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Abstract
New	monitoring	programs	are	often	designed	with	some	form	of	temporal	replication	
to	deal	with	imperfect	detection	by	means	of	occupancy	models.	However,	classical	
bird	census	data	from	earlier	times	often	lack	temporal	replication,	precluding	detec‐
tion‐corrected	inferences	about	occupancy.	Historical	data	have	a	key	role	in	many	
ecological	studies	intended	to	document	range	shifts,	and	so	need	to	be	made	com‐
parable	with	present‐day	data	by	accounting	for	detection	probability.	We	analyze	a	
classical	bird	census	conducted	in	the	region	of	Murcia	(SE	Spain)	in	1991	and	1992	
and	propose	a	solution	to	estimating	detection	probability	 for	such	historical	data	
when	 used	 in	 a	 community	 occupancy	 model:	 the	 spatial	 replication	 of	 subplots	
nested	within	larger	plots	allows	estimation	of	detection	probability.	In	our	study,	the	
basic	sample	units	were	1‐km	transects,	which	were	considered	spatial	replicates	in	
two	aggregation	schemes.	We	fit	two	Bayesian	multispecies	occupancy	models,	one	
for	each	aggregation	scheme,	and	evaluated	the	linear	and	quadratic	effect	of	forest	
cover	 and	 temperature,	 and	 a	 linear	 effect	 of	 precipitation	 on	 species	 occupancy	
probabilities.	Using	spatial	rather	than	temporal	replicates	allowed	us	to	obtain	indi‐
vidual	species	occupancy	probabilities	and	species	richness	accounting	for	imperfect	
detection.	Species‐specific	occupancy	and	community	size	decreased	with	increas‐
ing	annual	mean	temperature.	Both	aggregation	schemes	yielded	estimates	of	occu‐
pancy	and	detectability	that	were	highly	correlated	for	each	species,	so	in	the	design	
of	future	surveys	ecological	reasons	and	cost‐effective	sampling	designs	should	be	
considered	to	select	the	most	suitable	aggregation	scheme.	In	conclusion,	the	use	of	
spatial	replication	may	often	allow	historical	survey	data	to	be	applied	formally	hier‐
archical	occupancy	models	and	be	compared	with	modern‐day	data	of	the	species	
community	to	analyze	global	change	process.
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1  | INTRODUC TION

Historical	 occurrence	 data	 represent	 a	 common,	 but	 underused	
and	 valuable	 source	 of	 data	 that	 can	 provide	 novel	 insights	 into	
how	the	natural	world	has	changed	over	human	life	spans	(Tingley	
&	Beissinger,	2009).	One	of	the	most	relevant	uses	to	which	these	
sources	can	be	put	is	to	forecast	species	distribution	by	comparison	
with	past	climate	conditions	(Millar	&	Woolfenden,	1999).	However,	
due	to	the	complex	and	variable	nature	of	past	occurrence	data	(mu‐
seum	collections,	field	notes,	etc.),	a	flexible	framework	for	analysis	
is	needed.	Indeed,	direct	comparison	of	old,	historic,	and	present‐day	
data	may	be	complicated	or	even	impossible	if	the	survey	method‐
ology	has	changed	or	if	any	other	factor	that	may	influence	detec‐
tion	probability	differently	affects	old	and	the	new	data	(Tingley	&	
Beissinger,	 2009).	 Some	 of	 the	 methodological	 issues	 involved	 in	
using	historical	data	(e.g.,	limited	historic	sampling	or	the	inability	to	
control	for	changes	in	detectability	between	sampling	periods)	can	
now	be	 explicitly	 accounted	 for	 through	occupancy	modeling	 and	
related	quantitative	 techniques	 (Kéry	&	Royle,	2016;	Moritz	et	al.,	
2008).

Occupancy	 models	 provide	 estimates	 of	 occurrence	 probabil‐
ity	 for	 species	 that	 are	 corrected	 for	 imperfect	 detection	 (Bailey,	
MacKenzie,	&	Nichols,	2014;	MacKenzie	et	al.,	2006).	These	models	
enable	us	to	rigorously	evaluate	the	effects	of	environmental	vari‐
ables	 on	 occupancy	 probability,	 mapping	 species	 range	 dynamics	
(Kéry,	Guillera‐Arroita,	&	Lahoz‐Monfort,	2013;	Santika,	McAlpine,	
Lunney,	Wilson,	&	Rhodes,	2014),	 study	 the	 interactions	between	
species	 (Michel,	 Jiménez‐Franco,	Naef‐Daenzer,	&	Grüebler,	2016;	
Yackulic	 et	 al.,	 2014)	 and	 evaluate	 the	 effects	 of	 climate	 change	
(Clement,	Hines,	Nichols,	Pardieck,	&	Ziolkowski,	2016).	Multispecies	
occupancy	models	 are	 a	more	 complex	 framework,	 aimed	 at	 esti‐
mating	total	community	richness	 (Dorazio	&	Royle,	2005;	Dorazio,	
Royle,	Söderström,	&	Glimskär,	2006;	Kéry	&	Royle,	2008)	and	few	
studies	 have	 evaluated	 the	 effects	 of	 different	 habitats	 (Zipkin,	
DeWan,	&	Royle,	2009)	and	range	shift	over	two	different	periods	
(Moritz	et	al.,	2008;	Tingley	&	Beissinger,	2013).	The	fundamental	
idea	 behind	 the	multispecies	modeling	 approach	 is	 that	 collective	
community	data	can	inform	the	occurrence	probabilities	for	all	ob‐
served	 species,	 even	 those	 that	 are	 rare	 or	 elusive,	 and	 allow	 for	
occurrence	estimation	of	 species	 that	were	never	observed	 in	 the	
sample	plots	(Zipkin	et	al.,	2009).	Thus,	a	multispecies	approach	can	
provide	more	precise	estimates	of	species	richness,	while	accounting	
for	variation	in	occurrence	and	detection	among	species,	which	is	a	
useful	tool	to	inform	which	species	respond	in	a	comparable	manner	
to	habitat	changes	(Russell	et	al.,	2009).	Moreover,	in	order	to	sep‐
arately	estimate	occupancy	and	detection	probability,	it	is	typically	
necessary	to	have	replicated	observations	from	at	least	some	of	the	
sites	 considered	 in	 a	 study	 (MacKenzie	 et	 al.,	 2002,	 2006).	 There	
are	 several	 ways	 to	 collect	 information	 about	 species	 detectabil‐
ity:	temporal	replicates,	records	collected	by	multiple	 independent	
observers,	 multiple	 independent	 detection	 methods	 or	 by	 spatial	
subsampling	of	a	site	 (MacKenzie	&	Royle,	2005).	Most	studies	so	
far	 have	 used	 temporal	 replicates	 at	 a	 site,	 that	 is,	 multiple	 visits	

(MacKenzie	&	Royle,	2005),	for	example,	within	one	breeding	season	
(León‐Ortega,	Jiménez‐Franco,	Martínez,	&	Calvo,	2017).	However,	
spatial	 replicates	 at	 a	 given	 site	may	 be	 a	more	 efficient	 protocol	
for	large	areas	(Karanth	et	al.,	2011),	or	when	there	are	budget	con‐
straints	 (Martínez‐Martí,	 Jiménez‐Franco,	Royle,	Palazón,	&	Calvo,	
2016).	Spatial	replicates	are	defined	as	surveyed	points	or	transects	
that	are	nested	in	what	is	considered	a	site,	such	as	a	grid	cell.	Such	
nested	subsamples	have	great	potential	for	mapping	species	distri‐
butions	using	occupancy	modeling	over	large	areas	(Srivathsa,	Puri,	
Kumar,	 Jathanna,	 &	 Karanth,	 2018).	 The	 use	 of	 spatial	 replication	
in	occupancy	modeling	assumes	that	the	species	of	interest	have	a	
nonzero	probability	of	occurring	in	each	spatial	replicate,	given	that	
they	occur	somewhere	in	the	larger	grid	cell,	that	is,	spatial	closure,	
and	uniform	availability	of	the	species	for	detection	(Charbonnel	et	
al.,	2014;	Hines	et	al.,	2010;	Kendall	&	White,	2009).	This	typically	
means	 that	 individuals	may	move	widely	within	 the	 latter	 or	 that	
there	is	suitable	habitat	for	each	within	the	area	of	every	spatial	rep‐
licate.	The	topic	of	spatial	subsampling	has	recently	received	grow‐
ing	attention,	so	studies	have	analyzed	and	compared	spatial	versus	
temporal	replicates	(Charbonnel	et	al.,	2014),	as	well	as	the	compar‐
ison	among	different	data	sources	in	the	same	system	(Srivathsa	et	
al.,	2018).

Documenting	 range	 shifts	 is	 an	 integral	 part	 of	 understanding	
how	 species	 and	 communities	 have	 responded	 to	 past	 environ‐
mental	 change,	 and	occupancy	models	 require	 the	 same	 sampling	
design	 in	 the	 old	 and	 the	 new	period	 if	 valuable	 comparisons	 are	
to	 be	 made.	 Few	 studies	 have	 used	 historical	 data	 in	 occupancy	
models	(Eaton,	Hughes,	Hines,	&	Nichols,	2014;	Moritz	et	al.,	2008;	
Tingley	&	Beissinger,	 2013),	 probably	 due	 to	 the	 lack	 of	 temporal	
replicates	in	the	historical	surveys,	which	precludes	the	estimation	
of	 detectability.	When	 there	 are	 no	 temporal	 replicates,	 it	 is	 use‐
ful	 to	 consider	 spatial	 subsampling	 of	 a	 site	 to	 obtain	 information	
about	detection	probability	at	a	scale	 larger	 than	the	fundamental	
survey	unit.	For	example,	the	North	American	Breeding	Bird	Survey	
(Robbins,	Bystrack,	&	Geissler,	1986)	consists	of	 roadside	surveys,	
each	composed	of	50‐point	counts	spaced	at	800‐m	intervals.	Such	
surveys	could	be	used	to	evaluate	occupancy	by	partitioning	each	
site	 (survey	route)	 into	spatial	subunits	 (detection/nondetection	of	
species	at	single	stops	or	pooled	across	groups	of	stops;	Kendall	&	
White,	2009).	Sadoti,	Zuckerberg,	Jarzyna,	and	Porter	(2013)	aggre‐
gated	basic	atlas	survey	quadrats	into	"sites"	containing	two	to	four	
contiguous	quadrats,	each	quadrat	serving	as	a	spatial	replicate	for	
the	analysis	of	occupancy	and	detection	at	site	level.

In	this	study,	we	use	a	historical	data	set	from	an	avian	commu‐
nity	composed	of	1‐km	transects	surveyed	in	1991	and	1992.	These	
transects	 are	 grouped	as	 spatial	 replicates	nested	within	 a	 site	 so	
that	it	is	possible	to	fit	occupancy	models	to	correct	our	inferences	
on	species	distributions	 for	 imperfect	detection.	An	 important	as‐
pect	for	aggregating	the	original	survey	units	(such	us	points	or	tran‐
sects)	is	the	definition	of	the	site.	Although	a	patch	of	homogeneous	
habitat	could	be	considered	the	most	appropriate	way	of	defining	a	
site,	grouping	spatial	replicates	in	a	grid	cell	is	quite	useful,	since	en‐
vironmental	data	are	typically	available	in	grid	cells	covering	entire	
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geographical	areas,	for	example,	from	GIS	databases	(MacKenzie	&	
Royle,	2005),	which	allows	mapping	the	distribution	of	every	species	
in	the	community	(Budic,	Didenko,	&	Dormann,	2016).	Another	im‐
portant	aspect	is	the	selection	of	the	size	of	a	site,	which	varies	in	
occupancy	studies	in	relation	to	home	range	sizes	(Efford	&	Dawson,	
2012),	and	has	 implication	 in	species	distribution	models	 (Yackulic	
&	Ginsberg,	 2016).	 The	 concept	 of	 plot	 size	 for	 the	 design	 of	 oc‐
cupancy	 studies	 in	 continuous	habitat	 is	 itself	 somewhat	 complex	
(Efford	&	Dawson,	2012).	The	properties	of	the	variable	occupancy	
differ	greatly	when	plots	are	very	large	or	very	small	relative	to	home	
range	size.	On	the	one	hand,	MacKenzie	and	Royle	(2005)	stated	that	
“For	a	species	with	relatively	large	home	ranges	compared	with	the	
size	of	the	sampling	units,	the	proportion	of	area	used	over	a	longer	
timeframe	may	be	close	to	100%	even	though	population	size	is	very	
small.”	On	the	other	hand,	plots	smaller	 than	a	home	range	would	
violate	the	assumption	of	closure	(i.e.,	constant	occupancy)	between	
replicate	 samples.	 According	 to	 Charbonnel	 et	 al.	 (2014),	 spatial	
scale	of	the	sampling	sites	must	be	the	same	as	the	home	range	of	
the	species	(or	as	close	to	it	as	possible).	Therefore,	special	attention	
should	be	paid	 in	community	models,	where	different	species	may	
have	different	sizes	of	home	ranges.	Nevertheless,	plot	size	is	usually	
seen	as	a	design	variable	under	the	control	of	the	investigator	(Efford	
&	Dawson,	2012).

Environmental	data	from	the	WorldClim	database	have	small	spa‐
tial	 resolution	 (30‐s	 latitude/longitude,	 i.e.,	 0.93	×	0.93	=	0.86	km2 
at	the	equator),	so	it	is	possible	to	resample	for	different	sizes,	de‐
pending	on	the	study	species,	the	dimensions	of	the	study	area,	and	
the	specific	aspects	of	the	spatial	subsampling	of	a	site;	for	example,	
length	or	distribution	of	 transects	 in	a	 study	area	 (Lipsey,	Naugle,	
Nowak,	&	Lukacs,	2017).	Based	on	our	sample	dataset	of	1‐km	tran‐
sects,	 the	 spatial	 resolution	of	30	s	 is	 too	 small	 to	grouping	 these	
spatial	replicates,	so	the	double	and	triple	of	this	spatial	resolution	
of	30	s	may	be	aggregation	schemes	with	the	finest	potential	spatial	
scales	for	the	size	of	the	site	(hereafter,	aggregation	schemes	AS2x2	
and	AS3x3).

To	 make	 an	 informed	 choice	 for	 the	 design	 of	 a	 modern‐day	
bird	 survey,	we	 fit	 community	occupancy	models	 to	our	historical	
data	considering	1‐km	transects	as	spatial	replicates	that	are	nested	
within	of	 larger	sites	defined	as	grid	cells.	The	aims	are	as	follows:	
(a)	to	fit	a	community	occupancy	model	to	a	classical	bird	survey;	(b)	
to	 compare	 the	 relative	 independency	of	estimates	of	 species	de‐
tectability	 and	occupancy	between	 two	aggregation	 schemes	 cor‐
responding	to	two	different	cell	site	resolutions	of	potential	use	in	
our	study	area	(AS2x2	and	AS3x3);	 (c)	to	evaluate	the	influence	of	
environmental	 variables	 (forest	 cover,	 temperature,	 and	 precipita‐
tion)	on	the	occurrence	of	each	member	in	the	avian	community.	We	
hypothesized	 that	a	higher	percentage	of	 forest	cover	may	have	a	
positive	influence	on	occupancy	probability	for	the	bird	community	
(Gil‐Tena,	Saura,	&	Brotons,	2007;	Zipkin,	Royle,	Dawson,	&	Bates,	
2010).	 Regarding	 weather	 conditions,	 sites	 with	 a	 higher	 average	
temperature	and	a	lower	average	precipitation	could	decrease	bird	
occupancy	 due	 to	 climate	 constrains	 in	 Mediterranean	 semiarid	
areas	(Garrido,	Palenzuela,	Bañón,	&	García,	2015;	Zuckerberg	et	al.,	

2011).	This	study	emphasizes	the	importance	of	grouping	historical	
field	surveys	data	within	a	site,	in	order	to	use	methods	that	prop‐
erly	account	for	imperfect	species	detection.	Moreover,	we	focus	on	
evaluating	the	effects	of	environmental	and	climatic	variables	on	oc‐
cupancy	of	bird	species	in	a	Mediterranean	region	of	varying	climate	
sensitivity	(Garrido	et	al.,	2015).

2  | MATERIAL S AND METHODS

2.1 | Study area and species

This	 study	was	developed	 in	 the	 region	of	Murcia	 (SE	Spain)	with	
an	area	of	11,317	km2	and	a	semiarid	Mediterranean	climate,	where	
during	 the	 last	 five	 decades	 (1961–2014),	 the	 annual	 temperature	
has	been	16.7°C,	with	a	tendency	to	increase	by	0.135°C	per	decade	
(Garrido	et	al.,	2015).	The	annual	precipitation	 for	 this	period	was	
310	mm/year	on	average,	with	a	wide	degree	of	variation.	A	clear	
tendency	 related	 to	climate	change	 is	 the	decrease	 in	 the	number	
of	days	with	snow	in	the	coldest	part	of	the	study	area	(NW),	falling	
from	20	(at	the	end	of	the	1960s)	to	10	days	(in	the	2010s;	Garrido	
et	al.,	2015).	The	wide	climatic	gradient	in	the	study	area	means	that	
it	harbors	several	 types	of	ecosystem	that	conform	to	an	ecotone	
between	the	Mediterranean	and	arid	subtropical:	semi‐desert	areas,	
Mediterranean	scrub,	and	coniferous	forest	(Esteve	et	al.,	2015).	In	
compliance	 with	 the	 European	 Birds	 and	 Habitats	 Directives,	 22	
Special	Protection	Areas	for	birds	have	been	designated	 in	the	re‐
gion	(Abellán,	Martínez,	Palazón,	Esteve,	&	Calvo,	2011).	As	a	result	
of	the	climatic	gradient	and	the	different	ecosystems,	the	bird	com‐
munity	is	diverse,	with	a	total	of	339	bird	species	cataloged	from	24	
orders	and	69	families	(Calvo	et	al.,	2017).

This	 study	 focuses	 on	 bird	 species	 inhabiting	 Mediterranean	
forest	ecosystems	 in	 the	 region	of	Murcia	 (Figure	1).	These	 forest	
areas	 are	 dominated	 by	 one	 tree	 species,	 the	 Aleppo	 pine	 (Pinus 
halepensis),	 a	 conifer	 that	may	 reach	up	 to	22	m	 in	Mediterranean	
areas	(Mitsopoulos	&	Dimitrakopoulos,	2014),	having	opened	areas	
comprised	of	Mediterranean	scrubs.	A	total	of	73	avian	species	were	
recorded	 (Supporting	 Information	 Table	 S1),	 being	 most	 of	 them	
passerines,	and	the	most	representative	families	Sylviidae,	Turdidae,	
Fringillidae,	and	Paridae.	These	four	families	encompass	more	than	
a	third	of	the	forest	bird	community	(31	species),	being	indicative	of	
different	status	of	forest	maturity	and	including	representatives	of	
relevant	trophic	and	functional	guilds	 (granivores,	 frugivores,	seed	
dispersers,	etc.),	as	well	as	of	different	zoogeographical	origins,	for	
example,	 boreal	 versus	Mediterranean	 species	 (Blondel,	 Aronson,	
Bodiou,	&	Boeuf,	2010).

2.2 | Study sampling: forestry plan

Between	1991	and	1992,	an	intensive	monitoring	program	was	con‐
ducted	as	part	of	a	forestry	plan	in	all	the	region	of	Murcia	with	the	
aim	of	 characterizing	breeding	bird	 communities	 as	 a	basis	 for	 as‐
sessing	 the	 state	of	 the	 region	 forest	heritage	 (Esteve,	1991).	The	
classical	surveys	consist	of	377	1‐km	transects	covering	the	whole	



828  |     JIMÉNEZ‐FRANCO Et Al.

study	area	and	distributed	randomly	in	forested	areas	(Figure	2a,b)	
during	the	reproductive	period	(May	to	July;	Hernández	&	Barberá,	
1997).	Each	transect	was	conducted	by	walking	and	recording	the	
number	of	each	species	detected	(by	sight	or	song),	giving	a	total	of	
73	forest	bird	species	recorded	(Supporting	Information	Table	S1).

2.3 | Data resampling and environmental covariates

We	 nested	 the	 377	 1‐km	 transects,	 considering	 them	 as	 spatial	
observations	 replicated	within	 the	 site,	which	 are	 necessary	 for	
estimating	 detection	 probability.	 Sites	 are	 defined	 as	 grid	 cells	
that	 together	 cover	 the	 whole	 study	 area.	 This	 composition	 of	
sites	along	with	environmental	covariates	is	useful	for	estimating	
site‐level	occupancy	 (Sadoti	et	al.,	2013).	Since	the	resolution	of	
the	cells	 (sampling	unit	of	 the	site)	might	vary	depending	on	 the	
spatial	 scale	 and	 species	 being	 studied,	 two	 potential	 aggrega‐
tion	 schemes	were	 chosen,	 with	 different	 grid	 cell	 sizes,	 an	 ag‐
gregation	scheme	with	a	grid	size	of	60	×	60	and	90	×	90	s,	(AS2x2	
and	 AS3x3,	 respectively).	 Based	 on	 the	 species	 of	 bird	 commu‐
nity	(most	of	them	passerines	with	small	home	ranges;	Rechetelo,	
Grice,	Reside,	Hardesty,	&	Moloney,	2016),	both	sizes	of	grid	cell	

may	be	suitable	for	evaluating	the	effects	of	environmental	covari‐
ates	on	bird	species	occupancy	at	regional	scale	(Kéry	et	al.,	2013;	
Lipsey	et	al.,	2017).	The	aggregation	scheme	AS2x2	grouped	from	
1	to	5	transects	per	site,	giving	a	total	of	246	cell	sites	with	ob‐
servations	(Figure	2a,c).	The	aggregation	scheme	AS3x3	grouped	
from	1	to	7	transects	per	site,	giving	a	total	of	185	cell	sites	with	
data	in	the	region	of	Murcia	(Figure	2b,d).

The	 percentage	 of	 forest	 cover	 (FOREST)	was	 estimated	 from	
the	CORINE	Land	Cover	1990	map	(http://centrodedescargas.cnig.
es),	 using	 data	 from	 0%	 to	 100%	 (mean	=	28.51%).	 Climate	 vari‐
ables	 were	 the	 annual	 mean	 temperature	 (TEMP)	 and	 the	 annual	
precipitation	 (PREC)	 obtained	 from	 the	 average	 monthly	 climate	
data	 of	 temperature	 and	 precipitation	 for	 the	 period	 1960–1990,	
which	were	downloaded	from	the	global	dataset	WorldClim	version	
1.4	 (Hijmans,	Cameron,	 Parra,	 Jones,	&	 Jarvis,	 2005;	 http://www.
worldclim.org/version1).	The	annual	mean	temperature	ranged	from	
10.9°C	to	18.3°C	and	from	10.72°C	to	18.13°C	for	AS2x2	and	AS3x3,	
respectively.	The	annual	precipitation	ranged	from	275	to	580	mm	
and	from	274.1	to	596.0	mm	for	AS2x2	and	AS3x3,	respectively.	GIS	
analyses	were	carried	out	with	the	raster	package	(Hijmans,	2016)	in	
R	3.3.2	(R	Core	Team,	2016).

F I G U R E  1  Nine	representative	bird	species	of	the	study	area.	From	left	to	right,	and	top	to	bottom:	Carduelis carduelis,	Sylvia undata,	
Parus major,	Turdus viscivorus,	Sylvia melanocephala,	Emberiza cia,	Lophophanes cristatus,	Aegithalos caudatus,	and	Loxia curvirostra.	Photograph	
credit:	Carlos	González	Revelles

http://centrodedescargas.cnig.es
http://centrodedescargas.cnig.es
http://www.worldclim.org/version1
http://www.worldclim.org/version1
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2.4 | Hierarchical models for communities

Two	Bayesian	multispecies	occupancy	models	 (Dorazio	&	Royle,	
2005;	 Dorazio	 et	 al.,	 2006),	 one	 for	 each	 cell	 site	 aggregation	
scheme	(AS2x2	and	AS3x3)	were	fitted.	These	models	are	an	ex‐
tension	of	the	single	species	site	occupancy	model	(MacKenzie	et	
al.,	2002),	whereby	the	hierarchical	structure	combines	commu‐
nity	and	species‐level	attributes	within	a	single	analytical	frame‐
work.	 The	 hierarchical	 models	 are	 composed	 of	 the	 ecological	
process	 (governed	 by	 occupancy	 probability)	 and	 the	 observa‐
tional	 process	 (governed	 by	 detectability	 probability).	 Data	 are	
compiled	as	a	2	×	2	matrix	Ysum	with	i	rows	by	k	columns,	corre‐
sponding	to	sites	and	species,	respectively.	The	number	of	spatial	
replicates	 j	 for	 each	 site	 i	where	 the	 species	 k	was	 observed	 is	
quantified	 in	 the	matrix	 Ysum.	 The	 ecological	 process	 assumes	
that	 site‐specific	 occupancy	 (i.e.,	 “true”	 presence/absence)	 for	
species	k	=	1,	2,…,	N	at	site	i = 1,	2,…,	Nsite,	denoted	z(i,k),	where	
z(i,k)	=	1	 if	 species	 k	 occurs	 in	 site	 i	 and	 is	 zero	 otherwise.	 The	
model	for	occurrence	is	specified	as	z(i,k)	~	Bern(ψ i,k)	where	(ψ i,k)	
is	 the	probability	 that	species	k	occurs	at	site	 i.	The	true	occur‐
rence	is	imperfectly	observed,	and	we	define	the	detection	model	
for	species	k	at	site	i	in	replicate	j	as	Ysum(i,k)	~	Binomial(pik·z(i,k)
),	where	pi,k	 is	 the	 detection	 probability	 of	 species	k for	 the	 jth	

spatial	replicate	at	site	i,	given	that	species	k	is	in	fact	present	at	
site	 i	 (Zipkin	 et	 al.,	 2009).	 In	 the	 simplest	 specification	 of	 the	
model,	the	occurrence	and	detection	probabilities	are	composed	
of	 species‐specific	 effects	 and	 site‐level	 effects	 (Dorazio	 et	 al.,	
2006;	Kéry	&	Royle,	2016).	Extensions	of	 this	basic	model	have	
explicitly	 incorporated	 landscape	characteristics	 into	the	proba‐
bility	 of	 occupancy	 (Kéry	 &	 Royle,	 2009,	 2016;	 Kéry,	 Royle,	 &	
Schmid,	 2008;	 Zipkin	 et	 al.,	 2009).	We	 followed	 this	 approach,	
and	modeled	the	occurrence	probability	for	species	k	at	site	i	by	
incorporating	 site‐specific	 habitat	 characteristics	 and	 environ‐
mental	covariates.	Linear	and	quadratic	effects	of	percentage	for‐
est	 covariate	 and	 temperature	 were	 included.	 The	 model	 also	
included	a	linear	effect	of	precipitation	for	each	site.	All	habitat	
variables	were	standardized.	Therefore,	we	defined	the	probabil‐
ity	of	occupancy	as	follows:

logit
(

�i,k

)

∼Normal
(

�lpsi,i,k ,�
2
lpsi,i,k

)

,

�lpsi,i,k=delta0k+delta1k ⋅FORESTi+delta2k ⋅FOREST
2

i
+delta3k ⋅TEMPi

+delta4k ⋅TEMP
2

i
+delta5k ⋅PRECi.

F I G U R E  2  Distribution	of	1‐km	bird	transects	conducted	in	Mediterranean	forest	areas	in	the	study	area	(region	of	Murcia,	SE	Spain),	
considering	two	different	grid	sizes:	(a)	aggregation	scheme	AS2x2	(60‐s	latitude/longitude)	and	(b)	aggregation	scheme	AS3x3	(90‐s	
latitude/longitude).	Cross	symbols	represent	the	mean	positions	for	the	377	transects,	which	were	grouped	as	spatial	replicates	considering	
two	different	aggregation	schemes	for	sites:	(c)	246	sites	for	AS2x2;	(d)	185	sites	for	AS3x3
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The	 inverse‐logit	 of	 delta0k	 is	 the	 occurrence	 probability	 for	
species	k	at	a	site	with	“average”	habitat	characteristics.	The	coef‐
ficients	from	delta1k	to	delta5k	are	the	effects	of	the	percentage	of	
forest	cover	(linear	and	squared),	the	annual	mean	temperature	(lin‐
ear	and	squared),	and	the	annual	precipitation,	for	species	k,	respec‐
tively.	We	assumed	 that	 detection	probabilities	 varied	depending	
on	the	species	but	were	not	 influenced	by	survey	characteristics:	
logit(pk)∼Normal(�(lp,k),�

2
(lp,k)

).	Moreover,	 we	 have	 not	modeled	 the	
influence	 of	 temporal	 effects	 (e.g.,	 Julian	 date)	 on	 detectability	
since	 it	has	a	more	 relevant	 interest	 in	 temporal	 replicates	 rather	
than	spatial	replicates	(Kéry	et	al.,	2013;	Zipkin	et	al.,	2010).	As	ob‐
servations	were	sparse	for	many	species	in	the	sample,	estimating	
all	 of	 these	parameters	would	not	have	been	possible	 if	 the	data	
were	analyzed	on	a	species‐by‐species	basis.	Therefore,	we	added	
an	additional	hierarchical	component	of	the	model	by	assuming	that	
the	species‐level	parameters	were	random	effects,	each	governed	
by	community‐level	“hyper‐parameters”.	For	example,	a	community	
response	 (mean	 across	 species)	 for	 a	 site	 and	 standard	 deviation	
(among	 species)	 were	 estimated,	 so	 that	 the	 hyper‐parameters	
are	simply	the	mean	and	variance	for	each	covariate,	as	measured	
across	 species	 (Kéry	 &	 Royle,	 2016).	 The	 two	 models	 for	 each	
aggregation	 scheme	 (AS2x2	 and	 AS3x3)	 were	 fitted	 using	 JAGS	
(Plummer,	2003),	run	in	R	3.3.2	(R	Core	Team,	2016)	with	the	pack‐
age	jagsUI	(Kellner,	2015),	using	uninformative	priors,	three	chains,	
15,000	iterations,	and	a	burn‐in	of	5,000	iterations	and	a	thin	rate	
of	2	(see	R	and	JAGS	code	in	Supporting	Information	Appendix	S1).	
Convergence	was	assessed	by	examining	the	Rhat	values	for	each	
parameter	estimate	(Brooks	&	Gelman,	1998).	We	present	posterior	
means	and	standard	deviations	for	point	estimates	and	the	Bayesian	
analog	to	a	standard	error.

2.5 | Model comparisons

In	each	aggregation	scheme	(AS2x2	and	AS3x3),	we	evaluated	the	
estimates	of	detectability	and	occupancy	 for	each	species,	as	well	
as	 the	estimates	of	 regression	coefficients	 for	predictor	 variables.	
A	linear	correlation	was	performed	among	species	estimates	of	de‐
tectability	and	occupancy,	comparing	both	aggregation	schemes.

3  | RESULTS

A	total	of	377	spatial	transects	were	grouped	for	each	aggregation	
scheme	 (AS2x2	and	AS3x3)	 into	246	and	185	sites,	 respectively	

(Table	1,	Figure	2).	The	distribution	of	spatial	transects	varied	be‐
tween	both	aggregation	schemes	based	on	the	dimensions	of	cell	
sites	(Supporting	Information	Figure	S1).	A	total	of	73	species	were	
observed	for	both	aggregation	schemes,	with	a	mean	of	observed	
species	 richness	 per	 cell	 site	 of	 approximately	 15	 and	 17	 spe‐
cies	 for	AS2x2	and	AS3x3,	 respectively	 (Supporting	 Information	
Figure	S2).	The	estimated	community	size	 for	each	sampling	site	
was	27.73	±	3.88	and	29.35	±	4.13	species	for	AS2x2	and	AS3x3,	
respectively	 (Nsite =	246,	 Supporting	 Information	 Table	 S2;	
Nsite =	185,	Supporting	Information	Table	S3).	The	estimated	rich‐
ness	 for	 each	 site	 is	 shown	 in	 Supporting	 Information	Tables	 S2	
and	S3.	The	estimates	of	occupancy	for	the	whole	community	(lpsi 
mean)	are	0.39	and	0.41	for	AS2x2	and	AS3x3,	respectively,	and	
the	mean	of	detection	probability	(lp	mean)	was	0.40	and	0.35	for	
AS2x2	and	AS3x3,	respectively	(Supporting	Information	Tables	S2	
and	S3).

The	 result	 of	 community	 occupancy	 models	 for	 each	 spe‐
cies‐specific	 shows	 the	 estimates	 of	 detectability	 and	 oc‐
cupancy;	 as	 can	 be	 seen	 they	 vary	 greatly	 among	 species	 for	
both	aggregation	schemes	 (Supporting	 Information	Figure	S3).	
Whereas	 Serinus serinus	 is	 the	 species	with	 the	 highest	mean	
p	 and	 psi	 in	 both	 aggregation	 schemes,	 the	 species	 with	 the	
lowest	 probability	 of	 occupancy	was	Alauda arvensis	 and	with	
the	 lowest	 probability	 of	 detection	Motacilla alba	 for	 AS2x2	
and	 Phylloscopus collybita	 for	 AS3x3	 (Supporting	 Information	
Table	S4).	The	estimates	of	detection	and	occupancy	probabil‐
ity	 for	each	avian	species	comparing	 the	aggregation	schemes	
are	 shown	 in	 Figure	 3,	 where	 both	 estimates	 are	 closely	 cor‐
related	between	the	two	aggregation	schemes	(r	=	0.929	for	p; 
r	=	0.969	for	Psi).

To	evaluate	environmental	 effects	on	 the	bird	 community,	 the	
estimates	 of	 community	 occupancy	 in	 relation	 to	 the	 percentage	
of	 forest	cover,	 the	annual	mean	temperature,	and	annual	precipi‐
tation	are	shown	 in	Figure	4	 for	each	aggregation	scheme:	AS2x2	
(Figure	4a‐c)	and	AS3x3	(Figure	4d‐f).	As	can	be	seen,	the	effects	of	
the	forest	cover	and	environmental	covariates	have	similar	tenden‐
cies	 between	 schemes;	 Supporting	 Information	 Figure	 S4	 depicts	
the	 tendencies	 for	each	species.	The	mean	of	species	 richness	 for	
each	cell	site	is	shown	along	the	gradient	of	the	environmental	co‐
variates	for	all	sites	(Figure	5).	The	estimate	is	slightly	higher	for	the	
aggregation	scheme	with	the	greater	cell	site	size	(AS3x3),	especially	
in	cell	sites	with	extreme	environmental	gradients—high	percentage	
of	forest	cover	and	annual	precipitation,	and	low	annual	mean	tem‐
perature	(Figure	5a–c).

TA B L E  1  Distribution	of	1‐km	bird	transects	in	the	study	area	(region	of	Murcia,	SE	Spain)	grouped	as	spatial	replicates	considering	two	
different	grid	sizes	of	60	and	90	s	latitude/longitude	(aggregation	schemes	AS2x2	and	AS3x3,	respectively)

Aggregation schemes

N. transects per site

Total of sites
Total of 
transects1 2 3 4 5 6 7

AS2x2 148 71 22 4 1 0 0 246 377

AS3x3 83 50 24 22 3 2 1 185 377
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4  | DISCUSSION

This	study	offers	a	new	look	at	the	use	of	historical	data	by	means	of	
considering	them	as	spatial	replicates	that	are	nested	within	a	site,	
and	develops	community	occupancy	models.	This	approach	can	be	
extrapolated	to	other	species	and	areas,	where	valuable	data	from	
historical	 bird	 surveys	 can	 be	 used	 (Tingley	 &	 Beissinger,	 2009).	
Classical	bird	surveys	were	designed	previously	to	the	development	
of	 hierarchical	 occupancy	models	 (MacKenzie	 et	 al.,	 2006),	 so	we	

grouped	 these	 transects	 into	 larger	 cells	 to	 serve	 as	 spatial	 repli‐
cates	for	a	site	defined	in	this	way.	This	framework	allows	commu‐
nity	occupancy	models	 to	be	 fitted,	providing	 individual	estimates	
for	 occupancy	 and	 species	 richness	 and	 accounting	 for	 imperfect	
detection	in	classical	monitoring	programs.	Moreover,	the	effects	of	
habitat	covariates	on	the	estimated	parameters	must	be	considered	
to	study	the	environmental	 response	of	bird	communities	 (Tingley	
&	Beissinger,	2009;	Zipkin	et	al.,	2009).	To	the	best	of	our	knowl‐
edge,	 this	 is	 the	 first	 study	 that	 specifically	was	able	 to	make	use	

F I G U R E  3  Mean	of	estimates	of	(a)	occupancy	probability	Psi	and	(b)	detection	probability	p	for	bird	species	under	the	two	aggregation	
schemes	AS2x2	and	AS3x3	(x	and	y	axes,	respectively)

F I G U R E  4  Community	response	of	bird	species	occupancy	probability	to	forest	cover,	temperature	and	precipitation	for	the	aggregation	
schemes	AS2x2	(a–c)	and	AS3x3	(d–f).	Gray	lines	show	95%	CI	of	the	community	mean
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of	historical	data	by	means	of	 spatial	 replicates	 to	make	 inference	
about	 a	 large	 community	 of	 birds	 and	 their	 habitat	 associations.	
Future	studies	will	hopefully	“rediscover”	historical	occurrence	data	
and	elucidate	on	how	communities,	populations,	 and	species	have	
shifted	over	temporal	scales	(Tingley	&	Beissinger,	2009).	 It	 is	also	
important	to	consider	that	the	ecological	system	must	be	combined	
with	a	good	understanding	of	the	statistical	principles	behind	sam‐
pling	in	order	to	improve	the	value	of	monitoring	programs	(Karanth	
et	al.,	2011).	Furthermore,	the	effectiveness	of	related	management	
actions	is	especially	relevant	in	the	context	of	ecology	and	conser‐
vation,	 fields	where	 resources	 are	 often	 fairly	 limited,	 and	 can	be	
increased	by	applying	spatial	replicates	in	sample	fields	involved	in	
monitoring	species	at	large	landscape	scales	(Martínez‐Martí	et	al.,	
2016;	 Srivathsa	 et	 al.,	 2018).	 It	 is	 also	 important	 to	 highlight	 that	
in	order	 to	compare	 the	 range	shift	 from	historical	data	and	com‐
pare	occupancy	and	detectability	among	years,	we	should	consider	
the	 field	 design	 established,	 so	 future	 surveys	 will	 be	 conducted	
following	 similar	 protocol	 of	 the	 first	 (Yackulic	&	Ginsberg,	 2016).	
Moreover,	in	order	to	establish	probabilities	of	extinction	and	colo‐
nization	without	 bias,	 it	would	 be	 necessary	 to	 use	 the	 same	 size	
of	 aggregation	 scheme	by	 including	 surveys	 in	 the	 same	 cell	 sites	
for	the	following	period	(Peach,	Cohen,	&	Frair,	2017;	Sadoti	et	al.,	
2013).	Moreover,	 the	mixture	of	spatial	and	temporal	replicates	to	
estimate	detection	may	also	induce	bias,	so	this	bias	can	be	removed	
by	choosing	sampling	locations	with	replacement,	or	 if	the	species	
is	highly	mobile	over	a	short	period	of	time	(Kendall	&	White,	2009).

During	 the	 development	 of	 this	 new	 design,	 the	 question	
emerged	concerning	the	potential	size	of	grid	for	aggregating	spa‐
tial	transects	in	a	cell	site.	As	we	stated	in	the	introduction	section,	
the	 finest	 cell	 site	 resolution	may	 be	 of	 30	×	30	s	 (i.e.,	 0.86	km2),	
so	we	generate	two	potential	aggregation	schemes	of	60	×	60	and	
90	×	90	s	(AS2x2	and	AS3x3).	The	results	for	models	using	the	ag‐
gregation	 schemes	 AS2x2	 and	 AS3x3	 showed	 that	 estimates	 of	
occupancy	and	detectability	were	highly	correlated	between	both	
aggregation	schemes.	Therefore,	we	consider	that	both	aggregation	
schemes	are	equally	useful	to	develop	this	hierarchical	framework	
in	 the	 future	bird	 surveys.	 In	other	words,	 and	 following	our	pre‐
vious	hypothesis,	our	results	show	relative	independence	between	

the	two	sizes	of	cell	sites	proposed.	Therefore,	ecological	 reasons	
and	 cost‐effective	 sampling	 designs	 should	 be	 considered	 to	 se‐
lect	 the	 more	 suitable	 aggregation	 scheme	 in	 the	 future	 studies.	
Nevertheless,	models	with	data	augmentation	could	be	more	pre‐
cise	 for	 estimating	 community	 size	 (Zipkin	 et	 al.,	 2009),	 although	
this	was	not	the	aim	of	this	study.	Our	study	design	will	allow	us	to	
implement	 a	 dynamic	 framework,	 by	 comparing	past	 bird	 surveys	
with	 modern	 surveys	 designed	 for	 the	 same	 conditions	 and	 also	
estimating	 parameters	 that	 govern	 change	 in	 species	 presence/
absence,	 for	 example,	 probabilities	 of	 extinction	 and	 colonization	
(Dorazio,	Kéry,	Royle,	&	Plattner,	2010;	MacKenzie,	Nichols,	Hines,	
Knutson,	&	Franklin,	2003).	This	application	is	relevant	for	Breeding	
Bird	Atlas	Projects	 (Peach	et	 al.,	 2017).	Another	 recent	 extension	
developed	 for	 community	 occupancy	 models	 is	 the	 extension	 of	
hierarchical	 models	 to	 multi‐scale	 habitat	 selection	 (Lipsey	 et	 al.,	
2017)	 and	across	multiple	 regions	of	 interest	 (e.g.,	 reserves	or	bi‐
omes;	Sutherland,	Brambilla,	Pedrini,	&	Tenan,	2016),	allowing	the	
estimation	of	region‐specific	community	size.

Another	 relevant	 property	 of	 community	 occupancy	 models	 is	
that	 they	allow	occupancy	probability	 to	be	obtained	 in	 relation	 to	
environmental	 covariates	 and	 to	 analyze	 climate	 change	 effects	
(Clement	et	al.,	2016).	Our	results	show	that	a	higher	percentage	of	
forest	cover	reduces	slightly	the	mean	occupancy	of	bird	communi‐
ties.	Moreover,	 when	 environmental	 covariates	 (annual	 mean	 tem‐
perature	and	annual	precipitation)	 increase,	the	mean	occupancy	of	
bird	species	is	reduced	drastically	for	both	aggregation	schemes.	This	
result	does	not	agree	with	a	previous	study	of	Tayleur	et	al.	 (2015),	
where	Swedish	birds	are	tracking	by	temperature	but	not	by	rainfall.	
It	 is	probably	due	to	the	different	climate	conditions	between	both	
avian	communities.	These	aspects	need	to	be	borne	in	mind	in	light	of	
the	changing	meteorological	conditions	in	SE	Spain	at	nowadays,	since	
it	is	an	ideal	area	to	study	climate	change	effects	and	bird	distribution	
in	 semiarid	 ecosystems	 (Esteve	 et	 al.,	 2015).	 Therefore,	 this	 study	
could	be	considered	as	a	pilot	study	before	evaluating	climate	change	
effects	 in	 southeastern	 Spain	 through	 the	development	of	modern	
bird	 surveys.	 This	 application	 of	 community	 occupancy	 models	 to	
evaluate	climate	change	effects	has	been	explored	recently	(Tingley	
&	Beissinger,	2013),	although	spatial	replicates	have	only	been	used	

F I G U R E  5  Relationships	between	the	number	of	bird	species	(community	size,	Nsite)	and	the	covariates	of	each	sampled	site:	(a)	forest	
cover,	(b)	temperature,	and	(c)	precipitation.	Each	point	represents	the	richness	of	each	cell	site	surveyed	(n = 246	and	n = 185	for	the	
aggregation	schemes	AS2x2	and	AS3x3,	respectively).	Lines	represent	splines	smooth.	Comparison	of	aggregation	schemes	shown	in	
different	colors:	AS2x2	(black)	and	AS3x3	(green,	yellow,	and	blue	for	the	percentage	of	forest	cover,	annual	mean	temperature,	and	annual	
precipitation,	respectively).	Note	slight	offset	of	color	points	in	the	x	direction	for	the	aggregation	scheme	AS3x3
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in	one	mammal	study	(Moritz	et	al.,	2008).	Studies	about	community‐
level	 responses	 to	 environmental	 variations	 have	 been	 developed	
along	with	new	statistical	tools	(Kéry	&	Royle,	2016)	which	allow	the	
estimate	of	nondetected	species	through	data	augmentation	(Dorazio	
et	al.,	2006),	estimates	of	abundance	(Yamaura	et	al.,	2016),	the	de‐
velopment	of	community	dynamic	models	(Dorazio	et	al.,	2010),	and	
even	the	combination	of	trait	data	with	phylogenetic	data	(taxonomy	
identity;	Ovaskainen	et	al.,	2017).	In	this	line,	future	research	should	
focus	on	developing	 these	mechanistic	 tools	 for	 the	 study	of	 com‐
munity	species,	optimizing	sampling	effort,	and	allowing	managers	to	
obtain	valuable	ecological	information	on	wildlife	species.
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