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a b s t r a c t

An entering firm wants to compete for market share of an area by opening some new
facilities selected among a finite set of potential locations (discrete space). Customers
are spatially separated and there already are other firms operating in that area. In this
paper, we use a variant of the well known Huff (proportional) customer choice rule, the
so called Pareto-Huff, which have had little attention on the literature because of its
nonlinear formulation. This untested rule considers that customers split their demand
among the facilities that are Pareto optimal with respect to quality (to be maximized)
and distance (to be minimized), proportionally to their attractions, i.e., a distant facility
will capture demand of a customer only if it has higher quality than any other closer
facility. A first formulation as a nonlinear programming problem is proposed, and then an
equivalent formulation as a linear programming problem is presented, which allows us
to obtain exact solutions for medium size problems. For large size problems, a heuristic
procedure is also proposed to obtain the best approximate solutions. Its performance
is checked for small size problems and its solutions are compared with the optimal
solutions given by a standard optimizer, Xpress, using real geographical coordinates and
population data of municipalities in Spain.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

When a new firm wants to compete for market share in a given geographical area, one of the most important decisions
is where to locate its facilities. Depending on location space, facility attraction, customer behavior and demand function,
different location models and solution procedures have been proposed (see [1–3]). The entering firm has to decide the
locations for the new facilities in order to maximize its market share or profit, but taking into account the customers’
behavior. Traditionally, it was assumed that customers chose the nearest facility to be served, but on real problems,
customers take into account some other characteristics of the facilities. Huff [4] proposed the attraction model, where
the attraction of a facility is defined as the quotient between facility quality (it depends on its characteristics) and a
non-negative non-descending function of the distance between the customer and the facility. The two most common
customer choice rules are the Huff (proportional or probabilistic) and the binary (deterministic) rules (see [5]). In the first
one, customers patronize all the facilities in proportion to facility attraction (see for instance [6,7]), and in the second one,
each customer patronizes only one facility, the one with maximum attraction (see [8,9]). In this paper, we are interested
in using a customer choice rule that fits the customers behavior best when they are concentrated in demand points. In
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this way, we are going to consider a modification of the Huff rule, the so called Pareto-Huff customer choice rule [10], in
which a customer will patronize a more distant facility only if it has higher quality than any other closer facility. Then,
each customer will split its demand among the facilities that are Pareto optimal with respect to quality (to be maximized)
and distance (to be minimized), proportionally with their attraction.

The Pareto-Huff model has been formulated as a nonlinear programming problem [10], and to our knowledge, no linear
ormulation has been proposed in the literature. In this paper we propose a linearization of the Pareto-Huff model as a
inary linear programming problem, so this model can be solved exactly by using standard optimization software, at least
or medium size data. For greater size data, it is shown that the heuristic algorithm that we proposed in Fernández et al.
2017) can be updated using new sampling probabilities obtaining excellent results for this new model.

The remainder of the paper is organized as follows: Section 2 consists of description of the competitive location
roblem and its formulation as both, nonlinear and linearized problems. Section 3 is devoted to presentation of the
euristic algorithm, and Section 4 includes the description and discussion of the experimental investigation. Finally,
onclusions are presented in Section 5.

. Discrete location models

Consider a given area where customers are supposed to be aggregated to geographic demand points (see [11] for
emand aggregation). Their demands are fixed and known. Different facilities belonging to different firms are already
ocated in that region. An entering firm wants to open new facilities in order to capture as much demand as possible,
aking into account the pre-existing facilities already located. We will assume for simplicity that all pre-existing facilities
elong to the same firm, the competitor.
The following general notation is used:

Indices:
i, I index and set of demand points (customers)
j, h, k indices of location facilities

Data:
wi demand at i.
qj quality at location j.
dij distance between demand point i and location j.
aij attraction that demand point i feels for a new facility at location j.
ai(S) maximum attraction that i feels for facilities in the set S

ai(S) = max{aij : j ∈ S}
L set of candidate locations for the new facilities.
C set of pre-existing facilities of competitors.
s number of new facilities to be located.

Variables:
X set of locations for the new facilities.

In this new model, the demand of each customer i will not be split between all open facilities, but only among facilities
hat are Pareto optimal with respect to quality and distance. The set of such facilities is denoted by PHi. Demand will be
plit proportionally with the attraction that customer feels to facilities in PHi. A customer will patronize a more distant
acility only if it has higher quality than any other closer facility, so a distant facility will be selected by a customer only
f no facilities exist that are both closer and at least with the same quality. Facilities belonging to PHi are non-dominated
acilities with respect to quality and distance, i.e., for any j ∈ PHi there does not exist any other facility with the same
uality and closer to i than j, or to the same distance to i and with a quality greater than qj (see Fig. 1).
If MPH (X) denotes the market share captured by the entering firm when its new facilities are located at X , the

areto-Huff problem can be formulated as:

Max{MPH (X) =

∑
i∈I

wi

∑
j∈PHi∩X

aij∑
j∈PHi

aij
: |X | = s, X ⊂ L} (1)

hich is a nonlinear optimization problem.
In order to linearize this model, the following order relationship on the set of facilities is defined for each customer i:

k ≻
i j ∼

{ dik < dij, qk ≥ qj
or

dik = dij, qk > qj
(2)

which indicates that, for a given consumer i, if a facility k dominates another facility j, then j will not be a facility to serve
i
demand point i, so PHi = {j ∈ C ∪ X :̸ ∃k ∈ C ∪ X such that k ≻ j}.

2
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Fig. 1. PHi is represented by the big circles.

Taking into account this dominance relationship and knowing the set of pre-existing facilities, for each customer i,
t is possible to define the subsets of competitors’ facilities (Ci) and candidate locations (Li) that can be Pareto optimal
facilities, since they are not dominated by any pre-existing facility:

Ci = {h ∈ C :̸ ∃k ∈ C such that k ≻
i h}

Li = {j ∈ L :̸ ∃k ∈ C such that k ≻
i j} (3)

To propose a formulation of the model, the following binary variables are considered:

xj =

{
1 if a new facility is located at j
0 otherwise j ∈ L

yij =

{
1 if i is partially served by a new facility j
0 otherwise i ∈ I, j ∈ Li

zih =

{
1 if i is partially served by an existing facility h
0 otherwise i ∈ I, h ∈ Ci

So, the objective function of this model is:

MPH (X) =

∑
i∈I

wi

∑
j∈PHi∩X

aij∑
j∈PHi

aij
=

∑
i∈I

wi

∑
j∈Li

aijyij∑
j∈Li

aijyij +
∑
h∈Ci

aihzih
(4)

The variables of the model must verify that:

(i) zih = 1 if h ∈ Ci ∩ PHi
(ii) yij = 1 if xj = 1 and j ∈ Li ∩ PHi

To formulate the constraints that ensure the above conditions hold, we define the following sets:

DC
ih = {k ∈ Li : k ≻

i h}, ∀i ∈ I, ∀h ∈ Ci

DL
ij = {k ∈ Li : k ≻

i j}, ∀i ∈ I, ∀j ∈ Li
(5)

Then, condition (i) is equivalent to:

C
zih = 1 ⇔ xk = 0, ∀k ∈ Dih (6) 13

3
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for which the following constraint sets are required:∑
k∈DC

ih

xk + zih ≥ 1, ∀i ∈ I, ∀h ∈ Ci

∑
k∈DC

ih

xk ≤ |Li|(1 − zih), ∀i ∈ I, ∀h ∈ Ci

(7)

On the other hand, condition (ii) is equivalent to:

yij = 1 ⇔ xj = 1 and xk = 0, ∀k ∈ DL
ij (8)

and this condition would hold if the following constraint sets are considered:

yij ≤ xj, ∀i ∈ I, ∀j ∈ Li∑
k∈DL

ij

xk + yij ≥ xj, ∀i ∈ I, ∀j ∈ Li

∑
k∈DL

ij

xk ≤ |Li|(1 − yij), ∀i ∈ I, ∀j ∈ Li

(9)

Then, the proposed problem has the following formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max
∑
i∈I

wi

∑
j∈Li

aijyij∑
j∈Li

aijyij +
∑
h∈Ci

aihzih

s.t.
∑
j∈L

xj = s∑
k∈DC

ih

xk + zih ≥ 1, ∀i ∈ I, ∀h ∈ Ci

∑
k∈DC

ih

xk ≤ |Li|(1 − zih), ∀i ∈ I, ∀h ∈ Ci

yij ≤ xj, ∀i ∈ I, ∀j ∈ Li∑
k∈DL

ij

xk + yij ≥ xj, ∀i ∈ I, ∀j ∈ Li

∑
k∈DL

ij

xk ≤ |Li|(1 − yij), ∀i ∈ I, ∀j ∈ Li

xj ∈ {0, 1}, ∀j ∈ L
yij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ Li
zih ∈ {0, 1}, ∀i ∈ I, ∀h ∈ Ci

(10)

which is a nonlinear binary programming problem.

2.1. Linearization of the pareto-huff model

The formulation of Pareto-Huff model proposed in the previous Section is nonlinear due to the objective function, but
it can be linearized in two steps. In the first step, by using the following set of variables:

ui =
1∑

j∈Li

aijyij +
∑
h∈Ci

aihzih
, ∀i ∈ I (11)

and adding a new constraint set:∑
aijuiyij +

∑
aihuizih = 1, ∀i ∈ I (12)
j∈Li h∈Ci

4
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and in the second step, by using two new variable sets defined as the product of continuous and binary variables, and its
corresponding constraint sets:

New variables Indices Constraints
v1ij = uiyij ∀i ∈ I v1ij ≤ Myij

∀j ∈ Li v1ij ≤ ui
ui ≤ v1ij + M(1 − yij)

v1ij ≥ 0
v2ih = uizih ∀i ∈ I v2ih ≤ Mzih

∀h ∈ Ci v2ih ≤ ui
ui ≤ v2ih + M(1 − zih)

v2ih ≥ 0

(13)

here M = max{ 1
aij

: i ∈ I, j ∈ Li ∪ Ci} (see [12–15]).
Then, the discrete competitive facility location model with Pareto-Huff customer choice rule has the following

formulation as a mixed binary linear programming problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max
∑
i∈I

∑
j∈Li

wiaijv1ij

s.t.
∑
j∈L

xj = s, xj ∈ {0, 1}, ∀j ∈ L

yij ≤ xj, ∀i, ∀j v1ij ≤ Myij, ∀i, ∀j∑
k∈DC

ih

xk + zih ≥ 1, ∀i, ∀h v1ij ≤ ui, ∀i, ∀j∑
k∈DC

ih

xk ≤ |Li|(1 − zih), ∀i, ∀h ui ≤ v1ij + M(1 − yij), ∀i, ∀j∑
k∈DL

ij

xk + yij ≥ xj, ∀i, ∀j v2ih ≤ Mzih, ∀i, ∀h∑
k∈DL

ij

xk ≤ |Li|(1 − yij), ∀i, ∀j v2ih ≤ ui, ∀i, ∀h∑
j∈Li

aijv1ij +
∑
h∈Ci

aihv2ih ≤ 1, ∀i ui ≤ v2ih + M(1 − zih), ∀i, ∀h

ui ≥ 0, ∀i ∈ I
yij ∈ {0, 1}, ∀i, ∀j v1ij ≥ 0, ∀i, ∀j
zih ∈ {0, 1}, ∀i, ∀h v2ih ≥ 0, ∀i, ∀h
(where i ∈ I, j ∈ Li, h ∈ Ci)

. Ranking-based discrete optimization algorithm

The Ranking-based Discrete Optimization Algorithm (RDOA) starts from a randomly generated initial solution

X = {x1, x2, . . . , xs} (14)

where s is the number of facilities expected to locate. The solution X is a subset of candidate locations L and is considered
as the best solution found so far. A new solution

X ′
= {x′

1, x
′

2, . . . , x
′

s} (15)

is derived from X by changing some locations for the new facilities. Each locations xi has probability 1/s to be changed
and inverse probability — to be copied without change. In case of change, a new location is randomly sampled from the
set L of all candidate locations excluding those which already forms X or X ′:

x′

i =

{
l ∈ L \ (X ∪ X ′), if ξi < 1/s,
xi, otherwise (16)

where ξi is a random number uniformly generated over the interval [0, 1], and i = 1, 2, . . . , s.
Each candidate location li ∈ L has a rank value ri which is expressed by a positive integer value and defines the fitness

of li to form a new solution. At the beginning ri = 1 and it is dynamically adjusted depending on successes and failures
when selecting l to form a new solution X ′. If the market share M(X ′) captured by the new solution is greater than the
i

5
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market share M(X) captured by the best known solution, then (1) the ranks of all locations which form X ′ are increased
y one and (2) the ranks of all locations that form outperformed solution X , but do not form X ′ are reduced by one:

ri =

{ ri + 1, if li ∈ X ′,

ri − 1, if li ∈ X \ X ′,

ri, otherwise
(17)

If M(X ′) is not greater than M(X), then the ranks of all candidate locations forming unsuccessfully generated solution X ′,
but which do not form the best known solution X , are reduced by one:

ri =

{
ri − 1, if li ∈ X ′

\ X,

ri, otherwise (18)

If a rank value becomes equal to zero, then all ranks are increased by one to avoid zero ranks.
The rank values are used to define a probability πi to sample a candidate location li with a rank value ri to form a

new candidate location in (16): the larger rank — the larger sampling probability. This research uses three expressions of
the sampling probability, which in addition to the rank value includes other features of the competitive facility location
problem.

The first sampling probability expression is based on the composition of the rank ri and geographical distance between
the candidate location li and the location xk ∈ X , which is subject to change (see (16)):

π rd
i =

ri
d(li, xk)

∑
|L|
j=1

rj
d(lj,xk)

(19)

here d(·, ·) is the distance between two geographical points. The ranks and the distances are normalized – mapped to
the interval [0, 1] – to make them equally important to the sampling probability. The smaller distance and larger rank
value means better fitness of a candidate location. This expression was proposed, investigated, and compared with the
expression based on ranks only in [13].

In this paper we propose to include quality indicator in sampling probability expression assuming that candidate
locations with larger quality indicators should have larger sampling probability. Thus the second expression is based
on the composition of the rank ri and the quality qi of the location li:

π
rq
i =

ri · qi∑
|L|
j=1 (rj · qj)

(20)

here ranks and qualities of facilities are normalized.
The third expression of the sampling probability composes rank, distance, and quality:

π
rdq
i =

ri · qi
d(li, xk)

∑
|L|
j=1

rj·qj
d(lj,xk)

(21)

here ranks, qualities, and distances are normalized. A larger sampling probability is assigned to the candidate location
ith larger rank and quality values and smaller distance to the location being changed.
If a newly generated solution outperforms the best solution found so far, then X is changed by X ′ and the iteration is

assumed to be successful; otherwise, X remains unchanged and the iteration is assumed to be unsuccessful. The process
continues till the predefined number of function evaluations is performed and the best solution found so far is returned
as the result.

Depending on the expression of sampling probability, the algorithm is abbreviated by RDOA/RD, RDOA/RQ, and
RDOA/RDQ, respectively.

4. Experimental investigation

The proposed algorithm has been experimentally investigated by solving the considered model using real geographical
data of coordinates and population of 589 municipalities (which will be considered as demand points and its demand equal
to the population) in Spain. The distances between demand points and facilities have been calculated in kilometers using
Haversine distance [16], and the attractiveness that the demand point i feels for the facility j has been taken as

aij =
qj

1 + dij
. (22)

Due to stochastic nature of the algorithm, each experiment has been performed 100 times and average results were
ecorded and analyzed.
6
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Fig. 2. Performance of the algorithms with different expressions of the sampling probabilities, applied to solve CFLP with 100 candidate locations.

Fig. 3. Performance of the algorithms with different expressions of the sampling probabilities, applied to solve CFLP with 300 candidate locations.

4.1. Impact of the sampling probability

The impact of different expressions of sampling probabilities for candidate locations (see Eqs. (19)–(21)) have been
investigated by two instances of the proposed model, which differs on the set L of candidate locations: 100 and 300
andidates. Qualities have been randomly generated over the interval [30, 70]. The set I of 589 demand points representing
unicipalities in Spain with at least 1000 residents, and the set C of 10 preexisting location with predefined quality values
nd located in 10 most populated demand points have been used to set up the CFLP.
RDOA/RD, RDOA/RQ, and RDO/RDQ, which differ on the sampling probability expression (see Section 3), have been

sed to determine the set X of locations for s = 10 new facilities. All algorithms have been run for 10,000 function
valuations. Each experiment have been run for 100 times and average results have been recorded at every 1000 function
valuations. The results obtained when solving the CFLP with |L| = 100 are presented in Fig. 2, where the horizontal axis
epresents the number of function evaluations and the vertical axis represents the market share obtained by the new
ocations, expressed in percents of the total market share in the region.

The results show that change of the distance factor to the quality in the sampling probability expression reduces
erformance in early stage of the algorithm (compare RDOA/RD with RDOA/RQ in Fig. 2). On the other hand, inclusion
f the quality indicator together with the distance slightly improves the performance at the beginning of computations
compare RDOA/RD with RDOA/RQ in Fig. 2), though all algorithms demonstrate the same performance after 5000 function
valuations.
Larger differences in performance of the algorithms have been seen when solving CFLP with the larger set of candidate

ocations, |L| = 300. Results are presented in Fig. 3. One can see from the figure that change of the distance factor to the
uality really reduces overall performance of the algorithm (compare RDOA/RD with RDOA/RQ in Fig. 3), but usage of
he quality indicator together with the distance notably improves the performance, especially in the early stage of the
lgorithm (compare RDOA/RD with RDOA/RDQ in Fig. 3).
In general, it is not useful to use the quality indicator instead of the distance, but usage of the quality indicator besides

he distance can improve the performance of the algorithm and the improvements are more notable for the larger set of
andidate locations.

.2. Validation of the heuristics

A more extensive investigation of the performance of RDOA/RDQ has been carried out to see the possibility to

etermine the optimal solution or its approximation. Three sets of preexisting facilities have been used: 10, 20, and 28

7
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Table 1
Results obtained when solving CFLPs with randomly generated quality values for candidate locations.
|C | |L| s Xpress RDOA/RDQ

MS Time (s) Max Avg Std (%) Error (%)

10 50 5 44.95 708.9 44.95 44.95 0.00 0.00
20 50 5 30.16 74.7 30.16 30.16 0.00 0.00
30 50 5 19.68 22.7 19.68 19.68 0.00 0.00
10 50 10 55.39 2411.3 55.39 55.39 0.00 0.00
20 50 10 44.36 116.6 44.36 44.36 0.00 0.00
30 50 10 31.52 21.0 31.52 31.52 0.00 0.00
10 100 5 45.05 3028.9 45.05 45.05 0.00 0.00
20 100 5 29.96 1441.7 30.16 30.10 0.59 1.96
30 100 5 19.68 89.2 19.68 19.68 0.00 0.00
10 100 10 58.51 7914.8 58.51 58.51 0.00 0.00
20 100 10 45.18 2902.8 45.18 45.08 0.25 0.63
30 100 10 31.87 87.0 31.87 31.87 0.03 0.30
10 200 5 47.63 18001.7 50.58 50.58 0.00 0.00
20 200 5 32.50 18003.9 33.69 33.51 0.73 1.53
30 200 5 25.97 1931.3 25.97 25.97 0.00 0.00
10 200 10 65.54 18002.0 67.66 67.64 0.30 3.04
20 200 10 49.02 18002.9 50.70 50.51 0.54 1.66
30 200 10 40.14 18000.9 40.14 40.14 0.08 0.39
10 300 5 48.09 18009.0 50.97 50.97 0.00 0.00
20 300 5 30.71 18003.9 33.69 33.50 0.81 3.12
30 300 5 25.97 6693.6 25.97 25.97 0.00 0.00
10 300 10 64.64 18016.4 68.67 68.61 0.43 2.82
20 300 10 46.57 18004.9 51.08 50.93 0.50 1.93
30 300 10 39.76 18001.1 40.69 40.48 0.76 2.05

30 facilities, located in the most populated demand points. Their quality values have been randomly generated over
the interval [30, 70]. Two numbers of the new facilities have been used: 5 and 10. Four sets of 50, 100, 200, and 300
most populated demand points have been considered as location candidates for the new facilities. Combinations of these
parameters create 24 different instances.

The quality values of the new facilities depend on the quality values of candidate locations. Three different scenarios for
eneration of quality values for the candidate locations have been considered. In the first scenario qualities are random
ntegers from the interval [30, 70], in the second scenario quality value of a candidate location is proportional to its
emand, and in the third one quality value of a candidate location is inversely proportional to its demand. If a new facility
s located where there is already a preexisting facility but with a higher quality, all the demand for that location will be
aptured by the new facility. As the model tries to maximize the total demand captured by the new facilities, to avoid
o-location in the highest demand points, it has been assumed that the qualities for the new facilities in these points are
ess than or equal to the qualities of the preexisting ones. This has been taken into account in the second scenario for the
or 10 most populated points, depending on s value.
These three scenarios of generation of quality values for location candidates expand the number of instances to 72 (24

nstances per scenario). The same set of 589 demand points as in the previous investigation has been used in all cases.
ll problem instances have been solved by deterministic integer linear programming solver Xpress [17]. Xpress worked
ill the optimal solution is determined or the time limit of 18,000 s is exceeded.

The same instances have been solved by RDOA/RDQ, which has been run for 10,000 function evaluations for each
nstance. Each experiment has been run for 100 independent runs and statistical results have been recorded.

The results are presented in Tables 1–3, where numbers of preexisting facilities, candidate locations, and new facilities
re presented in the first three columns; next two columns stand for the best market share obtained by Xpress (in percents
f the total market share in the region) and computational time; the last four columns present statistics of the results
btained by RDOA/RDQ: the maximal and average of the best market share in percents of the total market share, the
tandard deviation in percents of the average, and the maximal percentage difference between the minimal and the
aximal market share. The maximal market share in bold font indicates instances for which RDOA/RDQ founds better
olutions than Xpress within a given time limit (18,000 s).
The results show that, depending on the instance, Xpress requires from less than one second to more that 18,000 s to

olve the problem. Meanwhile, RDOA/RDQ performs 10,000 function evaluations within around 1 to around 5 s, depending
n the computational time required to evaluate the objective function. Instances with less preexisting and new facilities
e.g., the first instance) require less time, while instances with a larger number of preexisting and new facilities require
ore computational time. The number of candidate locations does not make impact to the computational time.
The tables show that the heuristic algorithm is able to find the optimal solution or at least its approximation with

easonable accuracy. The algorithm found the optimal solution for all instances, in most cases the optimal solution has
een determined in all 100 independent runs. In some runs RDOA/RDQ failed to determine the optimal solution, however

he maximal discrepancy from the maximal market share was 3.12%, and below 2% in most of the cases.
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Table 2
Results obtained when solving CFLPs with quality values of candidate locations proportional to demand
values.
|C | |L| s Xpress RDOA/RDQ

MS Time (s) Max Avg Std (%) Error (%)

10 50 5 18.47 19.8 18.47 18.47 0.00 0.00
20 50 5 12.49 0.4 12.49 12.49 0.00 0.00
30 50 5 10.73 0.3 10.73 10.73 0.00 0.00
10 50 10 30.09 19.5 30.09 30.09 0.00 0.00
20 50 10 20.14 0.6 20.14 20.14 0.00 0.00
30 50 10 15.96 0.3 15.96 15.96 0.01 0.12
10 100 5 28.45 140.8 28.45 28.43 0.03 0.08
20 100 5 19.99 29.0 19.99 19.99 0.00 0.00
30 100 5 15.70 18.3 15.70 15.70 0.00 0.00
10 100 10 41.96 400.5 41.96 41.96 0.00 0.00
20 100 10 32.86 47.0 32.86 32.86 0.02 0.13
30 100 10 24.10 19.1 24.10 24.10 0.00 0.00
10 200 5 30.92 18003.2 32.55 32.48 0.23 0.46
20 200 5 24.00 18000.8 24.04 24.03 0.15 0.53
30 200 5 16.95 1374.7 16.95 16.95 0.02 0.13
10 200 10 44.98 18001.8 47.42 47.41 0.20 1.89
20 200 10 38.00 18001.3 38.98 38.98 0.11 0.80
30 200 10 28.26 14730.5 28.26 28.25 0.25 1.87
10 300 5 31.49 18001.2 32.72 32.59 0.32 0.66
20 300 5 23.50 18012.3 24.20 24.19 0.17 0.99
30 300 5 17.08 4007.1 17.08 17.08 0.03 0.13
10 300 10 42.36 18003.4 47.79 47.74 0.40 1.68
20 300 10 37.20 18001.1 39.18 39.15 0.24 0.87
30 300 10 28.21 18001.9 28.45 28.45 0.11 0.47

Table 3
Results obtained when solving CFLPs with quality values of candidate locations inversely proportional
to demand values.
|C | |L| s Xpress RDOA/RDQ

MS Time (s) Max Avg Std (%) Error (%)

10 50 5 33.70 25.6 33.70 33.70 0.00 0.00
20 50 5 21.72 10.4 21.72 21.72 0.00 0.00
30 50 5 14.95 6.3 14.95 14.95 0.00 0.00
10 50 10 40.43 78.3 40.43 40.39 0.08 0.16
20 50 10 27.56 16.8 27.56 27.56 0.00 0.00
30 50 10 21.60 1.5 21.60 21.60 0.00 0.00
10 100 5 34.08 984.4 34.08 34.08 0.00 0.00
20 100 5 22.39 166.6 22.39 22.39 0.00 0.00
30 100 5 13.22 89.2 13.22 13.22 0.17 1.24
10 100 10 46.95 2192.9 46.95 46.95 0.00 0.00
20 100 10 33.92 504.5 33.92 33.88 0.36 1.59
30 100 10 21.91 124.7 21.91 21.82 0.94 2.39
10 200 5 40.75 18004.6 41.28 41.28 0.00 0.00
20 200 5 26.11 18002.2 27.03 27.03 0.00 0.00
30 200 5 16.06 7424.7 16.06 16.02 0.49 1.28
10 200 10 52.29 18007.4 54.73 54.54 0.46 1.23
20 200 10 39.16 18001.4 39.99 39.99 0.11 0.82
30 200 10 26.74 18001.0 26.74 26.72 0.21 1.87
10 300 5 41.40 18008.0 42.42 42.42 0.00 0.00
20 300 5 29.47 18008.5 29.47 29.43 0.48 1.58
30 300 5 20.56 1480.7 20.56 20.56 0.00 0.00
10 300 10 52.67 18004.9 54.40 54.39 0.04 0.14
20 300 10 39.52 18001.5 41.75 41.66 0.56 2.67
30 300 10 28.55 18002.3 29.29 29.22 0.48 2.81

The most important parameters of the problem are the number of candidate locations and the number of new facilities,
since their increment make the problem more complicated for RDOA/RDQ. The number of preexisting facilities make
change to the computational time, however it has not been observed that it makes impact for complexity of the problem.

The heuristic algorithm has been used to solve more complicated instances of the problem with 1000 demand points
all of which are considered as candidate locations. The instance with 10 preexisting facilities, 10 new facilities, and 1000
candidate locations with randomly generated quality values have been used to investigate the performance of RDOA with

different expressions of the sampling probability: RDOA/RD, RDOA/RQ, and RDOA/RDQ. The performance of the algorithms 7
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Fig. 4. The performance of RDOA with different sampling probabilities in comparison with performance of GA.

as been compared with the performance of the Genetic Algorithm [18–20], which has been successfully applied to solve
CFLPs in [21]. All four algorithms have the same budget for computational resources — 10,000 function evaluations.
The results are presented in Fig. 4, where the horizontal axis stands for the number of function evaluations, the vertical

xis – for the average market share, and different curves – for the performance of different algorithms. One can see
rom the figure, all three versions of RDOA notably outperform GA. Inclusion of quality indicator instead of geographical
istance in expression of sampling probability reduces performance of the algorithm (RDOA/RD is better than RDOA/RQ).
he best performance has been achieved when all three features (the rank, the distance, and the quality) are included in
he expression of sampling probability.

. Conclusions

A novel discrete competitive facility location model has been presented where an entering firm wants to locate a
ixed number of new facilities selected from a location candidate set in order to maximize the market share when the
areto-Huff customer choice rule is considered.
An initial formulation of this model as a binary nonlinear programming problem is proposed, which is linearized as a

ixed binary linear programming problem. So, the proposed model is finally formulated as a binary linear programming
roblem. This allows us to solve exactly medium size problems, so a ranking-based-search heuristic algorithm is applied
ith three different sampling strategies for larger size problems. These strategies have been compared and computational
tudies show that it is not useful to use the quality indicator instead of the distance, but the usage of the quality indicator
n addition to the distance can improve performance of the algorithm and the improvements are more notable when the
ata size increases.
The best results are obtained by using the RDOA/RDQ method, which uses ranks, qualities and distances to define

he sampling probability of each location candidate. The algorithm found the best known solution for all instances, in
ost cases the best known solution have been determined in all 100 independent runs. In some runs RDOA/RDQ failed

o determine the best known solution, however the maximal discrepancy from the maximal market share was 3.12%, and
elow 2% in most of the cases.
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