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Abstract

Random forest is a classi�cation technique widely used in remote sensing. One
of its advantages is that it produces an estimation of classi�cation accuracy
based on the so called out-of-bag cross-validation method. It is usually assumed
that such estimation is not biased and may be used instead of validation based
on an external data-set or a cross-validation external to the algorithm.

In this paper we show that this is not necessarily the case when classify-
ing remote sensing imagery using training areas with several pixels or objects.
According to our results, out-of-bag cross-validation clearly overestimates ac-
curacy, both overall and per class. The reason is that, in a training patch,
pixels or objects are not independent (from a statistical point of view) of each
other; however, they are split by bootstrapping into in-bag and out-of-bag as
if they were really independent. We believe that putting whole patch, rather
than pixels/objects, in one or the other set would produce a less biased out-of-
bag cross-validation. To deal with the problem, we propose a modi�cation of
the random forest algorithm to split training patches instead of the pixels (or
objects) that compose them. This modi�ed algorithm does not overestimate
accuracy and has no lower predictive capability than the original. When its re-
sults are validated with an external data-set, the accuracy is not di�erent from
that obtained with the original algorithm.

We analysed three remote sensing images with di�erent classi�cation ap-
proaches (pixel and object based); in the three cases reported, the modi�cation
we propose produces a less biased accuracy estimation.
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1. Introduction

Classi�cation has been one of the most relevant practices in remote sens-
ing; as a consequence, a great deal of e�ort has been devoted to developing
and applying new techniques to classify remote sensing imagery, mainly based
on arti�cial intelligence and machine learning [1]. Recently, ensemble learning5

techniques have received much attention. Such methods generate a large number
of classi�ers, which are later grouped, using a more or less complex procedure,
to obtain a global classi�cation. Decision trees are among the most suitable
machine learning techniques used in ensembles; boosting, bagging and random
forest (RF) are well known ensemble learning techniques used with decision trees10

[2].
RF has been used in medicine (e.g. Ghose et al (2012) [3]), ecology (e.g. Cut-

ler et al. (2007) [4]), hydrology to classify groundwater samples (e.g. Baurdon
et al. (2013) [5]), chemistry (e.g. Svetnik et al. (2004) [6]); in soil science (e.g.
Schmidt et al. (2008) [7]), or to analyse land abandonment (e.g. Alonso-Sarría15

et al. (2016) [8]). The use of RF in image classi�cation has undergone signi�cant
growth. Many research papers highlight its good performance compared with
more traditional alternatives [4, 9]. It also outperforms more recent algorithms
such as arti�cial neural networks or weighted k-nearest neighbors [10, 11], and
has proved to be as powerful as support vector machines [12, 13, 14, 15]. Other20

advantages are that it is a non-parametric method, so no theoretical distribution
is assumed in the training data; it is among the most accurate machine learning
methods [16]; it provides a measure of the importance of variables; it is available
as a package (randomForest) in the open-source program R [17]; it produces an
internal measurement of the accuracy (out-of-bag cross-validation, OOB-CV);25

and it is less sensitive than other algorithms to the Hughes e�ect [11]. The main
disadvantage of RF (at least in classi�cation) is that the e�ect of the variables is
not as easy to interpret as in other methods (e.g. decision trees or discriminant
analysis). When used as a regression tool, partial dependence plots might be
used to interpret the e�ect of the di�erent variables, but the interpretation is30

not as straightforward in classi�cation. However, when classifying images, the
ability to predict is more important than the ability to explain.

1.1. The random forest algorithm

A clear and comprehensive description of classi�cation trees and derived
ensemble learning techniques can be found in Gao (2009) [1], Waske et al. (2012)35

[18], James et al. (2013) [19] or Kuhn and Jhonson (2013) [20]. Here we brie�y
describe the characteristics of the method to explain why we think OOB-CV
may be biased in certain remote sensing applications.

Decision trees [1] are a non-parametric technique that can select, from among
a wide set of features, those that best discriminate the dependent variable,40
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whether quantitative (regression) or qualitative (classi�cation). One of the most
popular decision trees algorithms is CART (Classi�cation and Regression Trees)
[21].

The calibration of a classi�cation tree begins with a single node including all
training cases. This node is then split into two nodes using the predictor feature45

and threshold value that minimise a heterogeneity measurement in the resulting
nodes. This process continues until all terminal nodes are homogeneous. In a
second step, the tree is pruned using an independent set of training data to
obtain a balance between accuracy and parsimony [1] and to avoid over�tting.
The Gini index [21] is used as heterogeneity measurement in CART and RF. The50

importance of a given feature in a tree is measured as the sum of the decrements
in the Gini index attributed to that feature along the tree.

The main problem with decision trees is their high variance; they are very
sensitive to slight di�erences in the training data that might drive the node-
splitting process through a di�erent path, leading to a completely di�erent tree.55

Ensemble learning algorithms (boosting, bagging and RF) attempt to solve this
issue.

In bagging, all trees are trained independently and simultaneously. Each tree
is trained with a subset of cases obtained by bootstrapping, whereas the others
(around 33% on average) form the so called out-of-bag. Each case appears in60

the out-of-bag of several trees, and these trees are used to predict its class by
a vote system. Finally, the comparison of predicted and observed classes is
used to obtain an estimation of the overall and per class accuracy, the so called
out-of-bag cross-validation (OOB-CV).

RF [22] is one of the most used classi�cation algorithms based on decision65

trees. This algorithm uses bagging, but includes another randomisation compo-
nent: random feature selection. The split variable in each node of the decision
trees is chosen from a random subset of the available features [18]. This seem-
ingly counter-intuitive modi�cation has proved to be a strategy that gives very
good results [17]. It reduces correlation among trees, giving more sense to the70

whole ensemble learning concept [19].
RF provides measurements of the importance of variables. One of the most

used is the mean decrease in the Gini index (MDGI), which is obtained for each
feature by averaging its importance in all the trees [21].

The number of features randomly chosen to split each node (Mtry) is one of75

the parameters that the user must decide or optimise; however, the method is not
very sensitive to this parameter, whose default value is obtained by truncating
the square root of the number of available features [23]. Another con�gurable
parameter is the number of trees generated (Ntree), 500 by default. Higher
values do not signi�cantly increase the accuracy of the classi�cation [17, 16].80

Ismail et al. (2010) [24] and Cánovas-García and Alonso-Sarría (2015b) [11]
obtained good results using these default parameters.
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1.2. The spatial dependence problem with out-of-bag cross-validation (OOB-CV)
and leave-one-out cross-validation (LOO-CV)

All predictive models assume that calibration and validation cases are in-85

dependent . When classifying remote sensing imagery, cases are obtained as
training and validation areas. These areas are patches of pixels that do not
present spatial discontinuities and are homogeneous enough for the photointer-
preter to label them as the same class. The objective is to �nd patches that can
be assimilated to the di�erent classes in which we want to divide the image.90

Spatial autocorrelation among re�ectivity values has been largely studied
and has been even used to create contextual features that improve classi�cation
accuracy [25]. However, because of this spatial autocorrelation, re�ectivity val-
ues inside a patch are not independent of each other. So, we can consider that
pixels in di�erent training patches, and their re�ectivity values, are statistically95

independent of each other, but pixels in the same training patch are not. This
issue should be taken into account when doing cross validation, in order to avoid
splitting pixels from the same patch into calibration and validation data-sets.

When analysing non-spatial data, it is usually considered that random forest
OOB-CV provides an unbiased estimation of the overall classi�cation accuracy,100

making an external cross-validation unnecessary [26, 22, 6].
However, we hypothesize that RF OOB-CV overestimates accuracy signi�-

cantly, at least when classifying remote sensing imagery. In our view, the reason
for this overestimation is that bagging assumes independence among the cases
(pixels) in each calibration patch and, therefore, will split them between the105

bootstrapped and the out-of-bag subsamples. So the necessary independence
between calibration and validation data is compromised and the OOB-CV ac-
curacy estimation will overestimate the real accuracy of the model.

All these considerations are also valid in Object Based Image Analysis (OBIA).
The OBIA approach involves two steps: segmentation, which consists of divid-110

ing the image into spatially cohesive objects [27], and the posterior classi�cation
of such objects using a larger set of features that include spectral, textural, con-
textual and geometrical attributes. Objects within a training patch are more
similar among themselves than to objects located in other patches, even if these
patches belong to the same class, since intra-patch object homogeneity is greater115

than the inter-patch homogeneity.
The three di�erent validation approaches that will be used are:

� VAL: Validation with a di�erent and independent data-set.

� LOPO-CV: Leave-one-patch-out cross-validation: cross validation carried
out leaving out not just one pixel or object, but all the pixels/objects in120

a training patch.

� OOB-CV: Out-of-bag cross-validation, the RF internal error estimation.

When analysing the results of the original RF algorithm, we will add an O
in front of the validation method, and when using our modi�cation we will add
an M. Thus, M-LOPO-CV will mean leave-one-patch-out cross-validation of a125
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classi�cation carried out with the modi�ed algorithm, and O-VAL will mean
validation with an independent data-set of a classi�cation carried out with the
original algorithm.

1.3. Objectives

The overall objective of this research is two-fold. Firstly, to demonstrate130

that lack of independence among elements (pixels or objects) in training patches
may compromise the statistical independence between training and test elements
when doing O-OOB-CV accuracy estimation. Secondly, to propose a modi�ca-
tion of the original RF algorithm, more speci�cally the randomForest func-
tion in the randomForest R package [17]. This modi�ed algorithm produces a135

modi�ed RF out-of-bag cross-validation (M-OOB-CV) which is unbiased when
analysing spatial data. These overall objectives involve several partial objec-
tives:

1. To demonstrate that O-OOB-CV underestimates the prediction error mea-
sured by leave-one-patch-out cross-validation using the original RF algo-140

rithm (O-LOPO-CV).

2. To implement a modi�cation of the original algorithm to guarantee the
statistical independence of elements assigned internally to the in-bag and
those assigned to the out-of-bag. The cross-validation performed by this
modi�ed algorithm is the above mentioned M-OOB-CV.145

3. To demonstrate that M-OOB-CV error estimation is not as biased as O-
OOB-CV, using a validation with a di�erent dataset (VAL) as reference.

4. To demonstrate that M-VAL is equivalent to O-VAL. This would imply
that the proposed modi�cation does not involve a loss in the predictive
capability of the modi�ed algorithm.150

5. To generate a modi�ed version of the randomForest function [17] in an R
package freely accessible to anyone interested.

2. Study areas and data sets

To verify our hypothesis, three study areas were analysed using di�erent
types of images and approaches; the objective was to test the generality of our155

hypothesis. The �rst image is an object-based case whereas the other two are
pixel-based cases. One of the characteristics of the object based approach is
that it produces a large amount of features, so a selection process is needed,
and this process can also be a�ected by the lack of statistical independence.

2.1. Irrigation Unit 28 in south-eastern Spain (IU28)160

The �rst study area (Figure 1 a), located in the Region of Murcia (south-
east Spain, Figure 1 d), corresponds to Irrigation Unit 28, as de�ned in the
Plan Hidrológico de la demarcación del Segura 2015/2021 (River Segura Basin
Hydrological Plan 2015/2021). In this area, a high resolution image was classi-
�ed. It consists of a 2 m resolution multispectral (Blue, Green, Red and Near165
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Infrared) image and a 0.45 m panchromatic image acquired on 9,10 and 11 July
2008 with an Intergraph Z/I-Imaging Digital Mapping Camera.

The image was segmented using multiresolution segmentation [28], one of
the most widely segmentation algorithms used in OBIA. The details can be
consulted in Cánovas-García and Alonso-Sarría (2015) [29].170

The objective of the classi�cation was to produce a map of agricultural land
cover types; the classes included in the classi�cation scheme were: Almond trees
(Alm); cereals (Cer); irrigated grassland (Igr); rural wasteland (Rws); irrigated
fruit trees (Ifr); rainfed arable lands (Rar); olive trees (Oli); greenhouses (Gre);
seedlings (See).175

2.2. Vinalopó river basin (Vinalopó)

This study area (Figure 1 b) covers about 3000 km2. It is a very anthropised
coastal basin located in south-east Spain (south of Alicante province). Despite
its small size, the variety of land-uses is large. Height ranges from 0 to 1600
m.a.s.l., giving a variety of natural environments. A Landsat 5 Thematic Map-180

per image (path 199, row 33) from 24 July 2009 was used. Visible and re�ected
infrarred bands were used to classify the image. Preprocessing of the image
included atmospheric [30] and illumination [31] corrections. Additionally, ter-
rain information from a 1:25,000 DEM from the Spanish Instituto Geográ�co
Nacional (National Geographical Institute) was used as ancillary data. The185

objective was to obtain a land-cover map using a pixel-based classi�cation.
The classi�cation scheme includes: Forest (For); scrub (Scr); sparse tree crops
(NDArb); dense tree crops (DArb); rainfed grass crops (NIGr); irrigated grass
crops (IGr); impervious surfaces (Imp); water bodies (Wat); bare soil (BaSo);
vineyards (Vin).190

2.3. Zapotillo municipality (Zapotillo)

The Zapotillo municipality (Figure 1 c) is located in the south-west of Loja
province (Ecuador) (Figure 1 e). The municipality covers an area of more than
1200 km2. It is located in a transition zone between the inter-Andean region
and the coastal region so that its climate is in�uenced by the Paci�c Ocean,195

the warm Equatorial Countercurrent, and the movements of the intertropical
convergence zone. Landsat 8 Operational Land Imager sensor data (path 011,
row 063) were used to study the area. The image was taken on 12 June 2013,
using eight out of the nine available bands (Table 3). The radiometric resolution
was 16 bits. No pre-processing was carried out and digital counts, rather than200

re�ectivities, were used. The scene was clipped according to the limits of the
study area. The classi�cation of this image was also based on pixel analysis.
The objective was to produce a map of agricultural classes: Forest (For); scrub
(Scr); rice (Ric); corn (Cor); fallow (Fall); associated crops (Asso); pastureland
(Pas).205

6



3. Methodology

3.1. Random Forest algorithm modi�cation

We have created a new package called SDRF (Spatial Dependence Random
Forest) including a modi�cation of the original randomForest package [17].
In this last package, the R function randomForest calls a C function named210

classRF (located in the rf.c �le in the src directory), which performs most
involved calculations. Currently, this package works only in Linux systems (see
supplementary material).

We have modi�ed the classRF function to receive 2 additional arguments:
a pointer to integer values that contain the numeric identi�er of the training215

patch in which each case (pixel or object) is located, and an integer with the
number of training patches. If this last argument is not equal to zero, a training
patches bootstrapping is carried out instead of pixels/objects bootstrapping. In
this way, all pixels/objects inside a training patch will be put in the same place:
the in-bag or the out-of-bag. This modi�ed function is named classRF2 in the220

new package.
We have also created the SDRF function as a modi�cation of the the randomForest

function that receives a new argument called areas, with which the user can
pass the identi�ers of the training patches to the function. The function will in-
ternally calculate the number of training patches and will pass both arguments225

to the C function classRF2.

3.2. Training and validation datasets

The three datasets were obtained in di�erent projects, so sampling proce-
dures were also di�erent. In IU28 and Vinalopó, sampling procedures derive
from the objectives of such projects. Only Zapotillo data were collected speci�-230

cally for this paper. Table 1 shows the main characteristics of the training and
validation areas.

In IU28, training areas were collected using a not random strati�ed sampling,
trying to properly represent all classes, and including 30 patches per class, except
for seedlings (15 patches) as this class has very low frequency. Validation areas235

were collected using a random strati�ed sampling including 50 patches per class
(15 in seedlings).

In Vinalopó, both training areas and validation areas were collected using
a random strati�ed sampling. The sizes of the strata were proportional to the
percentage of each class in the study area that was estimated using the 2006240

CORINE Land Cover land use maps.
Finally, in Zapotillo a random strati�ed sampling were carried out both for

training and validation areas with the same number of patches in each class (30)
except rice (6) and fallow (20) that are quite infrequent in the study area.

In IU28 training and validation areas were identi�ed and labelled by a com-245

bination of �eldwork and a descriptive statistical analysis to support photoint-
erpretation. In addition, very high resolution imagery and thematic maps were
used as ancillary data to help in the identi�cation of the di�erent land-covers.
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In Vinalopó and Zapotillo, training and validation areas were identi�ed using
aerial photographs and land use/land cover maps.250

3.3. Features obtained from the images

Table 2 shows the object features calculated using eCognition software in
IU28. Features are grouped into six main categories and a short description
is added when needed. The number of bands from which the features were
calculated is indicated between parentheses. Technical details of every feature255

are described in DEFINIENS (2009) [32]. In summary, there are 356 features:
40 spectral features, 5 pixel-based features, 24 geometric features, 204 texture
features and 83 context features.

Table 3 shows the pixel features for Vinalopó and Zapotillo calculated using
GRASS GIS 7. Features are grouped into �ve main categories and a short260

description is added when needed. For Vinalopó, 14 spectral features, seven
related with DTM and 34 texture features, were calculated. Finally, for Zapotillo
16 spectral features and 32 texture features were calculated.

3.4. Feature ranking and selection

A successful approach in machine learning is to consider feature selection as265

a heuristic procedure in which a subset of possible features is speci�ed at each
step of an iterative search [33]. Such a procedure involves 3 steps:

(1) Ranking all features in accordance with a criterion related to their
relevance for classifying the dataset, in this case the mean decrease
in the Gini index (MDGI) obtained for each variable aplying the270

original algorithm. Spearman correlation test was used to ver-
ify whether the modi�ed algorithm might signi�cantly modify the
variable importance ranks.

(2) Iteratively modifying a classi�cation model by removing features
in reverse order to their MDGI-based rank.275

(3) Selecting the best feature subset according to a classi�cation accu-
racy measurement: the kappa index of the M-VAL curve.

Once all features were ranked, they were used to train both the original and
the modi�ed RF algorithms using the default Ntree and Mtry values. Kappa
indices from O-OOB-CV, M-OOB-CV, O-VAL, M-VAL were calculated and the280

less important features were then eliminated from the dataset. The whole pro-
cedure was repeated recursively until only the most important feature was left.
The evolution of the kappa indices obtained was then represented (Figures 2 to
4) to show how the accuracy of both the original and the modi�ed RF algo-
rithms evolve through a large number of classi�cations, the optimal number of285

features to minimise the classi�cation error that are obtained with each valida-
tion method and the di�erences introduced by our modi�cation in RF algorithm
in the feature selection process.

This approach signi�cantly reduces the number of features needed to train
classi�cation algorithms [34, 35, 36] and also serves to test the sensitivity of290

both algorithms to changes in the number of features.
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In Vinalopó and Zapotillo a single feature was eliminated in each cycle;
however, in IU28, to reduce the computational cost, �ve features were eliminated
in each cycle due to the high dimensionality of this dataset.

3.5. Per-class accuracy analysis295

Although confusion matrices are suitable tools for analysing in detail the
results of a classi�cation model, comparing six di�erent matrices becomes quite
cumbersome. Instead, per class accuracy statistics were compared to each other
using pyramid graphs showing the omission and commission errors (Figures 5 to
7). These pyramids allow a per-class comparison of the results of two di�erent300

classi�cations according to the two types of error that are usually studied in
classi�cation problems. To facilitate interpretation of the pyramids, the classes
have been ordered according to O-LOPO-CV errors of omission.

4. Results

4.1. Feature ranking305

Table 4 shows the 25 most important features according to MDGI using the
original algorithm. Features related with height, when available, occupy the
�rst ranks (IU28 and Vinalopó). Spectral features also appear in the �rst ranks
in the three study areas. The values obtained with the Spearman correlation
test were 0.99 in IU28 and Zapotillo and 0.96 in Vinalopó. These results show310

that our modi�cation of the algorithm does not signi�cantly change the feature
importance rankings.

4.2. Feature-selection process

In Figures 2, 3 and 4, the lines represent the kappa indices obtained by
OOB-CV and VAL in both the original and modi�ed algorithm. It is clear that315

O-OOB-CV largely over-estimates the accuracy of the classi�cation provided
by O-VAL or M-VAL. In addition, M-OOB-CV is very similar to O-VAL or M-
VAL, and only in the Zapotillo municipality is M-OOB-CV lower. The reason
for this smaller accuracy estimation is probably the reduction in randomisation
caused by the splitting by areas in M-OOB-CV, as there are less possible in-bag320

and out-of-bag combinations. Whatever the case, it implies a more conservative
accuracy estimation. M-VAL kappa is, in general, slightly higher than O-VAL
kappa. This demonstrates that the modi�ed algorithm does not lose predictive
capability.

Finally, these graphs allow us to select the smallest subset of variables that325

maximises the classi�cation accuracy (rounded to two decimals) from a set of
ordered features. From now on, we will continue analysing the per class results
of the classi�cation models generated with the �rst 95 features in IU28, the �rst
13 features in Vinalopó and the �rst 9 features in Zapotillo (blue vertical line
in the graphs of Figures 2, 3 and 4). The selected features appear highlighted330

in red in table 4 (in IU28, there were 70 more features). The Kappa indices
corresponding to these classi�cations are presented in Table 5.
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4.3. Per-class accuracy analysis

Once the subset of features that maximises the classi�cation accuracy was
obtained, the corresponding model was analysed to obtain a per-class approach335

to the di�erences in accuracy estimation.
Figure 5 compares O-OOB-CV with O-LOPO-CV. In the three areas O-

OOB-CV errors are much lower. In the IU28 study area (Figure 5 a) O-OOB-CV
per-class error estimations are only similar to O-LOPO-CV when they are close
to 0. The most obvious case of underestimation is presented in Vinalopó (Figure340

5 b) where the O-OOB-CV error of commission for bare soil (BaSo) is close to 0,
whereas O-LOPO-CV value is slightly above 0.8. Similar results were obtained
with errors of omission, and also when analysing the class sparse tree crops
(NDArb), where small di�erences between O-OOB-CV and O-LOPO-CV are
only obtained in classes with O-LOPO-CV errors close to 0. In Zapotillo (Figure345

5 c) both O-OOB-CV omission and commission errors are underestimated in all
classes.

Figure 6 shows how M-OOB-CV produces results equivalent to M-LOPO-
CV. In IU28, both omission and commission errors are virtually the same in both
classi�cations. There are only minor di�erences in omission errors in cereals350

(Cer) and olive tress (Oli) and in commission errors in irrigated fruit trees
(Ifr). RF is a stochastic model and does not generate two identical models
from the same data, so there are always small di�erences in the results. In the
Vinalopó and Zapotillo study areas (Figure 6 b and c), the results are similar;
the omission and commission errors calculated by M-OOB-CV and M-LOPO-355

CV being similar.
Figure 7 compares the results of O-LOPO-CV and M-LOPO-CV. Di�erences

are very small in IU28 for most of the classes (Figure 7 a), only two classes show
slightly di�erent values. The greenhouses class (Gre) for which the biggest omis-
sion errors are obtained with the modi�ed algorithm, and the class almond trees360

(Alm), where the opposite is true. With respect to errors of commission, only
one class (irrigated fruit trees) presents a noticeable di�erence, although it is
still minimal. In the Vinalopó study area (Figure 7 b), we obtained similar re-
sults. Only the class bare soil (BaSo) presents signi�cant di�erences in omission
and commission errors. The modi�ed algorithm produces slightly larger errors.365

In Zapotillo (Figure 7 c), only the class rice (Ric) showed di�erent results. Com-
mission errors were larger with the modi�ed algorithm (0.25), the largest of the
three study areas.

Finally, Figure 8 shows the comparison among M-VAL and O-VAL in the
three study areas. Results are very similar for both accuracy estimations.370

In summary, O-OOB-CV over-estimates classi�cation accuracy, whereas M-
OOB-CV does not. In addition, when the performance of both algorithm is
tested using external cross-validation, the results are very similar. So, we con-
clude that the modi�cation made in the RF algorithm does not a�ect its pre-
dictive capability.375
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5. Disscusion

In a recent review paper on RF applied to remote sensing, Belgiu and Dragut
(2016) [16] pointed out that although some researchers have reported that the
OOB error (equivalent to O-OOB-CV in this study) could be used as a reliable
measurement of classi�cation accuracy, very little work has been done on the380

topic and that the statement should be contrasted with more experiments using
a variety of datasets in di�erent application scenarios. Our research might be
considered an answer to that call.

According to our interpretation of the literature on RF, O-OOB-CV and
LOPO-CV should be similar [2]. However, our hypothesis is that, when clas-385

sifying remote sensing imagery, the O-OOB-CV accuracy estimation might be
biased when training patches are composed of several elements (pixels or ob-
jects) because of the statistical dependence between the elements in a single
patch. This has been con�rmed in the three study areas. When validating the
classi�cation models derived from the feature selection, in IU28 the O-OOB-CV390

kappa index is approximately 0.28 larger that for O-VAL, which is a very large
di�erence. In Vinalopó, this deviation is 0.21, and in Zapotillo 0.14. These dif-
ferences suggest that O-OOB-CV accuracy estimation is strongly overestimated.

This overestimation also appears when a per-class analysis is carried out.
Figure 5 is quite convincing in this sense: all errors of omission and commission395

from OOB-CV data using the original algorithm are overestimated. Obviously
this result is somewhat masked with classes whose LOPO-CV errors of omission
and commission are close to zero. Hence, to study these issues in certain cases
we have to use less than perfect classi�cations, otherwise it will be di�cult to
�nd bias in the accuracy or error estimations.400

Other studies seem to reach di�erent conclusions [37, 38]. A possible expla-
nation for such disparate results may be that research of these authors was based
on a data-set with very small validation errors, which might obscure accuracy
di�erences.

We have also tested our modi�cation to the RF algorithm, obtaining equiv-405

alent results with M-OOB-CV and M-LOPO-CV, both for omission and com-
mission errors (Figure 6). There were only a few di�erences in accuracy values
in classes with a low number of training patches. In such cases, the reduction
in randomisation due to the LOPO-CV approach strongly a�ects the results, so
a large number of small validation patches seems a better option than a small410

number of large validation patches.
Finally, to check whether the proposed modi�cation reduces the predictive

capability of the algorithm, we compared O-LOPO-CV with M-LOPO-CV, on
the one hand, and O-VAL with M-VAL, on the other. The di�erences were
negligible, being only slightly higher in classes with fewer training patches.415

Another common practice when classifying images with RF is to use O-
OOB-CV to identify the feature subset and parameter values that maximise the
classi�cation accuracy (e.g. Puissant et al. 2014 [39]). According to our data,
at least when identifying the optimal subset of variables, this strategy would
not have been successful using the original algorithm in two of the three study420
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areas. The number of variables selected would have been much lower than the
number that maximises accuracy classi�cation.

6. Conclusions

A modi�cation of the random forest algorithm is proposed to perform a an
patch-based split rather than a pixel-based split when calculating out-of-bag425

cross-validation.
The modi�cation is performed in the randomForest function of the random-

Forest R package [17] (we are not aware if the independence issue is tackled
in other random forest implementations). The result is a function called SDRF
(Spatial Dependence Random Forest) inside an homonym package that can be430

downloaded from https://github.com/pacoalonso/SDRF. It should be em-
phasised that we have introduced only a slight modi�cation in a very large and
powerful package.

This modi�cation does not a�ect feature ranking based on MDGI impor-
tance. Spearman coe�cients among the di�erent rankings were equal to or435

larger than 0.96.
Neither does the modi�cation produce a loss in prediction capability. Both

algorithms were used to classify the same three data-sets; when the results were
validated with an external validation set, the results were equivalent.

When the results of the out-of-bag cross-validation in the original algorithm440

(O-OOB-CV) are compared with a validation with an external data-set or with
the results of a leave-one-patch-out cross-validation (LOPO-CV) external to
the algorithm, it is clear that O-OOB-CV overestimates accuracy and underes-
timates both omission and commission errors.

On the other hand, when using the modi�ed algorithm (M-OOB-CV) in the445

same way, there is neither accuracy overestimation nor error underestimation.
The only drawback of this modi�cation is that if a class is represented by a

very small number of training patches the results are strongly a�ected because
of the randomisation reduction inherent in the M-OOB-CV approach.

The feature selection process, the accuracy analysis and the omission and450

commission errors analysis allow us to reach the aforementioned conclusions.
We think that the results have both a theoretical and a practical interest.

We have shown how OOB-CV, as it is currently performed by the random forest
algorithm, does not necessarily produce reliable accuracy or error estimations
in a remote sensing imagery classi�cation. However, our modi�cation seem to455

do so.
The implications of this statistical dependence of the elements that form a

patch goes beyond the empirical results exposed in this research and are worth
to be investigated as wrong conclusions can be reached otherwise.
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Table 1: Summary statistics of the training and validation samples of the three study areas:
almond trees (Alm), cereals (Cer), irrigated grassland (Igr), rural wasteland (Rws), irrigated
fruit trees (Ifr), rainfed arable lands (Rar), olive trees (Oli), greenhouses (Gre), seedlings (See),
forest (For), scrub (Scr), sparse tree crops (NDArb), dense tree crops (DArb), rainfed grass
crops (NIGr), irrigated grass crops (IGr), impervious surfaces (Imp), water bodies (Wat), bare
soil (BaSo), vineyards (Vin), rice (Ric), corn (Cor), fallow (Fall), associated crops (Asso), and
pastureland (Pas).

Irrigation unit 28 Vinalopó river basin Zapotillo municipality
Training Validation Training Validation Training Validation

Class Patches Objects Patches Objects Class Patches Pixels Patches Pixels Class Patches Pixels Patches Pixels
Alm 30 3853 50 7610 For 19 5267 10 1563 For 30 5669 30 4560
Cer 26 830 50 3714 Scr 22 4841 12 3410 Scr 30 2381 30 2682
Igr 33 1187 50 3544 NDArb 13 1241 7 828 Ric 6 134 6 162
Rws 29 1309 50 1365 DArb 14 2374 8 636 Cor 30 605 30 864
Ifr 30 3113 50 4347 NIGr 15 3715 8 1774 Fall 20 480 20 522
Rar 30 985 50 1818 IGr 10 4695 5 1653 Asso 30 2005 30 2267
Oli 30 2568 50 4593 Imp 16 6783 7 1798 Pas 30 1340 30 1633
See 20 1476 15 907 Wat 11 6262 6 3327
Gre 30 311 50 1192 BaSo 4 118 2 129

Vin 17 3177 8 928
Total 258 15,632 368 25,925 141 38,473 73 16,046 176 12,614 176 12,690
% Sup 0.73% 2.81% 0.032% 0.013% 0.018% 0.018%
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Table 2: Summary of the calculated object features [32] for the irrigation unit 28. Textural
features are calculated for several directions. The total number of features appears in paren-
theses. DTM: digital terrain model, DSM: digital surface model.

Original bands Spectral features
B1 red MEAN (10)
B2 green SD (10) standard deviation
B3 blue MAX (1) maximum value
B4 near-infrared MIN (1) minimum value
C5 DTM ASYM (10) skewness
C6 DSM INTENSITY (1) IHS transformation
C7 DSM-DTM HUE (1) IHS transformation
C8 slope SATURATION (1) IHS transformation
C9 aspect NDVI (1) normalized di�erence vegetation index
C10 convexity RATIO (4) percentage of total brightness

Geometric features Texture features
PERIM (1) including inner borders GLCM.homo (26) homogeneity
LENGTH (1) GLCM.cont (26) contrast
WIDTH (1) GLCM.dis (26) dissimilarity
L/W (1) LENGTH/WIDTH GLCM.ent (26) entropy
ASYM02 (1) asymmetry GLCM.asm (26) angular second moment
BORDER.i (1) PERIM/perimeterSR GLCM.mean (26) mean
COMPACT (1) LENGTH ·WIDTH/AREA GLCM.sd (26) standard deviation
DENSITY (1) similarity to a square GLCM.corr (26) correlation
ELLIPTIC.�t (1) similarity to a ellipse Pixel-based features
MAIN.dir, (1) main direction MEAN.int.bor (1) mean re�ectivity of the inner border
RADIUS.largest (1) radius of the largest enclosed ellipse MEAN.ext.bor (1) mean re�ectivity of the outer border
RADIUS.smallest (1) radius of the smallest enclosed ellipse BOR.cont (1) di�erence between MEAN.int.bor and the

borders of the surrounding objects
RECT.�t (1) similarity to a rectangle SD.rec (1) standard deviation of pixels not in the ob-

ject but in the SR
ROUNDNESS (1) NEIGH.cont (1) di�erence between MEAN and the mean

of pixels not in the object but in the sur-
rounding rectangle

SHAPE.i (1) PERIM/(4 ·
√
AREA) Context features

AREA.excl (1) area excluding inner polygons NUM.c (1) number of neighboring objects
AREA.incl (1) area including inner polygons MEAN.c (2) neighboring objects' mean
LENGTH.arc (1) average length of arcs MEAN.d.c (10) mean di�erence to neighboring objects, us-

ing objects' means
LONGEST.arc (1) length of longest arc MEAN.d.c.dr (10) mean di�erence to darker neighboring ob-

jects
COMPACT.p (1) AREA divided by the area of a circle with

the same perimeter
MEAN.d.c.dr2 (10) modi�ed mean di�erence to darker neigh-

boring objects when the darker object is
being analyzed

NUMBER.arcs (1) MEAN.d.c.br (10) mean di�erence to brighter neighboring ob-
jects

NUMBER.int (1) number of inner objects MEAN.d.c.br2 (10) modi�ed mean di�erence to brighter neigh-
boring objects when the brighter object is
being analyzed

PERIMETER.p (1) excluding inner borders NUM.dr (10) number of darker neighboring objects
SD.edges (1) standard deviation of length of arcs NUM.br (10) number of brighter neighboring objects

POR.bor.br (10) relative border to brighter neighboring ob-
jects
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Table 3: Summary of the calculated object features for the study area Vinalopó river basin
and Zapotillo area. Textural features are calculated for several directions. The total number of
features appears in parentheses. L5: Landsat 5, L8: Landsat 8, GLCM: Grey level coocurrence
matrix.

Original bands Derived from the DTM*
B1 (1) blue (L5), coastal/aerosol (L8) SLOPE (1) slope
B2 (1) green (L5), blue (L8) ASP (1) aspect
B3 (1) red (L5), green (L8) CURV.perp (1) perpendicular curvature
B4 (1) near infrared (L5), red (L8) CURV.tang (1) tangencial curvature
B5 (1) sort wavelength infrared (L5), near in-

frarred (L8)
ASP.sin (1) sin aspect

B6 (1) short wavelength infrared (L8) ASP.cos (1) cosine aspect
B7 (1) short wavelength infrared (L5 & L8) Index and transformations
B9 (1) cirrus (L8) NDVI (1) normalized di�erence vegetation index
DTM* (1) digital terrain model INTENSITY (1) IHS transformation
Texture layers based on the spectral semivariogram HUE (1) IHS transformation
VARIO.tc.1 (1) empirical semivariogram calculated on

the �rst layer of the Tasselled Cap trans-
formation

SATURATION (1) IHS transformation

VARIO.ndvi (1) empirical semivariogram calculated on
the NDVI layer

TC (4) Tasselled Cap transformation

Haralick's texture features [40] calculated on the �rst layer
obtained with the Taselled Cup transformation

GLCM.homo (5) homogeneity GLCM.asm (5) angular second moment
GLCM.cont (5) contrast GLCM.coor (5) correlation
GLCM.ent (5) entropy GLCM.var (5) variance
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Table 4: Ranking of the 25 most relevant features according to mean decreasy Gini index.
The selected features are highlighted in red (in the case of IU28 there was 70 features more).
Features that were calculated with more than one of the original bands are followed by a
colon and the band that was used. In textural features, the direction is indicated between
parentheses. dir means direccionally-invariant (details in tables 2 and 3).

Irrigation unit 28 Vinalopó river basin Zapotillo municipality

1 MEAN:C6 MDE B1
2 MEAN:C5 SLOPE B2
3 dMIN TC.2 B4
4 MEAN.d.c:B1 B5 B7
5 NEIGH.cont B4 B3
6 NDVI TC.1 SATURATION
7 RATIO:B4 NDVI TC.2
8 RATIO:B1 B7 NDVI
9 MEAN:B1 TC.3 B5
10 MEAN.int.bor B3 TC.3
11 MEAN.ext.bor TC.4 VARIO.ndvi
12 MEAN.d.c:B2 INTENSITY TC.1
13 MEAN:B2 B1 B6
14 RATIO:B2 B2 TC.4
15 INTENSITY ASPECT HUE
16 MEAN.d.c:B3 SATURATION VARIO.tc
17 MEAN.d.c.br2:B1 ASP.sin GLCM.cont(90)
18 HUE ASP.cos GLCM.val(dir)
19 RATIO:B3 HUE GLCM.var(0)
20 MEAN.d.c.dr:B1 VARIO.ndvi GLCM.idm(90)
21 MEAN:B4 CURV.tang GLCM.cont(dir)
22 MEAN.d.c:B4 VARIO.tc GLCM.idm(dir)
23 MEAN.d.c.br:B1 CURV.perp GLCM.var(90)
24 MEAN.d.c.dr:B3 GLCM.cont(dir) GLCM.cont(45)
25 MEAN.d.c.dr:B2 GLCM.var(90) GLCM.var(45)

Table 5: Kappa indices obtained after feature selection and number of selected features. O-
VAL: Validation with a di�erent and independent data-set using original algorithm, M-VAL:
Validation with a di�erent and independent data-set using modi�ed algorithm, O-OOB-CV:
Out-of-bag cross-validation using original algorithm, M-OOB-CV: Out-of-bag cross-validation
using modi�ed algorithm.

O-VAL M-VAL O-OOB-CV M-OOB-CV Features

Irrigation Unit 28 0.73 0.73 0.97 0.73 95
Vinalopó river basin 0.84 0.86 0.99 0.84 13
Zapotillo area 0.59 0.61 0.76 0.58 9
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Figure 1: Location of the three study areas. a) Irrigation unit 28. b) Vinalopó river basin.
c) Zapotillo municipality. d) Location of irrigation unit 28 and Vinalopó river basin in Spain
and Europe. e) Location of Zapotillo municipality in Ecuador and South-America.
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Figure 2: Irrigation unit 28. Kappa indices obtained with original and modi�ed random
forest algorithm both using OOB-CV and an external validation data-set. O-VAL: Validation
with a di�erent and independent data-set using original algorithm, M-VAL: Validation with a
di�erent and independent data-set using modi�ed algorithm, O-OOB-CV: Out-of-bag cross-
validation using original algorithm, M-OOB-CV: Out-of-bag cross-validation using modi�ed
algorithm.
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Figure 3: Vinalopó river basin. Kappa indices obtained with original and modi�ed random
forest algorithm both using OOB-CV and an external validation data-set. O-VAL: Validation
with a di�erent and independent data-set using original algorithm, M-VAL: Validation with a
di�erent and independent data-set using modi�ed algorithm, O-OOB-CV: Out-of-bag cross-
validation using original algorithm, M-OOB-CV: Out-of-bag cross-validation using modi�ed
algorithm.
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Figure 4: Zapotillo municipality. Kappa indices obtained with original and modi�ed random
forest algorithm both using OOB-CV and an external validation data-set. O-VAL: Validation
with a di�erent and independent data-set using original algorithm, M-VAL: Validation with a
di�erent and independent data-set using modi�ed algorithm, O-OOB-CV: Out-of-bag cross-
validation using original algorithm, M-OOB-CV: Out-of-bag cross-validation using modi�ed
algorithm.
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Figure 5: Error pyramids in the three study areas (a) Irrigation Unit 28, b) Vinalopó river
basin and c) Zapotillo municipality). Omission and commission errors are compared for O-
LOPO-CV and O-OOB-CV. O-LOPO-CV: Leave-one-patch-out cross-validation with original
algorithm, O-OOB-CV: Out-of-bag cross-validation using original algorithm.
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Figure 6: Error Pyramids in the three study areas (a) Irrigation Unit 28, b) Vinalopó river
basin and c) Zapotillo municipality). Omission and commission errors are compared for M-
LOPO-CV and M-OOB-CV. M-LOPO-CV: Leave-one-patch-out cross-validation with modi-
�ed algorithm, M-OOB-CV: Out-of-bag cross-validation using modi�ed algorithm.
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Figure 7: Error Pyramids in the three study areas (a) Irrigation Unit 28, b) Vinalopó river
basin and c) Zapotillo municipality). Omission and commission errors are compared for M-
LOPO-CV and O-LOPO-CV. O-LOPO-CV: Leave-one-patch-out cross-validation with origi-
nal algorithm, M-LOPO-CV: Leave-one-patch-out cross-validation with modi�ed algorithm.
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Figure 8: Error Pyramids in the three study areas (a) Irrigation Unit 28, b) Vinalopó river
basin and c) Zapotillo municipality). Omission and commission errors are compared for M-
VAL and O-VAL. O-VAL: Validation with a di�erent and independent data-set using original
algorithm, M-VAL: Validation with a di�erent and independent data-set using modi�ed algo-
rithm.
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