
Soft Computing manuscript No.
(will be inserted by the editor)

A fuzzy k-nearest neighbor classifier to deal with imperfect data

Jose M. Cadenas · M. Carmen Garrido · Raquel
Martı́nez · Enrique Muñoz · Piero P. Bonissone

Abstract The k-nearest neighbors method (kNN) is a non-parametric, instance-based method used for
regression and classification. To classify a new instance, the kNN method computes its “k” nearest neigh-
bors and generates a class value from them. Usually, this method requires that the information available in
the datasets be precise and accurate, except for the existence of missing values. However, data imperfec-
tion is inevitable when dealing with real-world scenarios. In this paper, we present the kNNimp classifier,
a k-nearest neighbors method to perform classification from datasets with imperfect value. The impor-
tance of each neighbor in the output decision is based on relative distance and its degree of imperfection.
Furthermore, by using external parameters, the classifier enables us to define the maximum allowed im-
perfection, and to decide if the final output could be derived solely from the greatest weight class (the best
class) or from the best class and a weighted combination of the closest classes to the best one.

To test the proposed method, we performed several experiments with both synthetic and real-world
datasets with imperfect data. The results, validated through statistical tests, show that the kNNimp classi-
fier is robust when working with imperfect data and maintains a good performance when compared with
other methods in the literature, applied to datasets with or without imperfection.

Keywords k-nearest neighbors · Classification · Imperfect Data · Distance/Dissimilarity Measures ·
Combination Methods

1 Introduction

Data mining is a main phase of Intelligent Data Analysis (IDA). This phase has as fundamental aim to
find comprehensible models from data. It can be developed using several tasks being one of the most
challenging tasks, the classification task [12,19,21]. There are many techniques developed to tackle the
classification problems, however, most of them do not take into account the imperfection contained in

Jose M. Cadenas ·M. Carmen Garrido
Dept. of Information Engineering and Communication. University of Murcia. Murcia, Spain
E-mail: jcadenas@um.es

M.C. Garrido
E-mail: carmengarrido@um.es

Raquel Martı́nez
Dept. of Computer Engineering, Catholic University of San Antonio. Murcia, Spain
E-mail: rmartinez@ucam.edu

Enrique Muñoz
Dept. of Computer Science, Università degli Studi di Milano. Crema, Italy
E-mail: enrique.munoz@unimi.it

Piero P. Bonissone
Piero P. Bosissone Analytics (independent consultant), LLC. San Diego, CA, USA
E-mail: bonissone@gmail.com

2

data. This imperfection can appear for example due to errors during data obtaining or due to the high cost
to obtain precise information, between other factors.

When imperfection in the data is insignificant, it is usually removed, as it is widely accepted by
researchers that the amount of information that is lost when you delete it is very small. However, im-
perfection in the data is increasingly common and therefore deleting information could suppose the loss
of relevant information. Hence the different forms of imperfection inherent in the real world problems
need to be handled properly, in order to solve some practical problems without losing information [45,
47,48,58]. The imperfect data can be represented by fuzzy concepts, crisp subset, fuzzy subset, interval
concepts, etc.

One of the difficulties to deal with imperfect information problems is that existing techniques do
not manage imperfect information explicitly; therefore the idea is to propose new techniques or to adapt
existing techniques to be able to manage this kind of information without any transformation of the data
and avoiding losing relevant information. There are already some initiatives on this subject appearing in
different papers, which is going to be exposed in detail in Section 2.

In this paper, we propose to adapt a well-known technique, the fuzzy k-nearest neighbors classifier.
The classic fuzzy k-nearest neighbors technique requires datasets with precise and accurate information,
except for the existence of missing values and we propose a fuzzy k-nearest neighbors based classifier
denoted by kNNimp which deals with imperfect data. The classifier assigns a higher weight to those
neighbors with less imperfection and nearest.

This work is organized as follows: In Section 2, we analyze the state of the art in methods dealing
with imperfect information. In Section 3 the major elements that constitute the fuzzy k-nearest neighbor
classifier kNNimp is exposed. Section 4 describes our experimental framework, including datasets, setting
parameters, classification accuracy and statistical procedure. In Section 5, some experiments are carried
out to analyze the robustness and efficacy of the method proposed with datasets with/without imperfect
values. Finally, our conclusions are presented in Section 6.

2 Imperfect data sources in Data Mining

Since the introduction by Zadeh of Fuzzy Sets Theory (FST) in 1965 [63], there have been many areas in
which this theory has been applied, one of which is the area of Artificial Intelligence. More specifically,
many works have used this theory in the process of IDA, which is defined as the process of extracting
useful, comprehensible, hitherto unknown knowledge from huge amounts of data stored in a variety of
formats [61].

IDA process consists of a set of phases: data acquisition, preprocessing, data mining, evaluation-
interpretation and dissemination.

In the data acquisition, the most relevant sources of information are selected and converted to the
same format. The preprocessing is one of the most complex phases of the IDA and aims to transform the
original data sources in a dataset prepared for use by a specific technique in the next phase. This dataset
is named minable view. The more requirements a technique imposes on the types of values that it can
deal, the greater the effort to make at this stage is. Data mining is a phase that aims to find intelligent
models by applying a technique or specific algorithm to the dataset we have called minable view. In the
evaluation-interpretation phase, models obtained from the previous phase are evaluated and interpreted,
returning to previous phases if necessary. Finally, in the dissemination phase, the new knowledge is used.

In the data mining phase, FST has been applied at what we can consider two levels:

– Only at the level of generated models: Techniques that generate models described by fuzzy logic
elements which are more interpretable. So we can find elements of fuzzy logic in rule-based systems,
techniques based on k-nearest neighbors, decision trees, clustering and support vector machines.
In 1971 Zadeh proposed the design of rules IF-THEN using linguistic variables that can be provided
by a group of experts or obtained through data mining techniques. So, among others, in [5] a set of
fuzzy rules is obtained using a method based on genetic programming, in [20] a set of fuzzy rules is
obtained in unbalanced problems using a genetic selection process of rules, in [28] different weights
are assigned to a set of fuzzy rules using heuristic methods, in [43] An initial set of fuzzy rules is
constructed by clustering and then are optimized using a neuro-fuzzy learning algorithm.

3

Among the fuzzy versions of the k-nearest neighbors rule we can highlight works that assign fuzzy
memberships of each instance to each class, use fuzzy distance measures, use different ways of com-
bining the votes of neighbors, etc. A complete review of these methods is carried out in [15].
Fuzzy decision trees have also been designed as the proposed in [44] that obtains in each node to split,
the best fuzzy partition of the best attribute at that node and fuzzy ensembles such as the proposed in
[13] where a fuzzy decision tree ensemble is constructed from a non-fuzzy tree construction algorithm
that subsequently is transformed to fuzzy.
With the aim to construct data partitions that allow an instance belongs to more than one partition,
fuzzy clustering algorithms have been developed such as the fuzzy C-means proposed in [6]. Different
versions of this algorithm are found in [25] to extend it to nominal data, in [35] to deal with missing
values through intervals defined by the nearest neighbors or in [57] where it is used in order to design
an algorithm of hierarchical fuzzy clusters.
Also, fuzzy versions of support vector machines have been designed. So, in [37] a degree of mem-
bership to each class is assigned to each instance, allowing to each one to contribute differently in
the learning of the decision surface. In [27] a truncated polyhedral pyramidal membership function
is used to allow the classification of instances that make positive more than two decision functions in
problems with more than two classes.

– At minable view level: Techniques that besides incorporating FST elements, support input data de-
scribed through fuzzy logic. In this case, the techniques allow us that the available data are composed
of attributes described by values that are not as “perfect” as desirable. This generates the follow-
ing advantages:1) techniques can interpret the imprecision and uncertainty expressed in the data and
generate robust models to these types of information without transforming the true nature of them;
2) data preprocessing is simplified by not carrying out these transformations (substitutions, imputa-
tions, deleting data, ...); and 3) the minable view contains a greater number of instances because the
imprecise and uncertain data are not discarded.
In general, significant efforts are being carried out to incorporate the treatment of imprecise and
uncertain data into data mining techniques using the FST. Thus we can find works that incorporate
the treatment of fuzzy values. There are fuzzy decision trees based on a fuzzy partition of numerical
attributes of the problem. This partition is used in the test of nodes based on numerical attributes as in
[30,34]. Fuzzy partitions of numerical attributes are also used in the construction of fuzzy ensembles
to incorporate input fuzzy values. This approach is used in [31] where to select the test of each node,
the set of the best attributes for partitioning that node is used, in [7,9] where the classic ensemble
random forest is extended to a fuzzy random forest or in [39] where one fuzzy ensemble for each
class value of the problem is constructed. In [41] a fuzzy version of multilayer perceptron is presented
which performs the learning from fuzzy values. In [24] the treatment of fuzzy values is performed
incorporating the Demspter-Shafer Evidence Theory to a mixture model. In [46] a genetic classifier
based on fuzzy rules is obtained from data described with fuzzy values. In [49] and [50] Adaboost
and FURIA algorithms are extended in orden to obtain fuzzy rules from fuzzy values respectively. In
[51] an algorithm to obtain a set of fuzzy association rules from a fuzzy partition previously obtained
is proposed.
As particular cases of fuzzy values, some works deal with values expressed by intervals as in [7,9,24,
46,49–51,34].
On the other hand, the set of techniques that allow the existence of missing values is considerable. We
highlight only a few that allow the treatment of some other type of imperfect information as [7,9,24,
30,31] or as in [34], where missing values are only allowed in the classification phase.
Finally, there is a considerable set of techniques that have considered the possibility that an instance
has more than one associated class value (multi-valued class), but few extend this possibility to other
nominal attributes of a problem (multi-valued attributes). So, among the first we can find works as
[46] where class may be defined by a crisp set, or [62] where a fuzzy k-nearest neighbor method is
used where an instance can belong to more than one class with several degrees. In [38] we can find
a comparison of this kind of methods. Among the latter we can highlight [7,9] where any nominal
value can be expressed through crisp/fuzzy sets, [24] where nominal values are expressed by both
probability and possibility distributions using the the Demspter-Shafer Evidence Theory as framework

4

and [11] where a modification of the decision tree algorithm C4.5 is done to deal with multi-valued
attributes.

In this work we propose a technique based on the k-nearest neighbors rule to classify incorporating
the FST at minable view level, allowing that the input data contain fuzzy and interval values in numerical
attributes and values expressed by crisp/fuzzy sets in nominal attributes (multi-valued attributes), besides
allowing the existence of missing values in either types of attributes. The output provided by the classifier
is also expressed by a crisp/fuzzy set.

3 A fuzzy k-nearest neighbors classifier to cope imperfect data

3.1 Introduction

Considering the taxonomy introduced in [15], kNNimp classifier falls in the following cathegories:

– Fuzzy sets based method. kNNimp classifier represents imperfection in data using fuzzy sets.
– Dependent on the k value, because it uses k to calculate the neighbors used to classify.
– Use of distance. kNNimp classifier weights neighbors’ decisions using a fuzzy distance/dissimilarity

measure.
– Use of fuzzy/crisp weight, because it weights the decision depending on the degree of imperfection

of the samples.

3.2 Notation and types of imperfect values

Let us consider a set of instances E. Each instance x is characterized by a number of n attributes in
a vector (x1, x2, . . . , xn), where the n-th attribute represents the class. The domains of each attribute,
Ωx1 , Ωx2 , . . . , Ωxn−1 , can be numerical or nominal, while the domain of the class Ωxn can take the
values {ω1, ω2, . . . , ωI}.

kNNimp classifier represents numerical attributes as fuzzy sets with a trapezoidal fuzzy membership
function [4] µ(x) defined by a quadruple (a, b, c, d):

µ(x) =



0 x < a
x−a
b−a a ≤ x < b

1 b ≤ x < c
d−x
d−c c ≤ x < d

0 x ≥ d

In particular, the proposed strategy can deal with the following types of numerical attributes:

– Crisp values. This kind of attributes includes data with minimal or no imperfection. kNNimp classifier
represents the crisp value a as the quadruple (a, a, a, a).

– Interval values. Intervals analysis has been used to deal with uncertainty and imprecision in data [42].
In this case, a classical set substitutes the crisp value. However, the membership degree is binary.
kNNimp classifier models the interval [a, b] as the quadruple (a, a, b, b).

– Fuzzy values. Fuzzy sets are a common tool to represent both uncertainty and imprecision [8]. Com-
pared with intervals, fuzzy sets represent the concept of approximate numbers by assigning a mem-
bership degree µ ∈ [0, 1]. kNNimp classifier uses the trapezoidal fuzzy membership function defined
above to represent fuzzy sets.

– Missing values. This kind of data includes pieces of information that are unknown. kNNimp classifier
models missing data belonging to attribute xi using the quadruple (mini,mini,maxi,maxi), where
mini and maxi are, respectively, the minimum and maximum values of Ωxi included in the training
dataset.

5

kNNimp classifier models nominal attributes xi as fuzzy subsets {µ(h1)/h1, . . . , µ(hs)/hs}, where
hj is a domain value in Ωi and ∃hk ∈ Ωi : µ(hk) = 1. kNNimp classifier can manage the following types
of nominal attributes:

– Crisp values. kNNimp classifier represents the nominal crisp value hj as the fuzzy subset 1/hj .
– Crisp subset values. This kind of data considers more than a possible nominal value. They are repre-

sented as {1/h1, . . . , 1/hs}.
– Fuzzy subset values. This domain considers more than one nominal value with a membership value
µ ∈ [0, 1]. They are represented using the notation introduced above.

– Missing nominal values. This kind of unknown values are represented using a fuzzy subset that con-
tains all possible values with membership degree equals to 1.

3.3 The inference process of the kNNimp classifier

Algorithm 1 describes the process followed by kNNimp classifier to infer the class of a new instance z. In
the following sections we will introduce all the functions and parameters that determine the classification
process of kNNimp.

As Algorithm 1 shows, kNNimp classifier computes the setKIMPz that contains the k instances xj ∈
E which are nearest to z according to the measure dimp(xj, z). Then, for each instance xj ∈ KIMPz ,
two weights are calculated depending on its degree of imperfection (p(·)) and its distance to z (q(·)).
Furthermore, the overall degree of imperfection inKIMPz is measured, if it is too high, the classification
is not performed. To establish the maximum degree of imperfection, kNNimp uses the parameter UI . If
KIMPz passes the imperfection check, the functions AggreN and AggreF obtain the set of possible
weighted classes taking into account the k-nearest neighbors. The class with the highest score is chosen
as output, together with other classes whose score is similar to the highest. To assess if a class should be
included in the final output, kNNimp uses the threshold UD .

Algorithm 1: kNNimp classifier - k Nearest Neighbor from imperfect data

Input Dataset E, Instance to classify z, Value k; 1 ≤ k ≤ |E|, Values UD and UI (UD, UI ∈ [0, 1])

Let KIMPz be the set of the k-nearest instances of z according to dimp(·, ·)
Calculate imperfection weight (p(xj)) and distance weight (q(xj)) for all xj ∈ KIMPz

if degree of imperfection of KIMPz is smaller or equal than UI then
Aggregate the information of each neighbor in order to obtain possible class values for the instance

z using AggreN and AggreF functions

Calculate the set of output classes zn using UD
Output zn

else
Output Classification is not performed

end if

3.4 Contribution of neighbors to the classification and control parameters

In this section, the different elements that are part of the kNNimp classifier process (Algorithm 1) are
defined. The Section 3.4.1 defines the distance/dissimilarity measure used dimp(·, ·), the Section 3.4.2
defines the weights in the classification from different neighbors selected (q(·) and p(·)). Finally, the
kNNimp classifier incorporates two control parameters for decision-making, that are defined in the Sec-
tions 3.4.3 and 3.4.4. The first one allows us to make a decision about the permitted imperfection and the
second one on the output classes.

6

3.4.1 Distance/Dissimilarity measure

In order to calculate the nearest neighbors necessary for the classification, we need to define a measure,
which computes the distance between two instances and can work with/without imperfect data coming
from numerical and nominal attributes. Let us define the function dimp(x,x′), between two instances as:

dimp(x,x
′) =

√√√√√n−1∑
i=1

f(xi, x
′
i)
2

n− 1
with f(xi, x

′
i) =

{
f1(xi, x

′
i) if Ωxi is numerical

f2(xi, x
′
i) if Ωxi is nominal

dimp(x,x
′) is a heterogeneous function defined from different functions, f1(·, ·) and f2(·, ·), on different

kinds of attributes where f1(·, ·) and f2(·, ·) are normalized fuzzy distance or dissimilarity measures.
kNNimp classifier uses dimp(·, ·) to compute the set KIMPz that contains the k nearest neighbors of

a given instance z. Afterward, the information contained in KIMPz is exploited to produce the classifi-
cation of z. To do that, kNNimp classifier uses two different weights introduced below.

3.4.2 Assigning weights to the nearest neighbors

Weights based on distance.- kNNimp classifier considers that those neighbors in KIMPz that are further
from z should have less influence in the final decision. To reflect this fact, the proposed strategy introduces
the weight as:

q(x) = 1− dimp(x, z) with x ∈ KIMPz

Weights based on imperfection.- The instances in KIMPz can contain imperfect data, which has to be
considered during the classification of z. kNNimp classifier calculates a weight for each neighbor taking
into account a measure of its degree of imperfection. In this way, a neighbor that contains a high degree of
imperfection has less influence in the result than another one with a lower degree. We define this weight
as:

p(x) = 1− imp(x) with x ∈ KIMPz

and imp(·) : E → [0, 1] as:

imp(x) =

(
n∑
i=1

g(xi)

)
/n

where g(·) is a function defined for each attribute xi as g : Ωxi → [0, 1]. This function measures the
imperfection of the value in the attribute xi.

Some examples of g(·) measures that can serve us to measure the imperfection are the fuzzy entropy
functions or the power of fuzzy sets [14,17,33]1.

1 For example, the fuzzy entropy (Ent(·)) and the power of fuzzy sets (Pw(·)) defined by DeLuca and Termini [14] are the
following:

Ent(A) =
∑
a∈A

(µ(a)log(µA(a)) + (1− µA(a))log(1− µA(a)))

Pw(A) =
∑
a∈A

µA(a)

where A is a fuzzy set and in the case of continuous fuzzy sets, the sum is understood as an integral.

7

3.4.3 Controlling the tolerated imperfection degree

We can measure the average imperfection between the nearest neighbors xj ∈ KIMPz , defined as

imp(KIMPz) =

∑
xj∈KIMPz

imp(xj)

k , to decide if there is enough information to perform the classi-
fication. As we discussed above, the imperfection value imp(·) is used to weight the importance of xj

in the classification. Thus, if imp(KIMPz) is very high, we can indicate that kNNimp classifier cannot
carry out the classification. To offer this possibility, we have introduced the threshold 0 ≤ UI ≤ 1, which
limits imp(KIMPz). When UI = 0, kNNimp only performs the classification if all the neighbors only
contain crisp values. On the other hand, when UI = 1 kNNimp can perform the classification regardless
of the degree of imperfection of the nearest neighbors.

3.4.4 Controlling the similarity in the output classes

The kNNimp classifier exploits the definition of a similarity value between possible classes, defined as
sim(ωM , ωi) =

µ(ωM)−µ(ωi)
µ(ωM)

, to perform the classification of an instance. The minimum sim(ωM , ωi)

necessary to consider that the classes ωM and ωi are possible outputs is controlled by the threshold
0 ≤ UD ≤ 1. Thus, let us assume that ωc is the class having the highest membership degree µ(ωc) to
classify an instance. If there are other classes with very close membership degrees to µ(ωc), we could
return all these classes as possible classification of the instance. The role of UD threshold is to define how
close to ωc must be a class to be considered an output class. When UD = 0, the output class is generally a
set that contains a single class (the class with the highest membership degree), although the set can contain
more than one class if there is a tie between two or more classes that have the same highest membership
degree. Alternatively, if UD = t, kNNimp returns the class with the highest membership degree, and
those whose membership degree differ relatively from the highest membership degree at most by “t”.
For example, we do not want to decide between a class “a” with membership degree µ(a) = 0.52 and a
class “b” with membership degree µ(b) = 0.48 because they have very similar membership degrees. If
UD = 0.1 then 0.52−0.48

0.52 = 0.074 < 0.1 and therefore, the classifier returns both classes {a,b}. Therefore,
an output class value of kNNimp can be a crisp value or a crisp set.

3.5 Aggregation methods for classification

As we have commented, the aggregation methods that we define for kNNimp classifier are composed of
the two functions AggreN(·) and AggreF (·). These two functions provide high flexibility to kNNimp
classifier, allowing choose them according to the classification problem. In the following sections we
propose different possible AggreN(·) and AggreF (·) functions. At the end of this section, a clear and
simple example is included to show the decision of the different aggregation methods.

3.5.1 Functions to define the aggregation methods

• The AggreN(·, ·, ·, ·) function aggregates the information that each nearest neighbor xj provides for
each possible class ωh ∈ Ωxn . Below, several possible definitions are presented:

– Methods based on simple vote of each neighbor (denoted SV EN()). These methods have in
common that each neighbor xj of z provides a vote of 1 to the class of xj with the highest
membership degree (let us remember that it is possible that an instance has more than a class
with different membership degrees).
AggreN() = SV EN() function is defined as follows:

SV EN(i, xjn, p(x
j), q(xj)) =

{
1 if i = arg max

h, h=1,...,I
µj(ωh)

0 otherwise

8

– Methods based on simple vote weighted by the importance of each neighbor (denotedWSV EN()).
These methods have in common that each nearest neighbor xj selects the class of xj with the
highest membership degree and assigns to it a weight defined by its importance as neighbor. The
importance of xj as neighbor is measured according to its distance to z and its degree of imper-
fection.
AggreN() =WSV EN() function is defined as follows:

WSV EN(i, xjn, p(x
j), q(xj)) =

{
p(xj) · q(xj) if i = arg max

h, h=1,...,I
µj(ωh)

0 otherwise

– Methods based on a vote weighted by the membership degree to each class and importance of
each neighbor (denoted WCV EN()). These methods have in common that each nearest neighbor
xj provides a weighted vote to a subset of classes depending on its membership degree to each
class value and its importance as neighbor. Again, the importance of xj as neighbor is measured
according to its distance to z and its degree of imperfection.
AggreN() =WCV EN() function is defined as follows:

WCV EN(i, xjn, p(x
j), q(xj)) = µj(ωi) · p(xj) · q(xj)

• The AggreF (·) function decides the output class by aggregating the information provided by each
neighbor using the AggreN(·) function. AggreF (·) function takes as input a matrix of size k × I

containing the information provided by each neighbor for each class value. We denote this matrix as
INN . We propose two definitions for AggreF (·), SV (INN) and CV (INN), which are introduced
in Algorithm 2 and Algorithm 3, respectively. SV (INN) provides the most voted class between the
nearest neighbors (it could return more than one class in case of tie), whereas CV (INN) provides all
possible classes with degrees obtained from the average information from neighbors.

Algorithm 2: SV(INN)
Input INN

FSω = {}

for i = 1, . . . , I do AINN(i) =
∑k
j=1 INN(j, i)

if i = arg max
h=1,...,I

AINN(h) then maxµ(ω) = µ(ωi)

for i = 1, . . . , I do

if µ(ωi) = maxµ(ω) then FSω = FSω ∪ {(µ(ωi) = 1)/ωi}

Output FSω

3.5.2 Defining the aggregation methods to kNNimp classifier

We describe several methods to combine the different definitions ofAggreN(·) andAggreF (·) functions.

• Methods based on simple vote of each neighbor.
These methods have in common that each nearest neighbor xj provides a vote of 1 to the class value
with the highest membership degree.

– SMSV method defined by AggreN() = SV EN() and AggreF () = SV ().
– SMCV method defined by AggreN() = SV EN() and AggreF () = CV ().

• Methods based on simple vote weighted by the importance of each neighbor.
These methods have in common that each nearest neighbor xj selects the class of xj with the highest
membership degree and assigns to it a weight defined by its importance as neighbor.

9

Algorithm 3: CV(INN)
Input INN

FSω = {}

for i = 1, . . . , I do AINN(i) =
∑k
j=1 INN(j, i)

for i = 1, . . . , I do µ(ωi) = AINN(i)∑I
h=1 AINN(h)

for i = 1, . . . , I do

if µ(ωi) > 0 then FSω = FSω ∪ {µ(ωi)/ωi}

Output FSω

– WSMSV method defined by AggreN() =WSV EN() and AggreF () = SV ().
– WSMCV method defined by AggreN() =WSV EN() and AggreF () = CV ().

• Methods based on a vote weighted by the membership degree to each class and importance of each
neighbor.
These methods have in common that each nearest neighbor xj provides a weighted vote to a subset of
classes depending on its membership degree to each class value and its importance as neighbor.

– WMSV method is defined by AggreN() =WCV EN() and AggreF () = SV ().
– WMCV method is defined by AggreN() =WCV EN() and AggreF () = CV ().

3.5.3 An illustrative example

To show the definition of the different aggregation methods, we suppose a problem with two possible
class values, Ωxn = {A,B}, where for a new instance to classify z, the two nearest neighbors (k = 2) are
obtained, x1 and x2. Table 1 shows the information of these two neighbors: the weights p(·), q(·) and the
value in the class attribute.

Table 1 Information from the two neighbors of z

Neighbors of z p(·) q(·) xin
(Neighbor’ class)

x1 0.5 0.7 {0.5/A, 0.5/B }
x2 0.3 0.1 {0.9/A, 0.1/B}

The values of these weights indicate that x1 is closer to z than x2, but has a greater imperfection.
Moreover, the classes of x1 and x2 are imprecise.

Using this information and applying the different functions AggreN() and AggreF (), we obtain the
results shown in Table 2.

Table 2 Results for the different functions AggreN() and AggreF ()

AggreN()

SVEN WSVEN WCVEN

Class A B A B A B

x1 1 1 0.35 0.35 0.175 0.175
x2 1 0 0.03 0 0.027 0.003

z AggreF()
SV 1 0 1 0 1 0
CV 0.67 0.33 0.52 0.48 0.53 0.47

10

Therefore, the various defined aggregation methods obtain the following possible assignments for the
class attribute of z:

SMSV obtains the information {A} SMCV obtains the information {0.67/A, 0.33/B}
WSMSV obtains the information {A} WSMCV obtains the information {0.52/A, 0.48/B}
WMSV obtains the information {A} WMCV obtains the information {0.53/A, 0.47/B}

Once the neighbors information is aggregated, the output class inferred by kNNimp classifier will de-
pend on the control parameter UD . If we define UD = 0.05, the inferred class using any of the aggregation
methods will be {A}. If we define UD = 0.1 the inferred class using the aggregation method WSMCV

will be {A,B} and using the other aggregation methods will be {A}.

4 Experimental framework

Once presented and described the kNNimp classifier, we perform a set of experiments in order to show
its behavior and to compare with different techniques of literature. For these purposes, several synthetic
datasets with imperfect values are built using NIP tool, [8], from datasets in UCI repository [36]. Also,
real datasets with imperfect values are used.

To perform these experiments, the experimental framework is presented in this section. The elements
included in the framework are below described.

4.1 Datasets

We use 35 supervised classification datasets taken from the KEEL-dataset [3] and the UCI [36] reposi-
tories. Since we will perform various experiments on these datasets directly or by constructing synthetic
datasets with imperfect values from them, we will summarize the main characteristics of the datasets in
each experiment. Some datasets include instances with missing values that have not been discarded.

In general, datasets are partitioned following a five or ten folds cross-validation procedure [56].

4.2 Parameter configuration

4.2.1 The parameters k, UD and UI

In experiments, for kNNimp classifier, we have chosen a representative set of fixed values for the k
parameter, k ∈ {1, 3, 5, 7, 9,

√
|E|}.

The kNNimp classifier is executed for each dataset using UI = 1 and UD = 0.1. With UI = 1 all
instances are classified regardless of the quality of the neighbors. With UD = 0.1, the classifier returns
the class “c” with the highest membership degree µc, and those d whose membership degree differ from
the highest membership degree at most 0.1, i.e., µc−µd

µc
≤ 0.1.

4.2.2 The measure dimp(·, ·)

The dimp(·, ·) measure can be defined using different measures of literature, [16,18,32,54], or custom
measures. For all experiments, we use the following measure:

• dimp(x,y) = DDP (x,y) defined using the following functions for numerical and nominal attributes:

– For Numerical Attributes: the distance of Diamond [16] (denoted by D) is defined as:

f1(xi, yi) = D(xi, yi) =

√
(xa

i−yai)2+(xb
i−ybi)2+(xc

i−yci)2+(xd
i−ydi)2

4

maxi −mini

where xi and yi represent the i-th attribute of instances x and y whose values are defined by the
quadruples (xai , x

b
i , x

c
i , x

d
i) and (yai , y

b
i , y

c
i , y

d
i) respectively (as indicated in Section 3.2). maxi,

11

mini are the maximum and minimum values of attribute i in the dataset.

– For Nominal Attributes: the measure of Dubois and Prade [18] (denoted by DP) is defined as:

f2(xi, yi) = DP (xi, yi) = 1− Card(xi
⋂
yi)

Card(xi
⋃
yi)

where xi and yi represent the i-th attribute of instances x and y whose values are defined by fuzzy
subsets as indicated in Section 3.2. Card(·) is the cardinality of fuzzy sets.

4.2.3 Imperfection measure

Among possible functions, we use the power of the fuzzy sets, [14], that we will apply to both numeric
and nominal values.

g(xi) =


1
|Ωxi

|

∑
a∈xi

µi(a) if xi is fuzzy, interval or crisp/fuzzy subset value

0 if xi is crisp value

In fuzzy and interval values, the sum is the integral in the domain where the value is defined.

4.3 Classification Accuracy

Due to the fact that the proposed classifier can return as output in the classification of an instance z a
multi-valued class, we must use a process to measure the classification accuracy of the set of instances
considered as test, Etest. The proposed process is an adaptation of the process used [9] and [46] to
calculate the accuracy in classification when classes are imprecise. This process is shown in Algorithm 4
“Measuring the Classification Accuracy”.

Algorithm 4: Measuring the Classification Accuracy
Input Dataset Etest, Class value of z (class(z)), Class value inferred to z ((classkNNimp

(z))

Suc, SucErr=0;

for all z in Etest do

if classkNNimp
(z) = class(z) then Suc = Suc+ 1

else

if (classkNNimp
(z)
⋂
class(z)) 6= ∅ then SucErr = SucErr + 1

end for

With this process, an interval [Accmin, Accmax] of classification accuracy is obtained, whereAccmin =
Suc
|Etest| and Accmax = Suc+SucErr

|Etest| . In the definition of the upper bound of this interval we consider as
success those cases where the class value of a test instance is not the same but it is included in the inferred
class value. Note that situations in which the two values of interval are equal (Accmin = Accmax), will
be denoted with a single value Accmin.

4.4 Statistical procedure

Finally, we perform a statistical analysis. We use nonparametric statistical tests as recommended in [22,
23]. We use the Friedman test and the Holm’s procedure as post-hoc test. When we use the Friedman test,
if the null-hypothesis is rejected then there are differences in the performance of the methods, but we do

12

not know between which of them. In this case, we need a post hoc test (we use the Holm’s procedure) to
find statistical differences between the different methods. We use the R package [26] for the application
of these statistical tests.

For the third experiment, we will show several boxplots with the results. We use the extended boxplots
proposed in the paper [46] to represent the intervals obtained with the measure for the classification
accuracy. These boxplots represent both the crisp and imprecise results. The box shows the 75% percentile
of the maximum error and the 25% percentile of the minimum error. Moreover, the box shows two marks
for the median (interval-valued) and two marks for the mean (interval-valued).

5 Experimental study

In this section, we analyze the behavior of kNNimp classifier, based on the experimental framework
already described. Although the main objective of this work is to verify that kNNimp classifier has a
good behavior when dealing with datasets with imperfect information, we will perform other different
experiments. So, this study is organized into three stages:

– In a first stage (Section 5.1) we analyze the behavior of the kNNimp classifier over datasets with im-
perfect data. These datasets are synthetic and built using NIP tool [8], from datasets of UCI repository
[36]. Thus, these datasets will contain the imperfect values commented in Section 3 in addition to the
missing values that contain the original datasets.

– In the second stage (Section 5.2) testing the performance of the kNNimp classifier comparing it with
other methods of literature based on kNN methods and other classifiers. The datasets used will be
those mentioned in these methods of literature.

– A third stage (Section 5.3) testing the performance of the kNNimp classifier over real datasets which
contain imperfect data, and compare the results with those obtained with other methods that treat
these data.

5.1 Analyzing the behavior with imperfect data

In these experiments, we use several datasets of the UCI repository [36]. Some of these datasets have
missing values in a “natural” way. To analyze the performance of the kNNimp classifier, from these
classical datasets, we have induced imperfect values (using NIP tool [8]) building synthetic datasets. The
datasets are designed as follows: First, we introduce randomly in each dataset a 3% of interval values plus
a 3% of fuzzy values in each numeric attribute; and 3% of crisp subsets plus a 3% of fuzzy subsets in
each nominal attribute. Note that missing values in addition to the missing values that contain the original
datasets are not introduced. Because of this, in bivalued nominal attributes are not added crisp/fuzzy
subsets since a missing value would be added. Secondly, we make the same process adding a 5% of
imperfect values. In Table 3, we summarize the properties of the synthetic datasets.

In Table 3, for each dataset (with abbreviation “Abbr”), we show the number of instances (|E|), the
number of numerical (Nu) and nominal (No) attributes, the number of classes (I), the percentage of miss-
ing values (% MV), the percentage of added imperfect values - intervals, fuzzy, crisp and fuzzy subsets
- (% IFCFSV), and the percentage of instances with some imperfect value including missing values (%I.
with ImV). The last two values are specified for both datasets with 3% and with 5% of imperfect values.

As we can see in Table 3, there are three versions of each dataset: the original dataset, dataset with
3% of added imperfect values and dataset with 5% of added imperfect values. To denote these two latest
versions we will use “3%” and “5%”. When we make a n folds cross-validation experiment, both the
training and the testing partitions will contain imperfect values.

In these experiments, we have made a 10 folds cross-validation. Table 4 shows the accuracy rates
obtained, expressed in percentage, the k value and the combination methods that obtain such results.
Furthermore, to some datasets, different combination methods obtain good alternative results. So, in the
columns with shaded headers and on these datasets, we show other alternative good results expressed as
intervals.

13

Table 3 Description of datasets with imperfection

3% 5%

Datasets Abbr |E| Nu No I % MV % IFCFSV %I. with ImV % IFCFSV %I. with ImV

Australian AUS 690 6 8 2 4.35% 46.81% 7.04% 64.35%
Breast Cancer W. BCW 699 9 0 2 0.25% 6.01% 42.63% 10.01% 61.37%
Credit Screen CRX 690 6 9 2 0.65% 4.46% 52.03% 7.23% 69.42%
Glass GLA 214 9 0 6 5.61% 40.65% 10.28% 61.68%
Hepatitis HEP 155 6 13 2 5.64% 2.04% 67.74% 3.26% 76.77%
Horse-colic HOR 368 7 15 2 23.80% 5.16% 100.0% 8.89% 100.0%
Ionosphere ION 351 34 0 2 6.08% 88.03% 9.95% 96.30%
Iris IRI 150 4 0 3 6.67% 25.33% 9.33% 34.67%
Livers disorders LIV 345 6 0 2 5.80% 30.43% 9.86% 46.67%
Monks 1 MO1 432 6 0 2 6.02% 30.32% 10.19% 47.69%
Monks 2 MO2 432 6 0 2 6.02% 31.71% 10.19% 49.31%
Monks 3 MO3 432 6 0 2 6.02% 31.02% 10.19% 48.15%
Mushroom MUS 8124 0 22 2 4.37% 62.59% 7.27% 81.43%
Pima diabetes PIM 768 8 0 2 5.99% 39.45% 9.90% 55.99%
Segmentation SEG 210 19 0 7 5.11% 64.76% 8.52% 83.33%
Soybean-large SBL 307 0 35 19 6.63% 3.02% 72.96% 5.03% 88.60%
Soybean-small SBS 47 0 35 4 0.97% 29.79% 1.95% 53.19%
Wine WIN 178 13 0 3 5.62% 52.25% 10.11% 74.72%
Zoo ZOO 101 1 16 7 0.70% 10.89% 1.16% 18.81%

As we can see in Table 4, the results obtained in 3% and 5% datasets remain very stable with respect
to the results of the original datasets. In general, the combination methods that obtain the best results in
both synthetic and original datasets are WSMSV and WMSV . Also combination methods WSMCV and
WMCV obtain good alternative solutions. With regard to the value of k we can not highlight a particular
value to get the best solutions, since this value depends on the size of the training sets for the classifier.

In experiments of Second and Third stages, we will use the combination methods WSMSV and
WMSV , and to alternative solutions, the combination methods WSMCV and WMCV .

5.2 Comparison of kNNimp classifier with others classifiers

This section summarizes two experiments performed to observe the effectiveness of the kNNimp classifier
when compared with others classifiers:

i) In the first one, we compare with the results presented in [60] and the method proposed in [10].
Among them, we use the kNN algorithm (with normalized Euclidean distance for linear attributes
and the overlap metric for nominal attributes) and methods with the best results in [60], i.e., a) IDIBL
algorithm (based on k nearest neighbors where the voting weight of each neighbor depends on its
distance to the input vector – this weight decreases as the distance grows depends on which kernel
function is used), b) BP (the Backpropagation neural network [55]), c) IB1-4 algorithm (four instance-
based learning algorithms [1,2]), d) Bayes classifier (a naive Bayesian classifier [40]), and e) DGC+
(gravitation-based classification algorithm, that uses the CMA-ES algorithm to calculate the weighs
to describe the importance of each attribute, [10]).

ii) In the second one, we compare with the results presented in [29] and the method proposed in [10]. We
use the results obtained with: a) the Weighted Distance Nearest Neighbor method (WDNN method)
proposed by authors in [29], b) a modified version of the WDNN method (MWDNN method) [29], c)
a Basic-NN, d) a heuristic method based on an adaptive distance measure (A-NN method) proposed
in [59], e) a method with a weighted distance based on an algorithm to automatically learn the cor-
responding weights (PW method) [53], f) an instances reduction method which simultaneously trains
both a reduced set of instances and a suitable local metric for these instances (LPD method) [52], and
g) DGC+ (gravitation-based classification algorithm, that uses the CMA-ES algorithm to calculate the
weighs to describe the importance of each attribute, [10]).

14

Table 4 kNNimp classifier results for the original datasets and datasets with 3% and 5% of imperfection
D

at
as

et
In

tr
od

uc
in

g
im

pe
rf

ec
tv

al
ue

s

W
ith

ou
t

w
ith

3%
w

ith
5%

ac
c.

k
co

m
bi

na
tio

n
co

m
bi

na
tio

n
ac

c.
k

co
m

bi
na

tio
n

co
m

bi
na

tio
n

ac
c.

k
co

m
bi

na
tio

n
co

m
bi

na
tio

n
m

et
ho

d
ac

c.
k

m
et

ho
d

m
et

ho
d

ac
c.

k
m

et
ho

d
m

et
ho

d
ac

c.
k

m
et

ho
d

A
U

S
86

.9
6

9
SM

S
V

,S
M

C
V

[8
6.

96
,8

7.
10

]
9

W
SM

C
V

,W
M

C
V

87
.3

9
5

al
l

87
.3

9
5

al
l

W
SM

S
V

,W
M

S
V

B
C

W
97

.4
2

5
al

l
97

.4
2

5
al

l
97

.4
2

5
al

l
C

R
X

87
.1

0
5

al
l

86
.9

6
7

al
l

87
.1

0
9

SM
S
V

,S
M

C
V

G
L

A
71

.1
1

3
W

SM
S
V

,W
M

S
V

[6
8.

32
,7

5.
29

]
3

SM
S
V

,S
M

C
V

70
.6

4
3

W
SM

S
V

,W
M

S
V

[6
7.

84
,7

4.
82

]
3

SM
S
V

,S
M

C
V

70
.6

4
3

W
SM

S
V

,W
M

S
V

[6
7.

84
,7

4.
82

]
3

SM
S
V

,S
M

C
V

W
SM

C
V

,W
M

C
V

W
SM

C
V

,W
M

C
V

W
SM

C
V

,W
M

C
V

H
E

P
84

.8
4

9
al

l
[8

2.
41

,8
8.

60
]

9
W

SM
C
V

,W
M

C
V

84
.8

4
9

al
l

[8
2.

41
,8

8.
60

]
9

W
SM

C
V

,W
M

C
V

84
.8

4
9

al
l

[8
2.

41
,8

8.
60

]
9

W
SM

C
V

,W
M

C
V

H
O

R
83

.4
3

7
al

l
83

.6
8

9
SM

S
V

,S
M

C
V

83
.6

9
9

SM
S
V

,S
M

C
V

W
SM

S
V

,W
M

S
V

IO
N

86
.8

8
1

al
l

86
.8

8
1

al
l

87
.1

7
1

al
l

IR
I

96
.0

0
5

al
l

96
.0

0
5

al
l

96
.0

0
5

al
l

L
IV

67
.5

9
19

W
SM

S
V

,W
M

S
V

[5
9.

54
,7

2.
25

]
19

SM
S
V

,S
M

C
V

67
.8

8
19

W
SM

S
V

,W
M

S
V

[5
9.

82
,7

2.
55

]
19

W
SM

C
V

,W
M

C
V

67
.8

8
19

W
SM

S
V

,W
M

S
V

W
SM

C
V

,W
M

C
V

M
O

1
86

.5
9

3
al

l
88

.6
8

3
al

l
88

.4
5

3
al

l
M

O
2

81
.2

3
5

al
l

82
.8

5
5

al
l

82
.3

9
5

al
l

M
O

3
96

.7
5

3
al

l
96

.0
7

5
al

l
95

.6
1

5
al

l
M

U
S

10
0.

0
1

al
l

10
0.

0
1

al
l

10
0.

0
1

al
l

PI
M

75
.3

8
7

al
l

75
.2

5
7

al
l

75
.3

8
7

al
l

SE
G

86
.6

7
3

al
l

86
,6

7
1

al
l

86
.6

7
1

al
l

SB
L

91
.8

7
1

al
l

91
.2

1
1

al
l

89
.9

2
3

W
SM

S
V

,W
M

S
V

SB
S

10
0.

0
1

al
l

10
0.

0
1

al
l

10
0.

0
1

al
l

W
IN

96
.1

9
13

al
l

96
.1

9
13

al
l

[9
5.

67
,9

7.
24

]
13

SM
C
V

,W
SM

S
V

96
.1

9
13

al
l

W
M

S
V

Z
O

O
97

.0
0

1
al

l
97

.0
0

1
al

l
96

.0
0

1
al

l

15

i) In this experiment we have used datasets of Table 5. These datasets are selected from [60] and are those
with which the methods discussed above gets better results. Table 5 shows |E|, Nu, No, I and % MV as
Table 3, and, in addition, shows the percentage of instances with missing (% I. with MV).

Table 5 Datasets description

Datasets Abbr |E| Nu No I % MV %I. with MV

Australian AUS 690 6 8 2
Breast Cancer W. BCW 699 9 0 2 0.25% 2.29%
Bridges BRI 105 2 9 6 5.26% 33.33%
Credit Screen CRX 690 6 9 2 0.65% 5.36%
Flag FLA 194 2 26 8
Glass GLA 214 9 0 6
Heart disease HEA 270 5 8 2
Hepatitis HEP 155 6 13 2 5.64% 48.30%
Horse-colic HOR 368 7 15 2 23.80% 98.10%
Ionosphere ION 351 35 0 2
LED LED 500 7 0 10
Livers disorders LIV 345 6 0 2
Pima diabetes PIM 768 8 0 2
Promoters PRO 106 0 57 2
Sonar SON 208 60 0 2
Zoo ZOO 101 1 16 7

As in [60], we have made a 10 folds cross-validation. Table 6 shows the accuracy rates obtained,
expressed in percentage, and the value of k used. As we discussed in the classifier description, some
results are expressed as an interval because that interval is the best result or a good alternative solution.

Table 6 Accuracy rates of the kNNimp classifier in comparison with other methods using datasets of the Table 5

Datasets kNN [60] IDIBL [60] BP [60] IB1-4 [60] Bayes [60] DGC+ [10] kNNimp classifier

AUS 81.16 85.36 84.50 81.00 83.10 83.74 86.96 (9) [86.96,87.10] (9)
BCW 95.28 97.00 96.30 96.30 93.60 96.28 97.42 (5)
BRI 53.73 63.18 67.60 60.60 66.10 62.86 64.73 (3)
CRX 81.01 85.35 85.10 81.30 82.20 84.93 87.10 (5)
FLA 48.84 57.66 58.20 56.60 52.50 65.98 60.37 (9)
GLA 70.52 70.56 68.70 71.10 71.80 70.36 71.11 (3) [68.32,75.29] (3)
HEA 75.56 83.34 82.60 79.60 75.60 84.52 81.85 (7)
HEP 77.50 81.88 68.50 79.60 57.50 86.28 84.84 (9)
HOR 60.82 73.80 66.90 64.80 68.60 85.60 83.43 (7)
ION 86.33 87.76 92.00 86.30 85.50 93.11 86.88 (1)
LED 57.20 74.88 69.00 68.50 68.50 48.80 [71.80,72.80] (22) [68.80,77.60] (22)
LIV 63.47 62.93 69.00 62.30 64.60 64.93 67.59 (19)
PIM 70.31 75.79 75.80 70.40 72.20 74.51 75.38 (7)
PRO 82.09 88.64 87.90 82.10 78.20 90.56 79.24 (10)
SON 86.60 84.12 76.40 86.50 73.10 84.87 83.11 (1)
ZOO 94.44 92.22 95.60 96.70 97.80 95.53 97.00 (1)

Average 74.05 79.03 77.76 76.48 74.43 79.55 [79.93,79.99] [79.56,80.56]

For these datasets, the results obtained clearly show that the proposed kNNimp classifier obtains a
good accuracy. We make a statistical analysis of the results of best accuracy, where for the result expressed
as an interval value we take the lower end (pessimistic value). When the statistic test on these results is
performed, firstly the Friedman test is applied, obtaining a rejection of the null-hypothesis (p-value=9.87e-
05) with a α = 0.01. That is, it rejects that there are no significant differences. When we perform the
post-hoc test to the hypotheses of comparison between the methods, the obtained p-values are 0.00252,
0.15132, 0.15132, 0.00336, 0.00174 and 0.58960. Holm’s procedure rejects the null-hypotheses to kNN,
IB1-4 and Bayes methods, indicating that kNNimp classifier is statistically better regarding accuracy

16

than these methods (α=0.05). With regard to IDIBL, BP and DGC+ methods there are no significant
differences.

ii) In this experiment we have used datasets in [29] (Table 7). These datasets do not have missing values.
In Table 7 we show the same characteristics listed above.

Table 7 Datasets description

Datasets Abbr |E| Nu No I

Australian AUS 690 34 8 2
Balance BAL 625 4 0 3
Breast Cancer W. BCWs 683 9 0 2
DNA DNA 3186 180 0 3
German GER 1000 11 13 2
Glass GLA 214 9 0 6
Heart disease HEA 270 6 7 2
Liver disorders LIV 347 6 0 2
Pima diabetes PIM 768 8 0 2
Satimage SAT 6435 36 0 6
Vehicle VEH 846 18 0 4
Vote VOT 435 0 16 2
Wine WIN 178 13 0 3

As in [29], we have made a 5 folds cross-validation. Table 8 shows the results obtained indicating the
accuracy rates expressed in percentage (value in brackets indicates the value of k used). As we discussed
in the classifier description, some results of kNNimp classifier are expressed as an interval because that
interval is the best result or a good alternative solution.

Table 8 Accuracy rates of the proposed classifier in comparison with other methods using datasets of the Table 7

Datasets WDNN [29] MWDNN [29] Basic-NN [29] A-NN [59] PW [53] LPD [52] DGC+ kNNimp classifier

AUS 85.48 85.01 81.36 75.91 83.50 86.10 84.93 87.10 (7) [86.23,88.12] (7)
BAL 89.14 90.32 69.29 89.88 86.56 83.70 89.60 89.92 (25)
BCWs 97.52 97.88 96.76 97.14 96.68 96.60 96.18 97.66 (5)
DNA 96.15 95.84 87.06 92.73 93.51 95.10 95.17 93.67 (56)
GER 75.84 73.89 71.13 61.89 71.68 74.00 72.30 75.00 (32)
GLA 71.34 70.81 68.26 71.22 73.72 72.00 68.22 73.00 (3) [70.22,76.27] (3)
HEA 83.91 84.91 76.34 67.45 81.06 81.40 82.96 83.33 (16)
LIV 68.31 65.39 64.78 65.12 63.78 66.70 69.56 66.96 (19)
PIM 75.96 76.31 70.83 71.86 72.61 74.00 76.04 75.26 (28)
SAT 89.88 89.01 88.29 90.49 91.20 89.40 87.54 91.32 (5)
VEH 70.14 69.15 70.43 66.28 70.69 72.60 70.57 72.70 (5)
VOT 92.29 91.37 92.86 93.31 94.49 96.30 94.94 94.25 (7)
WIN 96.61 96.04 97.29 84.82 98.65 95.00 96.63 97.76 (13)

Average 84.04 83.53 79.59 79.08 82.93 83.30 83.43 84.48 [84.20,84.81]

Also, for these datasets, the results obtained clearly show that the kNNimp classifier obtains a good
accuracy. Finally, we perform the statistic analysis on these results. We first apply the Friedman test, ob-
taining a rejection of the null-hypothesis (p-value=0.0003061) with a α = 0.01. That is, it rejects that there
are no significant differences. When we perform the post-hoc test to the hypotheses of comparison be-
tween the kNNimp classifier and the others, we obtain their p-values: 0.13670, 0.05622, 0.00085, 0.00290,
0.01994, 0.05622, 0.07420. Holm’s procedure rejects the null-hypotheses to Basic-NN, A-NN and PW
methods indicating that the kNNimp classifier is statistically better regarding accuracy than these methods
(α=0.05). With a α=0.06, kNNimp classifier is statistically better regarding accuracy than MWDNN and
LPD methods. And with regards to WDNN and DGC+ methods, there are no significant differences.

17

5.3 Comparing with imperfect real datasets

The aim of these experiments is to apply the kNNimp classifier to imperfect real datasets (available on
“http://sci2s.ugr.es/keel/”). These datasets have attributes described by interval values and multi-valued
classes (a more detailed description may be found in [46]). We compare the results obtained by the
kNNimp classifier with the ones obtained by the FRF ensemble [7,9] and the GFS classifier [46].

In Table 9, “% IV” denotes the % of interval values and “%I with ImV” denotes the % of the instances
with some imperfect value.

Table 9 Datasets description

Datasets |E| Nu No I % IV % I with imV

Long-4 25 4 0 2 100 100
100ml-4-I 52 4 0 2 100 100
100ml-4-P 52 4 0 2 100 100

As in [9,46], we have used a 10 folds cross-validation for all datasets. As we said before, we use the
combination methods WSMSV and WMSV .

In Table 10 the results obtained in [9,46] and the kNNimp classifier (with k = 1) are shown. The
results obtained with the kNNimp classifier with the two combination methods show that the proposed
classifier has a good performance when compared with the other methods.

Table 10 Error rates with imperfect real datasets

Technique 100ml-4-I 100ml-4-P Long-4

Crisp [46] 0.38 0.42 0.54
GGFS [46] [0.19,0.48] [0.17,0.41] [0.35,0.62]
FRFMIWLF1 [9] [0.27,0.47] [0.10,0.30] [0.18,0.45]
FRFSM2 [9] [0.23,0.43] [0.10,0.30] [0.22,0.48]
kNNimp classifier [0.0,0.13] [0.04,0.16] [0.23,0.50]

As we have commented in Section 4.4, in Figure 1, the extended boxplots with the results are shown.
The boxplots show the results expressing the error. The dotted lines show the means (interval-valued) and
the continuous lines show the respective medians (interval-valued).

The results obtained by kNNimp classifier are very promising because we are representing the infor-
mation in an appropriate and more natural way, and the accuracy rates are improved.

6 Conclusions

In this work the neighborhood based method, kNNimp classifier, has been presented. This method allows
us to carry out the classification from datasets with different types of imperfect values simultaneously.
Thus, the proposed classifier does not need previous data transformations to perform the classification
task respecting the real nature of them. In this method, the importance of each neighbor is based on rel-
ative distance and its degree of imperfection. The method uses external parameters to limit the allowed
imperfection and how close to the best one must be a class to be included in the classification of an
instance. As future work, a detailed analysis of the influence of measures and parameters should be per-
formed. In addition, we will carry out the extension of the kNNimp classifier for imputing missing values
of any attribute from datasets with imperfect values.

The results, validated through statistical tests, show that the kNNimp classifier is robust when working
with imperfect data. kNNimp classifier maintains a good performance when compared with other methods
in the literature, applied to datasets without imperfection. In the same way it has a good performance when
compared with other methods, applied to datasets with imperfect values.

18

100ml−4−I dataset

Crisp GGFS FRFMIWLF1 FRFSM2 KNNimp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100ml−4−P dataset

Crisp GGFS FRFMIWLF1 FRFSM2 KNNimp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Long−4 dataset

Crisp GGFS FRFMINWLF1 FRFSM2 kNNimp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1 Extended boxplots for the results of the Table 10

Acknowledgement

Supported by the project TIN2014-52099-R (EDISON) granted by the Ministry of Economy and Com-
petitiveness of Spain (including ERDF support).

Compliance with Ethical Standards

Funding

This study was funded by the research project of Ministry of Economy and Competitiveness TIN2014-
52099-R (EDISON), including European Regional Development Fund.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the
authors.

19

References

1. Aha DW (1992) Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. International
Journal of Man-Machine Studies 36(2): 267–287

2. Aha DW, Kibler D, Albert KM (1991) Instance-based learning algorithms. Machine Learning 6(1): 37–66
3. Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, Garcı́a S, Sánchez L, Herrera F (2011) Keel data-mining software tool:

data set repository, integration of algorithm and experimental analysis framework. Journal of Multiple-Valued Logic and
Soft Computing 17(2-3): 255–287

4. Barua A, Mudunuri LS, and Kosheleva O (2014) Why Trapezoidal and Triangular Membership Functions Work So Well:
Towards a Theoretical Explanation. Journal of Uncertain System 8(3): 164–168

5. Berlanga F, Rivas AR, del Jesús M, Herrera F (2010) Gp-coach genetic programming-based learning of compact and
accurate fuzzy rule-based classification systems for high-dimensional problems. Information Science 180(8): 1183–
1200

6. Bezdek J (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York, USA
7. Bonissone PP, Cadenas JM, Garrido MC, Dı́az-Valladares RA (2010) A fuzzy random forest. International Journal of

Approximate Reasoning 51(7): 729–747
8. Cadenas JM, Garrido MC, Martı́nez R (2013) Nip – an imperfection processor to data mining datasets. International

Journal of Computational Intelligence Systems 6(1): 3–17
9. Cadenas JM, Garrido MC, Martı́nez R, Bonissone PP (2012) Extending information processing in a fuzzy random forest.

Soft Computing 16(6): 845–861
10. Cano A, Zafra A, Ventura S (2013) Weighted Data Gravitation Classification for Standard and Imbalanced Data. IEEE

Transactions on Cybernetics 43(6): 1672–1687
11. Clare A, King R (2001) Knowledge discovery in multi-label phenotype data. In: Proceedings of the 5th European

Conference on Principles of data mining and knowledge discovery, Freiburg, Germany, pp 42-53
12. Cover T, Hart PE (1967) Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1): 21–27
13. Crockett K, Bandar Z, Mclean D (2001) Growing a fuzzy decision forest. In: Proceedings of the 10th IEEE International

Conference on Fuzzy Systems, Melbourne, Victoria, Australia, pp 614-617
14. DeLuca A, Termini S (1972) A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Information

and Control 20(4): 301–312
15. Derrac J, Garcı́a S, Herrera F (2014) Fuzzy nearest neighbor algorithms: Taxonomy, experimental analysis and prospects.

Information Sciences 260: 98–119
16. Diamon P, Kloeden P (1994) Metric spaces of fuzzy sets: Theory and application. World Scientific Publishing, London,

UK
17. Dombi J, Porkolab L (1991) Measures of fuzziness. Annales Universitasis Scientiarium Budapestinensis, Sectio Com-

putatorica 12: 69–78
18. Dubois D, Parde H (1980) Fuzzy sets and system: Theory and applications. Academic Press, New York, USA
19. Duda RO, Hart PE, Stork DG (2001) Pattern classification. John Wiley and Sons, New York, USA
20. Fernández A, del Jesús M, Herrera F (2009) Hierarchical fuzzy rule based classification systems with genetic rule selec-

tion for imbalanced data-sets. International Journal of Approximate Reasoning 50(3): 561577
21. Fix E, Hodges J (1989) Discriminatory analysis, nonparametric discrimination: Consistency properties. International

Statistical Review 57(3): 238–247
22. Garcı́a S, Fernández A, Luengo J, Herrera F (2009) A study statistical techniques and performance measures for genetics-

based machine learning: accuracy and interpretability. Soft Computing 13(10): 959–977
23. Garcı́a S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design

of experiments in computational intelligence and data mining: experimental analysis of power. Information Sciences
180(10): 2044–2064

24. Garrido MC, Cadenas JM, Bonissone PP (2010) A classification and regression technique to handle heterogeneous and
imperfect information. Soft Computing 14(11): 1165–1185

25. Huang Z (2002) A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems 7(4):
446–452

26. Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics (http://www.r-project.org/). Journal of
Computational and Graphical Statistic 5(3): 299–314

27. Inoue T, Abe S (2001) Fuzzy support vector machines for pattern classification. In: Proceedings of International Joint
Conference on Neural Networks, Washington, DC, USA, pp 1449–1454

28. Ishibuchi H, Yamamoto T (2005) Rule weight specification in fuzzy rule-based classification systems. IEEE Transactions
on Fuzzy Systems 13(4): 428436

29. Jahromi MZ, Parvinnia E, John R (2009) A method of learning weighted similarity function to improve the performance
of nearest neighbor. Information Sciences 179(17): 2964–2973

30. Janikow CZ (1998) Fuzzy decision trees: issues and methods. IEEE Transaction on Systems, Man, and Cybernetics, Part
B 28(1): 1–14

31. Janikow CZ (2003) Fuzzy decision forest. In: Proceedings of the 22nd International Conference of the North American
Fuzzy Information Processing Society, Chicago, USA, pp 480–483

32. Johanyák ZC, Kovács S (2005) Distance based similarity measures of fuzzy sets. In: Proceedings of the 3rd Slovakian-
Hungarian Joint Symposium on Applied Machine Intelligence, Herlany, Slovakia, pp 265–276

33. Kaufmann A (1975) Introduction to the theory of fuzzy subsets: Fundamental theoretical elements. Academic Press,
New York, USA

34. Lee K, Lee K, Lee J (1999) A fuzzy decision tree induction method for fuzzy data. In: Proceedings of IEEE International
Fuzzy Systems Conference, Seoul, South Korea, pp 16–21

20

35. Li D, Gu H, Zhang L (2010) A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete
data. Expert Systems with Applications 37(10): 6942–6947

36. Lichman M (2013) UCI Machine Learning Repository, http://archive.ics.uci.edu/ml, University of California, School of
Information and Computer Sciences, Irvine, CA

37. Lin C, Wang S (2002) Fuzzy support vector machines. IEEE Transactions on Neural Network 13(2): 464471
38. Madjarov G, Kocev D, Gjorgjevikj D, Džeroski S (2012) An extensive experimental comparison of methods for multi-

label learning. Pattern Recognition 45(9): 30843104
39. Marsala C (2009) Data mining with ensembles of fuzzy decision trees. In: Proceedings of IEEE Symposium on Compu-

tational Intelligence and Data Mining, Nashville, TN, USA, pp 348–354
40. Michie D, Spiegelhalter D, Taylor C (1994) Machine learning, neural and statistical classification. Ellis Horwood, Upper

Saddle River, NJ, USA
41. Mitra S, Pal SK (1995) Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE Transactions on Neural

Networks 6(1): 51–63
42. Moore RE (1979) Methods and applications of interval analysis. (SIAM) Studies in Applied Mathematics 2, Soc for

Industrial & Applied Math, Philadelphia
43. Nauck D, Krusel R (1997) A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems

89(3): 277–288
44. Olaru C, Wehenkel L (2003) A complete fuzzy decision tree technique. Fuzzy Sets and Systems 138(2): 221–254
45. Otero A, Otero J, Sánchez L, Villar JR (2006) Longest path estimation from inherently fuzzy data acquired with GPS

using genetic algorithms. In: Proceedings of the International Symposium on Evolving Fuzzy Systems, Lancaster, UK,
pp 300–305

46. Palacios AM, Sánchez L, Couso I (2009) Extending a simple genetic cooperative-competitive learning fuzzy classifier to
low quality datasets. Evolutionary Intelligence 2(1): 73–84

47. Palacios AM, Sánchez L, Couso I (2010) Diagnosis of dyslexia with low quality data with genetic fuzzy systems. Inter-
national Journal of Approximate Reasoning 51(8): 993–1009

48. Palacios AM, Sánchez L, Couso I (2011) Future performance modeling in athletism with low quality data-based genetic
fuzzy systems. Journal of Multiple-Valued Logic and Soft Computing 17: 207–228

49. Palacios AM, Sánchez L, Couso I (2012) Boosting of fuzzy rules with low quality data. Journal of Multiple-Valued
Logic and Soft Computing 19: 591–619

50. Palacios AM, Sánchez L, Couso I (2013) An extension of the furia classification algorithm to low quality data. In: Hybrid
Artificial Intelligent Systems (LNCS 8073), JS Pan, MM Polycarpou, M Wozniak, ACPLF de Carvalho, H Quintián, E
Corchado (eds.) Springer-Verlag, Berlin, pp 679–688

51. Palacios AM, Palacios JL, Sánchez L, Alcalá-Fdez J (2015) Genetic learning of the membership functions for mining
fuzzy association rules from low quality data. Information Sciences 295, 358–378

52. Paredes R, Vidal E (2006) Learning prototypes and distances: a prototype reduction technique based on nearest neighbor
error minimization. Pattern Recognition 39(2): 180–188

53. Paredes R, Vidal E (2006) Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Transaction
on Pattern Analysis and Machine Intelligence 28(7): 1100–1110

54. Ralescu AL, Ralescu DA (1984) Probability and fuzziness. Information Science 34(2): 85–92
55. Rumelhart DE, Mcclelland JL (1986) Parallel distributed processing. MIT Press, Cambridge, MA, USA
56. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society,

Series B (Methodological) 36(2): 111–147
57. Torra V (2005) Fuzzy c-means for fuzzy hierarchical clustering. In: Proceedings of the 14th IEEE International Confer-

ence on Fuzzy Systems, Reno, NV, USA, pp 646–651
58. Villar J, Otero A, Otero J, Sánchez L (2009) Taximeter verification using imprecise data from GPS. Engineering Appli-

cations of Artificial Intelligence 22(2): 250–260
59. Wang J, Neskovic P, Cooper LN (2007) Improving nearest neighbor rule with a simple adaptive distance measure. Pattern

Recognition Letters 28(2): 207–213
60. Wilson DR, Martinez TR (2000) An integrated instance-based learning algorithm. Computational Intelligence 16(1):

1–28
61. Witten IH, Frank E, Hall MA (2011) Data mining (Third edition). Morgan Kaufmann Publishers, San Francisco, CA,

USA
62. Younes Z, Abdallah F, Denoeux T (2010) Fuzzy multi-label learning under veristic variables. In: Proceedings of the

IEEE International Conference on Fuzzy Systems, Yantai, China, pp 1–8
63. Zadeh L (1965) Fuzzy sets. Information and Control 8: 183–190

