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Maŕıa Dolores Garćıa
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Abstract

We deal with the location-quantity problem for competing firms when they locate
multiple facilities and offer the same type of product. Competition is performed under
delivered quantities that are sent from the facilities to the customers. This problem is
reduced to a location game when the competing firms deliver the Cournot equilibrium
quantities. While existence conditions for a Nash equilibrium of the location game have
been discussed in many contributions in the literature, computing an equilibrium on a
network when multiple facilities are to be located by each firm is a problem not previ-
ously addressed. We propose an integer linear programming formulation to fill this gap.
The formulation solves the profit maximization problem for a firm, assuming that the
other firms have fixed their facility locations. This allows us to compute location Nash
equilibria by the best response procedure. A study with data of Spanish municipali-
ties under different scenarios is presented and conclusions are drawn from a sensitivity
analysis.

Keywords: Multi-facility location, Nash equilibria, Network optimization, Spatial
Cournot competition.

1 Introduction

Location choice in spatial competition often deals with models based on a two-stage game.
In the first stage, the competing firms select their facility locations, in the second stage, they
compete on either price (Bertrand competition) or quantity (Cournot competition). There
are hundreds of papers which have studied the Bertrand two-stage game for a variety of
alternative pricing policies, aiming at finding whether there is a location equilibrium under
different settings, and analyzing the resulting location patterns. A relatively smaller amount
of research has dealt with the Cournot two-stage game. Although price competition is more
common than quantity competition, firms compete on quantities in many markets in which
finding a location Nash equilibrium could be of interest, as it happens in supply chain man-
agement (see [17, 20]). For a variety of models, the existence of a unique Nash equilibrium
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in the second stage is well known . Such equilibrium usually depends on where the facilities 
of the competing firms are located in the first stage. Then, the two-stage game reduces to 
a single stage location game, for which the existence and determination of location Nash 
equilibria have been investigated.

Most of the papers consider the customers distributed on a linear segment, a circumfer-
ence, or a circle, where firms will locate their facilities (see for instance [2, 12, 15, 16, 27]). 
The existence of a Nash equilibrium for the location game has been proved in diverse mod-
els. Under Bertrand competition, two conclusions generally unanimous at equilibrium are: 
first, firms never agglomerate, second, each customer is served by a single firm. The reason 
for the former is that coincident locations of firms offering homogeneous product intensify 
price competition and drive profits to zero (see [19, 26]). The reason for the latter is that 
the customer is served by the firm offering the lowest price, which is the one with the mini-
mum delivered cost (see [12]). Under Cournot competition, agglomeration is often found in 
linear markets, where firms usually agglomerate at the center of the market (see [14, 15]). 
However, agglomeration may not be found in some circular markets, where there may exist 
equilibria with firms locating equidistant from one another (see [2, 27]). For instance, see 
[6] for a recent review on agglomeration. On the other hand, under Cournot competition, 
contrary to Bertrand competition, at equilibrium each customer is served by all competing 
firms (see [1, 21]).

The location game has also been studied for spatially separated markets, mainly when 
the location space is a network. Under mill pricing, location Nash equilibria rarely exist. 
On a tree network, some conditions for existence are shown in [5, 30]. Under delivered 
pricing, a location Nash equilibrium exists if demand is fixed in each market (see [28]). In 
such a case, Nash equilibria can be found by minimizing the social cost. This problem has 
been solved on a planar space with single facilities (see [8]), and on a network when firms 
compete with multiple facilities (see [28]). If demand is price sensitive, the existence of a 
Nash equilibrium has not been proved for delivered pricing. However, under Cournot com-
petition, the existence of Nash equilibria has been proved for price sensitive demand in both 
single and multi-facility location (see for instance [11, 18, 22, 31, 33]). Although it is known 
that Nash equilibria exist under quantity competition, few papers have investigated how to 
find such equilibria on a nonlinear location space. To our knowledge, Nash equilibria have 
been found for illustrative examples and some methods have been proposed to find such 
equilibria (see for instance [22, 32]). In [22] it is shown that the Nash equilibrium can be 
obtained by solving a variational inequality when firms locate their facilities on a discrete 
network. This method is also used in [23] to determine the reaction function for a leader 
when the followers play the Cournot game. In the previous two papers the authors consider 
a model where it is allowed the possibility that each firm can locate at every node, which 
means that the number of facilities to be located by each firm is not fixed. In [32] each 
firm locates one facility on a discrete network and full enumeration is used to determine the 
Nash equilibrium. This method cannot be extended to the multi-facility case due to the 
complexity of determining profit maximization locations by enumeration. We study the best 
response procedure to deal with multi-facility location when the number of facilities of each 
competing firm is fixed, and facility locations are points in a network, vertices or nodes. This 
requires to solve a network nonlinear optimization problem. Our main contribution is an 
integer linear programming formulation to solve the nonlinear multi-facility follower 
problem, that is to say, to find profit maximization locations for a firm, assuming that the
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other firms have fixed the location of their facilities. Previously, we show that optimal lo-
cations can be found at the nodes. The given formulation is used within the best response
procedure, which requires to solve a sequence of follower problems in each iteration, to com-
pute multi-facility location Nash equilibria. The proposed formulation allows to tackle large
size problems, as it is shown by solving an illustrative example with real data from Spanish
municipalities for different scenarios.

The paper is organized as follows. In Section 2, the location-quantity problem for multi-
facility location is described. Basic hypotheses and notation are given, the equilibrium
quantities are determined, and the problem is reduced to a location game. In Section 3, it
is proved that optimal facility locations can be found at the nodes of the network. Then
an integer linear programming formulation to determine the optimal locations is presented
together with the best response procedure to find a Nash equilibrium. In Section 4, the
illustrative example is solved for different values of the parameters. Finally, some conclusions
are given in Section 5.

2 The location-quantity problem

Let N = (V,E, l) be a network, with node set V = {vk : k = 1, ..., n} , edge set E = {e : e =
[vk, vj ]; vk, vj ∈ V }, and l(e) being the length of edge e. Distance between two points a and
b in the network is measured as the length of the shortest path linking the two points and
it will be denoted by d(a, b) (see [29]). We consider there is a set of consumption market
M = {1, ...,m} which are aggregated in the nodes vk, k = 1, ...,m (see [10] for demand
point aggregation). Note that the network may contain some nodes on which no market is
grouped, which occurs if there are some linking nodes with no customers around (the nodes
vk, k = m + 1, ..., n). There is a fixed number of firms which compete for demand of an
homogeneous product with the aim of profit maximization. First, firms select the location of
their facilities, then firms compete on the quantities delivered to each market. It is assumed
that the profit of any firm in any market is independent of the profit obtained in any other
market, and the unit delivered cost is independent of the quantity delivered.

The following notation will be used:

Indices

i, h indeces of firms; i, h = 1, . . . , r.
j index of location candidates (in discrete location space) ; j = 1, . . . , n.
k index of demand nodes; k = 1, . . . ,m.

Data
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fi number of facilities of firm i.
L = V

⋃
E set of location candidates.

M = {1, 2, ...,m} set of markets.
d(x, k) distance between location x and demand node vk;

x ∈ L, k ∈M .
pk(q) = αk − βkq inverse demand function in market k; k ∈M .
pci(x) unit production cost of firm i at location x; x ∈ L.
tci(x, k) = T (d(x, k)) unit transportation cost of firm i from location x

to market k; x ∈ L, k ∈M .
dci(x, k) = pci(x) + tci(x, k) unit delivered cost of firm i from location x

to market k; x ∈ L, k ∈M .

Decision variables

Xi set of facility locations of firm i.
qik quantity offered by firm i to market k.

Miscellaneous

X = (X1, X2, ..., Xr) vector of locations for the facilities of the
competing firms.

X−i vector of locations for the facilities of the firms
other than i; X = (Xi, X−i).

Q = (qik) matrix of all quantities delivered by the firms
to the markets.

Qk = q1k + q2k + ...+ qrk total quantity delivered to market k.
Ck(Xi) = min{dci(x, k) : x ∈ Xi} minimum delivered cost from Xi to market k.

Once the locations X and the quantities Q are fixed, the profit made by firm i at market
k is:

Πik(X,Q) = qik(pk(Qk)− cik)

where cik is the unit delivered cost of firm i at market k. Note that the smaller cik, the
greater profit will be obtained by firm i at market k. Then for profit maximization firm i
will deliver the quantity qik from the facility with the minimum unit delivered cost, which
means that it can be taken cik = Ck(Xi). Therefore, the profit made by firm i at market k
will be given by:

Πik(X,Q) = qik(pk(Qk)− Ck(Xi))

In the following two subsections, we briefly present some known results which will be
used to formulate the multi-facility location problem for a firm assuming that the facilities
of other firms have already been established.

2.1 Quantity competition

Once the vector of locations X is fixed, the firms will compete on quantities in each market.
Each firm i maximizes its profit Πik by offering the quantity qik for which ∂Πik/∂qik = 0.
Hence, the following system of linear equations is obtained:

αk − βk(q1k + q2k + ...+ qrk)− βkqik = Ck(Xi), i = 1, 2, ...r.



5

The solution to the system of equations are the equilibrium quantities or Cournot quantities
at market k, which are given by:

q∗ik =
1

(r + 1)βk
(αk + Σh6=iCk(Xh)− rCk(Xi)), i = 1, 2, ...r.

Notice that the equilibrium quantities depend on the location of the facilities of the com-
peting firms.

The system of linear equations has a unique solution with positive quantities if pk(Qk) >
Ck(Xi) for all i. The condition pk(Qk) > Ck(Xi) for all i is equivalent to,

αk > (r + 1)[max{Ck(Xi) : i = 1, 2, ..., r}]−
∑r

i=1Ck(Xi) (1).
We will assume that (1) holds. This is a reasonable assumption since the unit delivered cost
to market k is usually small compared with the maximum price that customers in market
k are willing to pay for the product.

2.2 Location competition

If the firms offer the equilibrium quantities q∗ik, i = 1, 2, ..., r, at each market k, the location-
quantity game reduces to a location game, where the profit of any firm i is given by:

Πi(X) =

m∑
k=1

Πik(X,Q
∗) =

m∑
k=1

βk(q
∗
ik)

2 =
1

(r + 1)2

m∑
k=1

1

βk
(αk + Σh6=iCk(Xh)− rCk(Xi))

2.

In the location game the firms will compete on location for profit maximization. A
question of interest is whether there exists a Nash Equilibrium for this location game.
We will use the abbreviation NE to refer indistinctly the singular or plural form, Nash
Equilibrium or Equilibria, respectively. A NE is a set of locations for the firms such that no
firm will increase its profit by changing its facilities to another locations if the locations of
the other firms remain unchanged. In other words, a vector X∗ is a NE if for any firm i it
is verified that,

Πi(Xi, X
∗
−i) ≤ Πi(X

∗
i , X

∗
−i), ∀Xi ∈ L.

A well known method to prove the existence of a NE in non-cooperative games is based
on the best response function (see [4]). Given a vector X of facility locations for the firms,
the best response of any firm i to the locations of its competitors X−i is defined as,

Ri(X−i) = {X̂i : Πi(X̂i, X−i) ≥ Πi(Xi, X−i), ∀Xi ∈ L}

The best response to the vector X is then defined as the following multi-function:

R(X) = (R(X−1), R(X−2), ...., R(X−r)).

It is verified that, X∗ is a NE if and only if X∗ ∈ R(X∗).

The existence of NE is usually proved by generating a sequence of vectors {Xν : ν =
1, 2, ....}, where Xν+1

i ∈ Ri(Xν+1
1 , ..., Xν+1

i−1 , X
ν
i+1, ..., X

ν
r ), i = 1, ..., r, and showing that in

some iteration ν0 it will be verified that Xν0+1 = Xν0 . Then Xν0 ∈ R(Xν0), and therefore
Xν0 is a NE. This method was used in [33] to prove the existence of a NE for the above
mentioned location game, but no procedure has been given to find the best response Ri(X−i)
for any firm i, and therefore the problem of determining a NE has not been solved for multi-
facility location.
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In the following, we will show how to find optimal multi-facility locations for a firm when
facility locations of its competitors have been fixed. This problem is known as the follower
problem in the location literature. Then the best response method will be used to find a
NE for the location game with multi-facilities.

3 Multi-facility location and NE

3.1 The follower problem

The best response of firm i to the locations of its competitors X−i, i = 1, ..., r, is an optimal
solution to the following optimization problem:

Pi(X−i) : Maximize Πi(Xi, X−i) = 1
(r+1)2

∑m
k=1

1
βk

(αk + Σh6=iCk(Xh)− rCk(Xi))
2

s.t. | Xi |= ni, Xi ⊂ L

Proposition 1 If pci(x) is a concave function when x varies along any edge in the net-
work, and T (d(x, k)) is an increasing and concave function of distance, then there exists an

optimal solution X̂i to Pi(X−i) so that X̂i ⊂ V , i = 1, ..., r.

Proof : Let X = (X1, X2, ..., Xr) be any set of f1 + f2 + ... + fr points on the network. If we 
consider that the points in X−i are fixed, then we will prove that there exists a set Vi with 
fi nodes such that Πi(Xi, X−i) ≤ Πi(Vi, X−i). In fact, suppose that there is a point x ∈ Xi 
which is not a node, x is on some edge e = (v, v′). Πi(Xi, X−i) can be seen as a function of 
x, assuming that the other points in Xi have also been fixed. Since for any k, the function 
d(x, k) is concave when x varies along the edge (v, v′) (see [29]), then pci(x) + T (d(x, k)) is 
also a concave function when x varies along the edge (v, v′). Due to the fact that a func-
tion given as the minimum of concave functions is also concave, it follows that Ck(Xi) is a 
concave function, and (αk + Σh6=iCk(Xh) − rCk(Xi))

2 is a convex function, when x varies 
along the edge (v, v′). Therefore, Πi(Xi, X−i) is a sum of convex functions which reaches its 
maximum value on (v, v′) at any of the two nodes v or v′. As a consequence, by replacing 
each edge point x ∈ Xi by v(x) = v or v(x) = v′ we will obtain a set of nodes Vi such that 
Πi(Xi, X−i) ≤ Πi(Vi, X−i). Therefore, there exists an optimal solution X̂i to Pi(X−i) so that X̂i 
⊂ V , i = 1, ..., r. �

From the previous proposition, it can be guaranteed that there is a NE with facilities 
placed at different nodes of the network. Taking this assertion into account, a NE can be 
found by solving an iterative sequence of discrete location problems Pi(X−i), where feasible 
solutions are reduced to sets of points Xi ⊂ V , i = 1, ..., r.

3.2 Integer linear programming formulation of problem Pi(X−i)

Each problem Pi(X−i) can be formulated as a Binary Integer Linear Programming problem 
as follows:

Let Sk(X−i) = αk + Σh6=iCk(Xh), then the objective function of problem Pi(X−i) can 
be expressed as,
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Πi(Xi, X−i) =
1

(r + 1)2

m∑
k=1

1

βk
(Sk(X−i)

2 − 2rSk(X−i)Ck(Xi) + r2Ck(Xi)
2)

Since X−i is fix, the function Πi(Xi, X−i) is a nonlinear decreasing function in Ck(Xi),
k = 1, ...,m. Both Ck(Xi) and Ck(Xi)

2 can be expressed by a sum of linear functions by
defining the following variables:

xij =

{
1 if a facility of firm i is located at node vj
0 otherwise

yijk =

{
1 if market k is served by firm i from vj
0 otherwise

For simplicity, let sijk denote the unit delivered cost of firm i from node vj∑n
to market k,

sijk = dci(vj , k). A feasible solution is defined by Xi = {vj : xij = 1}, where   j=1 xij = fi. 
Then Ck(Xi) and Ck(Xi)

2 are given as,

Ck(Xi) = min{sijk : vj ∈ Xi} = min{
n∑
j=1

yijksijk :
n∑
j=1

yijk = 1, 0 ≤ yijk ≤ xij}

Ck(Xi)
2 = min{s2

ijk : vj ∈ Xi} = min{
n∑
j=1

yijks
2
ijk :

n∑
j=1

yijk = 1, 0 ≤ yijk ≤ xij}

For each k, if Ck(Xi) = sijk ( Ck(Xi)
2 = s2

ijk ) for some j, then yijk = 1 and yihk = 0 for
h 6= j is an optimal solution of the two previous minimization problems. In such a case it
must be verified that, xih = 0 for any h such that sihk < sijk. Therefore, problem Pi(X−i)
is equivalent to the following Binary Integer Linear Programing (BILP) problem:

Maximize 1
(r+1)2

∑m
k=1

1
βk

(Sk(X−i)
2 − 2rSk(X−i)

∑n
j=1 yijksijk

+r2
∑n

j=1 yijks
2
ijk)

s.a.
∑

j
n
=1  xij = fi ; (1)

yijk ≤ xij ; j = 1, ..., n k = 1, ...,m (2)∑n
j=1 yijk = 1 ; k = 1, ...,m (3)∑
sihk<sijk

xih ≤ ni(1− yijk) ; j = 1, ..., n k = 1, ...,m (4)

xij , yijk ∈ {0, 1}; j = 1, ..., n, k = 1, ...,m (5)

The objective function gives the profit of firm i. Constraint (1) indicates the number of facili-
ties to be located by firm i. Constraints (2) guarantee that firm i can only deliver the product
from nodes vj where the firm opens a facility. Constraints (3) means that each market k will
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be served by firm i. Constraints (4) guarantee that firm i will deliver the product to each
market k from the facility with the minimum delivered cost, Ck(Xi) = min{sijk : xij = 1},
k = 1, ...,m. Constraints (5) require that variables xij and yijk are binary.

If constraints yijk ∈ {0, 1} in (5) are replaced by constraints yijk ≥ 0 , the previous
problem can be written as a Mixed Integer Linear Programming (MILP) problem.

Proposition 2 There is an optimal solution with binary variables to the MILP problem.

Proof : Let (x̄ij ,ȳijk) be an optimal solution to the MILP problem. Once the facility locations
are fixed, the maximum profit of firm i from any market k is obtained by serving that market
from the facility with the minimum delivered cost. Note that the equilibrium quantity of
firm i at any market k is greater as long as the delivered cost is smaller. Consequently, at
optimality it must be verified that:

n∑
j=1

ȳijksijk = min{sijk : x̄ij = 1}.

Then, for each market k, only variables yilk with silk = min{sijk : x̄ij = 1} can be greater
than 0 in the optimal solution. As constraints (3) have to be verified, if the minimum silk
is unique for all k, then (x̄ij ,ȳijk) is a binary solution. Otherwise, there must exist multiple
variables yilk with ȳilk > 0 for some k, all of them with the same silk value. By taking
ŷilk = 1 for someone l for which silk = min{sijk : x̄ij = 1} and ŷijk = 0 for j 6= l, a new
feasible solution (x̄ij ,ŷijk) to the MILP problem is obtained, which is a binary solution.
Since both solutions (x̄ij ,ȳijk) and (x̄ij ,ŷijk) have the same objective value, it follows that
(x̄ij ,ŷijk) is also an optimal solution to the MILP problem. �

From Property 2, it follows that the MILP formulation can also be used to solve
problem Pi(X−i). Note that the BILP formulation contains n(m + 1) binary variables,
while the MILP formulation only contains n binary variables. In subsection 4.1, we will
show that run times to solve Pi(X−i) with the BILP formulation are much more higher
than run times to solve it with the MILP formulation.

3.3 Finding a NE

Once we have shown that problem Pi(X−i) can be solved by Integer Linear Programming,
finding a NE can be done by using the best response procedure, which is as follows:

Algorithm MFNE (Multi-facility Nash Equilibrium)

1: Select an initial set V 0 of nodes.
V 0 = (V 0

1 , V
0

2 , ..., V
0
r ), |V 0

i | = fi, i = 1, ..., r. Set ν = 0.

2: For i = 1, ..., r do
Find an optimal solution V ν+1

i to problem Pi(V
ν+1

1 , ..., V ν+1
i−1 , V

ν
i+1, ..., V

ν
r ).

Set V ν+1
i = V ν

i if Πi(V
ν+1

1 , ..., V ν+1
i , V ν

i+1, ..., V
ν
r ) = Πi(V

ν+1
1 , ..., V ν+1

i−1 , V
ν
i , ..., V

ν
r ).

end for

3: If V ν+1
i = V ν

i , i = 1, ..., r, a NE is found, STOP.
Otherwise, set ν = ν + 1 and go to step 2.
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In each iteration, problems Pi(V
ν+1

1 , ..., V ν+1
i−1 , V

ν
i+1, ..., V

ν
r ), can be solved with either the

BILP or the MILP formulation by using any standard ILP optimizer. Since the BILP
formulation has too many binary variables, which would make large/medium size problems
unable to solve in a short time, we will use the MILP formulation to find NE in the test
problems shown in subsections 4.2 and 4.3.

4 An illustrative example

We have considered the transportation network in Spain to test our model. We have taken
the municipalities over 5,000 inhabitants as demand nodes to have a real size example with
more than 1000 markets. These municipalities have been numbered from 1 to 1.049 in
decreasing population size, thus M = {1, 2, ..., 1.049} (see Fig. 1- Left). Since firms may
not be interested in locating in small municipalities, we have considered the municipalities
over 40,000 inhabitants as location candidates, thus L = {1, 2, ..., 142} (see Fig. 1-Right). It
is assumed that a maximum of one out of a thousand of inhabitants in each municipality is
able to buy one unit of product. We have then taken the following inverse demand function
at municipality k:

pk(q) = 1400− 1400

mk
q , 0 ≤ q ≤ mk

where mk is given by:

mk =
1

1000
× size of municipality k.

The population size and geographical coordinates of the Spanish municipalities can be
seen on the web: http://www.um.es/geloca/gio/datos-espana-2015.txt. Distances d(j, k) be-
tween any pair of municipalities j and k have been approximated by using the Harversine
formula, which measure the distance between two geographical points from their longitudes
and latitudes (see [24]).

Figure 1: Left : Demand points , Right : Location candidates.

We have studied the performance of the proposed approach for the case of three competi-
tors. For simplicity, the production cost of each firm i, i = 1, 2, 3, is the same in all locations
and such costs are 200, 220, and 240 euros, respectively. The marginal transportation cost
is taken proportional to the distance between municipalities j and k, tci(j, k) = µd(j, k),



10

µ > 0. The follower problem and the location game for the three firms have been ana-lyzed. In 
all test problems the software FICO Xpress Mosel [9], 64 bits v.3.10.0 for Linux, has been used 
on a computer with a processor Intel Core i7-6700 3.40 Ghzx8, RAM 8GB and OS Linux 
Ubuntu 15.10 64 bits.

4.1 The follower problem

Let us consider that firms 1 and 2 have their facilities already located. Firm 1 has 2 facilities 
located at the two most populated municipalities, X1 = {1, 2}, and firm 2 has 3 facilities 
located at the three following most populated municipalities, X2 = {3, 4, 5}. The number 
of facilities to be located by firm 3 (the follower) is f3 = 2, 3, 4, 5. Transportation costs are 
proportional to distance with µ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. We have used both the MILP 
and the BILP formulations to solve 24 location problems, which correspond to the different 
combinations of values for f3 and µ. The same optimal locations were obtained by the two 
formulations, but with very different running times.

f3 µ X3 Π1(X) Π2(X) Π3(X) Rt(M) Rt(B)

0.1 31, 129 2323 2045 1761 0.93 68.37
0.2 31, 129 2240 1985 1690 0.91 68.57

2 0.3 1, 129 2163 1938 1625 0.86 68.31
0.4 1, 129 2093 1900 1566 1.01 68.49
0.5 1, 2 2028 1875 1513 1.61 68.43
0.6 1, 2 1970 1860 1466 0.98 68.32

0.1 1, 129, 135 2301 2023 1819 0.94 68.18
0.2 1, 129, 135 2200 1941 1804 0.97 68.03

3 0.3 1, 129, 135 2108 1869 1792 0.86 68.08
0.4 1, 129, 135 2026 1806 1784 1.02 68.11
0.5 1, 2, 135 1952 1755 1778 1.64 68.80
0.6 1, 2, 135 1887 1713 1776 0.78 67.97

0.1 2, 114, 125, 140 2287 2008 1859 0.83 68.06
0.2 2, 114, 125, 140 2173 1911 1882 0.85 68.17

4 0.3 2, 114, 125, 140 2071 1822 1907 0.82 68.06
0.4 2, 114, 125, 140 1979 1743 1933 1.14 68.34
0.5 1, 2, 29, 135 1896 1713 1965 1.04 68.66
0.6 1, 2, 29, 135 1823 1668 2002 0.90 67.88

0.1 1, 2, 114, 125, 132 2274 1996 1894 0.93 67.60
0.2 1, 2, 29, 114, 125 2148 1889 1954 0.89 67.56

5 0.3 1, 2, 29, 114, 125 2035 1793 2016 0.87 67.66
0.4 1, 2, 29, 114, 125 1933 1708 2081 0.83 67.64
0.5 1, 2, 29, 114, 125 1843 1633 2149 0.81 67.61
0.6 1, 2, 29, 114, 125 1765 1570 2219 0.81 67.65

Table 1: Optimal locations for firm 3 when X1 = {1, 2} and X2 = {3, 4, 5}.
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The results are shown in Table 1, where columns 1 and 2 correspond to the values of f3 
and µ. Column 3 gives the optimal location X3 to the corresponding problem P3(X1, X2). 
Column 4, 5 and 6 give the profits of the three firms in thousands of euros for locations X = 
(X1, X2, X3). Column 6 and 7 show the running times in minutes to solve each problem by 
using the MILP and the BILP formulation, respectively.

The locations in X1 and X2 are shown in Figure 2-Left and the optimal locations in X3 
are shown in Figure 2-Right. Note that, for any pair of values of f3 and µ, there is partial 
agglomeration of locations in X3 around the most populated municipalities 1 and 2. See in 
Figure 2-Right that municipalities 31 and 140 are close to municipality 1, municipality 129 
is close to municipality 2, and municipalities 1 and 2 are optimal facility locations in most 
of the problems, as it is shown in Table 1. Note also that for each value of f3 the same 
optimal locations are obtained for most of values of parameter µ. Finally, note that it takes 
about one minute to solve every problem with the MILP formulation while it takes more 
than one hour with the BILP formulation.

In Figure 3 the profits per facility of the three firms are shown. Note that, for each value 
of the parameter µ, the profit per facility of each firm decreases as long as the number of en-
tering facilities (f3) increases. While the decrease in profit per facility for the pre-stablished 
firms (firms 1 and 2) is very low, the decrease in profit per facility for the entering firm (firm 
3) when the number of entering facilities increases is high.

Once the facility locations are determined for all competitors, it seems that the profit 
of any firm will decrease if µ increases. However, the profit of one of the competing 
firms may increase if µ increases as it happens for firm 3 when f3 = 4 and f3 = 5 
(see Table 1). This surprising result is explained by the fact that for fixed locations and 
dci(x, k) = pci +µd(x, k),i = 1, 2, 3, where pci is a constant production cost, it is verified that

if µ < µ′ then the equilibrium quantity q∗ik for µ is smaller than the equilibrium quantity q∗ik
for µ′ when dk(Xi) is less than 1

3(
∑

h6=i dk(Xh)) , being dk(A) = min{d(x, k) : x ∈ A}, for
A = Xi, Xh. Thus, if the number of facilities of one firm i is much higher than the number
of facilities of its competitors, the distance of many markets to their closest facility of firm
i could be much smaller than the sum of distances to the closest facility of its competitors,
and then firm i could obtain a greater profit if µ increases.

Figure 2: Left : Facility locations for firms 1 and 2, Right : Optimal locations for firm 3.
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Figure 3: Profit per facility for firms 1,2, and 3.
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4.2 The location game for three firms

Let us consider that the three firms locate f1, f2 and f3 facilities, where f1 ≤ f2 ≤ f3,
2 ≤ fi ≤ 5 , i = 1, 2, 3. As in the previous section, transportation cost is proportional
to distance with µ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. We have solved 120 NE problems by using
the MILP formulation which has been implemented in the best response procedure. These
problems correspond to the different combinations of values for f1, f2, f3 and µ. The results
are shown for the six values of parameter µ in Tables 2, 3 and 4. For each value of µ, column
1 shows the values of (f1, f2, f3). Columns 2, 3 and 4 give the locations X1, X2 and X3

which are a NE to the corresponding location game. Column 5, 6 and 7 show the profits of
the three firms, X = (X1, X2, X3). Column 8 gives the running time in minutes to find each
NE. Column 9 shows the number of iterations (loops) of Algorithm MFNE to find a NE.

For most of triplets (f1, f2, f3), there is partial collocation of firms 1,2 and 3 at equilib-
rium, being municipalities 1 and 2 location equilibria in many cases, as it is shown in Tables
2, 3 and 4. In particular, if f1 = f2 = f3, the three firms co-locate their facilities at the
same municipalities in most of cases. The location equilibrium for any triplet (f1, f2, f3) is
the same for most of values of the parameter µ, which means that NE are partially stable
when the transportation cost changes. The running time ranges between 4.96 and 14.36 min-
utes to find a NE, and the number of iterations of Algorithm MFNE ranges between 2 and 5.
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µ = 0.1
fi X1 X2 X3 Π1(X) Π2(X) Π3(X) R. time It.

(2,2,2) 31, 129 31, 129 31, 129 2324 2033 1762 7.14 2
(2,2,3) 31, 129 31, 129 1, 129, 135 2302 2013 1821 6.40 2
(2,2,4) 31, 129 31, 129 2, 114, 125, 140 2287 1999 1862 5.94 2
(2,2,5) 31, 129 31, 129 1, 2, 114, 125, 132 2275 1987 1897 6.78 2
(2,3,3) 31, 129 1, 129, 135 1, 129, 135 2281 2075 1801 5.79 2
(2,3,4) 31, 129 1, 129, 135 2, 114, 125, 140 2266 2061 1841 5.82 2
(2,3,5) 31, 129 1, 129, 135 1, 2, 114, 125, 132 2253 2049 1876 5.65 2
(2,4,4) 31, 129 2, 114, 125, 140 2, 114, 125, 140 2252 2104 1828 5.55 2
(2,4,5) 31, 129 2, 114, 125, 140 1, 2, 114, 125, 132 2239 2092 1863 5.40 2
(2,5,5) 31, 129 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2226 2129 1851 5.77 2
(3,3,3) 129, 140, 141 129, 140, 141 1, 129, 135 2346 2054 1781 11.31 4
(3,3,4) 129, 140, 141 1, 129, 135 2, 114, 125, 140 2331 2040 1821 8.34 3
(3,3,5) 1, 129, 135 1, 129, 135 1, 2, 114, 125, 132 2319 2028 1857 5.29 2
(3,4,4) 1, 129, 135 2, 114, 125, 140 2, 114, 125, 140 2317 2082 1808 5.24 2
(3,4,5) 1, 129, 135 2, 114, 125, 140 1, 2, 114, 125, 132 2304 2070 1843 5.09 2
(3,5,5) 1, 129, 135 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2292 2107 1831 4.99 2
(4,4,4) 2, 114, 125, 140 2, 114, 125, 140 2, 114, 125, 140 2361 2068 1794 5.06 2
(4,4,5) 2, 114, 125, 140 2, 114, 125, 140 1, 2, 114, 125, 132 2348 2056 1829 5.24 2
(4,5,5) 2, 114, 125, 140 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2336 2093 1817 5.25 2
(5,5,5) 1, 2, 114, 125, 132 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2374 2080 1806 5.47 2

µ = 0.2
fi X1 X2 X3 Π1(X) Π2(X) Π3(X) R. time It.

(2,2,2) 31, 129 31, 129 31, 129 2239 1954 1688 9.22 3
(2,2,3) 31, 129 31, 129 1, 129, 135 2197 1915 1807 8.65 3
(2,2,4) 31, 129 31, 129 2, 114, 125, 140 2169 1889 1889 5.47 2
(2,2,5) 31, 129 31, 129 1, 2, 114, 125, 132 2144 1866 1959 8.58 3
(2,3,3) 31, 129 1, 129, 135 1, 129, 135 2158 2037 1765 5.84 2
(2,3,4) 31, 129 1, 129, 135 2, 114, 125, 140 2129 2011 1847 8.32 3
(2,3,5) 31, 129 1, 129, 135 1, 2, 114, 125, 132 2105 1988 1917 5.79 2
(2,4,4) 31, 129 2, 114, 125, 140 2, 114, 125, 140 2102 2094 1818 4.96 2
(2,4,5) 31, 129 2, 114, 125, 140 1, 2, 114, 125, 132 2078 2071 1889 5.11 2
(2,5,5) 31, 129 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2055 2143 1864 5.33 2
(3,3,3) 1, 129, 135 1, 129, 135 1, 129, 135 2282 1994 1726 5.96 2
(3,3,4) 1, 129, 135 1, 129, 135 2, 114, 125, 140 2254 1968 1807 5.74 2
(3,3,5) 1, 129, 135 1, 129, 135 1, 2, 114, 125, 132 2230 1945 1878 6.19 2
(3,4,4) 1, 129, 135 2, 114, 125, 140 2, 114, 125, 140 2227 2051 1779 5.36 2
(3,4,5) 1, 129, 135 2, 114, 125, 140 1, 2, 114, 125, 132 2203 2028 1849 5.48 2
(3,5,5) 1, 129, 135 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2179 2100 1824 8.14 3
(4,4,4) 2, 114, 125, 140 2, 114, 125, 140 2, 114, 125, 140 2312 2022 1751 5.17 2
(4,4,5) 2, 114, 125, 140 2, 114, 125, 140 1, 2, 114, 125, 132 2287 1999 1821 5.20 2
(4,5,5) 2, 114, 125, 140 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2264 2071 1797 7.74 3
(5,5,5) 1, 2, 114, 125, 132 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2338 2046 1774 5.26 2

Table 2: NE for three firms with µ = 0.1 and µ = 0.2.

5 Conclusions

Multi-facility location choice under delivered quantity competition on a transportation net-
work has been analyzed. If firms compete with the Cournot quantities, no procedure has
been proposed to find a NE of the resulting location game. Under quite general conditions,
it is proved that optimal locations for one firm, assuming that the facility locations of its
competitors have been fixed, can be found at the nodes of the network. Then both a binary
and a mixed integer linear programming formulations are proposed to solve the follower
problem. This allows to apply the best response procedure to find a NE of the location
game. Although both formulations can be used, only the mixed formulation allows to solve
large size problems in a short running time, as it is shown by solving the follower problem
for an illustrative example.
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µ = 0.3
fi X1 X2 X3 Π1(X) Π2(X) Π3(X) R. time It.

(2,2,2) 31, 129 31, 129 31, 129 2156 1877 1617 11.07 3
(2,2,3) 31, 129 31, 129 1, 129, 135 2097 1821 1796 9.61 3
(2,2,4) 31, 129 31, 129 2, 114, 125, 140 2056 1784 1919 5.82 2
(2,2,5) 31, 129 31, 129 1, 2, 29, 114, 125 2021 1751 2025 5.29 2
(2,3,3) 1, 129 1, 129, 135 1, 129, 135 2042 2001 1732 8.84 3
(2,3,4) 1, 129 1, 129, 135 2, 114, 125, 140 2001 1963 1855 5.23 2
(2,3,5) 1, 129 1, 129, 135 1, 2, 29, 114, 125 1966 1931 1961 8.01 3
(2,4,4) 1, 129 2, 114, 125, 140 2, 114, 125, 140 1964 2086 1811 7.79 3
(2,4,5) 1, 129 2, 114, 125, 140 1, 2, 29, 114, 125 1929 2053 1917 5.26 2
(2,5,5) 1, 129 1, 2, 114, 125, 132 1, 2, 114, 125, 132 1896 2159 1879 8.18 3
(3,3,3) 1, 129, 135 1, 129, 135 1, 129, 135 2220 1936 1672 6.37 2
(3,3,4) 1, 129, 135 1, 129, 135 2, 114, 125, 140 2180 1899 1795 5.74 2
(3,3,5) 1, 129, 135 1, 129, 135 1, 2, 29, 114, 125 2145 1866 1901 5.81 2
(3,4,4) 1, 129, 135 2, 114, 125, 140 2, 114, 125, 140 2142 2021 1751 4.96 2
(3,4,5) 1, 129, 135 2, 114, 125, 140 1, 2, 29, 114, 125 2107 1988 1856 5.17 2
(3,5,5) 1, 129, 135 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2074 2094 1819 8.23 3
(4,4,4) 2, 114, 125, 140 2, 114, 125, 140 1, 29, 129, 135 2275 1988 1712 7.65 3
(4,4,5) 2, 114, 125, 140 2, 114, 125, 140 1, 2, 29, 114, 125 2229 1944 1815 5.11 2
(4,5,5) 2, 114, 125, 140 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2195 2050 1778 5.10 2
(5,5,5) 1, 2, 114, 125, 132 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2302 2013 1743 5.37 2

µ = 0.4
fi X1 X2 X3 Π1(X) Π2(X) Π3(X) R. time It.

(2,2,2) 1, 129 1, 129 78, 135 2123 1847 1556 6.97 2
(2,2,3) 1, 129 3, 73 1, 129, 135 2023 1733 1809 9.41 3
(2,2,4) 1, 129 1, 129 2, 114, 125, 140 1949 1685 1955 8.67 3
(2,2,5) 31, 129 1, 129 1, 2, 29, 114, 125 1905 1644 2096 10.07 3
(2,3,3) 1, 129 1, 129, 135 1, 129, 135 1934 1967 1701 5.56 2
(2,3,4) 1, 129 1, 129, 135 2, 114, 125, 140 1882 1919 1865 8.52 3
(2,3,5) 1, 129 1, 129, 135 1, 2, 29, 114, 125 1838 1877 2007 5.61 2
(2,4,4) 1, 129 2, 114, 125, 140 2, 114, 125, 140 1836 2079 1805 8.48 3
(2,4,5) 1, 129 2, 114, 125, 140 1, 2, 29, 114, 125 1792 2037 1946 7.82 3
(2,5,5) 1, 129 1, 2, 114, 125, 132 1, 2, 29, 114, 125 1752 2176 1895 8.81 3
(3,3,3) 1, 129, 135 1, 129, 135 1, 129, 135 2160 1880 1620 10.00 3
(3,3,4) 1, 129, 135 1, 129, 135 2, 114, 125, 140 2108 1832 1784 5.71 2
(3,3,5) 1, 129, 135 1, 129, 135 1, 2, 29, 114, 125 2063 1791 1926 5.57 2
(3,4,4) 1, 129, 135 2, 114, 125, 140 2, 114, 125, 140 2061 1992 1724 8.71 3
(3,4,5) 1, 129, 135 2, 114, 125, 140 1, 2, 29, 114, 125 2017 1950 1865 8.28 3
(3,5,5) 1, 129, 135 1, 2, 114, 125, 132 1, 2, 29, 114, 125 1977 2089 1814 8.48 3
(4,4,4) 2, 114, 125, 140 2, 114, 125, 140 1, 29, 129, 135 2234 1950 1678 7.57 3
(4,4,5) 2, 114, 125, 140 2, 114, 125, 140 1, 2, 29, 114, 125 2172 1892 1809 5.51 2
(4,5,5) 1, 2, 114, 125 1, 2, 114, 125, 132 1, 2, 29, 114, 125 2131 2031 1760 8.94 3
(5,5,5) 1, 2, 114, 125, 132 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2266 1979 1712 7.83 3

Table 3: NE for three firms with µ = 0.3 and µ = 0.4.

The location game has been solved for the illustrative example varying the number of
competing firms, the number of facilities to be located, and the transportation cost. The
same delivered costs have been taken for each firm. The results show that at equilibrium
the firms partially co-locate their facilities. In particular, when the firms locate the same
number of facilities, they locate all their facilities at the same municipalities in almost all
cases. In most of the equilibria, some of the locations are the most populated municipalities,
or municipalities close to them. For any fixed number of facilities of each firm, the same
NE is obtained for most of values of the transportation cost. For three firms, the profit of
each firm always decreases if the transportation cost increases. For two firms, it is shown
that the profit of one firm may even increase if the transportation costs of the two firms
increase. This is a surprising result which does not hold under Cournot competition if the
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µ = 0.5
fi X1 X2 X3 Π1(X) Π2(X) Π3(X) R. time It.

(2,2,2) 1, 129 78, 135 1, 129 2064 1757 1543 10.83 3
(2,2,3) 1, 129 1, 129 3, 125, 140 1944 1682 1791 6.67 2
(2,2,4) 1, 129 1, 129 2, 114, 125, 140 1848 1592 1993 6.47 2
(2,2,5) 1, 129 1, 129 1, 2, 29, 114, 125 1795 1543 2171 10.33 3
(2,3,3) 1, 129 1, 129, 135 3, 125, 140 1869 1968 1677 8.62 3
(2,3,4) 1, 129 1, 129, 135 2, 114, 125, 140 1772 1877 1878 8.27 3
(2,3,5) 1, 129 1, 129, 135 1, 2, 29, 114, 125 1719 1828 2056 8.79 3
(2,4,4) 1, 129 2, 114, 125, 140 2, 114, 125, 140 1719 2073 1800 9.02 3
(2,4,5) 1, 129 1, 2, 114, 125 1, 2, 29, 114, 125 1667 2023 1979 8.17 3
(2,5,5) 1, 129 1, 2, 29, 114, 125 1, 2, 29, 114, 125 1621 2193 1911 8.04 3
(3,3,3) 1, 129, 135 3, 125, 140 1, 129, 135 2136 1828 1602 11.27 3
(3,3,4) 1, 129, 135 1, 129, 135 2, 114, 125, 140 2039 1768 1776 5.56 2
(3,3,5) 1, 129, 135 1, 129, 135 1, 2, 29, 114, 125 1986 1720 1954 8.62 3
(3,4,4) 1, 129, 135 2, 114, 125, 140 2, 114, 125, 140 1986 1964 1698 8.60 3
(3,4,5) 1, 129, 135 1, 2, 114, 125 1, 2, 29, 114, 125 1933 1914 1877 8.37 3
(3,5,5) 1, 129, 135 1, 2, 29, 114, 125 1, 2, 29, 114, 125 1887 2084 1810 7.88 3
(4,4,4) 1, 29, 129, 135 1, 2, 114, 125 1, 2, 114, 125 2192 1914 1653 5.71 2
(4,4,5) 2, 114, 125, 140 1, 2, 114, 125 1, 2, 29, 114, 125 2117 1841 1807 9.02 3
(4,5,5) 1, 2, 114, 125 1, 2, 29, 114, 125 1, 2, 29, 114, 125 2071 2011 1741 5.11 2
(5,5,5) 1, 2, 114, 125, 132 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2232 1947 1682 7.68 3

µ = 0.6
fi X1 X2 X3 Π1(X) Π2(X) Π3(X) R. time It.

(2,2,2) 1, 129 1, 2 1, 125 2029 1763 1484 12.67 3
(2,2,3) 1, 129 1, 2 3, 125, 140 1869 1614 1803 11.84 4
(2,2,4) 1, 2 89, 135 2, 114, 125, 140 1870 1511 2069 11.55 4
(2,2,5) 1, 2 89, 135 1, 2, 29, 114, 125 1810 1455 2283 9.23 3
(2,3,3) 1, 129 1, 2, 135 3, 125, 140 1787 1948 1663 12.03 4
(2,3,4) 1, 129 1, 129, 135 2, 114, 125, 140 1671 1838 1892 8.39 3
(2,3,5) 1, 129 1, 129, 135 1, 2, 29, 114, 125 1611 1783 2106 7.64 3
(2,4,4) 1, 129 1, 2, 114, 125 1, 29, 129, 135 1611 2113 1799 7.93 3
(2,4,5) 1, 129 1, 2, 114, 125 1, 2, 29, 114, 125 1553 2013 2012 8.29 3
(2,5,5) 1, 129 1, 2, 29, 114, 125 1, 2, 29, 114, 125 1504 2211 1929 5.52 2
(3,3,3) 1, 129, 135 1, 2, 135 3, 125, 140 2090 1817 1541 14.36 5
(3,3,4) 1, 129, 135 1, 129, 135 2, 114, 125, 140 1973 1707 1769 13.72 5
(3,3,5) 1, 129, 135 1, 129, 135 1, 2, 29, 114, 125 1913 1652 1984 8.16 3
(3,4,4) 1, 129, 135 1, 2, 114, 125 1, 29, 129, 135 1913 1982 1677 8.30 3
(3,4,5) 1, 129, 135 1, 2, 114, 125 1, 2, 29, 114, 125 1854 1882 1889 7.82 3
(3,5,5) 1, 129, 135 1, 2, 29, 114, 125 1, 2, 29, 114, 125 1805 2080 1806 7.90 3
(4,4,4) 1, 2, 114, 125 1, 29, 129, 135 1, 2, 114, 125 2159 1886 1623 5.46 2
(4,4,5) 1, 2, 114, 125 1, 29, 129, 135 1, 2, 29, 114, 125 2110 1798 1806 5.75 2
(4,5,5) 1, 2, 114, 125 1, 2, 29, 114, 125 1, 2, 29, 114, 125 2016 1992 1724 5.30 2
(5,5,5) 1, 2, 114, 125, 132 1, 2, 114, 125, 132 1, 2, 114, 125, 132 2197 1915 1652 8.20 3

Table 4: NE for three firms with µ = 0.5 and µ = 0.6.

marginal delivered cost of one of the firms increases and the marginal delivered costs of its
competitors remain fixed.
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[29] Pelegŕın B., Suárez R. and Cano S.(2012), Isodistant Points in Competitive Network
Facility Location, TOP 20, 639-660.
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