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Abstract

We deal with the store location problem for an expanding retail chain in competition
with other retail chains that offer the same type of product. The aim of the expanding
retail chain is profit maximization, but counteracting the possible loss in profit of the
existing stores in the chain caused by the appearance of the new ones. In this paper we
compare two approaches, one based on a threshold distance and another based on a side
payment, to reduce the effect of cannibalization of existing stores under a delivered pric-
ing policy in a transportation network. It is proved that optimal store locations can be
found at the nodes of the network and an integer linear programming model is presented
to solve the store location problem for each approach. A study with data of Spanish
municipalities is presented where the percentage of profit increase after the expansion
and the percentage of cannibalized profit corresponding to the optimal solutions of the
two models are compared for different combinations of the threshold distance, the side
payment, and the number of new stores.

Keywords: Cannibalization, chain expansion, discrete optimization, location, retail-
ing.

1 Introduction

Store location is a strategic decision for a retail chain that competes competes with other
retail chains to provide the same type of product. For of stores with the same owner,
the objective of locating new stores is profit maximization of the entire chain. However,
this objective may be in conflict with the objective of a specific store in the chain if the
stores have different owners. This happens in the franchise industry, where a franchisor
is a legal entity that owns patens trademarks, operational methods, and suppliers, and it
allows others to take advantage of them under its auspices. A franchisee is someone who
owns and operates one store under a license agreement granted by the franchisor. The
franchisees usually pay the franchisor a fixed charge at the beginning of the agreement and
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then a royalty fee (for instance, 7% of gross sales or profit). The franchisor is interested in
maximizing the system total profit, while each franchisee aims to maximize its own profit
(see (see [6]). A similar situation occurs at retail level when an expanding chain locates new
stores which will compete with each other as well as with any existing store (see [2, 8]).

A store in a retail chain may lose sales if a new store in the chain is open in close
proximity to the existing one. This effect, known as cannibalization, was first considered in
franchise distribution systems (see [13, 23]) and it has been well studied in the marketing
literature when a new product is introduced to an existing product line (see for instance
[5, 17, 19]), but it has been almost ignored in the recent location literature. Most of the
proposed models study the store location problem from a multi-objective point of view. In
planar location space, market share maximization and cannibalization minimization have
been studied as a bi-objective problem for a single new store. The efficient frontier of
locations is determined for a gravity Huff model in [9]. GIS tools have also been used
to find efficient locations in [25, 26]. Cannibalization has been considered as a secondary
objective for the location of a single store in [10, 24], where the cannibalized demand is
minimized in the region of optimal locations with maximum demand of the entire chain. In
network location space, the multi-store location problem for an expanding chain was first
studied in [13] where profit of the new stores maximization and total profit of the expanding
chain maximization were considered as objectives, without concern for cannibalization. A
model with three objectives is proposed in [7] to design franchise outlet networks where
market share of the franchisor and franchisees are constrained by a threshold value and the
number of new outlets is maximized. A single-objective location model is proposed in [4]
where cannibalization is not explicitly present, but the cannibalized stores may increase its
demand due to market expansion as result of the entrance of new stores. The problem has
also been studied with the aim of profit maximization by considering cannibalization as a
cost when chains compete on delivered pricing ( see [20]) and when the customer demand is
estimated by Huff-like models (see [22]). Heuristics algorithms to find the Pareto front for
market share maximization and cannibalization minimization have recently been proposed
in [1].

The traditional method for dealing with cannibalization has been to impose territorial
restrictions in franchise systems. The most common restriction is to prohibit locating new
stores within a threshold distance from any existing store (see [14]). Thus, each franchisee is
given the exclusive territorial right to the full demand within the threshold distance. Such
a restriction has been replaced by a threshold market share constrain in [7]. A different way
to reduce cannibalization is to compensate the loss of profit of existing stores as result of
chain expansion by a side payment (see [20, 22]). The aim of this paper is to compare the
two approach to reduce cannibalization when the competing chains use a delivered pricing
policy in a transportation network. The contribution of the paper is as follows. It is proved
that optimal store locations can be found in a finite set of points if location is constrained
by a threshold distance. This makes possible to formulate a new integer linear programming
model for profit maximization of the expanding chain under the threshold distance constrain.
The increase in profit and the cannibalized profit corresponding to the optimal locations of
the new stores found by the proposed threshold distance model are compared with the ones
found by the model in which the cannibalized stores are compensated. A sensitivity analysis
with respect to the number of new stores, the threshold distance, and the side payment is
carried out by using an illustrative example with data from Spanish municipalities.

In Section 2, basic hypothesis and notation are given, the equilibrium prices are deter-
mined, and the location problem for the expanding chain is described. In Sections 3, a
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discretization result for the threshold distance model is proved and the problem is formu-
lated as an integer linear programming problem. In Sections 4, the side payment model
is formulated. In Section 5, the illustrative example is solved for different values of the
parameters by using the two models. Finally, some conclusions are given in Section 6.

2 The location-price problem

Let N = (V,E, l) be a network, with node set V = {vk : k = 1, ..., n} , edge set E =
{e : e = [vk, vj ]; vk, vj ∈ V }, and l(e) being the length of edge e. Distance between two
points a and b in the network is measured as the length of the shortest path linking the two
points and it will be denoted by d(a, b) (see [21]). There is a set M = {1, ...,m} of spatially
separated market areas, so that customers in market area k are assumed to be grouped at
node vk, k = 1, ...,m (see [11] for demand point aggregation). Note that the network may
contain some nodes on which no market is grouped, which occurs if there are some linking
nodes with no customers around. Customers demand a homogeneous product and they
are served from some existing stores. These stores are owned by different chains. Without
loss of generality we consider two competing chains: an expanding chain A, which wants to
locate new stores, and its competitors, which are named as chain B. The competitors are
supposed not to react by locating other new stores, but they can change their prices after
the expansion of chain A.

The two chains compete with delivered pricing, which means that each chain offers a price
in each market, pays for the transportation cost, and delivers the product to the customers.
Customers buy from the chain that offers the lowest price in the market they belong to. If
the two chains offer the same price, customers are indifferent to chain choosing. However,
the chain with the minimum marginal delivered cost (production +transportation) can offer
a lower price and get the customer demand. Thus, ties in price are broken in favour of the
chain with the minimum marginal delivered cost. We consider that the demand function
in each market may be different from the demand function in other markets. The marginal
delivered costs at each store is supposed to be independent of the amounts delivered from
the store. It is assumed that the chains use linear prices and cannot sell the product at a
price below their marginal delivered costs.

The location-price problem for chain A is as follows: The decision variables are the set
of locations for the new stores and the set of prices to be set in the market areas after the
expansion. The objective is profit maximization of the entire chain, but taken into account
the cannibalization effect of the existing stores due to the expansion.

The following notation is used:

Indices

k index of demand nodes, k = 1, . . . ,m.

i index of new store location candidates (when the set of location candidates
is finite)

Data
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M = {1, 2, ...,m} set of markets.
qk(p) demand function in market k in terms of price p.
SA set of locations for existing stores in chain A.
SB set of locations for existing stores in chain B.
L set of possible locations for the new stores.
r number of new stores to be located.
cx marginal production cost at location x.
txk marginal transportation cost from location x to market k.
Cxk = cx + txk marginal delivered cost (or minimum deli-

vered price) from location x to market k.
Decision variables

X set of locations for the new stores.
pk price set by the expanding chain in market k, k ∈ M , after the expansion.

Miscellaneous

d(x, k) distance between location x and demand point k.
Ck(S) = min {Csk : s ∈ S} minimum delivered cost from stores in S

to market k, S ⊂ {SA ∪ SB ∪ L}.
Notice that L, r, cx and txk refers to chain A (chain B does not locate any new store).

Ck(S) may refer to either chain A or chain B depending on which chain owns the stores in
S. Since each chain is supposed not to price below its marginal delivered cost, Ck(S) is the
minimum price to serve market k from the stores in S. Both marginal transportation cost
and marginal delivered cost can be different for chains A and B.

2.1 Price competition

Once the locations of the new stores are fixed, chains A and B will compete on price. In
this subsection, we summarize some of the results on equilibrium prices shown in a previous
paper [12]. Such results will be used to define the location problem for the new stores.
The profit a chain gets from market k , serving the full market at price p, is Πk(p) =
qk(p)(p−C), where C is the marginal delivered cost of the chain. Let qk(p) be a continuous
and strictly decreasing function of p ∈ [0, pmax

k ], where pmax
k is the maximum price that

customers in market k are willing to pay for the product. The monopoly price is defined
as the optimal solution to the problem: max{Πk(p) : C ≤ p ≤ pmax

k } if this problem has a
unique optimal solution. Such unique solution exists for a variety of demand functions (as
linear, quadratic, exponential, hyperbolic) for which Πk(p) is a quasi-concave function at p.
We assume that there exists a monopoly price and it is denoted by pmon

k (C).
In the long-term price competition the lowest price in any market k can only be offered

by the chain with the minimum marginal delivered cost. Let CA
k and CB

k denote the min-
imum marginal delivered cost from the stores in chains A and B, respectively, to market
k. In order to make competition effective in each market, we assume that the competing
chains are able to price below the maximum price, i.e. max {CA

k , C
B
k } < pmax

k .

i) If CA
k < CB

k , then chain A gets the full market k. The maximum profit of chain A in
market k is the optimal value of the following optimization problem:

max{Πk(p) = qk(p)(p− CA
k ) : C

A
k ≤ p ≤ CB

k },
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where p is the price offered by chain A. The optimal solution to the above problem is the
equilibrium price to be offered by chain A in market k and it is determined as follows:

p∗k(C
A
k ) =

{

pmon
k (CA

k ) if pmon
k (CA

k ) ≤ CB
k

CB
k if pmon

k (CA
k ) > CB

k

ii) If CA
k = CB

k , the process of price competition would lead to both chains will set the
same price in market k which will be equal to the minimum marginal delivered cost. Then
p∗k(C

A
k ) = CA

k and no positive profit is obtained from market k.
iii) If CA

k > CB
k , any price set by the chain in market k can be lowered by its competitors,

then this market will not be captured by the chain regardless of the offered price. In order
to minimize the profit that its competitors get from market k, the chain will set the price
p∗k(C

A
k ) = CA

k .
If the competing chains set their equilibrium prices, the profit obtained by the stores

in chain A can be determined as follows. Under quite general conditions, pmon
k (CA

k ) is a
continuous increasing function for CA

k ∈ [0, pmax
k ], and it is verified that CA

k < pmon
k (CA

k ).

Therefore, pmon
k (CA

k ) < CB
k if and only if CA

k < Ĉk for some value Ĉk. The value Ĉk is found

by solving the equation pmon
k (Ĉk) = CB

k once the monopoly price for the demand function
qk(p) is determined. The maximum profit in market k is then defined by the function
Πk(C

A
k ) = Πk(p

∗
k(C

A
k )), which is given by:

Πk(C
A
k ) =







Πk(p
mon
k (CA

k )) if CA
k < Ĉk

Πk(C
B
k ) if Ĉk ≤ CA

k < CB
k

0 if CB
k ≤ CA

k .

Therefore, the total profit obtained by the stores in chain A is:

ΠA =
n
∑

k=1

Πk(C
A
k )

2.2 The location problem

The location-price problem for the expanding chain can be reduced to a location problem
if the competing chains set the equilibrium prices. Due to the price competition process,
chain A gets a positive profit from the markets in which the minimum marginal delivered
cost from its stores is less than the marginal delivered cost of any competitor. The lower
the marginal delivered cost, the higher the profit obtained by the expanding chain. Then,
in order to maximize the profit of the entire chain, the product will be delivered from one
of the stores in chain A with the minimum marginal delivered cost.

Before the expansion, the set of profitable market areas captured by chain A is,

MA = {k ∈ M : Ck(SA) < Ck(SB)}.

Since it is assumed that the competing chains set the equilibrium prices and the minimum
delivered cost in market k is Ck(SA), the total profit of chain A before the expansion is:

ΠA =
∑

k∈MA

qk(p
∗
k(Ck(SA)))(p

∗
k(Ck(SA))− Ck(SA)).

After the expansion, the set of markets in which chain A increases its profit depends on
the location of the new stores. If X is the set of locations for the new stores in chain A, the
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chain will increase its profit in the following set of markets,

MX = {k ∈ M : Ck(X) < min{Ck(SA), Ck(SB)}}.

Then chain A obtains the same profit as the one obtained before the expansion from any
market k ∈ MA\MX , but it increases its profit in any market k ∈ MX . Since the minimum
delivered cost from the expanding chain to each one of these markets is known, the maximum
profit of the entire chain after the expansion is given by the following function:

ΠA(X) =
∑

k∈MA\MX

qk(p
∗
k(Ck(SA)))(p

∗
k(Ck(SA))− Ck(SA))

+
∑

k∈MX

qk(p
∗
k(Ck(X)))(p∗k(Ck(X))− Ck(X)).

Some of the profitable markets that were served by some existing stores in chain A before
the expansion will be served by the new stores after the expansion. Such markets are the
ones in the set MCan(X) = MA

⋂

MX . The existing stores which lose profit as a result of
the expansion are called cannibalized stores. The total profit lost by the cannibalized stores
is:

ΠCan(X) =
∑

k∈MCan(X)

qk(p
∗
k(Ck(SA)))(p

∗
k(Ck(SA))− Ck(SA)).

It is assumed that chain A obtains a portion of the profit obtained by each one of its
stores. Let γ be the amount of money obtained by chain A per unit of profit of the stores
in the chain, 0 < γ < 1. Then the location problem for the expanding chain is how to se-
lect the set X with the aim of maximizing γΠA(X), but avoiding that ΠCan(X) will be high.

In the following we study the two mentioned approach to deal with the location problem.

3 The threshold distance model

Let us consider that the owner of chain A and the owners of existing stores in chain A agree
the new stores cannot be located to a distance from any existing store less than a given
threshold distance. This agreement is based on the fact that the cannibalization effect can
be smaller by locating the new stores far from the existing stores in chain A. Then the set
of location candidates is reduced to:

LD = {x ∈ L : d(x, j) ≥ D, ∀j ∈ SA}

where D is the threshold distance.
The distance function d(x, j) with x in any given edge [u, v] is piece linear concave for

any j ∈ SA, which implies that the function d(x, SA) = min{d(x, j) : j ∈ SA} with x ∈ [u, v]
is also piece linear concave. Let TD = {x ∈ E : d(x, SA) = D}. Then the set of feasible
locations in [u, v] for the new stores is the segment [u, v] = [u, v] ∩ LD, where u = u or
u ∈ TD and v = v or v ∈ TD (see Fig. 1).

Then the aim of chain A is profit maximization taking into account such agreement,
which implies to solve the following network optimization problem:

(PD) : max{γΠA(X) : |X| = r,X ⊂ LD}

If L = V ∪ E, the following property is verified.
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Figure 1: Distance functions and points in TD

Property 1 If Cxk is concave when x varies in any edge, then an optimal solution to
problem (PD) can be found in V ∪ TD.

Proof: The objective function of problem (PD) can be expressed as:

γΠA(X) = γ

n
∑

k=1

Πk(Ck(SA ∪X)).

Let X = {x1, x2, .., xr} ⊂ LD , where all locations in the X are fixed, with the exception of
one location xi for some given index i. Let xi vary in some edge [u, v]. As Ckxi

is a concave
function at xi in [u, v] and Ck(SA ∪X) = min{Ck(SA), Ck(X \ xi), Ckxi

}, then Ck(SA ∪X)
is also a concave function at xi in [u, v] if the points in X \ xi are fixed. In [12] it is shown
that Πk(Ck) is a convex decreasing function at Ck ≥ 0. From the theorem of composition of
convex functions (see [3]) it is obtained that Πk(Ck(SA ∪X)) is convex at xi in [u, v]. Since
a linear combination of convex functions with positive coefficients is also convex, it follows
that the profit function γΠA(X) is convex at xi in [u, v] if the points in X \ xi are fixed.

Due to the convexity property of γΠA(X) at xi, for any xi ∈ [u, v] it is verified that:

γΠA(X)) ≤ γmax{ΠA({X \ xi} ∪ u),ΠA({X \ xi} ∪ v)}.

Therefore, replacing each point xi in X, where xi is in some edge [u, v], by one of the
points u or v (the one with the maximum value of the objective function), we will obtain a
set X̂ ⊂ V ∪ TD such that γΠA(X) ≤ γΠA(X̂).Therefore, an optimal solution to problem
(PD) can be found in V ∪ TD. �

Note that for each edge [u, v] there are at most two points in [u, v] ∩ TD, then the set
V ∪TD contains at most 2|E| points. Then optimal locations to problem (PD) can be found
by searching in a finite set of points on the network, if the marginal delivered cost is concave
along any edge. For the motivation of the concavity assumption the reader is referred to
[15, 16]. In the following we show that problem (PD) can be solved as an integer linear
programming problem when the set of location candidates is finite.

Integer linear programming formulation

For a fixed set X of store locations, the total profit obtained by the stores in chain A is
given by,

ΠA(X) = ΠA +ΠNew(X)−ΠCan(X),
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where ΠNew(X) is the profit obtained by the new stores. Then maximizing the function
γΠA(X), taking into account the threshold distance constraint, is equivalent to the following
maximization problem :

max{ΠNew(X)−ΠCan(X) : |X| = r,X ⊂ LD}.

The set of markets MA captured by chain A before the expansion can be split into the
subsets:

M1
A = {k ∈ MA : pmon

k (Ck(SA)) < Ck(SB)}

M2
A = {k ∈ MA : pmon

k (Ck(SA)) ≥ Ck(SB)}

The set of location candidates at which a new store can price below the price set by the
existing stores in market k is:

Lk
D = {i ∈ LD : Cik < min{Ck(SA), Ck(SB)}}

The set of markets which can be captured by the new stores after the expansion is:

M∗ = {k ∈ M : Lk
D 6= ∅}

The set Lk
D can be split into the subsets:

Lk1
D = {i ∈ Lk

D : pmon
k (Cik) < Ck(SB)}

Lk2
D = {i ∈ Lk

D : pmon
k (Cik) ≥ Ck(SB)}

The following variables are considered:

xi =

{

1 if a new store is located in i

0 otherwise
i ∈ LD

yik =

{

1 if market k is served from i

0 otherwise
k ∈ M∗, i ∈ Lk

D

zk =

{

1 if market k is captured
0 otherwise

k ∈ M∗

Then problem (PD) can be formulated as:

Maximize
∑

k∈M∗

∑

i∈Lk1

D

qk(p
mon
k (Cik))(p

mon
k (Cik)− Cik)yik

+
∑

k∈M∗\M1

A

∑

i∈Lk2

D

qk(C
B
k )(CB

k − Cik)yik

−
∑

k∈M∗∩M1

A

qk(p
mon
k (Ck(SA)))(p

mon
k (Ck(SA))− Ck(SA))

∑

i∈Lk

D

yik

−
∑

k∈M∗∩M2

A

qk(C
B
k )(CB

k − Ck(SA))
∑

i∈Lk

D

yik
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subject to :
∑

i∈Lk

D

yik ≤ 1, k ∈ M∗ (1)

yik ≤ xi, k ∈ M∗, i ∈ Lk
D (2)

∑

i∈LD
xi = r (3)

∑

i∈Lk

D

xi ≤ rzk k ∈ M∗ (4)

∑

i∈Lk

D

yik ≥ zk k ∈ M∗ (5)

xi, yik, zk ∈ {0, 1} k ∈ M∗, i ∈ Lk
D (6)

.

The objective function evaluates the increment in profit of the entire chain after the
expansion, which is given by the profit obtained of the new stores minus the cannibalized
profit from the existing stores. Constraints (1) mean that each market k ∈ M∗ can be
served from at most one of the new stores (the store with the minimum marginal delivered
cost in the optimal solution). Constraints (2) imply that a variable yik may be positive only
if a store is located at i. Constraint (3) represents the number of new stores to be located.
Constraints (4) and (5) guarantee that k will be served by a new store if xi = 1, i ∈ Lk.
Finally, constraints (6) mean that all variables are constrained to be binary.

4 The side payment model

An alternative to the threshold distance agreement is that chain A compensates those stores
that could be cannibalized as consequence of the expansion. The agreement here is that
chain A will pay an amount δ of money to any cannibalized store per unit of lost profit. As
γ is the portion of profit that the chain obtains from the stores, it is reasonable to assume
that 0 < δ ≤ 1− γ.

Since chain A is interested in maximizing its profit, the best set of new store locations,
taking into account the new agreement, is the optimal solution to the following optimization
problem:

(Pγδ) : max{γΠA(X)− δΠCan(X) : |X| = r,X ⊂ L}.

As ΠA(X) = ΠA+ΠNew(X)−ΠCan(X), maximizing the function γΠA(X)− δΠCan(X)
is equivalent to maximizing the function γΠNew(X)− (γ + δ)ΠCan(X).

Integer linear programming formulation

If the set of location candidates is finite, then the previous problem can be formulated
as an integer linear programming problem as follows: The set of markets MA captured by
chain A before the expansion is split into the subsets:

M1
A = {k ∈ MA : pmon

k (Ck(SA)) < Ck(SB)}

M2
A = {k ∈ MA : pmon

k (Ck(SA)) ≥ Ck(SB)}

The set of location candidates at which a new store can price below the price set by the
existing stores in market k is:

Lk = {i ∈ L : Cik < min{Ck(SA), Ck(SB)}}
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The set of markets which can be captured by the new stores after the expansion is:

M∗ = {k ∈ M : Lk 6= ∅}

The set Lk can be split into the subsets:

Lk1 = {i ∈ Lk : pmon
k (Cik) < Ck(SB)}

Lk2 = {i ∈ Lk : pmon
k (Cik) ≥ Ck(SB)}

The following variables are considered:

xi =

{

1 if a new store is located in i

0 otherwise
i ∈ L

yik =

{

1 if market k is served from i

0 otherwise
k ∈ M∗, i ∈ Lk

zk =

{

1 if market k is captured
0 otherwise

k ∈ M∗

Then problem (Pγδ) is equivalent to:

Maximize γ
∑

k∈M∗

∑

i∈Lk1 qk(p
mon
k (Cik))(p

mon
k (Cik)− Cik)yik

+γ
∑

k∈M∗\M1

A

∑

i∈Lk2 qk(C
B
k )(CB

k − Cik)yik

−(γ + δ)
∑

k∈M∗∩M1

A

qk(p
mon
k (Ck(SA)))(p

mon
k (Ck(SA))− Ck(SA))

∑

i∈Lk yik

−(γ + δ)
∑

k∈M∗∩M2

A

qk(C
B
k )(CB

k − Ck(SA))
∑

i∈Lk yik

subject to :
∑

i∈Lk
yik ≤ 1, k ∈ M∗ (1)

yik ≤ xi, k ∈ M∗, i ∈ Lk (2)

∑

i∈L xi = r (3)

∑

i∈Lk xi ≤ rzk k ∈ M∗ (4)

∑

i∈Lk yik ≥ zk k ∈ M∗ (5)

xi, yik, zk ∈ {0, 1} k ∈ M∗, i ∈ Lk (6)

.

Observe that the objective function is the increment in profit of the owner of chain A

after the expansion. The constraints are the same as in the threshold distance model if LD

is replaced by L.
Notice that it is possible that only markets within the threshold distance are com-

pensated (as the others may be too far away). Such markets are the ones in the set
MD

A = {k ∈ MA : d(k, SA) = min{d(k, i) : i ∈ SA} ≤ D}. Then, M∗ ∩M1
A and M∗ ∩M2

A

should be replaced by MD
A ∩M∗ ∩M1

A and MD
A ∩M∗ ∩M2

A, respectively, in the objective
function.
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5 Comparison between the two models

The locations obtained by the threshold distance (TD) model are suitable if the increase in
profit is high and cannibalization is small when the new stores are located at such locations.
We wonder how big the threshold distance D should be taken to get suitable locations. The
locations obtained by the side payment (SP) model are suitable if the increase in profit is
high and δ is close to 1− γ. We wonder if the increase in profit obtained with the SP model
can be higher than, or equal to, the increase in profit obtained with the TD model when
δ = 1− γ. In such a case, the SP model would be preferred to the TD model.

Let XD denote a set of optimal locations to problem (PD). The percentage of profit
increase of the owner of chain A after the expansion when the new stores are located in XD

is given by:

△ΠA(XD) =
ΠNew(XD)−ΠCan(XD)

ΠA
× 100

and the percentage of cannibalized profit is:

△ΠCan(XD) =
ΠCan(XD)

ΠA
× 100

Observe that neither the optimal solution nor the percentages depend on the γ value.
Let Xγ denote a set of optimal locations to problem (Pγ,δ) for δ = 1−γ. The percentage

of profit increase of the owner of chain A after the expansion when the new stores are located
in Xγ is given by:

△ΠA(Xγ) =
γΠNew(Xγ)−ΠCan(Xγ))

γΠA
× 100

the percentage of cannibalized profit:

△ΠCan(Xγ) =
ΠCan(Xγ)

ΠA
× 100

In the following we use an illustrative example to compare those percentages for different
values of the number of new stores, the threshold distance and the side payment. We will
remark the values of D and γ for which △ΠA(Xγ) > △ΠA(XD).

An illustrative example

We consider the transportation network in Spain where municipalities over 10,000 in-
habitants are taken as markets. These municipalities have been numbered from 1 to 615 in
decreasing population size, thus M = {1, 2, ..., 615} (see Fig. 2). The location candidates
are municipalities over 20,000 inhabitants, L = {1, 2, ..., 314} (see Fig. 3). The competing
stores are located at municipalities (the nodes of the Spanish transportation network). Let
us assume that there are two existing stores in chain A, being SA = {42, 114}, and five
existing stores in chain B, being SB = {74, 76, 120, 122, 309} (see Fig. 4). The popula-
tion size and geographical coordinates of the Spanish municipalities have been taken from
the web: https://www.businessintelligence.info/varios/longitud-latitud-pueblos-espana.html.
Distances d(i, k) between any pair of municipalities i and k have been approximated by
using the Harversine formula, which measure the distance between two geographical points
from their longitudes and latitudes [18].

We have used the following data:
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Figure 2: Demand points

Figure 3: Location candidatess

Figure 4: Stores in chain A: ♦. Stores in chain B: △

Demand function
The maximum price to be paid for the product is 700 euros. Since the greater size of

municipality, the greater demand of the product, we have taken the following linear demand
function at each municipality k:

qk(p) = mk −
mk

700
p , 0 ≤ p ≤ 700
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where mk is proportional to the population at municipality k,

mk =
1

1000
× size of municipality k.

Marginal production cost
The marginal production cost may be supposed not to be decreasing in the size of the

population. The higher value of mi for each municipality i, the higher or equal cost ci.
Thus, we have taken the following values for ci:

mi 1000 ≤ mi 600 < mi ≤ 1000 300 < mi ≤ 600

ci 200 180 160

mi 100 < mi ≤ 300 50 ≤ mi ≤ 100
ci 140 120

Marginal delivered cost
For simplicity, the marginal transportation cost tik is taken equals to the distance d(i, k)

between municipalities i and k. Thus, the marginal delivered cost from location i to munic-
ipality k is:

Cik = ci + d(i, k)

We have selected a wide range of values for the parameters D, γ and r, in order to cover
a variety of possible cases. The greater value of D, the smaller candidates for locating the
new stores with the threshold distance model. Since the maximum price is 700, with the
previous data, if there is a store at municipality i where the marginal production cost is
200, the store could only serve markets to a distance from i less than 500 km. There are a
great number of municipalities within a distance of 500 km. from any municipality. Then
we have taken a maximum value of 500 km. for the threshold distance. The profit obtained
by chain A from its stores ranges from 10% to 90%. The maximum number of new stores to
be located by chain A is 5, which is the number of existing stores of chain B. The parameter
δ is taken as 1 − γ in all cases, which means that cannibalism is fully compensated. The
following values have been taken as parameters:

- Threshold value : D = 0, 100, 200, 300, 400 500

- Unit profit : γ = 0.1 , 0.2 , 0.3 ,......, 0.8 , 0.9

- Number of new stores : r = 1 , 2 , ...., 5

The following problems have been solved by using the optimizer [27]:

- Threshold distance (TD) model : 30 problems
r = 1, ..., 5
D = 0 , 100 , 200 , 300 , 400 , 500

- Side payment (SP) model : 45 problems
r = 1, ..., 5
γ =0.1 , 0.2 , ...., 0.9

The percentage of profit increase of the owner of chain A and the percentage of cannibal-
ized profit, corresponding to the optimal solutions of the two models, are shown in Figures
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Figure 5: Percentages of profit increase and cannibalization for r = 1

Figure 6: Percentages of profit increase and cannibalization for r = 2

5 to 9. The tables in the figures show the combinations of γ and D values for which the
percentage of profit increase obtained for the optimal solution of the SP model is greater
than the percentage of profit increase obtained for the optimal solution of the TD model.

For the TD model, both the percentage of profit increase and the percentage of cannibal-
ized profit are decreasing as long as the threshold distance increases. The rate of decrease in
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Figure 7: Percentages of profit increase and cannibalization for r = 3

Figure 8: Percentages of profit increase and cannibalization for r = 4

both percentages is higher as long as the number of new stores increases. It is observed that
the greater the number of stores, the greater the percentage of profit increase. However, the
percentage of cannibalized profit remain almost the same when the number of new stores is
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Figure 9: Percentages of profit increase and cannibalization for r = 5

greater than 1, being almost constant and very low for D ≥ 300. For the SP model, both
the percentage of profit increase and the percentage of cannibalized profit are increasing as
long as the amount of money γ obtained by chain A per unit of profit increases. The rate of
increase in both percentages is similar as long as the number of new stores increases. The
percentage of profit increase grows with the number of new stores while the percentage of
cannibalized profit remain almost the same with the exception of a few values of γ in the
interval [0.5, 0.7]. Notice that the percentage of cannibalized profit is low only for γ ≤ 0.4.

If we compare the results obtained by the two models, the percentage of profit increase
with the SP model is greater than the percentage of profit increase with the TD model for a
wide range of values of D and γ. The greater value of D, the smaller value of γ is required
to hold the previous statement. In such cases, cannibalization with the TD model is low
while cannibalization with the SP model is often high. The values of D and γ, for which the
percentages of profit increase obtained with the two models are similar, are shown in Table
1. Notice that D is the same for r = 2, .., 5, but γ decreases as long as r increases. The run
times to generate the optimal locations corresponding to the mentioned values of D and γ

are also shown in Table 1. For each value of r, run times with the two models to solve the
other proposed problems were similar to the ones shown in Table 1. On average, run times
with the TD model were seven times smaller than run times with the SP model. Thus, both
models are able to find optimal locations in a few seconds. It is expected that problems of
greater size than the ones solved in this paper can be solved in reasonable time and with
the TD model is expected to solve problems of greater size than with the SP model.

In all solved problems, the software FICO Xpress Mosel 64 bits v3.10.0 for Linux has
been used on a computer with a processor Intel Core i7-6700 3.40 GHz x 8, RAM 8GB, and
OS Linux Ubuntu 15.10 64 bits.

Page 16 of 19IMA Journal of Management Mathematics



17

r D ∆ΠA(XD) Run time (sec) γ ∆ΠA(Xγ) Run time (sec)

1 200 32.20 4.585 0.6 31.01 17.839

2 300 61.17 1.662 0.6 59.91 13.120

3 300 81.24 2.062 0.5 78.98 18.081

4 300 91.87 2.060 0.2 92.41 13.542

5 300 101.09 2.367 0.2 101.94 13.456

Table 1: Similar percentages of profit increase for the two models.

6 Conclusions

We have analyzed the location problem of new stores for an expanding chain which competes
with other chains under delivered pricing. The aim of the expanding chain is profit max-
imization, but taking into account the cannibalization effect. Two approaches have been
considered to reduce this effect, one based on a threshold distance and another based on a
side payment. If the location space is a transportation network, it is proved that optimal
locations can be found in a finite set of points when the threshold distance is used. Then the
store location problem is formulated as an integer linear programming model. This model
is compared with the corresponding side payment model by using an illustrative example
with data from Spanish municipalities. The percentages of profit increase and cannibalized
profit corresponding to the optimal locations of the two models are compared. The results
obtained for any fixed number of new stores are quite similar. Both percentages are decreas-
ing in D, being the percentage of cannibalization very low for high values of the threshold
distance, D ≥ 300. Both percentages are increasing in γ, being the percentage of cannibal-
ization very low for values of the unit profit not excessively high, γ ≤ 0.5. Therefore, the
two models could be used to reduce the cannibalization effect with appropriated values of
D and γ.

The choice of the model for locating new stores will depend on each particular case and
it will require of a deep study. The main advantage of the SP model is that the cannibalized
stores are compensated. As the expanding chain have to pay some money to the cannibalized
stores, it could be expected that profit increase with the SP model will be lower than profit
increase with the TD model. However, the example shows that the percentage of profit
increase obtained with the SP model can be higher than the percentage of profit increase
obtained with the TD model. This interesting result occurs for high values of D and γ. In
such cases, the SP model is preferred to the TD model. If the percentages of profit increase
obtained by the two models are similar, which occurs in the example for some values of D
and γ, the SP model is also preferred to the TD model due to the compensation. Otherwise,
the TD model could be preferred to the SP model, which happens if the threshold distance
is small and the unit profit obtained by the expanding chain from its stores is low.

Both models can be used by managers to estimate profit increase and cannibalization
for an expanding chain under delivered pricing competition. The results obtained could be
used to make decisions on the type of agreement in franchise systems or in chains where the
owner of a new store is different from the owner of the chain. On the other hand, depending
on the agreement, the TD model, the SP model, or a mix of these two models, could be
of help in decision making on store location. A line for future research is to consider a
minimum profit constraint to locate a new store.
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Agency of Science and Technology of the Region of Murcia) under the research project
19241/PI/14.

References
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