
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Kreon: An Efficient Memory-Mapped Key-Value Store for
Flash Storage

ANASTASIOS PAPAGIANNIS∗, Institute of Computer Science, FORTH, Greece

GIORGOS SALOUSTROS, Institute of Computer Science, FORTH, Greece

GIORGOS XANTHAKIS∗, Institute of Computer Science, FORTH, Greece

GIORGOS KALAENTZIS∗, Institute of Computer Science, FORTH, Greece

PILAR GONZALEZ-FEREZ, Department of Computer Engineering, University of Murcia, Spain

ANGELOS BILAS∗, Institute of Computer Science, FORTH, Greece

Persistent key-value stores have emerged as a main component in the data access path of modern
data processing systems. However, they exhibit high CPU and I/O overhead. Nowadays, due to
power limitations, it is important to reduce CPU overheads for data processing.

In this paper, we propose Kreon, a key-value store that targets servers with flash-based storage,
where CPU overhead and I/O amplification are more significant bottlenecks compared to I/O
randomness. We first observe that two significant sources of overhead in key-value stores are: (a)
The use of compaction in LSM-Trees that constantly perform merging and sorting of large data
segments and (b) the use of an I/O cache to access devices, which incurs overhead even for data
that reside in memory. To avoid these, Kreon performs data movement from level to level by using
partial reorganization instead of full data reorganization via the use of a full index per-level. Kreon
uses memory-mapped I/O via a custom kernel path to avoid a user-space cache.

For a large dataset, Kreon reduces CPU cycles/op by up to 5.8×, reduces I/O amplification for
inserts by up to 4.61×, and increases insert ops/s by up to 5.3×, compared to RocksDB.

CCS Concepts: • Information systems → Key-value stores; Flash memory; B-trees; Hierar-
chical storage management ; • Software and its engineering → Virtual memory .

Additional Key Words and Phrases: Key-Value Stores, LSM-Tree, Memory-Mapped I/O, mmap,

SSD, Copy-On-Write

ACM Reference Format:
Anastasios Papagiannis, Giorgos Saloustros, Giorgos Xanthakis, Giorgos Kalaentzis, Pilar Gonzalez-
Ferez, and Angelos Bilas. 2020. Kreon: An Efficient Memory-Mapped Key-Value Store for Flash
Storage. ACM Trans. Storage 1, 1, Article 1 (January 2020), 30 pages. https://doi.org/10.475/123 4

∗Also with the Department of Computer Science, University of Crete, Greece

Authors’ addresses: Anastasios Papagiannis, Institute of Computer Science, FORTH, Heraklion, Greece,

apapag@ics.forth.gr; Giorgos Saloustros, Institute of Computer Science, FORTH, Heraklion, Greece, gesalous@
ics.forth.gr; Giorgos Xanthakis, Institute of Computer Science, FORTH, Heraklion, Greece, gxanth@ics.forth.

gr; Giorgos Kalaentzis, Institute of Computer Science, FORTH, Heraklion, Greece, gkalaent@ics.forth.gr;
Pilar Gonzalez-Ferez, Department of Computer Engineering, University of Murcia, Spain, pilargf@um.es;
Angelos Bilas, Institute of Computer Science, FORTH, Heraklion, Greece, bilas@ics.forth.gr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1553-3077/2020/1-ART1 $15.00
https://doi.org/10.475/123 4

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 A. Papagiannis et al.

1 INTRODUCTION

Persistent key-value stores [1, 16, 22, 24] are a central component for many analytics
processing frameworks and data serving systems. These systems are considered as write-
intensive because they typically exhibit bursty inserts with large variations in the size of
data items [9, 52]. To better serve write operations, key-value stores have shifted from
the use of B-trees [3], as their core indexing structure, to a group of structures known
as write-optimized indexes (WOIs) [30]. This transition took place because even though
B-trees [3] are asymptotically optimal in the number of block transfers required for point
and range queries their write performance degrades significantly as the index grows [35].
A prominent data structure in the WOIs group is LSM-Tree (Log-Structured Merge-

Tree) [46]. LSM-Tree has two important properties: (a) it amortizes device write I/O
operations (I/Os) over several insert operations and (b) it is able to issue only large I/Os
to the storage devices for both reads and writes, essentially resulting in sequential device
accesses. These properties have made LSM-Tree appropriate for hard disk drives (HDDs)
that suffer from long seek times and their throughput drops by more than two orders of
magnitude in the presence of random I/Os. However, these desirable properties come at the
expense of significant CPU overhead and I/O amplification. LSM-Tree needs to constantly
merge and sort large data segments, operations that lead to both high CPU utilization and
increased I/O traffic [48, 59].
Another key point is that modern key-value stores incur significant CPU overhead for

caching data in their address space [28]. Key-value stores need to cache data in user-space
to avoid frequent user-kernel crossings and accesses to devices. Therefore, at runtime, there
is a need to maintain a lookup structure for data items that reside in memory. Lookup
operations occur in the common path and are required not only for misses but also for hits,
when data reside in memory. These common path lookup operations incur significant cost
in CPU cycles. Harizopoulos et.al. [28] claim that about one-third of the total CPU cycles
of a database system is spent in managing the user-space cache when the dataset fits in
memory. Furthermore, the cache needs to manage I/O to the devices via the system call
interface that is expensive for fine-grain operations and requires data copies for crossing
the user-kernel boundary. In our work, we find that cache and system call overheads in
RocksDB [22], a state-of-the-art persistent key-value store, are up to 28% of the total CPU
cycles used (Table 3).

With current technology limitations and trends, these two issues of high CPU utilization
and I/O amplification are becoming a significant bottleneck for keeping up with data growth.
Server CPU is the main bottleneck in scaling today’s infrastructure due to power and energy
limitations [36, 40, 51]. Therefore, it is important to increase the amount of data each CPU
can serve, rather than rely on increasing the number of CPUs in the datacenter. In this
context, flash-based storage, such as solid state drives (SSDs), introduces new opportunities
by narrowing the gap between random and sequential throughput, especially at higher queue
depths (number of concurrent I/Os). Figure 1 shows the throughput of an SSD and two
NVMe devices with random I/Os and increasing request size. At a queue depth of 32, an
I/O request size of 32 KB for SSDs and 8 KB for NVMe achieve almost the maximum
device throughput. Therefore, increased traffic due to I/O amplification is becoming a more
significant bottleneck than I/O randomness. This trend will be even more pronounced with
emerging storage devices that aim to achieve sub-µs latencies.

In this paper we present Kreon, a key-value store that aims to reduce CPU overhead and
I/O traffic by trading I/O randomness. Kreon combines ideas from LSM [46] (multilevel

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Kreon Memory-Mapped Key-Value Store 1:3

 0

 0.5

 1

 1.5

 2

 2.5

 3

4 8
1
�

3
2

2
�
�

1
�
2
4

T
h
ro
u
g
h
p
u
t
(G
B
/s
)

R������ Size (KB)

Read

4 8
1
�

3
2

2
�
�

1
�
2
4

Request Size (KB)

Write

S�	
���SS�
S�	
�������

I���������

Fig. 1. Throughput vs. block size (using iodepth 32) for Samsung SSD 850 Pro 256 GB, Samsung 950
Pro NVMe 256 GB, and Intel Optane P4800X NVMe 375 GB devices, measured with FIO [2].

structure), bLSM [52] (B-Tree index), Atlas/WiscKey [36, 41] (separate value log), and
Tucana [47] memory mapped I/O. Additionally, it uses a fine-grain spill mechanism which
partially reorganizes levels to provide high insertion rates and reduce CPU overhead and
I/O traffic. Kreon uses a write optimized data structure that is organized in N levels, similar
to LSM-Tree, where each level i acts as a buffer for the next level i+1. To reduce I/O
amplification, Kreon does not operate on sorted buffers, but instead it maintains a B-tree
index within each level. As a result, it generates smaller I/O requests in favor of reduced
I/O amplification and CPU overhead. Kreon still requires and uses multiple levels to buffer
requests and amortize I/O operations.
Furthermore, Kreon uses memory-mapped I/O to perform all I/O between memory and

(raw) devices. Memory-mapped I/O essentially replaces cache lookups with valid memory
mappings, eliminating the overhead for data items that are in memory. Misses incur a page
fault and require an I/O operation that happens directly from memory without copying data
between user and kernel space. However, the asynchronous nature of memory-mapped I/O
means that I/O happens at page granularity, resulting in many and small I/Os, especially for
read operations. In addition, memory-mapped I/O does not provide any type of consistency,
recoverability, nor the ability to tune I/O for specific needs. To overcome these limitations,
we implement a custom memory-mapped I/O path, kmmap, as a Linux kernel module. kmmap
addresses these issues and provides all the benefits of memory-mapped storage: it removes
the need to use DRAM caching both in kernel and user space, eliminates data copies between
kernel and user space, and removes the need for pointer translation.
Key-value stores typically serve both local (same node) and remote (network) clients.

Since we are interested in reducing CPU overhead, it is important to examine the overhead
of efficient network protocols. For this reason we implement an RDMA-based (Remote Direct
Memory Access) protocol for remote clients and we examine its relative cost in CPU cycles
on the server side compared to index manipulation and I/O in Kreon.

We implement Kreon and evaluate its performance by using YCSB and large datasets of
up to 6 billion keys. We compare Kreon with RocksDB [22], a state-of-the-art, LSM-Tree
based, persistent key-value store which has lately been optimized for SSDs [17]. Our results
show that using both datasets that stress I/O and datasets that fit in memory, Kreon reduces

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 A. Papagiannis et al.

Level (i+1)

.

.

Level i

Level (i+1)

.Level i

. . .

merge

Compaction

Fig. 2. Organization of an LSM tree.

the amount of cycles/op by up to 8.3x. Additionally, Kreon reduces I/O amplification for
insert-intensive workloads by up to 4.6x and increases ops/s by up to 5.3x. Our analysis
of CPU overheads also shows that a saturated Kreon server can achieve up to 2.4M YCSB
insert requests/s. Our network communication analysis shows that RDMA overhead in
persistent key-value stores is low and that a 40 Gbps link should be able to serve 64 cores
with Kreon.

Overall, the contributions of this paper are:

(1) The combination of multilevel data organization with full indexes at each level and a
fine-grain spill mechanism that all together reduce CPU overhead and I/O traffic at
the expense of increased I/O randomness.

(2) The design and implementation of kmmap a custom memory-mapped I/O path to
reduce the overhead of explicit I/O and address shortcomings of the native mmap
path in Linux for modern key-value stores.

(3) The implementation and detailed evaluation of a full key-value store compared to
a state-of-the-art key-value store in terms of absolute performance, CPU and I/O
efficiency, execution time breakdown, tail latencies, and device behavior.

The rest of this paper is organized as follows: Section 2 provides a background on persistent
key-value stores. Section 3 presents our design and implementation of Kreon. Section 4
presents our evaluation methodology and experimental results. Section 5 reviews related
work and Section 6 provides our conclusions.

2 BACKGROUND

2.1 Write-Optimized Key-Value Stores

B-tree [3] is asymptotically optimal in the number of block transfers required for point
(lookups) and range (scans) queries. However, write performance degrades as the index
grows [35]. The increasing interest for systems that are able to absorb bursty writes has led
to the emergence and broad use of write-optimized data structures, which aim to improve
writes while keeping read performance close to B-tree. A popular data structure in this
group is LSM-Tree [46]. LSM-Tree organizes its key-value pairs in multiple hierarchical levels
in order to amortize write operations. O’Neil et al. [46] do not provide specific information
on how each level is organized and two alternatives are in use today: (a) use sorted arrays
per-level or (b) use a full index per-level. HDDs favor the use of the first alternative.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Kreon Memory-Mapped Key-Value Store 1:5

Inserts in LSM-Tree are served from memory, by typically using a skip-list [22]. Data are
gradually moved to lower levels, as the current level fills up. To move data between levels and
eliminate updated values, LSM-Tree uses compactions (see Figure 2). Compaction moves
data from Li to Li+1 by reading and sorting large buffers in memory and subsequently
writing them to storage at Li+1. Compactions have the advantage that they generate only
large I/O requests which makes LSM-Tree preferable to other index structures for hard disk
drives (HDDs). On the other hand compactions result both in I/O amplification and CPU
overhead due to moving data from one level to another. Kreon uses a different approach
and introduces a full index per-level rather than sorted arrays, in order to reduce I/O
amplification and CPU overheads.

2.2 B-tree Concurrency Protocols

An application can increase concurrency by breaking the dataset in multiple shards where
each shard maps to a separate B-tree. However, in workloads with Zipfian distribution, a
small subset of the shards can receive a large number of requests, which makes concurrency
within a B-tree important.

Each node in a B-tree (except the root) has from B
2 to B elements, where B is the fan

out of the tree. In a node overflow (more than B) or underflow (less than B
2), B-tree applies

one of the following rebalance operations: (1) split node, (2) left/right merge node, and (3)
left/right rotate as defined in [4]. These rebalance operations make fine-grain concurrency in
B-tree complicated.
Bayer et al. [4] propose three protocols for scaling B-tree write operations. The first

protocol, which uses only write locks, starts from the root and it acquires the lock for
each node in the path until it reaches a leaf node. The second protocol follows the same
procedure, except that for each index node visited it acquires a read lock and it acquires
a write lock only when it reaches the target leaf node. Finally, the third protocol tries to
achieve concurrency in leaves by introducing a new type of lock named update lock. An
update lock is a read lock that eventually is converted to a write lock only when the address
of the update operation is decided.

3 DESIGN

3.1 Overview

Kreon, similar to Atlas [36], Tucana [47], and Wisckey [41], stores key-value pairs in a log to
avoid data movement during reorganization from level to level. Kreon organizes its index in
multiple levels of increasing size and transfers data between levels in batches to amortize
I/O costs, similar to LSM-Tree. But unlike LSM-Tree, within each level, Kreon organizes
keys in a B-tree with leaves of page granularity similar to bLSM [52]. However, unlike bLSM,
Kreon transfers data between levels via a spill operation, rather than full reorganization of
the data in the next level. Spills are a form of batched data compaction that merge keys
of two consecutive levels [Li, Li + 1]. However, spills do not read the entire Li+1 during
merging with Li and do not reorganize data and keys on a sequential part of the device [52].
Instead, Kreon spills read/write level Li+1 partially using the full B-tree index of each level.
The trade-off is that during spills, Kreon generates random read I/O requests at large

queue depth (high I/O concurrency) to significantly reduce I/O traffic and CPU overhead.
On the other hand write I/O requests are relative large for writing updated parts of Li+1

index. This is because Kreon B-tree uses Copy-on-Write for persistence [25] and a custom
segment allocator so updated leaves are written close on the device.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 A. Papagiannis et al.

Furthermore, Kreon uses memory mapped I/O to eliminate redundant copies between
kernel and user space and constant pointer translation. Kreon’s memory-mapped I/O path is
designed to provide efficient support for managing I/O memory addressing shortcomings of
the default mmap path in the Linux kernel. These shortcomings are: (a) It does not provide
explicit control over data eviction, as with an application-specific cache, (b) it results in an
I/O even for pages that include garbage, and (c) it employs eager evictions to free memory,
which results in excessive I/O, in order to avoid starving other system components.

Figure 3 depicts the architecture of Kreon showing two levels of indexes, the key-value log,
and the device layout. Next, we discuss our design for the system index and memory-mapped
I/O in detail.

3.2 Index Organization

Kreon offers a dictionary API (insert, delete, update, get, scan) of arbitrary sized keys and
values stored in groups named regions. Each region can map either to a table or shards of
the same table. For each region it stores key-value pairs in a single append-only key-value
log [41, 47] and keeps a multilevel index. The index in each level is a B-tree [3], which consists
of two types of nodes: internal and leaf nodes. Internal nodes keep a small log where they
store pivots, whereas leaf nodes store key entries. Each key entry consists of a tuple with a
pointer to the key-value log and a fixed-size key prefix. Prefixes are the first M bytes of the
key used for key comparisons inside a leaf. They reduce significantly I/Os to the log since
leaves constitute the vast majority of tree nodes. If the effectiveness of prefixes is reduced
due to low entropy of the keys, existing techniques discuss how they can be recomputed [6].

During inserts, Kreon appends the key-value pair to the key-value log, then it performs a
top-down traversal in its L0 B-tree, from the root to the corresponding leaf, and adds a key
entry to the leaf. Get operations examine hierarchically levels from L0 to LN and return
the first match. Since inserts propagate with the same order as get operations, the version
of the retrieved key is the most recent. Delete operations mark keys with a tombstone and
defer the actual delete operation. During system operation we use the marked key entries for
subsequent inserts that reuse the index entry and mark as free the deleted (old) key-value
pair in the log. Marked and unused entries in the index are reclaimed during spills. Marked
space in the log is reclaimed asynchronously, as discussed in Section 3.2.2. Update operations
are similar to a combined insert and delete. Scan operations create a scanner per-level and
use the index to fetch keys in sorted order. They combine the results of each level to provide
a global sorted view of the returned keys.

Each region supports a single-writer/multiple-readers concurrency model. Readers operate
concurrently with writers using Lamport counters [37] per tree node for synchronization.
Scans, similar to other systems [22], access all data inserted to the system up to the scanner
creation time and they operate on an immutable version of each tree which is facilitated by
the Copy-On-Write approach used by Kreon (Section 3.4).

Similar to LSM-Tree, L0 in Kreon always resides entirely in memory. Portions of levels ≥ 1
are brought in memory on demand. Kreon enforces memory placement rules for different
levels by using kmmap and explicit priorities (Section 3.3).

3.2.1 Spill Operations. When level i, Li, fills up beyond a threshold, Kreon merges Li into
Li+1 via a spill operation. Spills are conceptually similar to LSM-Tree compactions [22, 24,
52], however, they operate differently. Spills avoid sorting by using the B-tree of the level
to scan Li keys in lexicographic order and to insert them in Li+1. Spills effectively move a
large portion of keys from one level to the next. This batching of insert operations results

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Kreon Memory-Mapped Key-Value Store 1:7

. . .

. . .

KV KV KV KV KV KV

L0
L1

Device Layout

Level-0

Level-1 Key-Value Log

Superblock Bitmap

. . .

Spill

P
o

in
te

r

P
re

fi
x

P
o

in
te

r

P
re

fi
x

Leaf Node

Free Space

Fig. 3. The main structures of Kreon showing two levels of indexes, the key-value log, and the device
layout. Dashed rectangles include portions of the data structures that are kept in memory via kmmap.

in amortizing device I/Os over multiple keys due to the lexicographic retrieval of Li keys:
Kreon fetches a leaf of Li+1 once and performs all updates in the batch related to this leaf
before writing it back to storage. Furthermore, Kreon spills involve only metadata while
data remain in the append-only log. Compared to LSM based key-value stores [22, 39, 52],
where compactions move and reorganize the actual data as well, this reduces overhead at
the expense of leaving unorganized data on the device.

During spills, Kreon produces random and relatively small read requests (4 KB) for leaves
of Li+1. However, due to the use of Copy-on-Write in Kreon (Section 3.4) writes to the next
level happen always to newly allocated blocks within contiguous regions of the device, which
results in efficient merging of write I/Os into larger requests. Additionally, during spills,
Kreon creates many concurrent I/Os by using multiple spill threads.

For spills to be effective, each level needs to be able to buffer a substantial amount of keys
compared to the size of the lower (and larger) level, similar to compactions in LSM-Tree.
We determine empirically that buffering about 5-10% of the metadata of the next level
(key-value pairs themselves are not part of the indexes) results in effective amortization
of I/O operations. This growth factor of 10-20x between successive levels refers only to
metadata and depends also on the distribution of the inserted keys. Zipf-like distributions,
that are considered more typical today compared to uniform, behave well with buffering a
(relatively) small percentage of the next level. We evaluate the impact of the growth factor
in Section 4.5.
To achieve bounded latency for inserts during spills, Kreon allows inserts to L0 to be

performed concurrently with spills, as follows. It creates a new L′
0 tree where it performs

new inserts, while spilling from L0 to L1. Pages freed from the spill operation can be reused
by the new L′

0 index. Therefore, L′
0 grows at the same rate as L0 shrinks. Freeing pages

from the old index and adding them to the new index involves memory unmap and remap
operations (via kmmap) but no device I/O.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 A. Papagiannis et al.

3.2.2 Device Layout and Access. Kreon manages storage space as a set of segments. Each
segment is a contiguous range of blocks on a device or a file. To further reduce overhead we
access devices directly rather than use a file system in between. Our measurements show that
files result in a 5-10% reduction in throughput due to file system overhead. Each segment
hosts multiple regions and it has its own allocator to manage free space.

Kreon’s allocator stores its metadata at the beginning of each segment, which consists of
a superblock and a bitmap. The superblock keeps pointers to the latest consistent state of
the segment and its regions. The bitmap contains information about the allocation status
(free or reserved) of each 4 KB block. The bitmap is accessed directly via an offset and at
low overhead, while for searches we use efficient bit parallel techniques [7].

Kreon allocates space eagerly for regions in large units, currently 2 MB, consuming them
incrementally in smaller units. This approach avoids frequent calls to the allocator that is
shared across regions in each segment. It also improves average write I/O size by letting
each region grow in a contiguous part of the device.

Similarly, the key-value log in Kreon is organized in large chunks, also 2 MB. At the start
of each chunk we keep metadata about the garbage bytes as done in other systems [45].
Delete operations update the deleted bytes counter of the corresponding chunk. When this
counter reaches a threshold the valid key-value pairs are moved to the end of the log. We
locate these keys in the index via normal lookups and we update the leaf pointers accordingly.
Finally, we release the chunk to be available for subsequent allocations.

3.2.3 Partial Reorganization. Scan operations in Kreon for small key-value pairs (less than
4 KB) produce read amplification due to page size access granularity. To address this, Kreon
reorganizes data during scan operations, at leaf granularity. Reorganization takes place only
for L ≥ 1 leaves, since L0 leaves are always in memory. During reorganization the key-value
pairs belonging to the same leaf are written in a continuous region of the key-value log and
their previous space is marked free. The reorganization criterion is currently based on a
counter per leaf, which is incremented every time a leaf is written. During scans, if this
counter exceeds a threshold (currently, half the leaf capacity) the leaf is reorganized and the
counter is reset. We leave as future work additional adaptive policies for data reorganization.

3.2.4 Number of Levels. In our projected work, we claim that two levels in Kreon are
adequate for most practical cases, given current and projected DRAM and Flash density
and cost. If we assume a growth factor R of about 10-20x between levels, we can calculate
the dataset that can be handled with M bytes of memory devoted to L0, which needs to
fit in memory. If we assume that space amplification in B trees is 1.33 [35] and N keys are
buffered in L0 then the size of L0 is M = 1.33 ∗ N ∗ Pk, where Pk is the size of the metadata
for each key (pointer and prefix). Kreon uses 20 bytes of metadata for each key, which
results in M = 26 ∗ N . Similarly, the size of the dataset is D = R ∗ N ∗ (Sk + Sv), where Sk

and Sv are the size of the keys and values respectively, in the dataset. If we conservatively
assume R = 10, Sk = 10, and Sv = 100, then D = 1100 ∗ N and M/D = 0.02. However,
more typical sizes for keys and values are Sk = 20 and Sv = 1000. If we also assume R = 20,
then D = 20600 ∗ N and M/D = 0.001. Assuming that the cost ratio of DRAM over Flash
is about 10x per GB, then the cost of DRAM for L0 in a 2-level Kreon configuration is
conservatively 20% (M/D=0.02) cost of Flash to store the data and more realistically 1%
(D/M=0.001) or less.

Similar to our analysis, previous work has claimed that three levels are adequate for most
purposes [39, 52]. However, in previous cases the index contains the key-value pairs as well,
while in Kreon key-value pairs are placed in a separate log, further reducing the index size.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Kreon Memory-Mapped Key-Value Store 1:9

Finally, if two levels are not adequate, Kreon introduces additional levels to the hierarchy.
In this case however, there will be a need to also provide bloom filters for avoiding out of
memory lookups for all levels, similar to other systems [15, 22, 52].

3.2.5 Deletes, Updates, Garbage Collection. In this section we describe the design of delete
operations and the associated garbage collection mechanism in Kreon. We use the algorithm
proposed by Bayer et al. [3, 31] to implement deletes for the B-tree, as follows.
During a delete operation, Kreon searches all levels to delete every instance of the key

since, due to updates, a key may be present at multiple levels. After locating a key within
a level, we remove its associated metadata from the corresponding leaf (prefix, pointer).
If the node underflows (fewer keys than half of maximum leaf capacity) we perform the
appropriate rebalance operations (merge, rotate). During deletes and updates the key-value
pair is removed or updated accordingly from the index and no writes occur in the log.
Deletes, similar to updates, produce variable size chunks of free space in the key-value

log. Kreon implements a garbage collection (GC) mechanism to reclaim free space in the log
similar to Atlas [36] and WiscKey [41]. In Kreon we use a dedicated GC thread which is
invoked when the system is under capacity pressure. This is configurable and in our case we
provide an aggressive and a lazy policy. The aggressive policy invokes the GC thread every
30 seconds to reclaim the space as soon as possible, while lazy invokes the daemon every
20 minutes. The GC thread scans the segments of the log and uses Kreon’s index to check
which entries in the segment are valid.

The GC thread appends the valid key-value pairs at the end of the log and updates their
locations in the index. After this step we reclaim the space of the segment. During this
move operation of valid keys at the end of the log, there is a case where a key could be
simultaneously updated. We detect this by comparing the pointer stored in the index with
the address of the key-value pair in the log. If we identify that the new key is the same with
a key that is being updated then we abort the (re)insertion of the key.

3.2.6 Single-Region Scalability. Within each region, Kreon supports a single-writer/multiple-
readers concurrency model. Readers operate concurrently with writers using Lamport
counters [37] for each tree node. Furthermore, Kreon uses a single lock per region for writers.
To provide increase concurrency for writers we use the first two protocols of Bayer et

al. [4], as described in Section 2.2. In the common path we use the second protocol which
allows for higher concurrency in the index nodes, compared to the first protocol, as follows.
Each traversal from the root to a leaf node uses the second protocol. We abort this

traversal if a node in this path is full of entries and retry the traversal using the first protocol
to get exclusive access (write lock) to the nodes, split the full node, and rebalance the tree.
The combination of the two protocols allows Kreon to scale operations within a single

NUMA node. With multiple NUMA nodes within each server, the lock of the root node
becomes the bottleneck and limits scalability. Figure 7b shows that going from 16 threads (1
NUMA node) to 32 threads (2 NUMA nodes) does not provide any performance improvement.
The bottleneck in this case is the atomic increment operation used for the read locks. Related
work [12] has shown that even read locks limit scalability in NUMA servers.

To enable better scalability in multiple NUMA nodes, we provide an optimistic extension
of Bayer’s protocol presented in Section 2.2. Our extension makes use of the B-tree root
property, where rebalance operations are infrequent. Furthermore, we assume that delete
operations are infrequent and take place in batches, so the height of the B-tree decreases
following a similar pattern.

Bayer’s first and second protocol require the following properties regarding the root node:

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 A. Papagiannis et al.

(1) A single thread can modify the root at any given time.
(2) Writers should not check a version of the root that is in a transient state.

We achieve the same properties for root with the three following mechanisms:

(1) Root write lock : This ensures that a single thread at any given time can modify the
root node. Only the thread that modifies the root acquires this lock.

(2) Root Copy-on-Write: To avoid other writers accessing the root in a transient state
we use Copy-On-Write at the root node when a modification takes place. This allows
concurrent writers to always access the root in valid state.

(3) Lamport counters: This mechanism allows other concurrent writers to detect that
root is in transient state due to modification and retry the operation.

It is important to notice that in the case of a single NUMA node, these mechanisms
incur more overhead compared to acquiring a read lock. On the other hand, this overhead is
negligible as root rebalance operations are infrequent.

Finally, our protocol can be applied to other B-tree designs as well. The only requirement
is to use a top-down approach to acquire locks (i.e. from root to leaves), similar to Foster
B-tree [26] which increase concurrency of split leaf operations or Write-Optimized B-tree [25].

3.3 Memory-Mapped I/O

Most key-value stores and other systems that handle data use explicit I/O to access storage
devices or files with read/write system calls. In many cases, they also employ a user-space
cache as part of the application to minimize accesses to storage devices and user-kernel
crossings for performance purposes. The use of a user-space cache is important to avoid
frequent system calls for lookup operations that need to occur for every data item, regardless
if it eventually hits or misses. However, even the use of an application user-level cache incurs
significant overhead in the common path [28, 29, 47].
The use of memory-mapped I/O in Kreon reduces CPU overhead related to the I/O

cache in three ways: (a) It eliminates cache lookups for hits by using valid virtual page
mappings. Memory-mapped I/O does not require cache lookups because virtual memory
mappings distinguish data that are present in memory from data that are only located on
the device. All device data are mapped to the application address space but only data that
are present in memory have valid virtual memory mappings. Accesses to data that are not
present in memory result in page faults that are then handled by mmap. Given that many
operations in key-value stores, such as get operations with a Zipf distribution, complete
from memory, Kreon avoids all related cache lookup overheads. (b) There is no need to copy
data between user and kernel space when performing I/O. Pages used for data in memory
are used directly to perform I/O to and from the storage devices. (c) There is no need to
serialize/deserialize data between memory and the storage devices. Finally, memory-mapped
I/O uses a single address space for both memory and storage, which eliminates the need for
pointer translation between memory and storage address spaces and therefore, the need to
serialize and deserialize data when transferring between the two address spaces.

3.3.1 Kreon’s Memory-Mapped I/O. Kreon provides its own custom memory-mapped I/O
path to address the shortcomings of mmap in Linux.

First, in mmap there is no explicit control over data eviction, as with an application-specific
cache. Linux uses an LRU-based policy, which may evict useful pages, for instance, pages of
L0 instead of L1 pages. L0 has to reside in main memory to amortize write I/O operations.
Linux mmap does not provide a mechanism to achieve this. A possible solution is to lock

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Kreon Memory-Mapped Key-Value Store 1:11

User Process

Page Fault

Bank 0 Bank N-1. . .

P
ri

m
a

ry
 Q

u
e

u
e

Eviction Queue

Fr
e

e
 P

a
g

e
 P

o
o

l

H
it

 P
at

h

Miss Path

Device

R
e

co
v

e
ry

 P
a

th

Dirty

Tree

0 N...

Eviction Path

Fig. 4. The main structures of kmmap.

important pages with mlock. However, Linux does not allow a large number of pages to be
locked by a single process because this affects other parts of the system.

Second, each write operation in an empty page is effectively translated to a read-modify-
write because mmap does not have any information about the status (allocated or free) of the
underlying disk page and the intended use. This results in excessive device I/O. Instead, if
applications can inform mmap whether a page contains garbage and will be written entirely,
mmap can map this page without reading it first from the device, eliminating unnecessary
read traffic.
Third, mmap employs aggressive evictions based on memory usage and time elapsed

since pages marked as dirty to free memory and avoid starving other system components.
Mapping large portions of the application virtual address space creates pressure to the
virtual memory subsystem and results in unpredictable use of memory and bursty I/O.
Furthermore, eager and uncoordinated evictions do not facilitate the creation of large I/Os
through merging. Empirically, we often observe large intervals (of several 10s of seconds)
where the system freezes while it performs I/O with mmap and applications do not make
progress. Furthermore, we observe similar behaviour with msync. This unpredictability and
large periods of inactivity are an important problem for key-value stores that serve data to
online, user-facing applications.

To overcome these limitations, we implement a custom mmap, as a Linux kernel module,
called kmmap. Figure 4 shows the overall design and data structures of kmmap.

Kmmap bypasses the Linux page cache and uses a priority-based FIFO replacement policy.
As priority we define a small, per-page number (0 to 255). During memory pressure, a page
with a higher priority is preferred for eviction. Priorities are kept only in memory and are
set explicitly by Kreon with ioctl calls. Priorities are set as follows: Kreon assigns priority
0 to index nodes of L0, 1 to index nodes of L1, 2 to leaf nodes of L1, and 3 to the log. L0

fits in memory and it will not be evicted. Generally if we have more than two levels L0

always uses priority 0 and the log maximum priority. We calculate the priority of level LN

as (2 ∗ N − 1) for index nodes and (2 ∗ N) for leaves.
To increase parallelism, kmmap organizes memory in independent banks, similar to DI-

MMAP [19]. Pages are mapped to banks by hashing the page fault address. To place
consecutive pages in the same bank, the page fault address is first shifted. Unlike DI-
MMAP, kmmap uses fine-grain locking inside banks, which results in higher concurrency
and eliminates periods of inactivity (long freezes).

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 A. Papagiannis et al.

When Kreon accesses a page (for read or write), that does not reside in main memory, a
page fault occurs. On a page fault, kmmap retrieves a free page from an in-memory list (Free
Page Pool), it reads the data from the device if required, and finally enqueues the page to
the Primary Queue based on its priority. kmmap keeps a separate FIFO per priority inside
the Primary Queue. In the case where the Primary Queue is full of pages, it dequeues a
fixed number of entries for batching purposes, with preference to entries with higher priority.
Then it unmaps them from the process address space and moves them into the Eviction
Queue. The Eviction Queue is organized as an in-memory red-black tree structure, keeping
keys sorted based on page offset at the device. For evictions, it traverses the Eviction Queue
and merges consecutive pages to generate as large I/Os as possible. It keeps dirty pages that
belong to the Primary Queue or the Eviction Queue in another in-memory red-black tree
structure (Dirty Tree) sorted by their device offset. The Dirty Tree is used by msync, to
avoid scanning unnecessary (clean) pages.

Kmmap compared to mmap keeps pages in memory for a longer period of time and does
not evict them, unless there is a need to do so. This allows Kreon to generate larger I/Os
during spill operations by merging more requests. When a spill is completed, Kreon sets the
priority of pages from the previously spilled L0 to 255 (smallest priority) so they get evicted
as soon as possible.
To avoid unnecessary reads that occur when a new page is written in Kreon, kmmap

detects and filters these read-before-write operations, whereas write and read-after-write
operations are forwarded to the actual device. To achieve this, it uses an in-memory bitmap,
which is initialized and updated by Kreon via a set of ioctl calls. The bitmap uses a bit per
device block, so a 1 TB SSD requires 32 MB of memory for the bitmap.

Kmmap provides a non-blocking msync call that allows the system to continue operation
while pages are written asynchronously to the devices. For this purpose we keep a timestamp
for each page that indicates when it became dirty. To write dirty pages, we iterate the Dirty
Tree and write only pages with timestamp older than the timestamp of msync. We use
fine grain locking in Dirty Tree and we allow to add new dirty pages into it during msync.
However, there can be pages that are already dirty and changed after msync, which should
not be written. Kreon uses Copy-On-Write to ensure that after a commit dirty pages will
not change again as we need to allocate new pages.

Finally, Kreon significantly reduces unpredictability with respect to memory management
during system operation by limiting the maximum amount of memory it occupies throughout
its operation. It uses a configuration parameter to calculate the size of L0 in memory and
based on this it preallocates all memory-mapped I/O structures.

3.4 Persistence

Kreon uses Copy-On-Write (CoW) [50] to maintain its state consistent and recoverable after
failures. Kreon’s state includes the data section of each segment (metadata and data of the
tree) and the allocator metadata. To persist a consistent version of its state Kreon provides
a commit operation. This operation first writes the dirty (in-memory) data into the device
and then switches atomically from the old state to the new state. More specifically, Kreon
stores a pointer to the latest persistent state in the superblock. At the end of a commit
operation, Kreon updates this pointer to the newly created persistent state which becomes
immutable. In case of a failure, the new state that is not committed will be discarded during
startup, resulting in a rollback to the last valid state.

In Kreon we use CoW for different purposes at L0 and the rest of the levels. The index of
all levels except L0 is kept on the device and only brought to memory on demand. Therefore,

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Kreon Memory-Mapped Key-Value Store 1:13

typically, only a small part of these indexes is in memory. For these indexes, Kreon uses
CoW to ensure consistency of the index on the device during failures. These levels are only
written to the device during spills. Therefore, the only time when commits occur (besides
L0), is at the end of each spill operation.

L0 is different and can always be recovered by replaying a subset of the key-value log.
This subset is always the latest portion of the log and is easy to identify via markers placed
in the log during the spill operation from L0 to L1. Therefore, after a failure, L0 can be
reconstructed. However, L0 can grow significantly due to the large amount of memory
available in modern servers. Kreon uses CoW to checkpoint L0 to the device and to reduce
recovery time. Therefore, Kreon’s commits of L0 are not critical for recovery. L0 checkpoints
do not have to be very frequent. Infrequent L0 commits do not lead to data loss because the
L0 index can be reconstructed through the replay of the key-value log. The log is written to
the device more frequently, when a log segment (2 MB) becomes full.
Essentially, Kreon uses L0 commits at a coarse granularity to improve recovery time,

without however, a negative impact on the recovery point. The tradeoff introduced is that
commits incur overhead during failure free operation. Overall, we expect that Kreon L0

commits will be issued periodically at a time scale of minutes, which has a low impact on
performance. Section 4.5 evaluates commit overhead in Kreon.

3.5 RDMA Client-Server Protocol

During the past decade network technology has evolved to provide link speeds up to 100 Gbps.
Along with these advancements, the demand for high throughput and ultra-low latency has
also grown in datacenter applications. However, TCP/IP protocol fails to deliver this network
performance. As shown in previous works, TCP/IP incurs high CPU overhead [23, 42] and
as a result few processing resources are left for applications [5]. This is because it requires
extensive computing power due to the TCP/IP processing in the host CPU and it inherently
incurs high overheads due to its streaming semantics.

On the contrary, RDMA protocol can meet those network requirements, since it provides
low CPU overhead, ultra-low latency and high throughput. To achieve these, RDMA provides
zero-copy transfers by allowing one computer to directly access the memory of a remote
computer without involving the operating system at any host. Previous work [18, 32, 33, 43]
has shown that RDMA-based protocols offer significant gains compared to TCP/IP for
in-memory key-value stores.

In Kreon we implement an RDMA protocol for communication between clients and servers.
In this work we investigate the portion of cycles a server devotes to network processing when
using RDMA relative to the portion of cycles devoted to index manipulation and device I/O.

Previous work for in-memory, hash-based key-value stores has removed server involvement
entirely by using RDMA read operations [18, 43, 58]. This is possible because they use a
simple index, so clients can access data with a single remote read. However, Kreon and
most persistent key-value stores use more complex index structures to access data that also
support scans and requires index traversals. Thus, direct access from clients would result
in several round-trip messages. For this reason, Kreon uses server-side processing for client
requests. In particular, it uses a single RDMA-based round-trip message for each common
data path operation (get, put, scan). Additionally, it uses RDMA writes for all messages.
Ot also allows arbitrary key and value sizes, unlike RDMA send messages that require a
maximum fixed size [33].

Kreon uses the following buffer management scheme for RDMA writes. RDMA operations
need pre-registered memory regions in both the local and remote node to exchange data

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 A. Papagiannis et al.

between two nodes. Nodes register two memory regions per connection: One for posting
data to be sent to the remote peer and the other for receiving data from the remote peer.
The receiving region mirrors the contents of the sending region in the remote peer. Both
regions are split into blocks of 1 KB, with each receiving block being a mirror of a sending
block. Each message uses one or more consecutive 1 KB mirrored blocks. The sender reserves
mirrored blocks from its sending memory region, resulting indirectly in a reservation of the
same mirrored blocks on the receiving memory region of the remote peer.
Regarding messages, each message is composed of a header and a payload. The header

includes the request type (get, put or scan), operation ID, message size, ID of the region and
number of operations included. The payload contains the key value pairs to insert (put), or
the keys to lookup (get and scan) from client to server or the values found from server to
client. Client inserts keys and values (if any) directly to the mirrored blocks, while server
uses the mirrored blocks to issue the corresponding operation to Kreon, avoiding an extra
memory copy.

To avoid interrupts, we use polling at the receive path for detecting arrival of new messages.
Reservation of mirrored blocks is always done sequentially so messages arrive in consecutive
blocks. Since our RDMA messages are variable size, we use two locations for polling, one for
detecting arrival of the header and identifying message length and one for detecting arrival
of the payload.

4 EXPERIMENTAL RESULTS

In this section we evaluate Kreon against RocksDB [21, 22]. Our goal is to examine the
following aspects of Kreon:

(1) What is the efficiency in cycles/op achieved by Kreon compared to LSM-based key-
value stores? Does higher efficiency come at the cost of worse absolute throughput
or latency?

(2) How much does the new index design and memory-mapped I/O contribute to reducing
overheads?

(3) How does Kreon improve I/O amplification? How much does it increase I/O random-
ness?

(4) How do the growth factor across levels and L0 checkpoint interval affect performance?

Next, we discuss our methodology and each aspect of Kreon in detail.

4.1 Methodology

Our testbed consists of a single server which runs the key-value store and the YCSB client.
The server is equipped with two Intel(R) Xeon(R) CPU E5-2630 v3 CPUs running at
2.4 GHz, with 8 physical cores and 16 hyper-threads, for a total of 32 hyper-threads and
with 256 GB DDR4 at 2400 MHz. It runs CentOS 7.3 with Linux kernel 4.4.44. During
our evaluation we scale-down DRAM as required by different experiments. The server has
six Samsung 850 PRO 256 GB SSDs, organized in a RAID-0 using Linux md and 1 MB
chunk size. The systems are connected with Mellanox ConnectX-3 Pro 40 Gbps Ethernet
cards through a 40 Gbps switch. In the case of MongoDB we use two separate clients. Each
of them is equipped with two Intel(R) Xeon(R) Processor E5-2620 v2 CPUs running at
2.1 GHz with 6 physical cores and 12 hyper threads, for a total of 24 hyper-threads and with
128 GB DDR3. They also run CentOS 7.3 with Linux kernel 3.10. Clients access MongoDB
server through TCP/IP MongoDB client driver. To generate enough load for the server we
run 8 separate YCSB processes on each client, each of them with 8 threads.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Kreon Memory-Mapped Key-Value Store 1:15

Workload

A 50% reads, 50% updates
B 95% reads, 5% updates
C 100% reads
D 95% reads, 5% inserts
E 95% scans, 5% inserts
F 50% reads, 50% read-modify-write

G 100% scans

Table 1. Workloads evaluated with YCSB. All workloads use a query popularity that follows a Zipf
distribution except for D that follows a latest distribution as defined by YCSB.

We use RocksDB1 v5.6.1, on top of XFS with disabled compression and jemalloc [20], as
recommended. We configure RocksDB to use direct I/O because we evaluate experimentally
that in our testbed results in better performance. Furthermore, we use RocksDB’s user-space
LRU cache, with 16 and 192 GB depending on the experiment.

We use a C++ version of YCSB [49] with the standard workloads proposed by YCSB [13,
14]. Table 1 summarizes these workloads. We add a new workload named G which is similar
to E but consists only of scans. In all cases we use 128 YCSB threads for each client and 32
regions.
We emulate two datasets a small dataset that fits in memory and a large dataset that

does not by using two different memory configurations for our system. In the small dataset
we boot the server with 194 GB of memory, 192 GB for key-value store and 2 GB for the
OS. For the large dataset, and to further stress I/O we boot the server with 18 GB of
memory, 16 GB for key-value store and 2 GB for the OS. The dataset consists of 100M
records and requires about 120 GB of storage. YCSB by default generates 10 columns for
each key. We keep these 10 columns inside a single value. We use a 100M keys (recordcount
and operationcount equals to 100M) * 10 columns which results in 1 billion columns.
In the small dataset, both the key-value log and the indexes fit in memory, so I/O is

generated by commit operations. In the large dataset, neither the key-value log nor the
indexes fit in memory and only L0 is guaranteed to reside in memory. Therefore, the small
dataset demonstrates more clearly overheads related to memory accesses whereas the large
dataset stresses the I/O path.

We calculate efficiency in cycles/op as follows:

cycles/op =
CP U utilization

100 × cycles
s × cores

average ops
s

,

where CPU utilization is the average of CPU utilization among all processors, excluding
idle and I/O wait time, as given by mpstat. As cycles/s we use the per-core clock frequency.
average ops/s is the throughput reported by YCSB, and cores is the number of system
cores including hyperthreads.

4.2 CPU Efficiency and Performance

We evaluate the efficiency of Kreon in terms of cycles/op required to complete each operation,
excluding YCSB overhead. To exclude the overhead of the YCSB client, we profile the average

1Options file: https://goo.gl/NJNLNr.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://goo.gl/NJNLNr

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 A. Papagiannis et al.

 0

 100

 200

 300

 400

Ru
n C

Ru
n G

k
c
y
c
le
s
/o
p

(a) Small dataset

 0

 100

 200

 300

 400

 500

 C G

(b) Large dataset

Fig. 5. Efficiency of Kreon and RocksDB in cycles/op.

 0

 2

 4

 6

 8

 10

 B C F D E E

Im
p
ro
v
e
m
e
n
t

Small

(a) Efficiency

 0

 4

 8

 12

 16

 B C F D E E

Im
p
ro
v
e
m
e
n
t

Small

(b) Throughput

Fig. 6. Efficiency and throughput improvement of Kreon compared to RocksDB for all YCSB workloads.

cycles/op required by YCSB and we subtract this overhead from the overall value for both
RocksDB and Kreon.
Figure 5 shows our overall results for Kreon and RocksDB. For the small dataset Kreon

requires 8.3x, 1.56x, and 1.4x fewer cycles/op for Load A, Run C, and Run G, respectively.
For the large dataset Kreon requires 5.82x, 1.2x, and 1.18x fewer cycles/op for Load A, Run
C, and Run G, respectively. In addition, for the small dataset and Load A we compare Kreon
when using kmmap and when using vanilla mmap. Although we do not show these results
for space purposes, using kmmap, Kreon achieves 1.47x fewer cycles/op compared to vanilla
mmap, indicating the importance of proper and customized memory-mapped I/O for key
value stores.

In terms of absolute numbers, we see that Kreon requires 21, 35, and 241 kcycles/op for
each of Load A, Run C, and Run G for the small dataset and 25, 64, and 354 kcycles/op for
each of Load A, Run C, and Run G for the large dataset.

We now show results from a complete run for all YCSB workloads. We run the workloads
in the recommended sequence [13]: Load the database using the configuration file of workload
A, run workloads A, B, C, F, and D in a row, delete the whole database, reload the database
with the configuration file of workload E and finally run workload E.

For both the small and large dataset, Figure 6a shows the improvement in efficiency
compared to RocksDB, whereas Figure 6b shows the improvement in throughput. Regarding
efficiency, Kreon improves RocksDB efficiency, on average, by 3.4x and 2.68x, for the small

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Kreon Memory-Mapped Key-Value Store 1:17

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16 32

M
o

p
s
/s

e
c

#threads

1st protocol
1st protocol + Opt

(a) 1st protocol

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16 32

M
o

p
s
/s

e
c

#threads

2nd protocol
2nd protocol + Opt

(b) 2nd protocol

Fig. 7. Kreon throughput for Bayer’s first (left) and second (right) protocols.

and large dataset, respectively. Regarding throughput, the improvement in Kreon compared
to RocksDB is, on average, 4.72x and 2.85x for the small and large datasets, respectively.

4.2.1 Scalability analysis. In this section, we evaluate the scalability of Kreon concurrency
protocols described in Section 3.2.6. We show that our root optimization is essential to
achieve a scalable performance in NUMA servers. In this case, we run Load A and we vary
the number of threads from 1 to 32. We use the small dataset that fits in memory because
we want to show the CPU synchronization overheads.

Figure 7a shows throughput scalability of Bayer’s first protocol which acquires write locks
in the whole path from the root to the leaves. The ”1st protocol” curve shows Bayer’s first
protocol whereas the ”1st protocol + Opt” curve uses same protocol and in addition the
optimization for the root, as described in Section 3.2.6. We observe from the ”1st protocol”
curve that throughput drops after 4 threads because of the write lock that serializes operations
in the root node. On the other hand, from the ”1st protocol + Opt” curve we observe that
when we replace the write lock of the root with our root optimization throughput improves
from 3× up to 10×. In this case we enable concurrency in the root node and inserts that do
not conflict in the traversal to a leaf node proceed concurrently.
Figure 7b shows the same experiment with Bayer’s second protocol which acquires read

locks in the internal nodes and write lock only at the leaf. The ”2nd protocol” curve is Bayer’s
second protocol whereas ”2nd protocol + Opt” is the same protocol using our optimization
for the root node. Figure 7b shows that Bayer’s second protocol scales well within a single
NUMA node (up to 16 threads). Using the second NUMA node (32 threads), Kreon fails to
scale due to the root node read lock excessive traffic on the NUMA interconnect. With ”2nd
protocol + Opt”, the traffic on the NUMA interconnect decreases as we remove the single
atomic operation from the root. This improves throughput by 66% using 32 threads. Using
profiling and 32 threads we see that our mechanism in the root node is not the bottleneck. In
this case, the performance is limited by the log lock, which writers use to append atomically.
This lock takes about 50% of the execution time.

Figure 8 shows the scalability for RocksDB and three versions of Kreon: Kreon that
uses a single write lock, ”Kreon+1st+2nd” that uses Bayer’s second concurrent protocol
without the root optimization, and ”Kreon+1st+2nd+Opt” that uses Bayer’s second protocol
with the root optimization. We see that ”Kreon+1st+2nd+Opt” scales better compared to
”Kreon+1st+2nd” up to 32 threads. Kreon with a single lock does not scale with increasing
the number of threads. Finally, using 32 threads ”Kreon+1st+2nd+Opt” achieves 2.65×
more throughput compared to RocksDB.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 A. Papagiannis et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16 32

M
o

p
s
/s

e
c

#threads

Kreon+1st+2nd+Opt
Kreon+1st+2nd

Kreon
RocksDB

Fig. 8. Bayer’s protocols scalability compared to Kreon and RocksDB.

 0.01

 0.1

 1

 10

 100

 1000

90 99
99
.9

99
.9
9

L
�
��
�
�
�

 (
m
s
)

���	 A

90 99
99
.9

99
.9
9

R
� C

RocksDB
Kreon-mmap
Kreon-kmmap

Fig. 9. Tail latency for Load A and Run C for RocksDB, Kreon with vanilla mmap, and Kreon with
kmmap.

4.2.2 Latency analysis. First, we examine the average latency per operation for the small
dataset. For Load A, RocksDB achieves 1162 µs/op, Kreon with vanilla mmap achieves
346 µs/op, and Kreon with kmmap achieves 72 µs/op. This shows that kmmap provides
significant reduction in latencies compared to vanilla mmap. For Run C, RocksDB achieves
174 µs/op, Kreon with vanilla mmap achieves 119 µs/op, and Kreon with kmmap achieves
109 µs/op. Generally, Kreon with kmmap achieves 16.1x and 1.5x lower latency on average
for Load A and Run C compared to RocksDB.
Figure 9 shows the tail latency for Kreon using both kmmap and vanilla mmap and

RocksDB. For Load A, for 99.99% of requests, Kreon with kmmap achieves 393x lower
latency compared to RocksDB. Furthermore, kmmap results in 99x lower latency compared
to vanilla mmap. In our design we remove blocking for inserts during msync and during
spilling of L0. Unlike Kreon, RocksDB blocks inserts during compaction operations for longer
periods. For Run C, Kreon results in almost the same latency with and without kmmap and
about 2x better than RocksDB. This is because in a read-only workload most overheads
comes from the data structure, as we use a dataset that fits in memory and removes the
need for I/O. In the case of RocksDB this overhead includes also a cache lookup while in
Kreon it only accesses already mapped memory. The use of mmap and kmmap results in
almost the same performance as this experiment does not stress memory-mapped I/O path.

4.2.3 Very large dataset. To examine Kreon’s behavior with a very large dataset we run
Load A using 6 billion keys with one column per key (key size of 30 bytes and value size
of 100 bytes). For this experiment we use 192 GB of DRAM for both Kreon and RocksDB.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Kreon Memory-Mapped Key-Value Store 1:19

 0

 0.5

 1

 1.5

 A
Ru
n C

Ru
n G

M
o
p
s
/s
e
c

(a) Small dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 C G

RocksDB

(b) Large dataset

Fig. 10. Throughput for Kreon and RocksDB in ops/s.

Kreon reduces cycles/op by 8.75x, increases ops/s by 12.11x, reduces write volume by 4.25x,
and read volume by 3.14x.

4.2.4 Absolute operation throughput. Next, we examine if Kreon’s increased efficiency in
cycles/op comes at the expense of reduced absolute performance. This is important for
understanding if Kreon trades device and host CPU efficiency in the right manner. For
Kreon and RocksDB, Figure 10 shows the throughput (ops/s), achieved by YCSB. For the
small dataset, Kreon achieves 14.35x, 1.24x, and 1.25x more ops/s for Load A, Run C, and
Run G, respectively.

For the large dataset, Kreon achieves 5.33x and 1.05x more ops/s for Load A and Run
C, respectively, than RocksDB. However, Kreon is 2% worse for Run G. In this case, both
RocksDB and Kreon are limited by device throughput and this is the reason that both
systems are comparable. On the other hand, Kreon results in much lower CPU utilization: on
average Kreon has a utilization of 13.8% while RocksDB has a utilization of 39.5%. Therefore,
Kreon is able to support more clients given an adequate number of storage devices.

For the small dataset and Load A, we compare Kreon with kmmap and with vanilla mmap.
We see that kmmap improves throughput by 4.34x compared to vanilla mmap.

4.3 Execution Time Breakdown

In this section we examine the main components that contribute to overhead in Kreon and
RocksDB. Our purpose is to identify what are the main sources of improvement in Kreon
compared to RocksDB and what are the remaining sources of overhead.

We examine two workloads a write-intensive (Load A) and a read-intensive (Run C) using
both the small and large datasets. We profile Load A and Run C workloads and we use
stack traces from perf and Flamegraph [27] to identify where cycles are spent. We divide
overhead in the following components: index operations (updates/traversals for put/get
operations), caching, I/O, and compaction/spill. I/O refers to explicit I/O operations in
RocksDB and memory-mapped I/O in Kreon. Caching refers to the cycles needed for cache
lookups, fetching new data for misses and page evictions when the cache becomes full.
RocksDB uses a user-space LRU cache whereas in Kreon cache resides in kernel-space as
part of kmmap.
Table 2 shows the breakdown for the write-intensive Load A workload. The number of

cycles used by the YCSB client is roughly the same in all cases. In the small workload, index
manipulation incurs about 44% lower overhead in Kreon (∼13K cycles/op in Kreon vs. 24K
cycles/op in RocksDB). Caching overhead for the write-intensive workload is lower for the

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 A. Papagiannis et al.

kcycles/
operation

Load A (16GB) Load A (192GB)

RocksDB Kreon
Impro
vement

RocksDB Kreon
Impro
vement

index 24.15 13.46 44% 26.76 13.1 51%
cache 0.33 0.56 -69% 0.82 0.45 45%

I/O pfault 2.92 5.84
61%

1.66 2.61
80%

I/O syswrite 12.20 0 11.91 0
compaction/spill 63.41 0.78 98% 60.87 0.64 98%

Total 103.1 20.64 79% 102.02 16.8 83%
YCSB 26.67 25.34 - 22.79 21.37 -

Table 2. Breakdown of cycles per operation for workload Load A (write only). Numbers are in kcycles.

kcycles/

operation

Run C (16GB) Run C (192GB)

RocksDB Kreon
Impro

vement
RocksDB Kreon

Impro

vement

index 4.87 4.28 12.3% 25.59 10.29 59%

cache 8.61 0.41 95% 9.79 0.74 92%
I/O pfault 0.12 3.16

-6%
0.54 5.9

23%
I/O sysread 2.86 0 7.21 0

Total 16.46 7.85 52% 43.13 16.93 60%
YCSB 13.9 12.11 - 54.04 53.11 -

Table 3. Breakdown of cycles per operation for workload Run C (read only). Numbers are in kcycles.

large dataset whereas for the small dataset Kreon spends more 0.23 Kcycles/op. For I/O
Kreon requires 61% fewer cycles. For compaction/spill Kreon dramatically reduces the cycles
required per operation from 63.41K to 0.78K. In the large workload, index manipulation
requires 51% fewer cycles in Kreon (from 26K to 13K) and for I/O 80% fewer cycles. Similarly
to the small dataset, Kreon significantly reduces the number of cycles per operation for
compaction/spill from 60.87K to 0.64K.
Table 3 shows the breakdown for the read-intensive workload (Run C benchmark). In

the small dataset, index manipulation incurs 12% fewer cycles (from 4.87K in RocksDB to
4.28K in Kreon). Caching overhead is reduced by 95% (from 8.61K cycles/op in RocksDB
to 0.41K cycles/op in Kreon) whereas I/O requires 6% more cycles in Kreon. In the large
dataset, index manipulation overhead is reduced by 59% in Kreon, caching overhead by 92%,
and I/O by 23%.

Overall, we see that Kreon’s design significantly reduces overheads for index manipulation,
spills, and I/O. We also see that all proposed mechanisms for indexing, spills that involve only
metadata, and memory-mapped I/O-based caching, have important contributions. Finally,
we see that in Kreon the largest number of cycles is consumed by index manipulation (up to
13K cycles/op) both for both datasets in both workloads and secondarily by page faults (up
to 5.9K cycles/op).

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Kreon Memory-Mapped Key-Value Store 1:21

Load A Run C Run G

RocksDB-Read 669 138 296
Kreon-Read 112 127 1237
RocksDB-Write 869 0 8
Kreon-Write 221 0 139

Table 4. Total I/O volume (in GB) for Load A, Run C, and Run G using the large dataset.

4.4 I/O Amplification and Randomness

In this section we evaluate how Kreon reduces amplification at the expense of reduced I/O
size and increased I/O randomness. To reduce amplification, Kreon generates by design
smaller and more random I/Os compared to RocksDB and traditional LSM trees. We
measure the average request size for Load A using the large dataset. For writes, Kreon has
an average request size of 94 KB compared to 333.2 KB for RocksDB. However, even at 94
KB, most SSDs exhibit high throughput with a large queue depth (Figure 1). For reads,
Kreon produces 4 KB I/Os, compared to 126 KB for RocksDB. Because of compactions,
RocksDB reads large chunks of data in order to merge them. This results in a large request
size but it also results in high read amplification, 4.8x more data compared to Kreon.
Table 4 shows the total amount of traffic to the device using the large dataset. We see

that for Load A Kreon reduces both read traffic by 5.9x and write traffic by 3.9x, while the
total traffic reduction is 4.6x. Kreon reads 1.08x less data for Run C. On the other hand,
Kreon reads 4.1x more data for Run G, due to data re-organization. This cost is related
only to scans and for leaves that are not re-organized. On the other hand, in RocksDB data
reorganization takes place in every compaction.
To examine randomness, we implement a lightweight I/O tracer as a stackable block

device in the Linux kernel that keeps the device offset and size for bios issued to the
underlying device. The tracer stores this information to a ramdisk to reduce overhead and
avoid interfering with the key-value store I/O pattern. Tracing reduces average throughput
of YCSB by about 10%. We analyze traces after each experiment and calculate a metric for
I/O randomness based on the distance and size of successive bios, as follows:

R =

nb−1∑
i=0

|bs[i + 1].off − (bs[i].off + bs[i].size)| + bs[i].size

device size in pages ∗
nb−1∑
i=0

bs[i].size

,

where bs is the array that contains bio information and nb its length. R is the randomness
metric and takes values between [0,1]. The larger R is, the more random the I/O pattern.
Finally, we compute three versions of R, one for all bios (Rt), one for reads (Rr), and one
for writes (Rw).
Table 5 shows our results for Kreon and RocksDB. For calibration purposes, we run fio

with queue depth of 1 and block size of 4 KB: a sequential pattern is 0 and a random
pattern is close to 0.33. Kreon produces overall about 5.53x more random I/O patterns than
RocksDB. Reads exhibit a larger difference in randomness, about 10x, because Kreon moves
data between levels at smaller granularity than RocksDB. For writes, Kreon exhibits a 3x
more random pattern.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 A. Papagiannis et al.

Rt Rr Rw

RocksDB 0.001780 0.003878 0.000112
Kreon 0.009851 0.033648 0.000325

Table 5. I/O randomness using the large dataset and Load A. The higher the value of R, the more
random the I/O pattern.

Overall, during inserts, Kreon reduces write traffic by 2.8x and read traffic by 4.8x. In
both cases, queue depth is about 30 on average. Figure 1 shows that, at this queue depth,
commodity SSDs achieve their maximum throughput with at 32 KB requests, so Kreon’s
94 KB write requests result in little or no loss of device efficiency, while there is a 2.8x gain
from reduced write traffic. For read traffic, Kreon’s 4K requests result in a small percentage
drop of SSD throughput at a queue depth of 32, but at a 4.8x gain in traffic. Therefore,
Kreon properly trades randomness and request size for amplification. The calculation is
somewhat different for our NVMe devices, but still favorable to Kreon.
Finally, Kreon achieves an average read throughput of 123 MB/s and an average write

throughput of 743 MB/s at an average queue depth of 21.2. On the other hand RocksDB
achieves 707 MB/s for reads and 889 MB/s for writes at an average queue size of 26.2. In
both cases queue depth is large enough for devices to operate at high throughput, although
Kreon exhibits lower throughput for reads due to the smaller request sizes it generates.
This loss of device efficiency is compensated by the reduced amplification (by 4.6x) and the
reduced CPU overhead, eventually resulting in higher performance and data serving density.

4.5 Growth Factor and Commit Interval

An important parameter for key value stores that use multi-level indexes is the ratio of the
size between two successive levels (growth factor). The growth factor in Kreon represents
the amount of buffering that happens for inserts in one level before keys are spilled to the
next level. This affects how effectively I/Os are amortized across several inserts and reduces
write amplification.

Figure 11 shows Load A with varying growth factor using the large dataset. A growth
factor of 0.1 means that L1 is 10x larger than L0 and therefore L0 can buffer about 10% of
the keys in L1. Figure 11b shows that a growth factor between 0.05 and 0.1 is appropriate,
meaning that each level should buffer between 5-10% of the next level. A smaller growth
factor results in significant increase in traffic and reduces device efficiency. Increasing the
growth factor beyond 0.1 reduces traffic further, however, this also requires more memory for
L0. Figure 11a (right y-axis) shows that average request size increases as buffering increases
and combined with the reduced traffic, results in increasing throughput (ops/s), as shown in
Figure 11a (left y-axis).
Figure 12 shows how the commit interval for L0 affects ops/s, read volume, and write

volume in Kreon. For Run C the commit interval does not affect any of the metrics, therefore,
we examine only Load A with the large dataset.

Increasing the commit interval decreases the total amount of data read and written to
the device. This is due to Copy-on-Write. For each commit we create a read-only version of
our tree, thus an insert has to allocate new nodes and copy data from the immutable copy.
Additionally, we see that commit intervals longer than 120s have a small impact for read
and write volume.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Kreon Memory-Mapped Key-Value Store 1:23

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

0.
01
25

0.
02
5

0.
05 0.

1
 0

 5

 10

 15

 20

 25

a
v
g
.

avg. size

(a) xput & avg. request size

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0

 5

 10

 15

 20

 25

 (
G
B
)

read

(b) I/O volume

Fig. 11. Results with varying growth factor from 1.25% to 10% (x-axis) using the large dataset.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

30 60 120 240 480 960

 0

 50

 100

 150

 200

 250

 300

 350

M
o

p
s
/s

e
c

I/
O

 V
o

lu
m

e
 (

G
B

)

commit interval (sec)

ops/sec

read volume

write volume

Fig. 12. Results with varying the commit interval (x-axis) for Load A and the large dataset.

For throughput, a small commit interval results in larger read and write volume which
reduces performance. Interestingly, a value larger than 240 seconds reduces throughput
significantly as well. This is due to the behavior of msync. In kmmap, msync is optimized
to generate many large and asynchronous I/Os from all dirty pages, which means that it
is more efficient compared to the eviction path mmap where we evict less amount of data.
Overall, we see that a good value for the commit interval is about 2 minutes, which we use
in all our other experiments.

4.6 RDMA Communication Overhead

Since key-value stores typically serve network clients, we are interested in examining the
relative overhead of RDMA-based communication compared to I/O and index management
in Kreon. Figure 13 shows the link throughput achieved by Kreon’s protocol. We see that
with two clients the throughput achieved is about 1.5 GB/s for the small dataset. Other
systems [43] achieve similar link throughput with RDMA.

Next, we use oprofile to obtain a breakdown of CPU utilization for the main components
of Kreon: Index represents the cost of index-related operations, except device I/O, IO
represents the cost of I/O via kmmap, RDMA represents communication cost, including
the issue and receive paths, Polling is the CPU time spend in RDMA threads polling for
messages, and Memory represents the cost of memory copies used for index manipulation
and RDMA-purposes

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 A. Papagiannis et al.

 0

 0.5

 1

 1.5

 2

Load A Run C

T
h
ro
u
g
h
p
u
t
(G
B
/s
)

RDMA-1C

RDMA-2C

(a) Small dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Load A Run C

T
h
ro
u
g
h
p
u
t
(G
B
/s
)

RDMA-1C

RDMA-2C

(b) Large dataset

Fig. 13. Link throughput achieved by Kreon’s RDMA protocols with one and two clients for the small
and large datasets.

Small 1C Large 1C Small 2C

LoadA RunC LoadA RunC LoadA

Index 27.29 14.19 16.35 7.69 27.72
IO 10.44 12.64 15.49 14.87 19.70

RDMA 1.75 1.77 1.22 0.89 2.17
Polling 8.96 9.82 11.01 11.03 4.30
Memory 4.13 0.07 2.80 0.04 5.16

Util. 59.11 45.20 52.02 38.45 70.33

Table 6. Percentage of CPU used in each component of Kreon.

Table 6 shows the overhead for each component, as percentage of the CPU used by the
server for each workload, Load A and Run C, with the small and large datasets, and for
both one and two clients. For Load A, we see that generally index processing dominates
and is between 16-27% followed by device I/O, which is between 10-20%. RDMA processing
overhead is about 2%. Also, memory copies in Kreon occur only for secondary uses in general
and are below 5%. For Run C, index processing is less important, between 7-14%, device
I/O importance increases and is between 12-14%, while RDMA percentage remains low and
below 1.7%.

Polling for network messages takes between 4-11% of CPU utilization. Although this is a
relatively large percentage, it is due to the fact that the server is not saturated, but rather
limited by device I/O throughput. At higher utilization, the percentage spent in polling will
be reduced. Nevertheless, these numbers show that polling strategies currently employed
widely in RDMA protocols [18, 33, 34, 43] need to consider adaptive approaches to improve
server efficiency.
Finally, server CPU utilization for the experiments of Figure 13 is between 38-70%.

Saturating server CPU will increase link throughput to at most 2 GB/s. Thus, a 40Gbps
link roughly can serve up to 64 cores (hyper-threads). Overall, we find that for persistent
key-value stores, RDMA processing cost is relatively low, polling for messages requires
adaptive approaches, and a 40 Gbps link is able to serve about 64 cores with Kreon.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Kreon Memory-Mapped Key-Value Store 1:25

4.7 Integration with MongoDB

In this section, we quantify the benefits in performance and efficiency of Kreon in a production
grade NoSQL system. For this reason we use MongoDB [10], a state-of-the-art general purpose,
document-based database. MongoDB offers an API for developers to use custom storage
engines. Towards this direction, MongoRocks [44] provides a layer that enables the use
of RocksDB as a storage engine of MongoDB. We also use Kreon as a storage engine of
MongoDB. To achieve this, we modify MongoRocks to use Kreon instead of RocksDB. For
a fair comparison we disable RocksDB’s Bloom Filters and scan reorganization in Kreon.
Bloom filters are not yet supported in Kreon.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 B C F D E E

T
h
ro
u
g
h
p
u
t
(K
o
p
s
/s
)

(a) Throughput

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 B C F D E E

M
c
y
c
le
s
/o
p

(b) Efficiency

Fig. 14. Throughput and efficiency comparison of Kreon and RocksDB in MongoDB.

Figure 14a shows the throughput for each YCSB workload, using Kreon and RocksDB as
storage engines. We observe that Kreon, improves throughput from 1.04× up to 1.2× for all
workloads except Run E, where we have about 30% lower performance. This is because we
disable scan reorganization in Kreon and we introduce random I/Os for the scans. Figure 14b
shows the efficiency in terms of cycles/op for the same workloads. Kreon requires from 0.96×
up to 4.26× less cycles/op across all workloads.
These results show that even in a complicated production grade NoSQL system, Kreon

provides performance and efficiency benefits. On the other hand they are less pronounced
compared to our single node evaluation as MongoDB contains significant subsystems like
query engine that affect performance.

5 RELATED WORK

Related work to Kreon falls in the following categories:

5.1 Optimizations to LSM trees

bLSM [52] uses a B-tree index per level and bloom filters to reduce read amplification. It
also introduces gear scheduling, a progress-based compaction scheduler that limits write
latency. Kreon shares the idea of a B-tree index per level but keeps an index only for the
metadata and it does not fully rewrite levels during spills trading I/O randomness for CPU
efficiency. FD-tree [39] is an LSM tree for SSDs, which uses fractional cascading [8] to reduce
read amplification. VT-tree [53] reduces I/O amplification by merging sorted segments of
non-overlapping levels of the tree. LSM-trie [59] uses a hashing technique to replace sorting
but does not support range queries. Contrary to these systems, Kreon replaces sorting with
indexing and introduces a spill mechanism to reduce CPU overheads and I/O amplification.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 A. Papagiannis et al.

Atlas [36] is a key-value store that aims to improve data-serving density and data replica
space efficiency. To achieve these, Atlas employs an LSM–based approach and separates keys
from values to avoid moving values during compactions. Similarly, WiscKey [41] proposes
the separation of keys and values to reduce write amplification. It stores values in a data log
and keeps an LSM index for the keys. Furthermore, it implements a prefetching mechanism
for speeding up range queries because values are written randomly on the device.

PebblesDB [48] identifies as the main problem of write amplification in the LSM-tree the
repeated merges of files at each level during compaction. To fix this, it keeps overlapping
sorted files at each level instead of non-overlapping. However, this approach adds overhead
in the read path since multiple files need to be checked instead of a single. To improve this,
PebblesDB introduces guards which act as a coarse grain index per level inspired by skip
lists. Kreon shares the idea of using an index per level with the difference that in Kreon case
is full. Furthermore, it uses memory-mapped I/O, keeps both keys and values on a separate
log, and executes spill operations only on pointers to keys and values.

5.2 Other write optimized data structures

TokuDB [56] implements at its core a Bϵ–Tree structure. It keeps a global B-tree index in
which it associates a small buffer per B-tree node. Buffers are relatively small so it keeps
them unsorted and scans them during look-up queries. When a buffer fills it is spilled to its N
children, where N is the fan out of the B-tree. Tucana [47] uses a Bϵ–Tree which buffers keys
only at the last level of the tree and relies on a ratio of memory/data to operate efficiently.
Kreon keeps a buffer per level in order to achieve better batching and is able to server larger
datasets with smaller memory/data ratio.

5.3 Memory mapped I/O

DI-MMAP [19] proposes an alternative FIFO based replacement policy that targets data-
intensive HPC applications. kmmap shares the same goals as DI-MMAP and introduces
priorities for pages in memory. This gives applications fine grain control similar to user-space
application specific caches. Authors in [54] optimize the free page reclamation procedure
and make use of extended vectored I/O to reduce the overhead of write operations. Finally,
in [11] the authors propose techniques that reduce the overhead of page faults and page-table
construction. These techniques are orthogonal to our design and they can be used in Kreon
as well.

5.4 RDMA-based communication for data serving

Kalia et.al. [34] analyze different RDMA operations, they show that the choice of operation
has a significant impact on performance, and they provide guidelines for optimizing the
performance of RDMA-based system. A second parameter is whether the key-value store
supports fixed or variable size keys and values. For instance, HERD [33], a hash-based
key value store, uses RDMA writes for sending requests to the server and RDMA send
messages for sending the completion back to the client. Send messages requires a fixed
maximum size for keys and values. Kreon uses only RDMA writes and appropriate buffer
management to support arbitrary size keys and values. HERD uses unreliable connections
for RDMA writes and an unreliable datagram connection for RDMA sends. Note that they
decide to use RDMA send messages and unreliable datagram connection, because, for their
implementation RDMA write performance does not scales with the number of outbound
connections. In addition, they show that unreliable and reliable connections provide almost
the same performance. Kreon uses, as a starting point, reliable connections that reduce

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Kreon Memory-Mapped Key-Value Store 1:27

protocol complexity and examines their relative overhead in persistent key-value stores. We
have not detected scalability problems yet.

Hash-based key value stores, such as Pilaf [43], FaRM [18] and DrTM [58] try to remove
server-side processing for get operations by using exclusively RDMA reads. For instance,
Pilaf [43] uses solely one-sided RDMA reads to implement client-lookup operations. Pilaf
implements gets transparent to the server since clients perform RDMA reads over multiple
roundtrips to directly fetch data from the server’s memory. On the contrary, it uses verb
messages to implement put operations that are sent by clients to the server. Another example
is FaRM [18] that uses one-sided RDMA reads to access data directly but it also uses RDMA
writes to implement a fast message passing primitive. However, this results in multiple
round-trip messages for get operations. For put operations, they use a single round trip
message with server involvement to avoid write-write races, however still need to deal with
read-write races (gets in the presence of concurrent puts). Kreon, similar to most persistent
key value stores, uses an index that allows scan operations, therefore, we choose to use
RDMA write operations that reduces the number of round trip messages. In our work, we
are interested in examining the impact of RDMA communication for persistent key-value
stores.

Other implementations make server involved in request processing. For instance, RFP [55]
is a RDMA-based RPC paradigm in which clients use RDMA writes to send requests, and
clients fetch results from server’s memory remotely by using RDMA reads. The effectiveness
of RFP has been validate in a in-memory key-value store named Jakiro.
HydraDB [57] is an in-memory key-value middleware that is presented to users as a

distributed hash table and to ensure high availability, each key-value pair is replicated into
multiple servers. They use a message passing mechanism based on RDMA Write for put
operations and also for replicas, and they leverage RDMA Read for get operations.
KV-Direct [38] is an in-memory key-value system that leverages programmable NIC in

data center. KV-Direct directly fetches data and applies updates in the host memory to
serve KV requests, bypassing host CPU. KV-Direct extends the RDMA primitives from
memory operations to key-value operations (GET, PUT, DELETE and ATOMIC ops).
KV-Direct deals with the consistency and synchronization issues at server-side, thus removes
computation overhead in client and reduces network traffic.

6 CONCLUSIONS

In this paper, we design Kreon, a persistent key-value store based on LSM trees that uses
an index within each level to eliminate the need for sorting large segments and uses a
custom memory-mapped I/O path to reduce the cost of I/O. Compared to RocksDB, Kreon
reduces CPU overhead by up to 8.3x, I/O amplification by up to 4.6x at the expense of
increasing randomness of I/Os. Both index organization and memory-mapped I/O contribute
significantly to the reduction of CPU overhead, while index manipulation and page faults
emerge as the main components of per operation cost in Kreon.

ACKNOWLEDGMENTS

We thankfully acknowledge the support of the European Commission under the Horizon 2020
Framework Programme for Research and Innovation through the Vineyard (GA 687628),
ExaNeSt (GA 671553), and EVOLVE (GA 825061) projects.

REFERENCES

[1] Apache. 2018. HBase. https://hbase.apache.org/.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://hbase.apache.org/

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 A. Papagiannis et al.

[2] Jens Axboe. 2017. Flexible I/O Tester. https://github.com/axboe.

[3] Rudolf Bayer and Edward McCreight. 2002. Organization and maintenance of large ordered indexes.
Springer.

[4] R. Bayer and M. Schkolnick. 1977. Concurrency of Operations on B-trees. Acta Inf. 9, 1 (March 1977),
1–21. https://doi.org/10.1007/BF00263762

[5] Neal Bierbaum. 2002. MPI and Embedded TCP/IP Gigabit Ethernet Cluster Computing. In Proceedings

of the 27th Annual IEEE Conference on Local Computer Networks (LCN ’02). IEEE Computer Society,
Washington, DC, USA, 733–734. http://dl.acm.org/citation.cfm?id=648047.745852

[6] Philip Bohannon, Peter Mcllroy, and Rajeev Rastogi. 2001. Main-memory Index Structures with Fixed-

size Partial Keys. In Proceedings of the 2001 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’01). ACM, New York, NY, USA, 163–174. https://doi.org/10.1145/375663.375681

[7] Randal Burns and Wayne Hineman. 2001. A bit-parallel search algorithm for allocating free space. In
Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2001. Proceedings.
Ninth International Symposium on. IEEE, 302–310.

[8] Bernard Chazelle and Leonidas J Guibas. 1986. Fractional cascading: I. A data structuring technique.
Algorithmica 1, 1 (1986), 133–162.

[9] Yanpei Chen, Sara Alspaugh, and Randy Katz. 2012. Interactive analytical processing in big data

systems: A cross-industry study of mapreduce workloads. Proceedings of the VLDB Endowment 5, 12
(2012), 1802–1813.

[10] Kristina Chodorow. 2013. MongoDB: The Definitive Guide (second ed.). O’Reilly Media. http:

//amazon.com/o/ASIN/1449344682/

[11] Jungsik Choi, Jiwon Kim, and Hwansoo Han. 2017. Efficient Memory Mapped File I/O for In-Memory
File Systems. In 9th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 17).

USENIX Association, Santa Clara, CA. https://www.usenix.org/conference/hotstorage17/program/
presentation/choi

[12] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2012. Scalable Address Spaces Using

RCU Balanced Trees. In Proceedings of the Seventeenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS XVII). Association for Computing

Machinery, New York, NY, USA, 199–210. https://doi.org/10.1145/2150976.2150998

[13] Brian F. Cooper. 2018. Core Workloads. https://github.com/brianfrankcooper/YCSB/wiki/Core-
Workloads.

[14] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010.

Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud
Computing (SoCC ’10). ACM, New York, NY, USA, 143–154. https://doi.org/10.1145/1807128.1807152

[15] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value
Store. In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD
’17). ACM, New York, NY, USA, 79–94. https://doi.org/10.1145/3035918.3064054

[16] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman,
Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo:
amazon’s highly available key-value store. ACM SIGOPS operating systems review 41, 6 (2007),

205–220.
[17] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor, and Michael Strum.

2017. Optimizing Space Amplification in RocksDB. In CIDR 2017, 8th Biennial Conference on

Innovative Data Systems Research, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf

[18] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro. 2014. FaRM: Fast

Remote Memory. In Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation. 401–414.

[19] Brian Essen, Henry Hsieh, Sasha Ames, Roger Pearce, and Maya Gokhale. 2015. DI-MMAP–a Scalable
Memory-map Runtime for Out-of-core Data-intensive Applications. Cluster Computing 18, 1 (March

2015), 15–28. https://doi.org/10.1007/s10586-013-0309-0

[20] Jason Evans. 2018. jemalloc. http://jemalloc.net/.
[21] Facebook. 2015. RocksDB Performance Benchmarks. https://github.com/facebook/rocksdb/wiki/

Performance-Benchmarks.

[22] Facebook. 2018. RocksDB. http://rocksdb.org/.
[23] Pilar González-Férez and Angelos Bilas. 2014. Tyche: An efficient Ethernet-based protocol for converged

networked storage. In Proceedings of the IEEE Conference on Massive Storage Systems and Technology

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1007/BF00263762
http://dl.acm.org/citation.cfm?id=648047.745852
https://doi.org/10.1145/375663.375681
http://amazon.com/o/ASIN/1449344682/
http://amazon.com/o/ASIN/1449344682/
https://www.usenix.org/conference/hotstorage17/program/presentation/choi
https://www.usenix.org/conference/hotstorage17/program/presentation/choi
https://doi.org/10.1145/2150976.2150998
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3035918.3064054
http://cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf
https://doi.org/10.1007/s10586-013-0309-0
http://jemalloc.net/
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
http://rocksdb.org/

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Kreon Memory-Mapped Key-Value Store 1:29

(MSST).

[24] Google. 2018. LevelDB. http://leveldb.org/.

[25] Goetz Graefe. 2004. Write-optimized B-trees. In Proceedings of the Thirtieth International Conference

on Very Large Data Bases - Volume 30 (VLDB ’04). VLDB Endowment, 672–683. http://dl.acm.
org/citation.cfm?id=1316689.1316748

[26] Goetz Graefe, Hideaki Kimura, and Harumi Kuno. 2012. Foster B-Trees. ACM Trans. Database Syst.

37, 3, Article Article 17 (Sept. 2012), 29 pages. https://doi.org/10.1145/2338626.2338630

[27] Brendan Gregg. 2016. The Flame Graph. Queue 14, 2, Article 10 (March 2016), 20 pages. https:
//doi.org/10.1145/2927299.2927301

[28] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker. 2008. OLTP
Through the Looking Glass, and What We Found There. In Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data (SIGMOD ’08). ACM, New York, NY, USA, 981–992.
https://doi.org/10.1145/1376616.1376713

[29] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, Sjoerd Mullender, Martin Kersten, et al.

2012. MonetDB: Two decades of research in column-oriented database architectures. A Quarterly
Bulletin of the IEEE Computer Society Technical Committee on Database Engineering 35, 1 (2012),
40–45.

[30] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng Jiao, Ankur Mittal,
Prashant Pandey, Phaneendra Reddy, Leif Walsh, Michael Bender, Martin Farach-Colton, Rob Johnson,
Bradley C. Kuszmaul, and Donald E. Porter. 2015. BetrFS: A Right-Optimized Write-Optimized

File System. In 13th USENIX Conference on File and Storage Technologies (FAST 15). USENIX
Association, Santa Clara, CA, 301–315. https://www.usenix.org/conference/fast15/technical-sessions/
presentation/jannen

[31] Jan Jannink. 1995. Implementing Deletion in B+-trees. SIGMOD Rec. 24, 1 (March 1995), 33–38.
https://doi.org/10.1145/202660.202666

[32] Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md. Wasi-ur Rahman, Nusrat S.

Islam, Xiangyong Ouyang, Hao Wang, Sayantan Sur, and Dhabaleswar K. Panda. 2011. Memcached
Design on High Performance RDMA Capable Interconnects. In Proceedings of the 2011 International

Conference on Parallel Processing. 743–752.

[33] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA Efficiently for Key-value
Services. SIGCOMM Comput. Commun. Rev. 44, 4 (Aug. 2014), 295–306.

[34] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guidelines for High Perfor-

mance RDMA Systems. In Proceedings of the 2016 USENIX Conference on Usenix Annual Technical
Conference. 437–450.

[35] Bradley Kuszmaul. 2014. A comparison of fractal trees to log-structured merge (LSM) trees. White
Paper (2014).

[36] Chunbo Lai, Song Jiang, Liqiong Yang, Shiding Lin, Guangyu Sun, Zhenyu Hou, Can Cui, and Jason

Cong. 2015. Atlas: Baidu’s key-value storage system for cloud data.. In MSST. IEEE Computer Society,
1–14. http://dblp.uni-trier.de/db/conf/mss/msst2015.html#LaiJYLSHCC15

[37] Leslie Lamport. 1977. Concurrent reading and writing. Commun. ACM 20, 11 (1977), 806–811.

[38] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew Putnam, Enhong
Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance In-Memory Key-Value Store with
Programmable NIC. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP

’17). ACM, New York, NY, USA, 137–152. https://doi.org/10.1145/3132747.3132756
[39] Y. Li, B. He, Q. Luo, and K. Yi. 2009. Tree Indexing on Flash Disks. In 2009 IEEE 25th International

Conference on Data Engineering. 1303–1306. https://doi.org/10.1109/ICDE.2009.226

[40] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos, Onur Kocberber, Javier Picorel,
Almutaz Adileh, Djordje Jevdjic, Sachin Idgunji, Emre Ozer, and Babak Falsafi. 2012. Scale-out
Processors. In Proceedings of the 39th Annual International Symposium on Computer Architecture
(ISCA ’12). IEEE Computer Society, Washington, DC, USA, 500–511. http://dl.acm.org/citation.

cfm?id=2337159.2337217

[41] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2016. WiscKey: Separating Keys from Values in SSD-conscious Storage. In 14th USENIX
Conference on File and Storage Technologies (FAST 16). USENIX Association, Santa Clara, CA,

133–148. https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
[42] Ilias Marinos, Robert N.M. Watson, and Mark Handley. 2014. Network Stack Specialization for

Performance. SIGCOMM Computer Communication Review 44, 4 (Aug. 2014), 175–186. https:

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://leveldb.org/
http://dl.acm.org/citation.cfm?id=1316689.1316748
http://dl.acm.org/citation.cfm?id=1316689.1316748
https://doi.org/10.1145/2338626.2338630
https://doi.org/10.1145/2927299.2927301
https://doi.org/10.1145/2927299.2927301
https://doi.org/10.1145/1376616.1376713
https://www.usenix.org/conference/fast15/technical-sessions/presentation/jannen
https://www.usenix.org/conference/fast15/technical-sessions/presentation/jannen
https://doi.org/10.1145/202660.202666
http://dblp.uni-trier.de/db/conf/mss/msst2015.html#LaiJYLSHCC15
https://doi.org/10.1145/3132747.3132756
https://doi.org/10.1109/ICDE.2009.226
http://dl.acm.org/citation.cfm?id=2337159.2337217
http://dl.acm.org/citation.cfm?id=2337159.2337217
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://doi.org/10.1145/2740070.2626311
https://doi.org/10.1145/2740070.2626311

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 A. Papagiannis et al.

//doi.org/10.1145/2740070.2626311

[43] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-sided RDMA Reads to Build
a Fast, CPU-efficient Key-value Store. In Proceedings of the 2013 USENIX Conference on Annual

Technical Conference. 103–114.

[44] MongoDB. 2019. MongoRocks. https://github.com/mongodb-partners/mongo-rocks.
[45] Michael A. Olson, Keith Bostic, and Margo Seltzer. 1999. Berkeley DB. In Proceedings of the Annual

Conference on USENIX Annual Technical Conference (ATEC ’99). USENIX Association, Berkeley,
CA, USA, 43–43. http://dl.acm.org/citation.cfm?id=1268708.1268751

[46] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The log-structured

merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.
[47] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos Bilas. 2016. Tucana:

Design and Implementation of a Fast and Efficient Scale-up Key-value Store. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16). USENIX Association, Denver, CO, 537–550. https:
//www.usenix.org/conference/atc16/technical-sessions/presentation/papagiannis

[48] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017. PebblesDB: Building
Key-Value Stores Using Fragmented Log-Structured Merge Trees. In Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA, 497–514. https://doi.org/

10.1145/3132747.3132765

[49] Jinglei Ren. 2016. YCSB-C. https://github.com/basicthinker/YCSB-C.
[50] Ohad Rodeh. 2008. B-trees, Shadowing, and Clones. Trans. Storage 3, 4, Article 2 (Feb. 2008), 27 pages.

https://doi.org/10.1145/1326542.1326544

[51] Allen Samuels. 2018. The Consequences of Infinite Storage Bandwidth. https://goo.gl/Xfo7Lu.
[52] Russell Sears and Raghu Ramakrishnan. 2012. bLSM: A General Purpose Log Structured Merge

Tree. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’12). ACM, New York, NY, USA, 217–228. https://doi.org/10.1145/2213836.2213862

[53] Pradeep J. Shetty, Richard P. Spillane, Ravikant R. Malpani, Binesh Andrews, Justin Seyster, and

Erez Zadok. 2013. Building Workload-Independent Storage with VT-Trees. In Presented as part of the
11th USENIX Conference on File and Storage Technologies (FAST 13). USENIX, San Jose, CA, 17–30.

https://www.usenix.org/conference/fast13/technical-sessions/presentation/shetty

[54] Nae Young Song, Yongseok Son, Hyuck Han, and Heon Young Yeom. 2016. Efficient Memory-Mapped
I/O on Fast Storage Device. Trans. Storage 12, 4, Article 19 (May 2016), 27 pages. https://doi.org/

10.1145/2846100

[55] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yongwei Wu. 2017. RFP: When RPC
is Faster Than Server-Bypass with RDMA. In Proceedings of the Twelfth European Conference on

Computer Systems (EuroSys ’17). ACM, New York, NY, USA, 1–15. https://doi.org/10.1145/3064176.
3064189

[56] INC TOKUTEK. 2013. TokuDB: MySQL Performance, MariaDB Performance.

[57] Yandong Wang, Li Zhang, Jian Tan, Min Li, Yuqing Gao, Xavier Guerin, Xiaoqiao Meng, and
Shicong Meng. 2015. HydraDB: A Resilient RDMA-driven Key-value Middleware for In-memory
Cluster Computing. In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC ’15). ACM, New York, NY, USA, Article 22, 11 pages. https:
//doi.org/10.1145/2807591.2807614

[58] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast In-memory Transaction

Processing Using RDMA and HTM. In Proceedings of the 25th Symposium on Operating Systems
Principles. 87–104.

[59] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie: An LSM-tree-based Ultra-Large Key-

Value Store for Small Data Items. In 2015 USENIX Annual Technical Conference (USENIX ATC 15).
USENIX Association, Santa Clara, CA, 71–82. https://www.usenix.org/conference/atc15/technical-
session/presentation/wu

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/2740070.2626311
https://doi.org/10.1145/2740070.2626311
https://github.com/mongodb-partners/mongo-rocks
http://dl.acm.org/citation.cfm?id=1268708.1268751
https://www.usenix.org/conference/atc16/technical-sessions/presentation/papagiannis
https://www.usenix.org/conference/atc16/technical-sessions/presentation/papagiannis
https://doi.org/10.1145/3132747.3132765
https://doi.org/10.1145/3132747.3132765
https://github.com/basicthinker/YCSB-C
https://doi.org/10.1145/1326542.1326544
https://goo.gl/Xfo7Lu
https://doi.org/10.1145/2213836.2213862
https://www.usenix.org/conference/fast13/technical-sessions/presentation/shetty
https://doi.org/10.1145/2846100
https://doi.org/10.1145/2846100
https://doi.org/10.1145/3064176.3064189
https://doi.org/10.1145/3064176.3064189
https://doi.org/10.1145/2807591.2807614
https://doi.org/10.1145/2807591.2807614
https://www.usenix.org/conference/atc15/technical-session/presentation/wu
https://www.usenix.org/conference/atc15/technical-session/presentation/wu

	Abstract
	1 Introduction
	2 Background
	2.1 Write-Optimized Key-Value Stores
	2.2 B-tree Concurrency Protocols

	3 Design
	3.1 Overview
	3.2 Index Organization
	3.3 Memory-Mapped I/O
	3.4 Persistence
	3.5 RDMA Client-Server Protocol

	4 Experimental Results
	4.1 Methodology
	4.2 CPU Efficiency and Performance
	4.3 Execution Time Breakdown
	4.4 I/O Amplification and Randomness
	4.5 Growth Factor and Commit Interval
	4.6 RDMA Communication Overhead
	4.7 Integration with MongoDB

	5 Related Work
	5.1 Optimizations to LSM trees
	5.2 Other write optimized data structures
	5.3 Memory mapped I/O
	5.4 RDMA-based communication for data serving

	6 Conclusions
	Acknowledgments
	References

