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3Universidad de Murcia (Spain)

Abstract

It is well known [8] that an implicit equation of the offset to a ra-
tional planar curve can be computed by removing the extraneous com-
ponents of the resultant of two certain polynomials computed from the
parametrization of the curve. Furthermore, it is also well known that
the implicit equation provided by the non-extraneous component of
this resultant has at most two irreducible factors [14]. In this paper,
we complete the algebraic description of this resultant by showing that
the multiplicity of the factors corresponding to the offset can be com-
puted in advance. In particular, when the parametrization is proper,
i.e. when the curve is just traced once by the parametrization, we
prove that any factor corresponding to a simple component of the off-
set has multiplicity 1, while the factor corresponding to the special
component, if any, has multiplicity 2. Hence, if the parametrization
is proper and there is no special component, the non-extraneous part
of the resultant is square-free. In fact, this condition is proven to be
also sufficient. Therefore, this result provides a simple test to check
whether or not the offset of a given rational curve has a special com-
ponent, and in turn, whether a given rational curve is the offset of
another curve.
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1 Introduction

Offset curves have been largely studied in the field of Computer Aided Geo-
metric Design (see [9] for an overview on offset curves). These curves allow to
give thickness to a thin object, and have been successfully used in contexts
like manufacturing, graphic design or robotics [9]. Furthermore, different
theoretical aspects related to offset curves have been considered in the lit-
erature: algebraic properties [8], [14], topology [1], [2], parametrization [5],
singularities [3], [12], [13], [16] or genus computation [6], [10], to give a non-
exhaustive list of topics or papers. Many of these papers focus on planar
curves described by means of rational parametrizations, since this type of
parametrizations is popular and widely used in CAGD.

In the seminal paper [8], a method to find an implicit equation for the
offset of a planar rational curve is given. This method, which we briefly
summarize in Section 2 of this paper, requires to compute the resultant
of two polynomials that are built from the parametrization. Afterwards,
in certain cases we need to remove an extraneous factor, whose compo-
nents can be computed a priori. The resulting equation F (x, y) has at
most two irreducible components [14], which can be of either simple or spe-
cial nature, in the terminology of [14]. Hence, F (x, y) can be written as
F (x, y) = (f1(x, y))r · (f2(x, y))s, where f1(x, y) and f2(x, y) are irreducible
polynomials, and f2(x, y) is assumed to be constant in the case when the
offset has just one component. However, no observation is made in the liter-
ature on the values of r, s, i.e. on the multiplicity structure of F (x, y). The
goal of this paper is to fill this gap, thereby completing the description of
the algebraic structure of the resultant giving rise to the offset of a rational
curve.

In this paper we will see that the multiplicities r, s can be computed in
advance, and are related to two notions. The first one, which has already
been mentioned in the preceding paragraph, is the simple or special nature
of the corresponding offset component. The second one is the tracing index
[15] of the parametrization. Essentially, the tracing index describes how
many times a rational parametrization traces a given curve, or, in other
words, how many times the parametrization traces a regular point of the
curve. If the tracing index is 1, then the parametrization is said to be
proper; this means that the degree of the parametrization is minimum. In
this paper we prove that if the parametrization is proper then r = s = 1
whenever there is no special component, and r = 1, s = 2 whenever there
is a special component; in particular, if we have properness and there is no
special component, then F (x, y) is square-free. When the parametrization
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has tracing index n > 1, we get r = s = n if there is no special component,
and r = n, s = 2n if there is a special component. As a consequence, F (x, y)
is square-free iff the parametrization of the curve is proper, and the offset
has no special component (see Corollary 3.2).

The motivation for this paper came up while the authors were developing
the results of [3], where the problem of computing the self intersections of
an offset curve was studied. Indeed, at a certain point in [3] (see Remark
2 in [3]) it was necessary to study whether or not the polynomial F (x, y)
was square-free. Furthermore, as we show in this paper (see Theorem 2),
the square-free character of F (x, y) also characterizes the situation when
the offset has no special component, which is a necessary hypothesis, for
instance, in [3] and [10]. In turn [14], this allows to recognize whether or
not a given rational curve is the offset to another curve.

The paper consists of two sections. In Section 2 we provide some pre-
liminary definitions and results. In Section 3 we prove the theorems on the
multiplicity structure of F (x, y), and we illustrate them with some examples.

2 Preliminaries and generalities

Let C be a real, rational plane curve, not a line or a circle, parametrized by

φ(t) =

(
p1(t)

q1(t)
,
p2(t)

q2(t)

)
, (1)

where pi(t), qi(t), i = 1, 2, are polynomials with rational coefficients and
gcd(p1, q1) = gcd(p2, q2) = 1. It is well-known that the resultant provides
the implicit equation of the curve. From Theorem 4.41 in [15],

Rest(q1(t)x− p1(t), q2(t)y − p2(t)) = c · (f(x, y))n, (2)

where c is a nonzero constant, f(x, y) is the implicit equation of C, and n
is the tracing index of the parametrization φ(t), i.e. the number of times
the parametrization φ(t) covers a regular point (x, y) ∈ C. The interested
reader can check §1.6 [15] for further reading on the notion of tracing index.
Additionally, we say that φ(t) is proper iff it is birational, i.e. iff φ(t) is
injective except perhaps for finitely many values of the parameter t (corre-
sponding to the self-intersections of the curve). One can prove (Theorem
4.30 in [15]) that φ(t) is proper iff the tracing index is 1. Since properness
can always be achieved by reparametrizing the curve, if necessary [15], it
is not uncommon to assume that one works with proper parametrizations.
Moreover it is easy to check if a parametrization is proper (see Theorem 4.30
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in [15]). However, we do not need to make any a priori assumption on the
properness of φ(t).

By reducing the components of φ(t) to common denominator, we can
write

φ(t) = (X (t),Y(t)) =

(
X(t)

W (t)
,
Y (t)

W (t)

)
, (3)

where gcd(X(t), Y (t),W (t)) = 1. Calling

U(t) = X ′(t)W (t)−X(t)W ′(t), V (t) = Y ′(t)W (t)− Y (t)W ′(t), (4)

we define the offset to C at distance d ∈ R+, Od(C), as the Zariski closure
of the set of points (x, y) = φd(t), where

φd(t) =

(
X(t)

W (t)
± d V (t)√

U2(t) + V 2(t)
,
Y (t)

W (t)
∓ d U(t)√

U2(t) + V 2(t)

)
, (5)

with U2(t) + V 2(t) 6= 0, W (t) 6= 0. Hence, (x, y) = φd(t) implies that
the Euclidean distance between (x, y) ∈ Od(C) and the point p = φ(t) ∈ C,
measured along the normal line to C through p = φ(t), is d; in this situation,
we say that p = φ(t) generates (x, y). By an abuse of the language, we will
also say that (x, y) ∈ Od(C) is generated by t. Furthermore, when the
first sign of ± and ∓ in the expression (5) is considered, the geometrical
locus described is called the exterior offset ; if the second sign is chosen, the
geometrical locus described this way is called the interior offset. The union
of the exterior and interior offsets is the whole offset, Od(C). In general,
we will say that P ∈ C generates Pd ∈ Od(C) if Pd = P ± d · N (P ), where
N (P ) is the unitary normal vector to C at P . If limt→∞φ(t) is a point in
R2, which happens iff deg(X(t)) ≤ deg(W (t)) and deg(Y (t)) ≤ deg(W (t)),
then limt→∞φd(t) gives rise to two points, which we denote by P±∞ =
(x±∞, y±∞). The points P±∞ also belong to Od(C).

The computation of the implicit equation of Od(C) is addressed in [8]. In
order to compute this equation, the following polynomials are introduced:

P̃ (x, y, t) := U(t)(W (t)x−X(t)) + V (t)(W (t)y − Y (t)) = 0, (6)

Q̃(x, y, t) := (W (t)x−X(t))2 + (W (t)y − Y (t))2 − d2W 2(t) = 0. (7)

Roughly speaking, the implicit equation of Od(C) is found by eliminating
the variable t in the system formed by (6) and (7). However, in order to
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avoid as many extraneous components as possible, we first divide P̃ (x, y, t),
Q̃(x, y, t) by their contents with respect to t. 1

The polynomials obtained from P̃ and Q̃ after removing their t-contents
are denoted by P (x, y, t) and Q(x, y, t), respectively.

Now writing

H(x, y) = Rest(P (x, y, t), Q(x, y, t)), (8)

we have (see Theorem 3.6 of [8]) that

H(x, y) = F (x, y) ·G(x, y), (9)

where F (x, y) is an implicit equation of Od(C), and G(x, y) is a product of
extraneous linear factors. These factors come in pairs of complex conjugate
lines, that can be computed a priori by using Lemma 3.4 of [8]. It is worth
observing that although [8] assumes that φ(t) is proper, by following the
discussion in [8] one can check that the results in Theorem 3.6 and Lemma
3.4 of [8] are also valid even if φ(t) is not proper.

Notice that we said that F (x, y) is “an” implicit equation, and not “the”
implicit equation. The reason is that F (x, y) is “the” implicit equation of
Od(C) iff it is the polynomial of minimum degree implicitly defining Od(C).

Hence, F (x, y) is “the” implicit equation of Od(C) iff it is square-free.
We will prove, in Section 3, that this is certainly the case whenever two
conditions, that we will make precise, hold; if some of these conditions fails
then F (x, y) is not square-free, although we will see that the multiplicity of
its components can be computed in advance.

The first of these conditions is related to the properness of φ(t), that
we recalled at the beginning of the section. The second condition has to
do with the notions of simple and special components of an offset curve.
These notions were introduced in [14], where a more algebraic definition
of the offset curve, using an incidence diagram, is given. Based on this
incidence diagram, it is proven that Od(C) has at most two components.
Furthermore, an irreducible component of Od(C) is said to be simple if
almost every point of that component is generated by just one point of C;
otherwise, the component is called special. In [14] it is proven that for almost
all d, Od(C) has simple components, and that Od(C) can have at most one
special component. Furthermore, it is also demonstrated that if Od(C) is
irreducible then it is simple, and that special components only appear when

1The content with respect to t of P̃ (x, y, t) (respectively of Q̃(x, y, t)) is the gcd of its
coefficients seen P̃ (x, y, t) as a polynomial in the variables x and y.
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computing offsets to offsets (in which case the special component is the
original curve).

Additionally, at certain moments in the paper we will distinguish two
different types of singular points, local singularities and self-intersections.
In the first case there is just one branch of the curve going through the
point, while in the second case there are at least two different branches of the
curve through the point (see Section 2.3 of [3] for more information). Notice
that the number of local singularities of an algebraic curve is always finite.
Furthermore, if an algebraic curve is defined by a square-free polynomial
then it also has finitely many self-intersections.

We finish with two results related to the preceding notions, that we
will use later. The first one is related to the notions of simple and special
components of Od(C).

Lemma 2.1 There are finitely many points of Od(C) generated by more
than two points of C. Furthermore, a component Vd of Od(C) is special iff
almost all points of Vd are generated by exactly two points of C.

Proof. Let F ?(x, y) be the square-free part of F (x, y), and let Pd ∈ Od(C)
be a regular point of the curve F ?(x, y) = 0, which also defines the offset.
The points P ∈ C generating Pd are the intersection points of each line LPd

,
normal to Od(C) through Pd, the circle Cd centered at Pd of radius d, and
C. Since by hypothesis Pd is regular there is just one normal line LPd

. Since
the intersection of LPd

and Cd consists of at most two points, and since the
curve F ?(x, y) = 0 has finitely many singularities, the first part holds. The
second part follows from the notion of special component. �

Finally, we recall the next lemma, which is proven in Appendix I of [4];
although in [4] one works with properly parametrized curves, one can check
that the proof of the lemma does not depend on the properness of the curve,
and therefore it is also valid in the case of non-proper curves.

Lemma 2.2 The only points of the offset where the leading coefficients of
P (x, y, t), Q(x, y, t) with respect to t simultaneously vanish are P±∞, in the
case when P±∞ are points in R2.

2.1 Factorization of resultants

LetMp,Mq be two algebraic curves without common components, and let
p(x, y), q(x, y) be the polynomials implicitly defining Mp and Mq. Since
Mp, Mq do not have common components, Mp, Mq intersect at finitely
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many points. Furthermore, each intersection point has an intersection mul-
tiplicity. The notion of intersection multiplicity is described, for instance, in
§IV.5.1 [17], or in §1.6 [11]. In the general case, computing the intersection
multiplicity requires certain technicalities; however, when the intersection
point is regular for both Mp and Mq and the tangent line at such a point
is different for Mp and Mq, the intersection multiplicity is 1. Now let

Resy(p(x, y), q(x, y)) = c
r∏
i=1

(x− αi)βi ,

where c is constant, and the αi are the (possibly complex) roots of Resy(p, q).
Then (see Proposition 5 [7], and §1.6 [11]) we have the following result.

Proposition 2.1 Suppose that x = αi is not a common vertical asymptote
of Mp and Mq. For all i = 1, . . . , r, the integer βi equals the sum of all
the intersection multiplicities of the points zj = (xj , yj) ∈ Mp ∩Mq such
that xj = αi. In particular, if the line x = αi does not contain any point of
Mp∩Mq which is singular for eitherMp orMq, and no point ofMp∩Mq

where the tangent lines to Mp and Mq coincide, then βi is equal to the
number of (possibly complex) different points of Mp ∩Mq lying on the line
x = αi.

3 Square-freeness of F (x, y).

In this section we will give a complete description of the factorization of
F (x, y) (see Eq. (9)). As a consequence, we will provide necessary and
sufficient conditions for F (x, y) to be square-free. We will need first the
following result.

Lemma 3.1 Let C be a curve parametrized by φ(t), not necessarily proper.
Let Pt(x, y, t) denote the partial derivative of P (x, y, t) with respect to the
variable t. Then there are just finitely many points (x, y) ∈ Od(C) such that
there exists t ∈ C satisfying

P (x, y, t) = Q(x, y, t) = Pt(x, y, t) = 0. (10)

Proof. Let φd(t) = (xd(t), yd(t)) be the points of the offset generated by
the parameter t (see Eq. (5)). Hence, we have that

P (xd(t), yd(t), t) = Q(xd(t), yd(t), t) = 0, (11)
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i.e. the functions P (xd(t), yd(t), t), Q(xd(t), yd(t), t) are identically zero. Now
assume that the statement is false. Then the function Pt(xd(t), yd(t), t) is
also identically zero. Therefore, by arguing as in Lemma 8 of [3], we deduce
that Od(C) has infinitely many local singularities, which cannot be. �

Now we will separately consider the case when the parametrization φ(t)
is proper, and the case when its tracing index is bigger than 1.

3.1 Case of proper parametrizations.

In this subsection we will assume that the parametrization φ(t) is proper.
Recalling the notation in Eq. (9) and since Od(C) has at most two compo-
nents, we can write

F (x, y) = (f1(x, y))r · (f2(x, y))s , (12)

where f1(x, y), f2(x, y) are irreducible, therefore square-free, and f1(x, y) is
non-constant. If Od(C) has just one component, then f2(x, y) := 1. Further-
more, if Od(C) is reducible and Od(C) has some special component (recall
that there is at most one component of this type), we will assume that
f2(x, y) implicitly represents this special component.

Lemma 3.2 The polynomial f1(x, y) explicitly depends on x and y. If
f2(x, y) is not constant, then it also explicitly depends on x and y.

Proof. We prove the result for f1(x, y); similarly for f2(x, y), in the case
when it is not constant. Suppose that f1(x, y) depends on just one variable,
x or y. Then Od(C) contains one line. Since C ⊂ Od(Od(C)) and the offset
of a line is a pair of two parallel lines, C contains at least one line. On the
other hand, since C is rational by hypothesis, it is irreducible. Hence, if C
contains a line then C must be a line. However, this is impossible because
by hypothesis C is not a line. �

Now let us consider the set A of the y0s satisfying some of the following
conditions:

(1) The intersection of the line y = y0 with Od(C) contains some point
also belonging to the curve G(x, y) = 0.

(2) The leading coefficients of P (x, y, t) and Q(x, y, t) with respect to t
identically vanish when y = y0.

(3) The line y = y0 contains a local singularity of Od(C).
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(4) The line y = y0 is tangent to Od(C).

(5) There exist x0, t0 such that Eq. (10) holds for (x0, y0, t0).

(6) The line y = y0 contains either a point of a simple component of
Od(C) generated by more than one value of t, or a point of a special
component of Od(C) generated by more than two values of t.

Notice that in particular, the intersection points between two compo-
nents of Od(C) satisfy condition (6). Furthermore, from Lemma 2.2 we have
that condition (2) implies y0 = y±∞. Then we have the following result.

Lemma 3.3 A is a finite set.

Proof. It is clear that there are finitely many y0s satisfying (1), (2), (3),
(4) and (5). So let us see that there are also finitely many y0s satisfying
(6). If Od(C) does not have any special component, since by assumption C is
properly parametrized there are finitely many points of Od(C) generated by
more than one value of the parameter t. If Od(C) has a special component
V, by Lemma 2.1 a generic point of V is generated by two points of C; since
C is by assumption properly parametrized, this means that a generic point
of V is generated by exactly two values of t. �

Therefore, a generic y0 does not satisfy any condition (1)–(6). This is
crucial in the next theorem, which is our first important result.

Theorem 1 Suppose that C is properly parametrized.

(1) If Od(C) does not have any special component, then

F (x, y) = f1(x, y) · f2(x, y).

(2) If Od(C) has a special component, then

F (x, y) = f1(x, y) · (f2(x, y))2 .

Proof. (1) Let F (x, y) = (f1(x, y))r1 · (f2(x, y))r2 . We want to prove that
r1 = r2 = 1. By Lemma 3.2 f1(x, y) and f2(x, y), when it is not constant,
explicitly depend on x and y. Therefore it suffices to show that for a generic
y0, f1(x, y0) and f2(x, y0) are square-free. Let y = y0 be generic, so that
y0 does not satisfy any condition (1)–(6). In particular, the leading coef-
ficients of P (x, y, t) and Q(x, y, t) do not identically vanish for y = y0, so
Rest(P (x, y, t), Q(x, y, t)) specializes properly, i.e.

H(x, y0) = Rest(P (x, y0, t), Q(x, y0, t))

9



(see Lemma 4.3.1 in [18]). Since y0 does not satisfy condition (1), the line
y = y0 does not intersect H(x, y) = 0 in any point both belonging to Od(C)
and to the curve G(x, y) = 0. Moreover y0 does not satisfy conditions (3),
(4), (6) either, and therefore we have that

H(x, y0) = (x−x1)r1 · · · (x−xm)r1 · (x− x̃1)r2 · · · (x− x̃n)r2 ·G(x, y0), (13)

where the intersections between f1(x, y) = 0 and y = y0 correspond to the
xis, the intersections between f2(x, y) = 0 and y = y0 correspond to the x̃js,
and G(xi, y0) 6= 0, G(x̃j , y0) 6= 0 for i = 1, . . . ,m, j = 1, . . . , n. Now assume
that r` > 1, where f`(x, y) is non-constant. We fix ` = 1; whenever f2(x, y)
is non-constant, one can argue in the same way for ` = 2. From Proposition
2.1 we have the following possibilities:

(i) For any i = 1, . . . ,m there are distinct t0, t1 with P (xi, y0, t0) =
Q(xi, y0, t0) = 0 and P (xi, y0, t1) = Q(xi, y0, t1) = 0. But this im-
plies that (xi, y0) ∈ Od(C) is simultaneously generated by t0 and t1,
which cannot happen because y0 does not satisfy condition (6).

(ii) There is some i = 1, . . . ,m such that P (xi, y0, t) and Q(xi, y0, t) share
a root t0 of multiplicity at least 2. However, in that case Pt vanishes
at the point (xi, y0, t0). And this cannot happen because y0 does not
satisfy condition (5).

(iii) The line x = xi is a common vertical asymptote of the curves (defined
on the xt-plane) P (x, y0, t) = 0, Q(x, y0, t) = 0. But this cannot
happen because y0 does not satisfy condition (2), and hence y0 6= y±∞.

So we conclude that r1 = 1. Similarly for r2, whenever f2(x, y) is not
constant.

Let us address now the statement (2) of the theorem. First, one argues
in the same way to reach Eq. (13). Also, one can prove that r1 = 1
as in statement (1). In order to prove that r2 = 2, since y = y0 does not
satisfy condition (6), from Lemma 2.1 one has that every point of the special
component of Od(C), lying on the line y = y0, is generated by exactly two
values of the parameter t. Therefore, by Proposition 2.1 one has r2 ≥ 2.
Now assume that r2 > 2. Again from Proposition 2.1 we have the following
possibilities:

(i) For any i = 1, . . . , n there are at least three different values t0, t1, t2
with P (xi, y0, tk) = Q(xi, y0, tk) = 0 for k = 1, 2, 3. But this implies
that (xi, y0) ∈ Od(C) is simultaneously generated by t0, t1, t2, which
cannot happen because y0 does not satisfy condition (6).
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y0

y

x

x1 x2 x3 x4

Figure 1: The curves G(x, y) = 0 (in red) and f1(x, y) = 0 (in black). The
line y = y0 intersects the curve f1(x, y) = 0 in four points, with x-coordinates
x1, . . . , x4

(ii) There is some i = 1, . . . , n such that P (xi, y0, t) and Q(xi, y0, t) share
a root t0 of multiplicity at least 2. However, in that case Pt vanishes
at the point (xi, y0, t0). But this cannot happen because y0 does not
satisfy condition (5).

(iii) The line x = xi is a common vertical asymptote of the curves (defined
on the xt-plane) P (x, y0, t) = 0, Q(x, y0, t) = 0. But this cannot
happen because y0 does not satisfy condition (2), and hence y0 6= y±∞.

So we conclude that r2 = 2.
�
From Theorem 1 above and from Theorem 7 in [14], one gets the following

result, which provides a condition for checking if a rational curve C is the
offset to another curve (equivalently, if Od(C) has some special component).

Theorem 2 Let C be a rational curve properly parametrized by φ(t). The
following statements are equivalent.

(1) F (x, y) is not square-free.

(2) Od(C) has a special component.

(3) C is the (whole) offset to some other algebraic curve; namely, the spe-
cial component of Od(C).
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Corollary 3.1 If Rest(P (x, y, t), Q(x, y, t)) is square-free, then: (1) Od(C)
does not have any special component; (2) C is not the offset of any algebraic
curve.

3.2 Case of non-necessarily proper parametrizations.

The aim of this section is to generalize Theorem 1 to the case of non-
proper parametrizations, and to characterize from here the square-freeness
of F (x, y); hence, in this subsection we will assume that C is parametrized
by a non-necessarily proper rational parametrization φ(t), with tracing in-
dex n ≥ 1. We can write F (x, y) as in Eq. (12); furthermore if Od(C) has
any special component we assume that it is represented by f2(x, y). We also
need to introduce a set A of y0s satisfying six conditions. The conditions
(1)-(5) coincide with those in Section 3.1; however, condition (6) is replaced
by the following condition:

(6) The line y = y0 contains either a point of a simple component of Od(C)
generated by more than n values of t, or a point of a special component
of Od(C) generated by more than 2n values of t.

One can prove that A is finite in an analogous way to Lemma 3.3.
Now we have the following theorem, which is a generalization of Theorem

1. It can be proven in an analogous way to Theorem 1. In the proof, that
we omit here, one needs to observe that since the tracing index of φ(t) is n,
a generic point of a simple component of Od(C) comes from just one point of
C, i.e. it is generated by n values of the parameter t. Also, a generic point
of the special component of Od(C), if any, comes from exactly two points of
C, i.e. it is generated by 2n values of the parameter t. Note also that the
lines y = y0 containing the self-intersections of Od(C) satisfy condition (6).

Theorem 3 Suppose that C is parametrized by a rational parametrization
of tracing index n.

(1) If Od(C) does not have any special component, then

F (x, y) = (f1(x, y))n · (f2(x, y))n .

(2) If Od(C) has a special component, then

F (x, y) = (f1(x, y))n · (f2(x, y))2n .
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One can notice the analogy between the formulae in Theorem 3, and Eq.
(2). This was somehow expected, since tracing the curve C n times implies
tracing also n times each simple component of Od(C), and 2n times each
special component of Od(C). Finally we conclude with the following result,
which can be derived from Theorem 3.

Corollary 3.2 The polynomial F (x, y) is square-free iff the curve C is prop-
erly parametrized, and Od(C) does not have any special component.

3.3 Examples.

In this subsection we provide some examples illustrating the results in the
two preceding subsections.

Example 1 Let C be the Cardioid, of implicit equation

x4 + 2x2y2 + y4 + 8x2y + 8 y3 − 16x2 = 0.

This curve is rational and can be properly parametrized by

(X (t),Y(t)) =

(
X(t)

W (t)
,
Y (t)

W (t)

)
=

(
−1024 t3

(16 t2 + 1)2
,
−128 t2

(
16 t2 − 1

)
(16 t2 + 1)2

)
.

Let us find the offset of C for d = 1; for simplicity, we will denote this offset
by Z, i.e. Z = O1(C). By computing the resultant H(x, y) in (8), we get
that H(x, y) is, up to a constant, the product of F (x, y),

F (x, y) = x8 + 4x6y2 + 6x4y4 + 4x2y6 + y8 + 16x6y + 48x4y3 + 48x2y5 +

16 y7 − 35x6 − 9x4y2 + 87x2y4 + 61 y6 − 292x4y − 328x2y3 −
36 y5 + 211x4 − 234x2y2 − 189 y4 − 40x2y − 232 y3 − 429x2 +

131 y2 + 316 y + 252

and an “extraneous” factor G(x, y),

G(x, y) = x2 + y2 + 4 y + 4.

In this case, one can check that the curve defined by F (x, y) is square-free and
irreducible, so Z has just one, simple, component. Following the notation
of Theorem 1, we have F (x, y) = f1(x, y) · f2(x, y) with f1(x, y) square-free,
and f2(x, y) = 1. The Cardioid, together with its offset for d = 1, are shown
in Figure 2.
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Figure 2: The Cardioid (in red) and the offset for d = 1 (in black) .

Now let us study the offset of Z for d = 1. According to Theorem 7 in
[14], the offset of Z for d = 1 must have a special component, namely the
Cardioid. One can check that Z is rational; a proper parametrization of Z
is (X ?(t),Y?(t)), where

X ?(t) =

(
t2 − 9

) (
t6 − 117 t4 − 1053 t2 + 3456 t3 + 729

)
(t2 + 9)4

,

Y?(t) =
−18

(
t6 − 16 t5 − 21 t4 + 864 t3 − 189 t2 − 1296 t+ 729

)
t

(t2 + 9)4
.

(14)
After computing the resultant H(x, y) in Eq. (8) for the above parametriza-
tion (14), we check that H(x, y) = F (x, y) ·G(x, y), where G(x, y) = (x2 +
y2 + 4 y + 4)2 and F (x, y) factorizes into two polynomials. As predicted by
statement (2) of Theorem 1, we have

F (x, y) = f1(x, y) · f2(x, y)2,

14



Figure 3: For d = 1, the offset of the Cardioid (in red), and the offset of the
offset of the Cardioid (in black) .

where f1(x, y) and f2(x, y), with

f1(x, y) = x8 + 4x6y2 + 6x4y4 + 4x2y6 + y8 + 16x6y + 48x4y3 + 48x2y5 +

16 y7 − 44x6 − 36x4y2 + 60x2y4 + 52 y6 − 400x4y − 544x2y3 −
144 y5 + 112x4 − 864x2y2 − 720 y4 + 128x2y − 640 y3 − 768x2 +

2048 y2 + 4864 y + 3840,

f2(x, y) = x4 + 2x2y2 + y4 + 8x2y + 8 y3 − 16x2.

Observe that, as expected, the curve defined by f2(x, y) is our initial curve,
the Cardiod. Figure 3 shows the curve Z (i.e. O1(C)) in red color, and
O1(Z) in black color. Moreover, the special component is plotted in dash-
dotted line.

Finally, let us reparametrize the curve Z by using the following non-
linear change of parameter:

t = s3 − 2 s2 + 3 s+ 5.

By applying this change of parameter, we get a non-proper parametrization
of Z, of tracing index n = 3. After computing the polynomial F (x, y) with
this non-proper parametrization, we find, as predicted by statement (2) of
Theorem 3, F (x, y) = f1(x, y)3 · f2(x, y)6.
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Example 2 It is well known that the offset of the parabola is a rational
curve. In this example, we analyze the offset of the offset of the parabola
y = 1

4x
2 for d = 6, but considering a non-proper parametrization of the

offset to y = 1
4x

2. More precisely, let C be the curve defined by y = 1
4x

2, and
let P = O6(C). One can check that

X(t)

W (t)
=

4
(
t8 + 6 t6 − 6t2 − 1

)
t2

4 (t4 + 1) t4
,

Y (t)

W (t)
=
t12 − t8 − 48t6 − t4 + 1

4 (t4 + 1) t4
.

is a parametrization of P, with tracing index equal to 2. In this case, when
computing the resultant H(x, y) in Eq. (8) we get the extraneous factor
(x2 + y2 − 2 y + 1)4. Additionally, as predicted by Theorem 3, we have

F (x, y) = f1(x, y)2 · f2(x, y)4,

where

f1(x, y) = x6 + x4y2 − 10x4y − 8x2y3 − 431x4 − 256x2y2 + 16 y4 +

280x2y − 1184 y3 + 59328x2 + 19600 y2 + 170496 y − 3154176,

f2(x, y) = x2 − 4y.

Figure 4 shows the curve P (the offset of y = 1
4x

2 for d = 6) in red and
O6(P) in black. Moreover, the special component is plotted in dash-dotted
line.

Acknowledgments
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References
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