
RubyTL: A Practical, Extensible Transformation

Language

Jesús Sánchez Cuadrado1, Jesús Garćıa Molina2,
and Marcos Menarguez Tortosa3

1 University of Murcia, Spain
jesusc@um.es

2 University of Murcia, Spain
jmolina@um.es

http://dis.um.es/~jmolina
3 University of Murcia, Spain

marcos@um.es

Abstract. Model transformation is a key technology of model driven
development approaches. A lot of research therefore is being carried out
to understand the nature of model transformations and find out desir-
able characteristics of transformation languages. In recent years, several
transformation languages have been proposed.

We present the RubyTL transformation language which has been
designed as an extensible language–a set of core features along with an
extension mechanism. RubyTL provides a framework for experimenting
with features of hybrid transformation languages. In addition, RubyTL
has been created as a domain specific language embedded in the Ruby
programming language. In this paper we show the core features of the
language through a simple example and explain how the language can
be extended to provide more features.

1 Introduction

The model-driven development (MDD) promotes an intensive use of models in
the software life cycle. Software models are used to guide the construction of
the application, and an automatic generation of source code from models is pos-
sible. At the end of 2000, OMG launched its initiative on the Model Driven
ArchitectureTM (MDA) [1], an MDD approach to address the integration chal-
lenges and the continuous changes in technology. Since then other approaches
have been proposed [2][3][4], and MDD has become the new software paradigm
that promises to improve software productivity and quality.

Model-to-model transformations are a key technology of the MDA approach.
Most MDA research has been focused on understanding the nature of transforma-
tions and discovering desirable characteristics of model transformation languages
and tools. In recent years, several transformation languages have been defined
[5][6][7]. among them the QVT [8] standard proposed by the OMG. Today the
success of QVT is not clear, and an alternative of a set of languages providing
different styles makes sense [9].

A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 158–172, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

RubyTL: A Practical, Extensible Transformation Language 159

In this paper we present RubyTL, a hybrid transformation language which
has been designed with three main requirements in mind: i) rapid implementa-
tion, ii) it should allow us to experiment easily with different sets of features,
iii) it should provide enough functionality for writing complex transformation
definitions. Three design decisions have allowed us to satisfy these requirements:
the technique of embedding a domain specific language (DSL) in a program-
ming language such as Ruby facilitates the implementation; a plugin mechanism
provides a way of adding extensions, so that the language may be configured
to experiment with different sets of features; finally, Ruby constructs could
be used to write some kinds of complex transformations, in which a declara-
tive style is not the most suitable. In short, RubyTL is an extensible language
which provides a set of core features and an extension mechanism to add new
features.

The paper is organized as follows. Section 2 describes the basic features of
RubyTL transformation language, while Section 3 shows the extension mecha-
nism. In Section 4 the transformation process is discussed. Section 5 compares
RubyTL with other proposed languages. Finally, in the last section we present
our conclusions and outline future work.

2 Language Description

In this section we explain the RubyTL core features, and use a transforma-
tion definition example between two simple models to illustrate the syntax and
semantics of the language. These features are the basic ones for a usable trans-
formation language, but they can be extended, as explained in Section 3.

Ruby [10] is an object-oriented programming language which is gaining con-
stantly acceptance, especially over the last year because of the success of Ruby
on Rails, a web application framework. Ruby is dynamically typed and provides
an expressive power similar to Smalltalk through constructs such as code blocks
and metaclasses. Because of these characteristics, Ruby is very suitable to define
internal DSLs [3].

Thus, RubyTL is a model transformation language defined as a Ruby internal
DSL. RubyTL is a hybrid language since it provides both declarative and imper-
ative constructs to write transformation definitions. Like ATL [6][9], a binding
construct is used to express rules in a declarative way.

The RubyTL abstract syntax, expressed as a metamodel, is shown in
Figure 1. As can be seen, a transformation definition is a set of transforma-
tion rules packaged in a transformation module, and each rule has a name and
four parts:

– A from part, where the source element metaclass is specified.
– A to part, where the target element metaclass (or metaclasses) is specified.
– A filter part, where a condition over the source element is specified, such

that the rule will only be triggered if the condition is satisfied; this part is
optional and if a rule has no filter it will always be triggered.

160 J. Sánchez Cuadrado, J. Garćıa Molina, and M. Menarguez Tortosa

Fig. 1. Abstract syntax of RubyTL

– The mapping specifies relationships between source and target model el-
ements. These relationships can be expressed either in a declarative style
through of a set of bindings or in an imperative style using Ruby constructs.
As we will explain below, a binding is a special kind of assignment that
makes it possible to write what needs to be transformed into what instead of
how the transformation must be performed. The declarative style is recom-
mended, and Ruby imperative code should only be used when it is difficult
to express declaratively some part of a transformation.

The concrete syntax of a RubyTL transformation definition is shown in
Figure 2. It is determined by the fact that the language is implemented as a
Ruby internal DSL (e.g. notice the use of do - end to write a code block and
| | to set the block parameters). We have used a well-known technique to im-
plement Ruby internal DSLs, that is, every keyword in the language is mapped
to a method call and nested structures are mapped to parametrized code blocks.
A discussion about the definition of Ruby internal DSLs can be found in [3].

A rule is defined by the rule method which expects two parameters: the rule
name as a string and a code block which must have a structure conforming the
concrete syntax of the rule element. The from and to parts of a rule are defined
by the from and to methods, which expect as parameter a class belonging to
source and target metamodels, respectively. The filter part of a rule is defined
by the filter method which expects as parameter a block receiving an element
of the source metaclass. The filter evaluates true if the attached block returns
true, otherwise false1. The mapping part of a rule is defined by the mapping
method which expects as parameter a block receiving the source element and
one or more target elements. This block consists of either a set of bindings if
a declarative style is adopted to implement the rule, or any other Ruby code
if an imperative style is adopted. Bindings, which establish a mapping between
source and target elements, have been implemented by overloading the Ruby

1 In Ruby, the result of the last expression evaluated in a block is taken as the return
value of such a block.

RubyTL: A Practical, Extensible Transformation Language 161

module <module-name> do

rule <rule-name> do

from <source-metaclass>

to {target-metaclass}

filter do |source_element|

<expression>

end

mapping do |<source_element>, {target_element}|

{bindings}

bindings has the form:

target_element.property = source_element.property

end

end

one or more rules

end

Fig. 2. Concrete syntax of RubyTL. In this notation <> means one ocurrence and {}
means one or more ocurrences.

assignment operator. It is worth noting that RubyTL is easy to learn and, since
a new notation has been built on top of Ruby, only a little knowledge of the
Ruby language is required.

2.1 Example

Once we have outlined the structure of the language, we show an example of
transformation definition and explain some language features. The example is a
simple transformation from a class model to a Java model, such that i) each class
is transformed to a Java class, ii) each public attribute of a class is transformed
to a pair of get/set methods plus a private field in the Java class, and iii) each
private attribute of a class is transformed to a private field in the Java class.

Figure 3 shows the source (Class) and target (Java) metamodels [11]. Class
metamodel is defined inside a package named SimpleClass. According to this
metamodel, a class is composed of attributes; an attribute has a name and a
visibility and the type of an attribute can be a class or a primitive type. Java
metamodel is defined inside a package named SimpleJava. According to this
metamodel a Java class is composed of features which can be fields or methods;
a method can have zero or more parameters; both features and parameters are
typed, therefore they inherit from TypedElement, which gives them a type and
a name.

The following transformation definition expresses the transformation from
class model to Java model, as explained above. In http://gts.inf.um.es/downloads

162 J. Sánchez Cuadrado, J. Garćıa Molina, and M. Menarguez Tortosa

Fig. 3. Class metamodel and Java metamodel

a more complex version of this transfomation example, in which operations are
introduced in the source metamodel, can be found.

module Transformation

rule ’klass2javaclass’ do
from SimpleClass::Class
to SimpleJava::Class
mapping do |klass, javaclass|

javaclass.name = klass.name
javaclass.features = klass.attrs

end
end

rule ’attribute2features’ do
from SimpleClass::Attribute
to SimpleJava::Field, SimpleJava::Method, SimpleJava::Method

filter do |attr|
attr.visibility == ’public’

end
mapping do |attr, field, get, set|

field.name = attr.name
field.type = attr.type

RubyTL: A Practical, Extensible Transformation Language 163

field.visibility = ’private’
get.name = ’get’ + attr.name
get.type = attr.type
get.visibility = ’public’
set.name = ’set’ + attr.name
set.visibility = ’public’
set.parameters = attr.type

end
end

rule ’attribute2field’ do
from SimpleClass::Attribute
to SimpleJava::Field
filter do |attr|

attr.visibility == ’private’
end
mapping do |attr, field|

field.name = attr.name
field.type = attr.type
field.visibility = ’private’

end
end

rule ’type2parameter’ do
from SimpleClass::Classifier
to SimpleJava::Parameter
mapping do |classifier, parameter|

parameter.name = ’value’
parameter.type = classifier

end
end

rule ’datatype2primitive’ do
from SimpleClass::DataType
to SimpleJava::PrimitiveType
mapping do |src, target|

target.name = src.name
end

end
end

A key point of the example is the binding construct. For instance, the bind-
ing javaclass.features = klass.attrs establishes a mapping from class at-
tributes to Java features and yields to the execution of a rule that specifies such
mapping. In this case both attribute2features and attribute2field rules
are valid choices, but the filter of these rules allows the selection of only one,

164 J. Sánchez Cuadrado, J. Garćıa Molina, and M. Menarguez Tortosa

depending on the attribute visibility. If there are more than one possible choice,
the decision of which rule will be selected depend on which plugins are installed.
The default plugin simply raises an error if this occur, but a more complex plugin
could provide the developer a mechanism to resolve such situation.

Note that bindings established between primitive types (e.g. field.name =
attr.name) do not involve any rule invocation since they belong to the same
underlying meta-metamodel.

It is worth mentioning how clear and legible the transformation shown above
is. The non-intrusive Ruby syntax and the combination of code blocks and meth-
ods have allowed us to design a very clean language. An important feature of
RubyTL, which makes it a clean language, is the implicit rule application driven
by the bindings established between model elements. The order in which the
rules are written in the transformation definition is irrelevant. Below, we discuss
some features of the language, and use the example to explain them.

2.2 Naming Metaclasses

In the rules of the example, notice how the metamodel classes (metaclasses) are
named in the from and to parts: the name of the metaclass is prefixed by the
name of the package in which that metaclass is enclosed plus two colons. This
usual notation can be used because the metaclasses organization in packages is
replicated in Ruby as classes enclosed in modules (the name of a class is prefixed
by the name of its module). For example, in RubyTL the Attribute metaclass
enclosed in the SimpleClass package can be named as SimpleClass::Attribute
because of a class named Attribute has been created within a module named
SimpleClass.

2.3 Expressions

Ruby expressions are used to write filters and bindings. For example, in the
attribute2features rule a simple example of filter expression can be seen:
attr.visibility == ’public’ checks if the attribute visibility is public.

It is very usual among transformation languages to use OCL as a query lan-
guage to navigate source metamodels and to express conditions. RubyTL does
not use any OCL-like query language since Ruby provides a powerful library
for managing collections. This library offers great expressive power for writ-
ing expressions, due mainly to the existence of internal iterators. For example,
klass.attrs.select {|attr| attr.visibility == ’public’} collects all
the public attributes of a class.

2.4 Bindings and Rule Conformance

As we have noted, the mapping of a rule is composed of a set of bindings.
The purpose of a binding is to specify a relationship between source and target
elements and it is written as an assignment in the form target.property =
source-expression, where:

RubyTL: A Practical, Extensible Transformation Language 165

– source-expression is a Ruby expression whose result is an element, or a
collection of elements, belonging to the source model. Therefore, the type
of the right-hand side of the assignment is given by the type (metaclass) of
source-expression.

– target is a parameter of the mapping code block; this parameter denotes a
target element to be created and its type is given in the to part of the rule.

– property must be a property of the previously created target element. The
type of the left-hand side of the assignment is given by the type of the
metamodel feature to which the property corresponds.

The definition of binding semantics is based on the “conforming rule” concept:
“A rule conforms to a binding if the type in its from part conforms to the type in
the right part of the binding assignment and the type in its to part conforms to
the type in the left part of the binding assignment”. The semantics of a binding
can be defined as “there exists a conforming rule which transforms the type of
the right-hand side of the binding assignment into the type of the left-hand side
of the binding assignment”.

In the example, the binding javaclass.features = klass.attrs in the
klass2javaclass rule means that there exists a rule whose from part conforms
to SimpleClass::Attributeand its to part conforms to SimpleJava::Feature.
It is important to note that conformance between types must take into consid-
eration inheritance between metaclasses, that is, a subtype conforms to its par-
ent type. For example, the attribute2features rule conforms to the previous
binding: its from part is SimpleClass::Attribute and its to part conforms to
SimpleJava::Feature as both SimpleJava::Field and SimpleJava::Method
are subtypes of SimpleJava::Feature.

A transformation definition is well-formed if for each binding involving two
non-primitive types, as left-hand and right-hand side types, there exist one or
more conforming rules but there is one and only one applicable rule. This means
that if two or more conforming rules exist, their filter conditions must be exclu-
sive, since only one of them can be applied. Since RubyTL is an embedded DSL,
checking if a transformation definition is well-formed must be done at runtime.

2.5 Rule Evaluation

The evaluation of a transformation definition is driven by the bindings estab-
lished between source and target elements. Assignment operator has been over-
loaded in such a way as to look for the correct rule to transform the right part of
the binding assignment into the left part. Whenever a conforming rule is found
it is applied using the element in the right part of the binding as the source
element. If the type of the right-hand side element is a collection then it will be
flattened and the rule will be applied once for every single element.

Every transformation must have an entry point in order to start the evalu-
ation. The entry point is the first rule which is applied to all existing elements
of the metamodel class specified in its from part (in the example it is applied to
all instances of SimpleClass::Class). In Section 3 the language is modified to
allow different entry points.

166 J. Sánchez Cuadrado, J. Garćıa Molina, and M. Menarguez Tortosa

Applying a rule is simply executing the code block of its mapping part.
Just before a rule is applied, new target elements are created–one element for
each metaclass specified in the to part of the rule. While the first parameter
of the mapping code block receives the source element, the rest of parameters
receive the target elements created as a result of the rule execution. In the exam-
ple, the mapping code block of the rule attribute2features has four parame-
ters: attribute whose type is SimpleClass::Attribute, field whose type is
SimpleJava::Field, and get and set whose type is SimpleJava::Method. We
refer to the first parameter as source parameter and the rest as target parameters.

Execution of a rule returns one or more target elements which are assigned to
the target feature related to the binding which triggers the rule. An important
consideration is that a source element is never transformed twice by the same
rule, that is, if a source element has been already transformed by a rule the
previous result is returned. In the example, when the attribute2features rule
is applied, the result of the binding field.type = attribute.type is stored
and it is returned as the result of get.type = attribute.type when that rule
is applied to resolve such binding.

This way of evaluating rules is applied when the rules are written in a declar-
ative style based on bindings. Since the evaluation algorithm simply executes the
Ruby code written in the mapping code blocks (notice bindings are a Ruby con-
struct), it is also possible to write any Ruby construct inside the mapping part
of a rule, thus yielding an imperative style.

2.6 Reflection

Another property of RubyTL is that it can be used in a reflective way. Just like
reflective languages such as Java or Ruby, the main concepts of the language
(transformation, rule, mapping and metaclass in this case), except binding, can
be manipulated in runtime since they are Ruby objects. Therefore, they can be
handled by RubyTL rules, making it possible to write a RubyTL transformation
that takes another RubyTL transformation as input and generates a modified
RubyTL transformation as output.The main limitation is that reflectivity cannot
deal with bindings, since they are actually Ruby code. This makes that the
output transformation cannot be serialized, but only used in runtime.

To sum up, RubyTL is an unidirectional hybrid language, which relies on the
concepts of rule and binding to specify a transformation. Rules are resolved im-
plicitily and in a deterministic way. Figure 4 shows the core features of RubyTL
through a feature diagram according to [12].

3 Extension Mechanism

RubyTL is an extensible language, that is, the language has been designed as
a set of core features with an extension mechanism. In the previous section we
have explained the core features, and in this section we will present the extension
mechanism based on the use of plugins.

RubyTL: A Practical, Extensible Transformation Language 167

Fig. 4. Feature diagram showing the core features of RubyTL according to [12]

A plugin is a piece of Ruby code which modifies the runtime behaviour of
the language by acting on the language syntax, the evaluation engine or even
the model repository. The language can be considered a framework with a set of
extension points that plugins can implement to add functionality. Some examples
of additional features are the following: definition of new kinds of rules with
a different behaviour, adding or removing syntax elements, renaming existing
keywords, and modifying the transformation algorithm. Adding a new language
feature is as simple as creating a plugin which implements a few extensions
points. Obviously, a new feature can only be added if the necessary extension
points have been planned.

The underlying idea behind this plugin mechanism is to have an extensible
language intended to experiment with transformation languages features. Given
a transformation problem, different combinations of features could be tried out
in order to decide which is the most appropiate. Before the evaluation of a
transformation, the developer should select the set of suitable plugins so that
the language is properly configured. Each time a set of plugings is installed it is
as if a new instance of the language were created.

Next we outline some advanced features implemented as plugins. In addition
to implicit rule execution (expressed through bindings), it is possible to call rules
explicitly by their name. A plugin traverses all rules in the transformation and
creates a method with the same name of the rule which can be explicitly invoked.
This plugin allows to call rules when mappings are written in an imperative style.

As mentioned before, the entry point of a transformation is the first rule.
This behaviour is generalized by a plugin which implements a new kind of rules,
named top rules. A top rule is always applied to all instances of the type specified
in its from part, thus a transformation definition could have more than one entry
point.

A rule never transforms a source element twice, and this is the behaviour that
is usually expected. However, it may be necessary for a rule to be evaluated more
than once for a particular source element (in ATL this is the default behaviour
of rules). In order to provide this behaviour, we have implemented a plugin by
adding a new kind of rule, named creator.

168 J. Sánchez Cuadrado, J. Garćıa Molina, and M. Menarguez Tortosa

Another plugin allows mappings not to be restricted to one-to-one mappings,
but it is possible to perform one-to-many and many-to-one mappings. At this
moment, we are exploring different ways of writing such mappings in a declar-
ative and readable manner. Finally, adding traceability support has been quite
easy with a plugin.

In [12] several variation points in transformation languages are identified.
Some of these variation points could be extensions to RubyTL, and they are
summarized in Figure 5. For instance, the language can be modified to perform
a transformation in several phases, where each phase has a specific purpose and
only certain rules can be invoked in a given phase. It would allow us to think
about a transformation as a set of refinement steps o phases, where each phase
rely on the job accomplished by previous phases to complete its job.

Fig. 5. Feature diagram showing possible language extensions according to [12]. Fea-

tures marked * are suitable to be implemented as plugins.

There are several advantages of this extensible language approach. First, we
have an environment in which to experiment mixing transformation languages
features and where new features can be implemented if required. Second, imple-
mentation and maintenance are easier due to the modular design. Finally, both
experimenting with features and even implementing new features does not re-
quire any knowledge about language internals. In addition, the fact that RubyTL
is an internal DSL makes the plugin mechanism easy (e.g. modifying the lan-
guage syntax in runtime).

4 Transformation Process

RubyTL has been implemented as a Ruby internal DSL. This key design choice
means we are relying on the Ruby interpreter to parse and evaluate the transfor-
mation definition. The transformation engine and the XMI parser has also been
implemented in Ruby.

Figure 6 is a process diagram which shows the components and the data
involved in the whole transformation process. The steps are the following:

RubyTL: A Practical, Extensible Transformation Language 169

Fig. 6. Execution of RubyTL transformation engine

1. Since RubyTL has a pluggable design, the first step is to load the suitable
plugins to configure the language with certain features. The user should
select the plugins to be loaded, and the plugin mechanism check dependencies
between them.

2. Source metamodel, target metamodel and source model are xmi files. A
parser written in Ruby reads these input files and a set of Ruby classes are
generated and loaded in the Ruby interpreter. These classes correspond to
the classes defined in the source and target metamodels.

3. Once metamodels have been loaded, the transformation definition (it is in
effect Ruby code) is read by the Ruby interpreter itself, which leads to the
creation of a set of rule objects. These rules will be used by the transforma-
tion engine to perform the transformation.

4. As explained above, the transformation execution is driven by the bindings
established in the mapping part of the rules. As the rule evaluation is be-
ing performed plugins implementing extension points could be called. For
instance, if a plugin implements a strategy to choose between two or more
applicable rules, it will be called when more than one rule can be applied.

5. The output of the transformation process is an xmi file containing a target
model conforming to the target metamodel.

5 Related Work

Several classifications of model transformation approaches have been developed
[12][13][14]. According to these classifications, the different model-model ap-
proaches can be grouped into three major categories: imperative, declarative
and hybrid approaches. Imperative approaches are focused on how the trans-
formation is done; the direct model manipulation approach is the most com-
mon mechanism which uses programming languages such as Java and procedu-
ral APIs. Declarative approaches, such as relational, functional or graph-based
approaches, are focused on what the transformation does. Finally, hybrid ap-
proaches combine declarative and imperative constructs.

Some of the latest research efforts in model transformation languages are
ATL, Tefkat, MTL and Kermeta. MTL and Kermeta [5][15] are imperative exe-
cutable metalanguages not specifically intended to model-model transformation,

170 J. Sánchez Cuadrado, J. Garćıa Molina, and M. Menarguez Tortosa

but they are used because the versatility of their constructs provides great ex-
pressive power. However, the verbosity and the imperative style of these lan-
guages make writing complex transformations difficult because they are very
large and not readable.

ATL is a hybrid language with a very clear syntax [6][9]. It includes several
kinds of rules that facilitate writing transformations in a declarative style. How-
ever, the complete implementation of the language is not finished yet, and at the
moment only one kind of rule can be used. Therefore it may be difficult to write
some transformations declaratively. ATL and RubyTL share the same main ab-
stractions, i.e. rule and binding, but ATL is statically typed while RubyTL uses
dynamic typing. Static typing allows ATL to perform compile time checks, for in-
stance to do optimizations. On the other hand, dynamic typing is less restrictive
and offers more flexibility, which is very important for an extensible language
such as RubyTL.

Tefkat is a very expressive relational language which is completely usable [7].
As noted in [16], writing complex transformations in a fully declarative style is
not straightforward, and the imperative style may be more appropriate. That
is why supporting a hybrid approach is a desirable characteristic for a transfor-
mation language, to help in writing practical transformation definitions. Tefkat
only supports the declarative style, which could be an important limitation.

In [16], a set of quality requirements for a transformation language is pre-
sented. If RubyTL is evaluated against these requirements the following are
found. Usability is facilitated providing a clear syntax and a style of writing
transformation definitions appropriate to the usual background of the develop-
ers. Furthermore there is a good trade-off between conciseness and verbosity
because it is a hybrid language–a declarative style allows rules to be written in
a concise way and a more verbose imperative style can be used when is needed.
Regarding scalability, the use of a native EMOF2 repository provides a good
performance, and it can cope with large transformations without loss of perfor-
mance due to the nature of the language itself.

6 Conclusions and Future Work

In June 2005 we started a project for the creation of a framework intended to
experiment with ATL-like transformation languages features, that is, features
of hybrid languages in which the declarative style is expressed by a binding
construct. The result of this project have been RubyTL, an extensible transfor-
mation language. We have gone through the following steps.

1. We observed that the technique of embedding a DSL in a programming
language such as Ruby provided three important advantanges: i) a fast im-
plementation, ii) changes in the language could be easily made, and iii) Ruby
constructs can be used to write complex transformations.

2 http://rmof.rubyforge.org/

RubyTL: A Practical, Extensible Transformation Language 171

2. We also realized that Ruby facilitates the creation of a plugin mechanism, so
that RubyTL could be designed as an extensible language. We established
the core features and the extension points, and we implement a set of plugins.

3. Finally, we have experimented with the language by writing transformation
definitions.

In this paper we have presented RubyTL core features and the plugin mecha-
nism. We have used a classical example for describing the language. This example
has illustrated that RubyTL transformation definitions are readable and easy to
understand because of the declarative style of the language. An imperative style
could be adopted for complex transformations by writing Ruby code. Therefore,
RubyTL is a fully usable language to write transformations of any level of com-
plexity. But the main novelty of RubyTL is to provide a framework in which to
experiment with features of hybrid transformation languages and to extend the
language without taking into account its internals.

The fact that RubyTL is implemented as a Ruby internal DSL causes some
limitations. The main drawback is that there is not a static type checking, due to
Ruby being a dynamically typed language and it may make a good tool support
difficult. In any case, we are currently working on the integration of our transfor-
mation engine inside the Eclipse platform by using RDT3. At this moment, an
editor with syntax highlighting, a launcher for transformation definitions, and a
configuration tool for plugins is available4. As future work, we expect to be able
to provide a debugger to RubyTL, and we are exploring the possibility of using
RubyTL to refactor Ruby code.

We will continue writing transformation definitions in the context of real
applications to find problems which require new constructs in order to be declar-
atively specified.

Acknowledgments

This work has been partially supported by Fundación Seneca (Murcia, Spain),
grant 00648/PI/04, and Consejera de Educación y Cultura (CARM, Spain),
grant 2I05SU0018. Jesús Sánchez enjoys a doctoral grant from the Spanish Min-
istry of Education and Science.

References

1. Object Management Group. MDA Guide version 1.0.1. omg/2003-06-01, 2003.
OMG document.

2. Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. Wiley,
2004.

3 http://rubyeclipse.sourceforge.net/
4 http://gts.inf.um.es/downloads

172 J. Sánchez Cuadrado, J. Garćıa Molina, and M. Menarguez Tortosa

3. Martin Fowler. Language workbenches: The killer-app for domain specific lan-
guages?, June 2005. http://www.martinfowler.com/articles/languageWorkbench.
html.

4. Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied Metamod-
elling, A Foundation for Language Driven Development. Xactium, 2004.

5. Pierre-Alain Muller, Franck Fleurey, Didier Vojtisek, Zoé Drey, Damien Pollet,
Frédéric Fondement, Philippe Studer, and Jean-Marc Jézéquel. On executable
meta-languages applied to model transformations. In Model Transformations In
Practice Workshop, Montego Bay, Jamaica, 2005.

6. Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette, and Jamal Eddine
Rougui. First experiments with the ATL model transformation language: Trans-
forming XSLT into XQuery. In OOPSLA 2003 Workshop, Anaheim, California,
2003.

7. Michael Lawley and Jim Steel. Practical declarative model transformation with
Tefkat. In Model Transformations In Practice Workshop, Montego Bay, Jamaica,
2005.

8. OMG. Revised submission for MOF 2.0 Query/View/Transformation, 2005.
http://www.omg.org/cgi-bin/apps/doc?ad/2005-03-02.

9. Frédric Jouault and Ivan Kurtev. Transforming models with ATL. In Proceedings
of the Model Transformations in Practice Workshop at MoDELS 2005, Montego
Bay, Jamaica, 2005.

10. D. Thomas. Programming Ruby. The Pragmatic Programmers’ Guide. Pragmatic
Bookshelf, 2004.

11. Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained. The Model Driven
Architecture: Practice and Promise. Addison-Wesley, 2003.

12. Krzysztof Czarnecki and Simon Helsen. Classification of model transformation ap-
proaches. In Proceedings of the 2nd OOPSLA Workshop on Generative Technique
in the Context of the Model Driven Architecture, Anaheim, October 2003.

13. Tracy Gardner, Catherine Griffin, Jana Koehler, and Rainer Hauser. Review of
OMG MOF 2.0 Query/Views/Transformations submissions and recommendations
towards final standard, 2003.

14. Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and
soul of model-driven software development. IEEE Software, 20(5):42–45, Septem-
ber/October 2003.

15. Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving executabil-
ity into object-oriented meta-languages. In Lionel C. Briand and Clay Williams,
editors, MoDELS, volume 3713 of Lecture Notes in Computer Science, pages
264–278. Springer, 2005.

16. Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. In Interna-
tional Workshop on Graph and Model Transformation (GraMoT). A satellite event
of the Fourth International Conference on Generative Programming and Compo-
nent Engineering (GPCE), Tallinn, Estonia, September 2005.

	Introduction
	Language Description
	Example
	Naming Metaclasses
	Expressions
	Bindings and Rule Conformance
	Rule Evaluation
	Reflection

	Extension Mechanism
	Transformation Process
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

