · · ,

comparing the coefficients of zn−j z̄j at both sides of Eq. (5), we get

λ =
βn−j,ja

n−jaj

αn−j,j
(9)

for any αn−j,j 6= 0. Observe that if we have αn−j,j 6= 0 but βn−j,j = 0 for
some j ∈ {0, 1, . . . , n}, the equality (5) cannot be satisfied, and therefore C1,
C2 are not related by an orientation-preserving similarity. Thus, in the rest
of the paper, whenever αn−j,j 6= 0 we will assume βn−j,j 6= 0. Furthermore
we have the following result, which is also used in [13] and [23].

Lemma 3.1 Let αn−j,j, βn−j,j be the coefficients of the terms of F (z, z̄)
and G(z, z̄) (see Eqs. (2) and (3)). For j ∈ {0, 1, . . . , n} we have αn−j,j =
αj,n−j, βn−j,j = βj,n−j.

A direct consequence of this lemma is that we can always find j ∈
{0, 1, . . . , n− 1} such that αn−j,j 6= 0.

3.3 Rewriting b.

The goal now is to write b (and therefore b too) in terms of a,a. In order
to do this, we compare the coefficients of zn−j−1z̄j for j ∈ {0, . . . , n− 1} at
both sides of (5). The terms of G(z, z̄) contributing to the term zn−j−1z̄j

in G(az+b,az̄+b) are the terms with bidegrees (n− j, j), (n− j−1, j+ 1)
and (n− j− 1, j). After substituting z → az+b, the coefficient of zn−j−1z̄j

at the left hand-side of (5) is

(n−j)βn−j,jan−j−1ajb+(j+1)βn−j−1,j+1 ·an−j−1ajb+βn−j−1,j ·an−j−1aj .
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This expression must be equal to the coefficient of zn−j−1z̄j in λ F (z, z̄),
namely λ · αn−j−1,j . Taking (9) into account and dividing by an−j−1aj ,
we get a linear equation in b, b,a, and conjugating this equation we reach
another linear equation in b, b,a. Together, these two linear expressions
provide the following system:

 (n− j)βn−j,j (j + 1)βn−j−1,j+1

(j + 1)βn−j−1,j+1 (n− j)βn−j,j

 b

b

 =


βn−j,j ·αn−j−1,j

αn−j,j
· a− βn−j−1,j

βn−j,j ·αn−j−1,j

αn−j,j
· a− βn−j−1,j


(10)

Let ∆j = (n− j)2 · |βn−j,j |2− (j+ 1)2 · |βn−j−1,j+1|2. If ∆j 6= 0, then we
can write b in terms of a, i.e. b = η(a,a). In a generic situation, we will be
able to do so. However, the special case when for all j ∈ {0, . . . , n− 1} with
αn−j,j 6= 0, we have ∆j = 0, can occur; we will refer to this case as the ∆-
special case. This special case is characterized in the following result. Here,
let j be the minimum of the j ∈ {0, . . . , n− 1} such that αn−j,j , βn−j,j 6= 0
(observe that j ≤ dn2 e).

Lemma 3.2 Assume that αn−j,j 6= 0 iff βn−j,j 6= 0. The ∆-special case
occurs if and only if |βn−j,j | =

(
n
j

)
·|βn−j,j | for j = 0, . . . , n−1. In particular,

if the ∆-special case occurs, then j = 0.

In fact, in the ∆-special case, whenever C1, C2 are similar the coefficients
of C1 also satisfy the relationships in Lemma 3.2; the proof is given in Ap-
pendix I.

Corollary 3.1 If C1, C2 are similar, |βn−j,j | =
(
n
j

)
·|βn−j,j | for j = 0, . . . , n−

1 if and only if |αn−j,j | =
(
n
j

)
· |αn−j,j | for j = 0, . . . , n− 1.

We want to mention that we were not able to find a geometric charac-
terization of the ∆-special case. It seems to be an algebraic phenomenon,
with an unclear interpretation in geometry terms.

3.4 Self-similarities (i.e. symmetries).

If C1 = C2 = C, we compute the self-similarities, i.e. the symmetries, of the
curve C. However, in this case we can do better. Here a = eiθ, i.e. |a| = 1,
so in the generic case we do not need to make use of the ideas in Subsection
3.1. Indeed, in the generic case we write λ, b, b in terms of a,a as shown in
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the previous subsections, and then we use that a = 1/a. Thus, we have a
collection of univariate polynomials in a, with complex coefficients, and we
just need to compute the gcd of these polynomials. In the ∆-special case,
however, this strategy fails and we must proceed as shown in the following
section.

Additionally, notice that whenever we find more than one similarity be-
tween two different curves C1, C2, then we can deduce that C1, C2 have non-
trivial symmetries. Indeed, if f1, f2 are similarities mapping C1 onto C2, then
f1 ◦ f−1

2 , f2 ◦ f−1
1 are self-similarities, i.e. symmetries, of C1; similarly for C2.

4 Algorithms for computing the orientation-preserving
similarities.

In this section, we will describe the algorithms for solving the problem. In
this sense, we first address the generic situation, and then we consider some
special situations, already mentioned in Section 3.

4.1 The generic case.

In the generic case, the polynomial P (ω) in Eq. (8) is not identically zero
(maybe, according to Remark 1, after removing the factor x2+y2 from both
fn, gn). Furthermore, also in the generic case, there exists j ∈ {0, . . . , n−1}
with αn−j,j 6= 0, where ∆j 6= 0, i.e. we are not in the ∆-special case.

Under these conditions, we separately look for similarities where cos(θ) 6=
0, and similarities where cos(θ) = 0. For the first ones, from Subsection 3.1
we can write a = r · (1 + iω). Additionally, we compute the polynomial
P (ω). Since from Subsection 3.2 we can write λ = λ(a,a), in turn we have
λ = λ(r, ω). Additionally, from Subsection 3.3 we can also write b = η(a,a),
so again we have b = b(r, ω). Replacing λ,a, b in the system S derived from
Eq. (5) by its expressions in terms of λ, ω, we finally reach a bivariate system
in the variables r, ω, which includes the univariate equation P (ω) = 0.

Concerning similarities where cos(θ) = 0, in this case we can write a =
iµ, where µ = |a| · sin θ, and therefore a = −iµ. Therefore, applying the
ideas in Subsection 3.2 and Subsection 3.3 we can write λ = λ(µ), b = b(µ).
Therefore, the system S derived from Eq. (5) turns out to be a system
of univariate equations in µ, with complex coefficients, which can be very
efficiently solved.

We can now state the Algorithm Impl-Sim-General to check similarity
in the general case.

12



Algorithm Impl-Sim-General

Require: Two square-free, implicit algebraic curves f(x, y) = 0, g(x, y) =
0, neither lines nor circles, not in the ∆-special case.

Ensure: Whether or not they are related by an orientation-preserving sim-
ilarity.

1: Compute the system S from Eq. (5).
2: Find j such that αn−j,j 6= 0 and ∆j 6= 0.
3: Find λ(a,a) from (9).
4: Find b = η(a,a) and b̄ = η̄(a,a) solving Eq. (10).
5: Substitute λ := λ(a,a), b := η(a,a), b = η(a,a) in the system S.

[Similarities with cos θ 6= 0:] .
6: Compute the polynomial P (ω).
7: Substitute a = r · (1 + iω) , a = r · (1− iω) , b = η(a,a), b = η(a,a) in
S. Add the equation P (ω) to the system.

8: Check if the system has any solution with r ∈ R, r 6= 0 and ω ∈ R.
9: In the affirmative case, return “The curves are related by an

orientation-preserving similarity”.
[Similarities with cos θ = 0.]

10: Substitute a = iµ, a = −iµ, b = η(a,a), b = η(a,a) in S.
11: Check if the system has real solutions.
12: In the affirmative case, return “The curves are related by an

orientation-preserving similarity”.
13: If no similarities have been found, return “The curves are not

related by an orientation-preserving similarity”.
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4.2 Special cases.

Here we treat two special situations. The first one corresponds to the case
when fn(x, y), gn(x, y) are both powers of x2 + y2. In this case (see Proposi-
tion 3.1 and Remark 1), the polynomial P (ω) is identically zero. However,
in this situation we can still apply Algorithm Impl-Sim-General, omit-
ting the addition of P (ω) = 0 to the system (see Step 7 of Algorithm
Impl-Sim-General). In this case we just proceed to solving the bivari-
ate system in r, ω, although we lose the advantage of having a univariate
equation in the system.

The second special situation corresponds to the ∆-special case. From
Lemma 3.2 in Subsection 3.3, in this case we have j = 0. Furthermore,
αn,0 6= 0 and βn,0 6= 0. Now if αn−1,0 6= 0, then from Eq. (10), with j = 0,
we can write a as a linear function of b, b, i.e. a = ρ(b, b). Let us see
that this requirement can always be fulfilled by means of an appropriate
translation. The proof of the following lemma is provided in Appendix I.

Lemma 4.1 Let T (z) = z + κ represent a translation by κ ∈ C, and let
C̃1 = T (C1). Also, let j ∈ {0, . . . , n − 1}. The coefficient of C̃1 of bidegree
(n− j − 1, j) is

α̃n−j−1,j = αn−j−1,j + κ · (n− j)αn−j,j + κ · (j + 1)αn−j−1,j+1. (11)

As a consequence, if αn−j,j 6= 0 and αn−j−1,j = 0 then for almost all κ ∈ C,
we have α̃n−j−1,j 6= 0.

Since similarities form a group, C1 and C2 are similar if and only if
C̃1 = T (C1) and C2 are similar. Therefore, there is no problem in applying a
translation T on C1. Furthermore, by Lemma 4.1 a random translation will
suffice. Now after replacing C1 by T (C1) if necessary, we can write a and λ
in terms of b and b. Thus the system S can be written in the variables are
b, b. Then the curves are similar if and only if this system has solution with
a 6= 0.

Hence, we have the following algorithm Impl-Sim-Spec to check simi-
larity in this case.

5 Experimentation.

Algorithms Impl-Sim-General and Impl-Sim-Spec have been implemented
in Maple 2016 ([15]). The code is available in [9].
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Algorithm Impl-Sim-Spec

Require: Two square-free, implicit algebraic curves f(x, y) = 0, g(x, y) =
0, neither lines nor circles, satisfying the hypotheses of the ∆-special
case.

Ensure: Whether or not they are related by an orientation-preserving sim-
ilarity.

1: Check whether or not αn−1,0 6= 0.
2: If αn−1,0 = 0 then find a translation T (z) = z + k such that α̃n−1,1 6= 0,

and replace C1 → T (C1).
3: Write a and λ in terms of b, b.
4: Compute the system S from Eq. (5) and substitute the above expres-

sions into S.
5: Check if S has solution with a 6= 0.
6: In the affirmative case, return “The curves are related by

an orientation-preserving similarity”. Otherwise, return
“The curves are not related by an orientation-preserving

similarity”.

5.1 Example I

Let C1, C2 be defined by f(x, y) and g(x, y),

f(x, y) = 15x2y − 40xy2 − 15 y3 + 5x2 + 5xy − 35 y2 + 5x− 5 y + 2

and
g(x, y) = y3 + 2xy2 − x2y − xy − 2x3 + 1.

Both curves are shown in Figure 2. Using Lemma 3.2, one can check that
we fall into the generic case. By applying the algorithm Impl-Sim-General,
we get an orientation-preserving similarity h(z) = az + b with

P (ω) = −125 (ω3+2ω2−ω−2) (448ω6+4416ω5+8880ω4−1920ω3−8880ω2+4416ω−448).

Adding the equation P (ω) = 0 to the system in r, ω obtained from S, we
get

ω = −2, r = 1, λ =

(
− 11

125
− 2 i

125

)
r3 (1 + iω)3 = 1,

a = r(1+ i ω) = 1−2i, b =
17 r

50
− 19ω r

50
− 1

10
+(

71ω r

100
+

11 r

50
+

1

5
)i = 1− i.

The ratio of this similarity is equal to
√

5.
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Figure 2: The curve C1 (left) and a related curve C2 obtained by similarity
(right).

5.2 Example II

Let C1, C2 be defined by f(x, y) and g(x, y),

f(x, y) =
(
13950

√
3− 677538

)
x3 +

(
194892− 696664

√
3
)
x2y −

(
699966

√
3 + 23192

)
x2

−
(
630524 + 208136

√
3
)
xy2 +

(
215376− 413926

√
3
)
xy −

(
222558 + 22108

√
3
)
x

−
(
68990 + 75910

√
3
)
y3 +

(
−301776 + 6722

√
3
)
y2 +

(
43396− 48880

√
3
)
y − 4314

√
3− 20756,

and

g(x, y) =
(
−589 + 235

√
3
)
x3 +

(
−584 + 178

√
3
)
x2y −

(
566 + 187

√
3
)
x2 −

(
372 + 218

√
3
)
xy2

+
(
932− 693

√
3
)
xy +

(
904− 322

√
3
)
x−

(
405 + 345

√
3
)
y3 +

(
231 + 792

√
3
)
y2

+
(
397 + 80

√
3
)
y + 232− 121

√
3.

Both curves are shown in Figure 3. Using Lemma 3.2, one can check that we
fall into the generic case. By applying the algorithm Impl-Sim-General, we
get an orientation-preserving similarity h(z) = az + b with P (ω) of degree
equals 9. Adding the equation P (ω) = 0 to the system in r, ω obtained from
S, we get

ω =
5

6
, r = 6, λ =

1

2
,a = r(1 + i ω) = 6 + 5i, b = 2 + 2i.

The ratio of this similarity is equal to
√

61.
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Figure 3: The curve C1 (left) and a related curve C2 obtained by similarity
(right).

5.3 Performance and comparison with a straightforward method

Algorithms Impl-Sim-General and Impl-Sim-Spec can be unified into one
algorithm that first checks the case we are in, and then executes Algo-
rithms Impl-Sim-General or Impl-Sim-Spec accordingly. We have tested
the performance of our algorithm on 10 classical curves, shown in Table
1. In each case, we consider the curve shown in Table 1, and another
curve obtained from the first one by applying a similarity. Additionally,
we compared the performance of our algorithm with a straightforward (ST)
approach, using Eq. (4) on the algebraic equations of the curves to de-
rive a polynomial system in the unknown parameters of the similarity, plus
the constant λ in Eq. (4). In Table 1 we provide the timing of our al-
gorithm (tour) and the timing of the algorithm using the straightforward
approach (tst-default). In this case, we used Maple’s generic symbolic
solver SolveTools:-PolynomialSystem, with the default option, for solv-
ing polynomial systems. In all the cases, our algorithm could beat the
straightforward approach.

It is interesting to observe that if one specifies engine=groebner, which
is not the default option, in Maple’s SolveTools:-PolynomialSystem solver,
the straightforward method beats our method for degree ≤ 8; we have in-
cluded the timings corresponding to this option in tst-groebner. However,
this is not the case when we consider higher degrees, in particular for the
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Curve Descartes’ Bernoulli’s Epitrochoid Cardioid Hypocycloid
folium lemniscate offset

degree 3 4 4 8 8
tour 0.46 0.39 0.46 2.62 2.37
tst-default 9.37 1.64 33.0 > 1800 > 1800
tst-groebner 0.0623 0.1345 0.07575 0.5632 0.9185

Curve 4-leaf rose 8-leaf rose 12-leaf rose 16-leaf rose 20-leaf rose

degree 6 10 14 18 22
tour 0.75 0.79 1.56 5.67 9.85
tst-default > 1800 > 1800 > 1800 > 1800 > 1800
tst-groebner 0.2499 1.41155 7.189750 18.9005 54.5491

Table 1: Average CPU time (seconds) of the algorithms for well-known
curves.
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roses of 8, 12, 16 and 20 petals. In particular, one can see that the increase
in the timing is more uniform in our method, while for the straightforward
method there seems to be a jump in the computation time, even when
the option engine=groebner is used. For each curve, we have highlighted
the best time among tour, tst-default, tst-groebner, in blue. Funny
enough, for the last four roses our symbolic method does better than the
numeric methods of Maple’s package RootFinding [Isolate].

Notice that the curves considered in Table 1 are curves with symmetries,
so the number of similarities between each one of the given curves and the
curve which results after applying a similarity, is higher than one. We tested
several examples of dense curves of high degrees with 0 or 1 similarities
between them, and we observed that the straightforward approach, using
engine=groebner in Maple’s SolveTools:-PolynomialSystem solver, was
very fast. However, this is not the case when the number of similarities is
higher, i.e. when we consider curves with symmetries.

6 Conclusions and Future Work

We have presented a formal algorithm for checking whether or not two al-
gebraic curves are similar. When it is the case, the similarities relating the
curves are obtained. Our algorithm uses complex representations, also em-
ployed by other previous approaches to the problem, as well as several usual
tools in the field of computer algebra. The resulting algorithm has been
implemented and tested in the computer algebra system Maple 2016, and
experiments confirm that the algorithm is efficient and fast.

Our method works when the coefficients of the curve are rational or
belong to an algebraic extension. One can wonder if the method can be
adapted to the case of approximate, non-exact coefficients (e.g. floating
point coefficients). Some first experiments in this direction suggest that the
answer is affirmative, but a complete study requires further investigation.
Another interesting potential line of work is the detection of implicit alge-
braic curves related by affine, non-necessarily orthogonal, transformations.
Some of our ideas seem to be applicable in that problem, although the ques-
tion needs further considerations. Finally, another challenging problem is
moving to higher dimensions, particularly algebraic surfaces.
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Appendix I: Proofs of some technical results.

Proof. (of Proposition 3.1) Let

p(y) =

n∏
i=1

(y −mi), q(y) =

n∏
i=1

(y − m̃i).

Hence

Q(ω, y) =
1

(1− yt)n
n∏
i=1

(y + ω − m̃i + y ωm̃i),

which implies

num(Q(ω, y)) =

n∏
i=1

(y(1 + ωm̃i) + ω − m̃i).

Since p(y) and num(Q(ω, y)) have both positive degree in y, P (ω) = 0 if and
only if they have a common factor with positive degree in y (see Chapter 3
in [6]). In turn, this happens if and only if there exists r ∈ {1, . . . , n} such
that (y−mr) divides num(Q(ω, y)). As a consequence num(Q(ω,mr)) = 0.
Then there exists j ∈ {1, . . . , n} with mr + ω − m̃j + ωmr m̃j = 0, and so
mr = m̃j , 1 + m̃jmr = 0 hold. Since p(y) and q(y) are real polynomials,
this implies that y2 + 1 divides both polynomials. �
Proof. (of Lemma 3.2)

(⇐) Since |βn−j,j | =
(
n
j

)
· |βn−j,j | for j = 0, . . . , n− 1, we have

∆j =

[
(n− j)2

(
n

j

)2

− (j + 1)2
(

n

j + 1

)2
]
· |βn−j,j |2.

Since
( n
j+1)
(nj)

= n−j
j+1 , we can easily see that ∆j = 0. Furthermore, since by

definition βn−j,j 6= 0, we have βn−j,j 6= 0 for j = 0, . . . , n − 1. Therefore,
αn−j,j 6= 0 for j = 0, . . . , n− 1.

(⇒) By induction over k, one can prove that |βn−(j+k),j+k| =
(
n

j+k

)
·

|βn−j,j | for 0 ≤ k ≤ n− j. Thus, when k = n− j we deduce that |β0,n| 6= 0.
Therefore, β0,n 6= 0 and by Lemma 3.1, βn,0 6= 0. Hence j = 0. Furthermore,
since by definition βn−j,j 6= 0, we also deduce that all the αn−j,j ’s are
nonzero. �
Proof. (of Corollary 3.1) If C1, C2 are similar then from Equation (5), we
have that

an−j · aj · βn−j,j = λ · αn−j,j (12)
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for j = 0, . . . , n. Furthermore, by taking the absolute value in (9) and fixing
j = j, we get that

|λ| =
|βn−j,j | · |a|n

|αn−j,j |
. (13)

So from (12) and (13), we get

|αn−j,j | =
|αn−j,j | · |βn−j,j |
|βn−j,j |

.

Then the statement follows. �
Proof. (of Lemma 4.1) The coefficient of C̃1 = T (C1) of bidegree (n − j −
1, j) comes from the terms of F with bidegrees (n − j, j), (n − j − 1, j)
and (n − j − 1, j + 1). Each of these terms provides, in turn, the terms
of (11): the term of F of bidegree (n − j, j) provides the first term of
(11), the term of bidegree (n − j − 1, j) provides the term in κ, and the
term of (n − j − 1, j + 1) provides the term in κ. As for the second part
of the statement, assume that αn−j,j 6= 0, αn−j−1,j = 0, and suppose by
contradiction that α̃n−j−1,j vanishes for all κ. By substituting κ = 1 in
(11), we have (n− j)αn−j,j + (j+ 1)αn−j−1,j+1 = 0; by substituting κ = i in
(11), we get that (n− j)αn−j,j − (j + 1)αn−j−1,j+1 = 0. Putting these two
equations together, we deduce that αn−j−1,j+1 = αn−j,j = 0, contradicting
that αn−j,j 6= 0. �
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