
Journal of Network and Systems Management manuscript No.
(will be inserted by the editor)

A framework for dynamic configuration of TLS
connections based on standards

Javier Pastor-Galindo* · Gabriel
López-Millán · Rafael Maŕın-López ·
Fernando Pereñ́ıguez-Garćıa · Óscar
Cánovas

November 2021

Abstract The Transport Layer Security (TLS) protocol is widely used for pro-
tecting end-to-end communications between network peers (applications or nodes).
However, the administrators usually have to configure parameters (e.g., cryptogra-
phy algorithms or authentication credentials) to establish TLS connections manu-
ally. However, this way of managing security connections becomes infeasible when
the number of network peers is high.

This paper proposes a TLS management framework that configures and man-
ages TLS connections in a dynamic and autonomous manner. The solution is
based on well-known standardized protocols and models that allow providing the
necessary configuration parameters to establish a TLS connection between two
network nodes. Nowadays, this is required in several application scenarios such as
virtual private networks (VPNs), virtualized network functions (VNFs), or service
function chains (SFCs). Our framework is based on standard elements of the Soft-
ware Defined Networking (SDN) paradigm, widely adopted to provide flexibility
to network management, such as for the scenarios aforementioned.

The proposed framework has been implemented in a proof of concept to vali-
date the suitability of the proposed solution to manage the dynamic configuration
of TLS connections. The experimental results confirm that the implementation of
this framework enables an operable and flexible procedure to manage TLS con-
nections between network nodes in different scenarios.

* Corresponding author

Javier Pastor-Galindo, Gabriel López-Millán, Rafael Maŕın-López
Department of Information and Communications Engineering, University of Murcia, 30100
Murcia, Spain
E-mail: {javierpg,gabilm,rafa}@um.es

Fernando Pereñ́ıguez-Garćıa
Department of Engineering and Applied Technologies, University Defense Center - Spanish
Air Force Academy, 30720, Spain
E-mail: fernando.pereniguez@cud.upct.es

Óscar Cánovas
Department of Computer Engineering, University of Murcia, 30100 Murcia, Spain
E-mail: ocanovas@um.es



2 Javier Pastor-Galindo* et al.

Keywords TLS · Management · SDN · YANG

1 Introduction

Nowadays, the deployment of cloud-based datacenters with thousand of virtual
network devices [15], the raising of Service Function Chaining (SFC) to provide
quick and light network services deployments [14], or the current concept of Soft-
ware Defined Wide Area Networks (SD-WANs) [25] have posed new challenges
for the network administrators due to the complexity associated to these type of
networks. Despite this complexity, security is still essential, and the protection of
communications must be ensured between the different network peers involved in
these types of networks.

To this end, there is a handful set of standard network security protocols cur-
rently being used to protect communications in these scenarios, such as Internet
Protocol Security (IPsec) or Transport Layer Security (TLS). However, the man-
agement of the configuration parameters (e.g., cryptographic material, peers IP
addresses, etc.) by these protocols to operate is an error-prone, non-scalable and
time-consuming task when performed manually, especially in network scenarios
like the ones mentioned above. Given this situation, the research community is
called to find ways to dynamically protect the communication channel between
a potentially high number of network peers (either nodes or application services)
and in a constantly changing environment.

The management of the forthcoming network scenarios is expected to take
advantage of the Software Defined Network (SDN) [21] paradigm. SDN proposes
to break the traditional concept of networking based on static decisions and fixed
architectures by allowing the dynamic configuration of network nodes [35]. This
paradigm brings a new opportunity to implement sophisticated mechanisms of
protection and defense. This is possible because SDN gives the responsibility of
taking decisions to a centralized entity named SDN controller (control plane) while
the traffic forwarding activity is performed by network nodes (data plane). This
architecture provides a flexible and agile management of the network from the
administrator’s viewpoint, especially when the number of nodes is high and the
network is frequently reconfigured [5].

SDN is strategic to address the challenge of protecting communications chan-
nels in complex network scenarios [8]. In the context of standardization, some
steps in this direction have already been undertaken within the Internet Engineer-
ing Task Force (IETF), through the I2NSF and IPSECME working groups [17].
They discuss the framework and security policy data models necessary for the es-
tablishment of IPsec security associations in network nodes by a security controller
(an SDN controller for the management of security protocols). Regarding the TLS
protocol, the IETF has also been working on the definition of generic data models
for TLS configurations [41]. Unfortunately, there is no proposal for a standard
framework, at the time of writing, to implement SDN-inspired management of
TLS security associations.

This paper proposes an standard-based SDN application to manage TLS con-
nections. More specifically, the main contributions of our work are: 1) the definition
of a SDN framework to automate the configuration of TLS parameters that allow



A framework for dynamic configuration of TLS connections based on standards 3

the establishment of TLS connections between nodes in complex networks inte-
grated by a high number of them; 2) definition of the architecture by selecting the
standard technologies that better fit to achieve this goal. As a consequence NET-
CONF is the protocol selected for network management while YANG language
is used for security data modeling; 3) design of novel TLS client and server con-
figuration models, based on the standard YANG by extending the existing IETF
model for TLS management; 4) validation of the proposal in realistic use cases: ex-
periments in star topology or full-mesh topology have not been tested at the level
of detail we show in our contribution. These two types of scenarios are relevant
because full-mesh represents a model for datacenter cases while the star topology
can be found, for example, in SD-WANs.

The rest of this paper is organized as follows. Section 2 analyzes related works
found in the literature. Section 3 contains the description of some background tech-
nologies included in our proposal. Section 4 presents the SDN-based TLS frame-
work designed for the autonomous management of secure connections. Section 5
describes the data model necessary to specify the required TLS configuration pa-
rameters. Section 6 describes the implementation of the proof of concept and the
testbed, and discusses the results of the experiments performed. Section 7 provides
important security considerations associated with the proposed SDN framework.
Finally, Section 8 concludes with some key remarks, as well as future research
directions.

2 Related work

The need to simplify the management of secure communications channels is a real-
ity in current networks. This has led the industry to develop commercial solutions
that centralize the management of secure channels in an entity known as controller
or orchestrator.

For example, regarding the provisioning of VPN services, we can find solutions
like Cisco Network Services VPN Orchestrator [7] that accelerates the establish-
ment and reconfiguration of VPNs to attend to customers demands rapidly.

Similarly, for clusters with a large number of virtualized network devices, sev-
eral commercial products have arisen to automate the configuration of secure
communications channels. Solutions like Red Hat OpenShift [33], IBM Cloud Pri-
vate [16] or AWS Cloud [2] give to a central entity the responsibility of controlling
the establishment of IPsec protected communications among network devices in
the data plane.

This line of work has also been applied to the protection of communications
in service mesh networks. Despite there are proprietary commercial solutions like
AWS App Mesh [3], two open source projects are gaining momentum for the de-
ployment of microservice architectures: Istio [18] and Linkerd [22]. On the one
hand, we can find Istio integrated into products like Red Hat OpenShift Service
Mesh [28] and Google Anthos Service Mesh [12], since both companies are contribu-
tors of the Istio project. On the other hand, Linkerd is being boosted as incubating
project in the Cloud Native Computing Foundation. In any case, it is important
to note that both solutions adopt the same approach to protect communications
between microservices: a controller is responsible for securing communications us-



4 Javier Pastor-Galindo* et al.

ing the TLS protocol. However, those solutions are not based on IETF-defined
standards for autonomous configuration of security associations.

In parallel to the development of commercial solutions, academic research has
paid attention to the application of SDN technology to achieve a flexible and
dynamic management of network security. Ranjbar et al. [32] propose a solution
that gives an SDN controller the ability to inspect the TLS handshake negotiation
between peers operating under its supervision. Thus, the controller can apply
security policies to avoid weak cryptographic algorithms, self-signed certificates,
etc. Only if the parameters exchanged during the handshake are considered valid,
the controller allows the establishment of the TLS connection. The authors of this
work use Openflow as southbound protocol to forward TLS handshake packets to
the controller where they are analyzed. However, the SDN controller cannot enforce
TLS configuration parameters into the peers in that proposal. It can only inspect
the plaintext handshake messages and, if necessary, block the establishment of a
TLS connection.

Vajaranta et al. [38] develop a secure overlay network following the SDN
paradigm. Authors use VXLAN as link-layer virtualization technique and Open-
VPN (based on TLS) for encryption. This work develops the components allow-
ing the SDN controller to forward link-layer flows through OpenFlow switches.
Unfortunately, the management of secure communications is still expected to be
manually configured by the user. This problem is solved in [36], where authors
propose a Network Function Virtualization (NFV) orchestrator able to manage
an SFC-enabled processing architecture for SSL/TLS encrypted traffic. This work
defines a set of primitives to apply tunnels, routes, and filters to manage services,
but there are no details about configuration policies or data models. A trust model
for the management of SSL certificates is also missing.

Authors in [39] propose a solution for centralized management of dynamic IPsec
security associations. IPsec perfectly integrates into the SDN architecture since the
IPsec protocol operation (data plane) can be decoupled from the protocol used for
key management (control plane), such as Internet Key Exchange (IKEv2). In fact,
this aspect is also used in [23] to propose a complete framework to manage IPsec
security associations. The SDN controller is able to configure, using the standard
NETCONF protocol, the network devices to allow them to establish IPsec security
associations. Two different operation modes are defined (IKE case and IKE-less
case) that can be applied through YANG data models. This work has been adopted
by the IETF I2NSF working group and has been recently published as Proposed
Standard RFC (RFC 9061) by the IETF [24].

The standardization efforts to increase the flexibility and level of automation
when managing secure communications have also reached the TLS protocol. More
precisely, authors in [41] define a set of YANG modules for configuring different
parameters in the TLS client and server. The model provides YANG grouping
elements that are expected to be reused by applications using the TLS protocol.
However, there is no standard framework describing how use of these models in
complex network scenarios.



A framework for dynamic configuration of TLS connections based on standards 5

3 Background

This section provides a basic description of the standard technologies employed
to develop the autonomous management framework for TLS security associations
proposed in this paper.

3.1 Software-Defined Networks (SDNs)

Software Defined Networking (SDN) [21] is a paradigm in which network control
functions are separated from network nodes (e.g., routers or switches) and cen-
tralized in an entity called SDN controller. Moreover, a new higher level is defined
to abstract administrators from knowing the details of the underlying network.
For this reason, SDN infrastructures are said to be composed of three planes:
application, control and data.

The data plane is the lowest layer and where network nodes reside. They are
devices that do not take decisions on their own but communicate with the SDN
controller (located in the control plane) through the southbound interface to receive
instructions indicating how to manage network traffic. Examples of southbound
protocols are OpenFlow [27], NETCONF [10] or SNMP [11].

The SDN controller, in turn, receives from administrators (located in the appli-
cation plane) security policies to govern the network. This communication happens
through the northbound interface. This layer is implemented through business soft-
ware and is out of the scope of this contribution.

3.2 NETCONF and YANG

Network Configuration Protocol (NETCONF) [10] is a southbound protocol de-
veloped by the IETF (Internet Engineering Task Force) for network management.
It follows a typical client-server model where the NETCONF client can install,
manipulate and remove configurations on the NETCONF server that is expected
to reside in data plane network nodes.

To protect the communication between client and server, NETCONF relies on
using a secure transport protocol such as SSH [9] or TLS [4]. NETCONF uses a
communication model based on Remote Procedure Call (RPC). According to this
model, requests and responses are represented with rpc and rpc-reply messages,
respectively. These RPC messages can be used to invoke an operation (encoded in
the Extensible Markup Language - XML [40]) to manage a device. For example,
the edit-config operation applies a concrete configuration on a device.

NETCONF uses a language called YANG [6] to model configuration data ex-
changed between client and server. A YANG data model works hierarchically and
follows a tree structure of data nodes. YANG defines different types of data nodes.
For example, the type container is used for nodes residing in intermediate levels
of the tree that contain other nodes, thus grouping data logically. Conversely, the
type leaf is used for end nodes containing simple data (e.g. a numeric value). Using
different types of nodes, the designer is able to customize the desired structure and
create a YANG data model. YANG modules can be translated into an equivalent



6 Javier Pastor-Galindo* et al.

XML syntax called YANG Independent Notation (YIN). The catalog of current
standardized YANG models can be found in [42].

3.3 Transport Layer Security (TLS)

Several secure protocols have been developed to ensure integrity, confidentiality,
and authentication to communication channels. Without a doubt, Transport Layer
Security (TLS) [34] is one of the most widely used protocols in current networks
for this purpose. Although its usage has become popular to protect web traf-
fic [13], TLS is also employed to implement other security services like, for example,
VPNs [30].

TLS establishes a secure connection between two peers (i.e. network nodes)
to protect application data exchanged among them. TLS assigns the role of TLS
client to the peer initiating the TLS connection, while the other is designated as
TLS server. At the time of writing, the last version of TLS is 1.3, which is the one
considered in the paper.

TLS 1.3 is composed of two basic components: the one for establishing a secure
connection between two nodes (Handshake Protocol), and the other for protecting
data (Record Protocol). The former is started by the TLS client and allows both
TLS client and server to mutually authenticate each other, as well as to negotiate
the keys needed by the cryptographic algorithms (used by the Record Protocol) to
implement confidentiality and integrity services for the data protection. Among the
handshake modes supported by TLS 1.3, in the context of this paper we consider
the basic one (called Full TLS Handshake) since it is the default mode.

4 The standard framework for TLS autonomous management

This section describes the framework to automate the establishment of TLS con-
nections between (network) nodes using standard protocols and interfaces. Below
we describe the architectural components, the operation, and the procedure de-
signed to assist the configuration process of TLS connections.

4.1 Architecture

The solution is based on the general SDN architecture. It is composed by two types
of entities: the Node, representing an entity in the network needing to establish
a TLS connection (data plane); and the Security Controller (SC), acting as the
central entity in charge of provisioning nodes with the necessary configuration
parameters (control plane).

Figure 1 illustrates the entities defined in this framework. For completeness,
this figure depicts the application plane, although it is outside the scope of this
work. As expected, we find the Security Controller in the control plane, which
maintains a complete view of the network located in the data plane and holds the
TLS Security Policies that must be applied to the nodes residing in the data plane.
Communication between the entities residing in the control (Security Controller)
and data (nodes) planes may happen through a dedicated high-speed management



A framework for dynamic configuration of TLS connections based on standards 7

Fig. 1 Proposed architecture

network. However, other schemes are possible, like those where the controller com-
municates with data plane entities through the data network.

We assume that the nodes in the data plane need to establish TLS connections
to exchange data securely. For example, they are requested to establish a SD-WAN,
which implies the establishment of TLS connections with a customer’s branch
network; to protect communications between virtualized nodes belonging to a
SFC in a cloud; or to protect information exchanged between microservices in a
service mesh network.

It is also important to note that the nodes deploy a typical TLS implementa-
tion, which is divided into two main layers: the TLS handshake layer, which is the
protocol that allows establishing the TLS connections, and the TLS record layer,
which is in charge of protecting data traffic based on the cryptographic material
and algorithms exchanged during the TLS handshake. As such, the main task of
the Security Controller in this architecture is to send the required configuration
information that allows the node to run the TLS handshake to establish the TLS
connections.

The interaction between the Security Controller and the nodes will be carried
out through the southbound interface, so that the former will provide the latter
with proper parameters. In this particular case, we have chosen NETCONF [10]
to implement this interface. NETCONF, together with the standard modeling
language YANG, is considered more flexible, modular and extensible than other
alternatives, such as SNMP, to conveniently represent the required security infor-
mation.

We integrate the NETCONF client functionality in the Security Controller,
while the NETCONF server role is assigned to the nodes. Therefore, the nodes
require a NETCONF server agent that is able to translate the XML informa-
tion received from the controller (based on the YANG model) into specific TLS
implementations (for example OpenSSL [29], OpenVPN [30], etc.).

As a consequence, a standard YANG model for the definition of TLS config-
uration parameters is needed. This model must include cryptographic material



8 Javier Pastor-Galindo* et al.

and TLS roles (client or servers), endpoints contact information, and information
about how to manage the TLS connection. In summary, all the information that
TLS handshake requires to operate properly to establish a TLS connection. A
description about the proposed model can be found in Section 5.

In order to create and maintain the TLS-based secure connections between
the nodes, the Security Controller assumes a trust relationship with each node.
In the particular case of the proposed solution, this trust relationship is implicitly
inherited from the Secure Transport Layer used by NETCONF, which typically
results in the establishment of a secure channel between the controller and the
nodes through SSH (by default) or TLS.

4.2 General operation

In the following, we detail the general framework operation to automatize the
establishment of TLS connections. Despite our proposal is designed to support
any number of nodes or topologies, we provide a simple scenario for the sake of
clarity, where a Security Controller has to configure a TLS connection between
two nodes. We assume that:

– The Security Controller has already received from the administrator (through
the Northbound Interface) the Security Policies describing the network nodes
requiring TLS connection. As mentioned earlier, this process is out of the scope
of this work.

– The Security Controller knows the contact information of the nodes (i.e., IPv4
or IPv6 addresses).

– The nodes are shipped with the credentials necessary to establish a secure
transport for the NETCONF session with the Security Controller. Typically,
this is achieved with an RSA key pair to set up an SSH connection.

– The Security Controller has an implementation of a NETCONF client, and
nodes has the software to run a NETCONF server. They should be able to
manage configurations and verify YANG models.

– The nodes have the proper support to create TLS connections (when acting as
TLS client) and receive them (when deployed as TLS server).

– The key material used by TLS in the data plane can be either directly provided
by the controller or locally stored in the node (for example in a keystore or
hardware security module). The YANG model used in NETCONF should allow
both options.

The general workflow is divided into two parts: a) the Security Controller
configures the first node as TLS server; b) the Security Controller configures the
second node as TLS client to start the TLS handshake. Note that when the latter
starts the TLS handshake, the TLS server must be prepared to negotiate the TLS
connection. The details about the workflow are depicted in Figure 2, and they are
as follows:

1. According to the TLS Security Policies, the Security Controller (SC) decides
the role played by each node: TLS server (N1) or TLS client (N2).

2. The SC sends the required TLS server configuration for N1 based on the stan-
dard YANG model. It includes information about the IP and port for listening



A framework for dynamic configuration of TLS connections based on standards 9

Fig. 2 Configuration of a TLS connection between two nodes.

to incoming TLS handshake and information about the required cryptographic
material (e.g., shared secret or X.509 certificate and private key, as well as
Certification Authority information) depending on the Security Policies. The
Security Controller can explicitly include this key material in the configuration
sent to the node, or information about where to locate that in the own node.

3. The NETCONF server agent at N1 translates the XML received from the
Security Controller into system-specific TLS commands to run a TLS server
with the provided configuration. If the configuration is successfully applied, it
responds with a RPC OK response.

4. The SC sends now the required TLS client configuration for N2 based on the
standard YANG model. It includes information about the TLS server’s IP and
port for outgoing TLS connections and the required cryptographic material
(e.g., shared Secret or X.509 certificate, private key, and Certification Authority
information) depending on the Security Policies.

5. Once the configuration is applied and validated in N2, it may start the TLS
handshake with N1 and responds with a RPC OK to the SC. Note that N2
is informing the SC with the RPC OK response that the configuration has
been applied properly. However, the responsibility for eventually establishing
the TLS connection falls on N2, who may decide to start the TLS handshake
just before sending the RPC OK (between steps 4 and 5 as shown in Figure
2) or further on (when required). In any case, it is an implementation decision
of the node.



10 Javier Pastor-Galindo* et al.

6. The TLS security channel will be established once the TLS handshake finishes,
being used to protect the traffic between N1 and N2.

It is worth noting that when a node acting as TLS client must establish several
TLS connections with different nodes acting as TLS servers, the controller can
send multiple TLS client configurations in the same edit-config message to the
same node. This may happen, for example, in a mesh scenario that involves n
nodes, where N1, N2,...,Nn must establish a full TLS mesh. In this case, the
Security Controller would send the required i− 1 TLS client configurations to Ni
in a single edit-config message. If the configuration was successfully applied, Ni
would be able to start TLS handshakes respectively with the rest of the nodes
(which were previously configured and acting as TLS servers). Particularly, the
client configurations of the nodes for a full mesh of n nodes would be as follows:

– N2: {n2-client-conf(N1)}
– N3: {n3-client-conf(N1,N2)}
– Nn: {nn-client-conf(N1,N2,..., Nn− 1)}

Where ni-client-conf(N1,...,Ni− 1) represents the TLS client configuration for
Ni to connect to servers in N1, N2 to Ni− 1.

Finally, it is important to note that though Figure 2 is used for describing the
process to configure two nodes, the same exchange is performed at NETCONF
level to update or remove a configuration. Indeed, to set up new configurations in
two nodes the Security Controller sends edit-config NETCONF messages with the
operation merge. If replacement of an existing inter-node connection is required,
the Security Controller has to send a new edit-config NETCONF message with the
replace operation and including the updated configuration to the nodes involved.
First, the controller has to update the node acting as TLS server. Then, this node
will shut down the established connection, apply the new configuration and wait
for the client node to establish the new connection. Then, the controller has to
update the configuration of the TLS client node with another edit-config with the
replace operation. The client applies the new configuration (it was shut down by
the server) and starts a new TLS connection with this configuration.

In case of needing to remove nodes, something similar happens. If the Security
Controller wants to evict one of the nodes from the mesh or the star topology,
it must send an edit-config message with the delete operation, and information
pointing out the configuration that wants to be removed in the node acting as
TLS server. The node then deletes the configuration and shuts down the TLS
connection with the node acting as TLS client. Then, the Security Controller may
now send the corresponding delete operation to the node acting as TLS client.

Therefore, adding, updating and removing configurations in two nodes involve
the same number of exchanges. That is, they all involve the same number of
edit-config NETCONF messages. The only substantial change is the information
carried in these messages. The create operation includes a complete configuration
to establish a TLS channel. The replace operation only carries those parameters
that want to be updated and the delete operation carries the identifier of the
particular configuration to be removed.



A framework for dynamic configuration of TLS connections based on standards 11

5 Modelling of TLS client and server configuration

This section describes the YANG data model designed to configure a TLS connec-
tion between two nodes, one acting as TLS client and the other as TLS server.

5.1 Relevant parameters

After analyzing the TLS standard specification [34] and some of the current widely
used open source implementations, we have identified four different groups of con-
figuration parameters essential for the creation of secure TLS connections. These
are the following:

– Connection data. Group of parameters containing data for the transport layer
to initiate the TLS connection. It includes:

– Server-port : listening TCP port for the reception of the TLS connection.
It is necessary for both TLS client and server configurations. In the server
configuration, this piece of information is used for binding the TLS service,
whereas it indicates to the TLS client the server port where to establish
the TLS connection.

– Server-address: IP address of the TLS server. Only necessary for TLS client
configurations.

– Client/Server Identity. It contains the information required by a peer to au-
thenticate against the remote peer during the establishment of the TLS session.
For example, when configuring the TLS client, this information refers to the
identity of the client.

– Auth-algorithm: Authentication method, RSA or PSK.
– PSK value: Shared key in case PSK authentication method is used.
– Private-key : its interpretation depends on the Auth-algorithm. If RSA is

used, it would be RSAPrivateKey.
– Public-key : its meaning is also determined by the Auth-algorithm. If RSA,

it would be RSAPublicKey. It is optional if certificate is used.
– Certificates: X.509 certificate that contains the identity and the Public-key

associated with the Private-key.

– Client/Server Authentication. This group of parameters contains information
required to authenticate the remote peer in the TLS connection:

– ca-certs: set of trusted CA certificates.
– client/server-certs: when configuring a TLS server, it contains the set of

trusted client certificates. Conversely, the TLS client configuration contains
the set of trusted server certificates.

– Handshake Parameters. Group of parameters for customizing different features
of TLS communication:

– TLS version: version that the server prefers, for example tls1.2 or tls1.3.
In the context of this paper, we use tls1.3.

– Cipher-Suites: cryptographic suites acceptable and supported by the server.
They include key exchange, encryption and integrity algorithms.

– KeepAlives: time configuration for detecting peer connection alive. For ex-
ample, time to wait for a connection before considering it is down and the
number of attempts.



12 Javier Pastor-Galindo* et al.

Table 1 shows a configuration example for a TLS client and server, considering
the security parameters previously described.

Server configuration Client configuration

Connection
data

Server-port = 666
Server-address = 10.0.0.2
Server-port = 666

Server/Client
Identity

Auth-algorithm = rsa
Private-key = N1 private key
Certificates = N1 X.509 certificate

Auth-algorithm = rsa
Private-key = N2 private key
Certificates = N2 X.509 certificate

Client/Server
Authentication

ca-certs = X.509 CA certificate
client-certs = null

ca-certs = X.509 CA Certificate
server-certs = null

Handshake
Parameters

TLS version = tls1.3
Cipher-Suites =
ecdhe-rsa-with-aes-256-
gcm-sha384
KeepAlive-Max/Attempts: 30/3

TLS version = tls1.3
Cipher-Suites =
ecdhe-rsa-with-aes-256-
gcm-sha384
KeepAlive-Max/Attempts: 30/3

Table 1 Example TLS configuration parameters

5.2 YANG data model

Since NETCONF is used to implement the communication interface (i.e., south-
bound) between the security controller and the nodes, and NETCONF transports
data in XML format, we need to define some template representing the possible
data format.

In order to represent the TLS configuration parameters described in Sec-
tion 5.1, we have defined two different YANG modules: one for the TLS server
configuration and the other for the TLS client configuration. These models play
the role of TLS applications that make use of the YANG groupings for TLS defined
in [41], which, at the time of writing, is being standardized by the IETF. In fact,
this draft aims to provide the YANG elements (containers, types, etc.) to services
willing to automatize the establishment of TLS connections.

Taking as reference this model, we have developed the new ones compliant with
the requirements of our framework (Figure 3). The additions can be summarized
as follows:

– Regarding the client module, we define a list of TLS client connections (not a
single one). For each connection, the required information to connect with the
TLS server is specified (server-address and server-port). We have also added
the element (auto-start) to indicate whether the TLS connection must start
immediately after applying the configuration. Furthermore, we augment the
tls-client-grouping defined in [41] to support pre-shared key (PSK) or RSA
authentication and X.509 certificates for trusted entities.

– Regarding the server module, we have included the information about the TLS
server’s listening port in the node. We also need to augment the YANG model
to provide PSK and RSA authentication support. Besides, it allows the client
authentication by client identity by means of the cert-to-name element.



A framework for dynamic configuration of TLS connections based on standards 13

Fig. 3 TLS client and server application models

It is worth noting that the definition of required elements such as TLS ver-
sion, cipher-suites, keep-alive information or locally stored key material is already
provided by the groupings provided by the models ietf-tls-client and ietf-tls-server
in [41].

In order to illustrate the use of the model defined in this work, Figure 4 shows
an example of a TLS client configuration including information about two con-
nections. Connection 100 is based on RSA and includes information about client
public and private key, TLS versions, ciphersuite and keep-alive. Alternatively,
connection 101 is based on PSK.

Finally, it is important to note that these modules have to be loaded in both
the controller and nodes to enable a common language for interpreting the config-
urations. YANG models play a key role, not only because they set the format of
message content, but they also allow the nodes to validate the settings instantiated
by the Security Controller.



14 Javier Pastor-Galindo* et al.

Fig. 4 TLS client example configuration

6 Implementation and experimental results

In order to test the validity of this proposal, we have implemented a proof-of-
concept scenario to extract experimental results of the performance of the frame-
work. The source code of the scenario, implementation of the tests, network traces,
and experimental results are publicly available1.

6.1 Deployed scenario

As shown in Figure 5, the SDN scenario deployed consists of N nodes and a single
Security Controller (SC). Only a physical equipment has been necessary for the
proof-of-concept because the topology is virtually deployed with Docker2. The
server features 2 Intel Xeon E5-2630 v4 CPUs (a total of 20 cores at 2.2 GHz) and

1 https://github.com/javier-pg/sysrepo-cfgssl
2 https://www.docker.com/



A framework for dynamic configuration of TLS connections based on standards 15

80 GB of DDR4 memory at 2400 MHz. In relation with the link capacity, which
is based on RAM speed, it supports 11.5 Gbps. The elements considered in the
solution are presented below:

Fig. 5 Deployed virtual SDN scenario

– SC: It is the container deploying the security controller, whose functionality
is implemented in Python. It manages NETCONF sessions with the nodes by
sending TLS configurations according to the YANG model. Particularly, the
NETCONF client is implemented with ncclient3. We have also implemented a
simple registration process for the nodes to merely notify they are ready to re-
ceive the configuration at a specific network address and start the experiments.
This is REST service implemented with Flask4.

– Ni: It is a container implementing a node. With Docker, we can automatically
scale this container to n replicas. The node will register in the SC with a REST
message to trigger the NETCONF session for the southbound communication.
Once it is contacted by the SC, and depending on the configuration received,
it will launch a TLS server or establish TLS connections as a client.
The NETCONF server functionality is implemented with Netopeer5, which
allows loading our proposed YANG models and scheduling callbacks on the
arrival of new configurations. When the node receives a server configuration,
it runs a TLS server implemented with Apache 2.4 6. Alternatively, when a
client configuration is received, TLS connections are established making use of
OpenSSL 1.1.1 7.

3 https://pypi.org/project/ncclient/
4 https://flask.palletsprojects.com
5 https://github.com/CESNET/netopeer
6 https://httpd.apache.org
7 https://openssl.org



16 Javier Pastor-Galindo* et al.

– Management network: It is the virtual management network that intercon-
nects the SC container with the different Ni containers to exchange configura-
tion information by means of NETCONF messages.

– Data network: It is the virtual network which interconnects the Ni containers.
For this reason, each node container incorporates a second interface. It is the
network where the TLS associations are established.

6.2 Implemented use cases

From the scenario explained above, we have defined three use cases in which we
make use of the SC to configure TLS connections between the nodes. They rep-
resent typical uses cases similar to those discussed in Section 2 and permit us to
evaluate different scenario workloads. Particularly, we consider these use cases to
be tasks to be performed by the SC.

– Task 1: To form a mesh of n nodes. In this task, the SC is committed to
configure a mesh of n nodes from scratch, an application scenario that we can
find in mesh networks composed by microservices and protected using TLS,
like Istio. This task has been implemented in the SC in two parts: firstly, the
SC sends the specific TLS server configuration to the n nodes simultaneously
so they are ready to process the TLS handshake that will start afterward;
secondly, once the SC has configured the nodes as TLS servers, it sends the
TLS client configurations. More specifically, the configurations sent to node Ni
includes the Ni − 1 TLS client configurations to connect to the TLS servers
from node N1 to Ni− 1.

(a) Server configuration (b) Client configuration

Fig. 6 Task 1: To form a mesh of N nodes

Figure 6 exemplifies this task for n=3. Firstly, the SC configures simultaneously
N1, N2 and N3 as TLS servers (steps 1 and 2 in Fig. 6a), so they become
ready to process the TLS handshake with the rest of nodes. Once the SC gets
the confirmation that nodes are configured as TLS servers, the SC proceeds



A framework for dynamic configuration of TLS connections based on standards 17

to configure, in parallel, N1, N2 and N3 with the corresponding TLS client
configuration (steps 3 to 5 in Fig. 6b). In particular, N2 receives the TLS
configuration to start a TLS handshake with N1, and N3 is configured to start
the TLS connection with N1 and N2.

– Task 2: To add a new node to an existing mesh. In this task, a new
node Nn is incorporated to an existing mesh of size n-1. This case covers, for
example, the case where a new replica needs to be included in an existing
mesh of microservices for scalability purposes. Firstly, the node Nn must be
configured as TLS server so that it is prepared in case another node joins the
mesh later. Secondly, the SC sends the configuration as TLS client so that Nn
can start the TLS handshake with the n-1 nodes in the existing mesh.

(a) Server configuration (b) Client configuration

Fig. 7 Task 2: To add a new node to an existing mesh

Figure 7 shows an example with n=3. N1 and N2 already form a simple mesh
and N3 should establish a TLS connection with both nodes to complete a mesh
of size n=3. Firstly, the SC configures the N3 as TLS server (steps 1 and 2 in
Fig. 7a). Once the N3 is configured as a server, the SC configures N3 with the
TLS client configurations (steps 3 to 5 in Fig. 7b) to establish TLS connections
with N1 and N2.

– Task 3: To form a star topology of n nodes. In this task, one of the Ni
nodes (referred as central node) acts as TLS server and the rest of n-1 nodes as
TLS clients, like in some SD-WAN scenarios. This task has been implemented
by the SC in two parts: firstly, it configures the central node as TLS server
and secondly, it configures the rest of nodes as TLS clients so they can connect
with the central node.



18 Javier Pastor-Galindo* et al.

(a) Server configuration (b) Client configuration

Fig. 8 Task 3: To form a star topology of N nodes

Figure 8 shows an example with n=3. N1 is selected as TLS server (central
node), and N2 and N3 act as TLS clients so that they can both establish a
TLS connection with the central node. Firstly, the SC configures N1 as TLS
server (steps 1 and 2 in Fig. 8a). Then, the SC configures N2 and N3 in parallel
with the TLS client configuration (steps 3 to 5 in Fig. 8b) to establish TLS
connections with N1.

6.3 Testbeds and experimental results

We have conducted three types of experiments to evaluate the system for the
previously discussed tasks. For each one, we incrementally vary the number of
nodes involved, simulating from light to more stressful situations for the SC. When
configuring a TLS server, the SC built the payload (XML) containing the server-
port, the auto-start activated, a RSA-2048 server certificate as identity, a trusted
CA certificate for client authentication, two tls-versions supported, and two cipher-
suites suggested. In the case of the TLS client configuration, the SC included a list
of needed TLS connections that specified, in each entry, the server-port, the server-
address, the auto-start flag activated, a RSA-2048 client certificate as identity, a
trusted CA certificate for server authentication, two tls-versions supported, and
two cipher-suites suggested.

The ultimate goal of these experiments is to measure the service time of the
controller, that is, how long it takes for the SC to configure the TLS-based secu-
rity of the network, depending on the total number of nodes (n). In particular, the
service time to configure a single node comprises from the first outgoing message
sent by the SC to the port 830 of the node (NETCONF session establishment),
to the last message received in the controller from that port (end of NETCONF
session). Therefore, the interval includes not only configuration operations, but
also the establishment and termination of the SSH session being used by NET-
CONF. When configuring a network of nodes, the service time covers from the
first NETCONF message sent to the first node to the last message received from
the last node. Note that the timestamps are always obtained within the SC.



A framework for dynamic configuration of TLS connections based on standards 19

– Experimental results for Task 1. In the first type of experiments, we have
measured the service time of the SC to configure TLS in mesh networks of
different sizes (that is, the time elapsed between step 1 and step 5 of Figure 6).
Particularly, for each size we run 20 executions, from n = 5 to n = 80 with
steps of 5 nodes, to observe the behavior and scalability of the system as
the size increases. Figure 9 shows the average time required by the SC to
complete the configuration (Y-axis) in seconds of a mesh of n nodes (X-axis).
For example, the SC can agilely configure TLS-based mesh networks of 15,
45, and 80 nodes in approximately 1, 4, and 11 seconds, respectively. In this
sense, although the southbound communication with nodes is mainly executed
in parallel (we actually employ a pool of threads), the service time is neither
uniform nor linear. Therefore, we infer from the quadratic tendency that the
SC experiences an increasing and no-linear load as the size of the mesh rises
(e.g., nodes queuing on the thread pool, processing of parallel connections, and
congestion of the control network).

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of nodes

0

2

4

6

8

10

12

Se
rv

ic
e 

ti
me

 (
se

co
nd

s)

Mesh network

Fig. 9 Service time required by the SC to configure a mesh network of n nodes

– Experimental results for Task 2. In this case, we have calculated the service
time required by the SC to resize a mesh network by including a new node.
Concretely, we have run 20 tests in which the SC scales a mesh network from
n = 1 to n = 80, configuring a new node as TLS server and client (following
the phases depicted in Figure 7). Figure 10 presents the average time (Y-
axis) the SC takes to configure the node Ni (X-axis) when a mesh of size
i− 1 is already established. As observed, N1 is particularly fast for being only
configured as TLS server (and not as client). The SC configures the rest of the
nodes employing approximately between 0.8 seconds and 1.4 seconds.
For example, it can dynamically enforce the security parameters for 44 TLS
connections (n=45) in just 1.2 seconds. This logarithmic tendency implies that
sending only one NETCONF message with multiple client configurations is a
good choice to amortize the cost of sending a NETCONF message through
a SSH connection and the impact of increasing the number of configurations
affects less than sending NETCONF messages over the network.



20 Javier Pastor-Galindo* et al.

In any case, as shown in Figure 7b, step 3, for a new node i, it is configured
by the SC with i− 1 client configurations, increasing this way the payload size
of the NETCONF message when i increases so that the time to complete the
configuration process.
It is worth mentioning that the fixed offset of 0.7 seconds in the Y-axis corre-
sponds to the latency of initiating the NETCONF SSH session, the NETCONF
operations to send the server configuration, and closing the NETCONF session.
In this sense, the variable factor in the service time of the nodes only resides on
the incremental size of the client configuration (and the fragmentation in more
TCP messages), which seems to have a proportionally low influence compared
to the rest of the operation.

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Node i

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Se
rv

ic
e 

ti
me

 (
se

co
nd

s)

Mesh resizing

Fig. 10 Service time required by the SC to configure Node i within a mesh of i− 1 nodes

– Experimental results for Task 3. Finally, we have evaluated the efficiency of
the proposed system to guarantee the security configuration of a star topology.
We have measured the time required by the SC to complete the configuration
of a central node as TLS server and the rest of nodes as TLS clients (as shown
in Figure 8), forming star topologies from size n = 5 to n = 80, with steps
of 5 nodes. The average times of 20 tests per star topology are presented in
Figure 11, revealing that the SC can configure TLS in star topologies of 25,
45, 60, and 80 nodes in approximately 2, 4, 6, and 9 seconds, respectively. The
quadratic function is similar to the one obtained for Task 1, sharing close service
times until n = 45 approximately. The reason of this tendency is that, from this
size onward, the load of the system (mainly the SC) increases and impacts the
general performance due to the number of nodes establishing simultaneously
TLS connections.

The aforementioned service times allow us to evaluate the centralized TLS
configuration of nodes through the control plane, which is the main contribution
of the framework. However, for the sake of completeness, we have launched some
experiments to demonstrate that nodes in the data plane, once configured, are able
to establish TLS connections. We have deployed and configured star networks of



A framework for dynamic configuration of TLS connections based on standards 21

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of nodes

0

2

4

6

8

10

Se
rv

ic
e 

ti
me

 (
se

co
nd

s)

Star network

Fig. 11 Service time required by the SC to configure TLS in a star topology of n nodes

5 nodes and up to 80 nodes (with steps of 5 nodes) to measure the time required
to complete all the secure connections. All nodes are configured by the controller
with the auto-start flag activated, so they automatically start the TLS handshake
with the central node when the configuration is received.

Figure 12 shows the results of the experiments, exposing that the TLS protec-
tion of a star network takes approximately one second for 30 nodes, two seconds
for 50 nodes, and five seconds for 80 nodes. The TLS times cover the whole list
of handshakes in the data plane and are decoupled from the configuration process
of the control plane. The temporal data and traffic captures are publicly available
on the project repository.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of nodes

0

1

2

3

4

5

TL
S 
Ti
me
 (
se
co
nd
s)

Protection of star network

Fig. 12 TLS time required for n nodes to protect the data plane of star network



22 Javier Pastor-Galindo* et al.

6.4 Overview and discussion on experimental results

Once we have shown the behaviour of this proof-of-concept for different tasks, we
discuss some implications from the point of view of the application scenarios where
they might be applied.

In relation to mesh networks, if the goal is to be as fast as possible configuring
a mesh network of TLS connections, the best option would be to configure TLS
in a mesh network of “n” nodes simultaneously (Task 1), rather than gradually
configuring from the first node to the last node (Task 2). In that way, we take ad-
vantage of the parallel configuration of nodes. However, the no-linear performance
of the former approach may not be suitable for environments where resources are
limited. In that case, the resizing strategy would be more appropriate as only one
configuration procedure is running at a time.

That non-linear behaviour for Task 1 is also present when configuring a star
network in Task 3, provoking a similar tendency in both use cases, but with a lower
curve for Task 3. The core of the client configuration process is similar in both
cases, differing only in the payload. The client configuration for Task 1 includes
entries for i− 1 servers, whereas for Task 3 the SC only specifies the information
to secure the channel with one server.

Finally, it is worth noting that performance results would not vary substan-
tially if the link capacity were lower than 11.5Gbps (for example, 1Gbps). In the
most demanding situation, which is concurrently configuring a mesh network of 80
nodes, we have measured that the average overhead transmission of configuration
messages is 4.861 Mb/s, with a peak of 20Mb/s. Therefore, the maximum overhead
is two orders of magnitude lower than the link capacity.

7 Security considerations

In general, different security aspects in SDN environments have been widely ana-
lyzed in the literature, such as [19], [20], or [1]. Not in vain, in the SDN framework,
the controller manages node configurations, which can include cryptographic mate-
rial (as happens in our framework) and other important configuration parameters
that can affect the operation of the nodes. Therefore it is a key entity in the in-
frastructure. In this section, we discuss different security aspects related to our
proposal, beginning with the threat model considered to study the security in the
proposed framework.

7.1 Threat model

In this context, we assume that an attacker is potentially capable of carrying out
different types of attacks over the communication path between the Security Con-
troller and the nodes, if no security measurements are put in place. This includes
eavesdropping, traffic analysis, spoofing, insertion, modification, deletion, delay,
replay or impersonate any of the entities. This means that the attacker can read
messages on the network and remove, change, or inject forged messages. However,
it is not able to break cryptographic primitives and has not been able to compro-



A framework for dynamic configuration of TLS connections based on standards 23

mise the entities involved (controller and nodes). Nevertheless, we do explore the
consequences and the impact in case the controller or nodes are compromised.

7.2 Protecting communication between controller and the nodes

To avoid an attacker of this nature to succeed, it is required to enforce strong access
control mechanisms (i.e. authentication of the entities), ensure availability and to
establish authenticated, and well-protected communication channels with integrity
and confidentiality between the controller and nodes (southbound interface), and
application services (northbound interface) [43].

In particular, a security association must be established between the Security
Controller and each node in order to protect the configuration exchanged between
these entities. The proposed framework makes use of NETCONF as southbound
protocol. NETCONF defines, as mandatory, the usage of a secure transport proto-
col like SSH (by default) or TLS, which are considered secure to provide confiden-
tiality and integrity, avoiding replay and man-in-the middle attacks with mutual
authentication.

7.3 Key material distribution

In the proposed framework, the Security Controller may send TLS cryptographic
material (public/private keys, certificates, PSK, etc.) for the establishment of the
TLS channels between the nodes. We provide some requirements in order to avoid
or reduce the possibility of an attacker to access this key material, namely:

– The Security Controller must ensure the node configuration is compliant with
TLS 1.3 security considerations [34].

– The node must not allow the reading of private cryptographic material once it
has been applied by the Security Controller (i.e., write-only operations).

– If PSK authentication is used in TLS between the nodes, the Security Con-
troller must generate randomly the PSK and remove it immediately just after
being distributed in order to reduce the impact if an attacker has been able to
compromise the Security Controller.

– If RSA keys are used, and the Security Controller generates both certificate
and private key, it must remove the associated private keys immediately after
distributing them to the nodes for the same reasons as above.

– The ciphersuite used for either SSH or TLS secure channel must generate
key material that allows protecting the information exchanged between the
Security Controller and the nodes, at least with the same security strength
that the distributed key material (e.g. if the Security Controller distributes
a 128-bit PSK, SSH or TLS must encrypt that information with, at least, a
128-bit symmetric key).

7.4 Security Controller as a single point of failure

As already mentioned, the considered framework has a core entity which is the
Security Controller. If the Security Controller is not operative it may affect the



24 Javier Pastor-Galindo* et al.

node operation. In general, any SDN-based network has to deal with this type of
problem [37]. In this sense, a solution that allows replicating the SDN controller
case of a failover is typical and valid for our case [31].

Nevertheless, it is worth describing the impact in case nodes cannot access the
Security Controller. In fact, this might happen if the attacker is able to provoke a
denial-of-service attack over the Security Controller. Firstly, if a node cannot access
the Security Controller, it cannot be configured. Therefore, the node cannot be
considered available to establish any TLS channel with other nodes. If the node
was however configured, the framework is more resilience because a node ships a
TLS implementation that can be used to maintain the existing TLS channels.

7.5 Other considerations

When a node needs to be deployed, it must be pre-provisioned with Security
Controller’s information (e.g. Security Controller’s certificate and IP address).
Moreover, the Security Controller’s must be provisioned with the node’s infor-
mation (e.g. node certificate and/or CA certificate and IP address). After this
pre-provision process, they can both establish the SSH or TLS secure channel
demanded by NETCONF.

Nevertheless, the specific mechanism that allows deploying a node in a secure
fashion under the control of the Security Controller is out of scope of this paper.
The reason is that this initial process must happen for any SDN-based application
before the Security Controller can operate over a node. This is our case, since
the SDN-based TLS management we describe in this paper is the application. As
an example, something similar happens with OpenFlow networks [27] , where the
OFCONFIG protocol [26] is used for configuring switch and controller certificates
to establish TLS between them. This is a requirement for OpenFlow operation,
which is the protocol used between the controller and the switches (southbound
protocol).

In any case, it is at least necessary to establish some minimum but strong
security requirements for this pre-provision of information. In particular, the pre-
provision process must securely deliver the required information by preventing an
attacker from modifying or gaining access to the pre-provisioned information. For
example, if the attacker is able to change Security Controller’s certificate and/or
IP address, then the node would connect to a rogue Security Controller).

8 Conclusions and future work

The power of Software Defined Networking brings new opportunities to research
and develop innovative solutions. That is the reason why it will be present in future
cloud environments, virtualized services and 5G networks. Apart from improving
the management of the network, it has also a direct application in network secu-
rity, and particularly in the creation and management of secure communication
channels.

The paper has described a framework for the management of TLS connections
in SDN based on existing standards. In particular, the solution is a flexible, dy-
namic and agile scheme for configuring network devices from the security controller



A framework for dynamic configuration of TLS connections based on standards 25

using the NETCONF protocol. Using as reference ongoing standardization work,
YANG models have been adapted to our work in order to allow the negotiation of
security parameters and the establishment of TLS connections in the data plane.

Associated with the theoretical proposal, we have developed a proof-of-concept
implementation to deploy a testbed able to run the different tasks associated with
current application scenarios, such as mesh network in datacenter, virtualization
environments or SD-WAN scenarios. It is a virtualized prototype with a security
controller and an incremental number of network nodes. In addition, some ex-
periments to measure the system performance are also described for each one of
the tasks proposed: mesh, node addition and star topologies. Those experiments
provide promising results and could help administrator in order to design how
TLS channels could be established depending on the required topology, network
resources, number of nodes, etc.

Nevertheless, the presented solution is a first approach to address the man-
agement of TLS connections. As a statement of direction, we could highlight the
inclusion of more mature controllers (with technologies such as OpenDayLight or
ONOS), and the implementation of notifications and state date in the data plane.
Another aspect deserving more research is the communication between controllers
(inter-SC communication) in order to implement distributed solutions and sup-
port the establishment of TLS connections between devices belonging to different
administrative domains.

Declarations

Funding

This study was partially funded by grant from the Spanish Government with code
FPU18/00304.

Conflicts of interest

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in
this paper.

Availability of code, material, and data

The full project is available at https://github.com/javier-pg/sysrepo-cfgssl.

References

1. Ahmad, S., Mir, A.H.: Scalability, Consistency, Reliability and Security in SDN Con-
trollers: A Survey of Diverse SDN Controllers. Journal of Network and Systems Manage-
ment 29(1), 9 (2020). DOI 10.1007/s10922-020-09575-4. URL https://doi.org/10.1007/
s10922-020-09575-4



26 Javier Pastor-Galindo* et al.

2. Amazon Web Services Cloud. Deploying an opportunistic IPsec mesh on the
AWS Cloud. https://aws.amazon.com/about-aws/whats-new/2019/05/new-quick-start-
deploys-opportunistic-ipsec-mesh-on-aws/?nc1=h ls (Accessed 2020-12-02)

3. AWS App Mesh. Transport layer Security (TLS). https://aws.amazon.com/about-
aws/whats-new/2019/05/new-quick-start-deploys-opportunistic-ipsec-mesh-on-
aws/?nc1=h ls (Accessed 2020-12-02)

4. Badra, M.: NETCONF over Transport Layer Security (TLS). RFC 5539 (2009). DOI
10.17487/RFC5539. URL https://rfc-editor.org/rfc/rfc5539.txt

5. Bellavista, P., Dolci, A., Giannelli, C., Padalino Montenero, D.D.: SDN-Based Traf-
fic Management Middleware for Spontaneous WMNs. Journal of Network and Sys-
tems Management 28(4), 1575–1609 (2020). DOI 10.1007/s10922-020-09551-y. URL
https://doi.org/10.1007/s10922-020-09551-y

6. Björklund, M.: YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF). RFC 6020 (2010). DOI 10.17487/RFC6020. URL https:
//rfc-editor.org/rfc/rfc6020.txt

7. Network Services Orchestrator VPN Solution Overview. https://www.cisco.com/c/en/us/
products/collateral/cloud-systems-management/network-services-orchestrator/
solution-overview-c22-734917.html (Accessed 2020-12-02)

8. da Costa Cordeiro, W.L., Marques, J.A., Gaspary, L.P.: Data plane programmability be-
yond openflow: Opportunities and challenges for network and service operations and man-
agement. Journal of Network and Systems Management 25(4), 784–818 (2017). DOI
10.1007/s10922-017-9423-2. URL https://doi.org/10.1007/s10922-017-9423-2

9. Cullen, M.: Using the NETCONF Protocol over Secure Shell (SSH). RFC 6242 (2011).
DOI 10.17487/RFC6242. URL https://rfc-editor.org/rfc/rfc6242.txt

10. Enns, R., Björklund, M., Bierman, A., Schönwälder, J.: Network Configuration Protocol
(NETCONF). RFC 6241 (2011). DOI 10.17487/RFC6241. URL https://rfc-editor.org/
rfc/rfc6241.txt

11. Fedor, M., Schoffstall, M.L., Davin, J.R., Case, D.J.D.: Simple Network Management
Protocol (SNMP). RFC 1157 (1990). DOI 10.17487/RFC1157. URL https://rfc-
editor.org/rfc/rfc1157.txt

12. Google Anthos Service Mesh. https://cloud.google.com/anthos/service-mesh5 (Ac-
cessed 2020-12-02)

13. Google Transparency Report. https://transparencyreport.google.com/https/overview
(Accessed 2020-12-05)

14. Hantouti, H., Benamar, N., Taleb, T.: Service Function Chaining in 5G Beyond Networks:
Challenges and Open Research Issues. IEEE Network 34(4), 320–327 (2020). DOI 10.1109/
MNET.001.1900554

15. Helali, L., Omri, M.N.: A survey of data center consolidation in cloud comput-
ing systems. Computer Science Review 39, 100366 (2021). DOI https://doi.org/
10.1016/j.cosrev.2021.100366. URL https://www.sciencedirect.com/science/article/
pii/S157401372100006X

16. IBM Cloud Private. Encrypting cluster data network traffic with IPsec. https:
//www.ibm.com/support/knowledgecenter/en/SSBS6K 3.1.0/installing/ipsec mesh.html
(Accessed 2020-12-02)

17. Interface to Network Security Functions (I2NSF) Working Group. https://
datatracker.ietf.org/wg/i2nsf/about/ (Accessed 2020-12-09)

18. Istio 1.8. Security architecture. https://istio.io/latest/docs/concepts/security/ (Ac-
cessed 2020-12-02)

19. (ITU-T), I.T.U.: Framework of software-defined networking (itu-t y.3300) (2014)
20. Kreutz, D., Ramos, F.M., Verissimo, P.: Towards Secure and Dependable Software-

Defined Networks. In: Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, HotSDN ’13, p. 55–60. Association for Com-
puting Machinery, New York, NY, USA (2013). DOI 10.1145/2491185.2491199. URL
https://doi.org/10.1145/2491185.2491199

21. Kreutz, D., Ramos, F.M.V., Veŕıssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.:
Software-Defined Networking: A Comprehensive Survey. Proceedings of the IEEE 103(1),
14–76 (2015). DOI 10.1109/JPROC.2014.2371999

22. Linkerd 2.x. Securing your service. https://linkerd.io/2/tasks/securing-your-
service/ (Accessed 2020-12-02)

23. Lopez-Millan, G., Marin-Lopez, R., Pereniguez-Garcia, F.: Towards a standard SDN-based
IPsec management framework. Computer Standards & Interfaces 66, 103357 (2019).



A framework for dynamic configuration of TLS connections based on standards 27

DOI https://doi.org/10.1016/j.csi.2019.103357. URL http://www.sciencedirect.com/
science/article/pii/S0920548918303052

24. Marin-Lopez, R., Lopez-Millan, G., Pereniguez-Garcia, F.: A YANG Data Model for IPsec
Flow Protection Based on Software-Defined Networking (SDN). RFC 9061 (2021). DOI
10.17487/RFC9061. URL https://rfc-editor.org/rfc/rfc9061.txt

25. Michel, O., Keller, E.: Sdn in wide-area networks: A survey. In: 2017 Fourth In-
ternational Conference on Software Defined Systems (SDS), pp. 37–42 (2017). DOI
10.1109/SDS.2017.7939138

26. Open Networking Foundation: OF-CONFIG Version 1.2 (2014)
27. Open Networking Foundation: OpenFlow Switch Specification Version 1.5.1 (2015)
28. RedHat OpenShift Service Mesh. https://docs.openshift.com/container-platform/4.6/

service mesh/v2x/ossm-security.html (Accessed 2020-12-02)
29. OpenSSL. Cryptography and SSL/TLS Toolkit. https://www.openssl.org/ (Accessed

2020-12-03)
30. OpenVPN. https://openvpn.net/ (Accessed 2020-12-03)
31. Pashkov, V., Shalimov, A., Smeliansky, R.: Controller failover for SDN enterprise net-

works. In: 2014 International Science and Technology Conference (Modern Networking
Technologies) (MoNeTeC), pp. 1–6 (2014). DOI 10.1109/MoNeTeC.2014.6995594

32. Ranjbar, A., Komu, M., Salmela, P., Aura, T.: An SDN-based approach to enhance
the end-to-end security: SSL/TLS case study. In: NOMS 2016 - 2016 IEEE/IFIP
Network Operations and Management Symposium, pp. 281–288 (2016). DOI 10.1109/
NOMS.2016.7502823

33. RedHat OpenShift. Encrypting traffic between nodes with IPsec. https://
docs.openshift.com/container-platform/3.11/admin guide/ipsec.html (Accessed 2020-
12-02)

34. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (2018).
DOI 10.17487/RFC8446. URL https://rfc-editor.org/rfc/rfc8446.txt

35. Singh, S., Jha, R.: A Survey on Software Defined Networking: Architecture for Next Gen-
eration Network. Journal of Network and Systems Management 25(2), 321–374 (2017).
DOI 10.1007/s10922-016-9393-9. URL http://doi.org/10.1007/s10922-016-9393-9

36. Sousa, E., Cunha, V.A., de Carvalho, M.B., Corujo, D., Barraca, J.P., Gomes, D.,
Schaeffer-Filho, A.E., dos Santos, C.R.P., Granville, L.Z., Aguiar, R.L.: Orchestrating an
SFC-enabled SSL/TLS traffic processing architecture using MANO. In: 2018 IEEE Con-
ference on Network Function Virtualization and Software Defined Networks (NFV-SDN),
pp. 1–7 (2018). DOI 10.1109/NFV-SDN.2018.8725675

37. Suartana, I.M., Anggraini, M.A.N., Pramudita, A.Z.: High Availability in Software-Defined
Networking using Cluster Controller: A Simulation Approach. In: 2020 Third International
Conference on Vocational Education and Electrical Engineering (ICVEE), pp. 1–5 (2020).
DOI 10.1109/ICVEE50212.2020.9243173

38. Vajaranta, M., Kannisto, J., Harju, J.: Implementation Experiences and Design Challenges
for Resilient SDN Based Secure WAN Overlays. In: 2016 11th Asia Joint Conference on
Information Security (AsiaJCIS), pp. 17–23 (2016). DOI 10.1109/AsiaJCIS.2016.25

39. Vajaranta, M., Kannisto, J., Harju, J.: IPsec and IKE as Functions in SDN Controlled
Network. In: Z. Yan, R. Molva, W. Mazurczyk, R. Kantola (eds.) Network and System
Security, pp. 521–530. Springer International Publishing, Cham (2017)

40. (W3C), W.W.W.C.: Extensible Markup Language (XML). www.w3.org/TR/xml/ (2013)
41. Watsen, K.: YANG Groupings for TLS Clients and TLS Servers. Internet-Draft draft-

ietf-netconf-tls-client-server-22, Internet Engineering Task Force (2020). URL https://
datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-client-server-22. Work in
Progress

42. YANG Catalog. https://yangcatalog.org/ (Accessed 2021-04-05)
43. Yin, H., Xie, H., Tsou, T., Lopez, D.R., Aranda, P.A., Sidi, R.: Interface to Network

Security Functions (I2NSF): Problem Statement and Use Cases. RFC 8192 (2017). DOI
10.17487/RFC8192. URL https://rfc-editor.org/rfc/rfc8192.txt


