
Tebis: Index Shipping for Efficient Replication in LSM
Key-Value Stores

Michalis Vardoulakis∗
Institute of Computer Science, FORTH, Heraklion, Greece

mvard@ics.forth.gr

Giorgos Saloustros
Institute of Computer Science, FORTH, Heraklion, Greece

gesalous@ics.forth.gr

Pilar González-Férez
Dept. of Computer Engineering, Univ. of Murcia, Spain

pilargf@um.es

Angelos Bilas∗
Institute of Computer Science, FORTH, Heraklion Greece

bilas@ics.forth.gr

Abstract
Key-value (KV) stores based on LSM tree have become a
foundational layer in the storage stack of datacenters and
cloud services. Current approaches for achieving reliability
and availability favor reducing network traffic and send to
replicas only new KV pairs. As a result, they perform costly
compactions to reorganize data in both the primary and
backup nodes, which increases device I/O traffic and CPU
overhead, and eventually hurts overall system performance.
In this paper we describe Tebis, an efficient LSM-based KV
store that reduces I/O amplification and CPU overhead for
maintaining the replica index. We use a primary-backup
replication scheme that performs compactions only on the
primary nodes and sends pre-built indexes to backup nodes,
avoiding all compactions in backup nodes. Our approach
includes an efficient mechanism to deal with pointer transla-
tion across nodes in the pre-built region index. Our results
show that Tebis reduces pressure on backup nodes compared
to performing full compactions: Throughput is increased
by 1.1 − 1.48×, CPU efficiency is increased by 1.06 − 1.54×,
and I/O amplification is reduced by 1.13 − 1.81×, without
increasing server to server network traffic excessively (by
up to 1.09 − 1.82×).

CCSConcepts: • Information systems→Key-value stores;
B-trees; Flash memory; • Networks → Network design
principles.

∗Alsowith theDepartment of Computer Science, University of Crete, Greece.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9162-7/22/04. . . $15.00
https://doi.org/10.1145/3492321.3519572

Keywords: Key Value stores, LSM tree, B+ tree, Flash, RDMA

ACM Reference Format:
Michalis Vardoulakis, Giorgos Saloustros, Pilar González-Férez,
and Angelos Bilas. 2022. Tebis: Index Shipping for Efficient Repli-
cation in LSM Key-Value Stores. In Seventeenth European Confer-
ence on Computer Systems (EuroSys ’22), April 5–8, 2022, RENNES,
France.ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3492321.3519572

1 Introduction
Key-value (KV) stores are the heart of modern datacenter
storage stacks [2, 11, 13, 27, 30]. These systems typically
use an LSM tree [32] index structure because it achieves: 1)
fast data ingestion capability for small and variable size data
items while maintaining good read and scan performance,
and 2) low space overhead on the storage devices [14]. How-
ever, LSM-based KV stores suffer from high compaction costs
for reorganizing themulti-level index [29, 34], including both
I/O amplification and CPU overhead.

To provide reliability and availability, state-of-the-art KV
stores [11, 27] replicate KV pairs in multiple, typically two or
three [7], nodes. Current designs [11, 27, 37] perform costly
compactions to reorganize data in the primary and backup
nodes to ensure: (a) minimal network traffic by moving only
user data across nodes and (b) sequential device accesses by
performing only large I/Os. However, this approach comes at
a significant increase in read I/O traffic, CPU utilization, and
memory use at the backups. Given that all nodes function
both as primaries and backups at the same time, eventually
this approach hurts overall system performance.

In our work, we rely on two observations: 1) The increased
use of RDMA in the datacenter [19, 39] which increases
available throughput at low CPU utilization. This makes it
viable to trade network traffic for CPU and device I/O. 2) The
use of KV separation in state-of-the-art KV stores [4, 16, 28,
29, 34, 45] that reduces, depening on the KV pair sizes, the
size of the index.
Instead of storing values and keys in the LSM tree, KV

separation places values in a separate log and uses additional
metadata to point in the value log [10, 16, 26, 29, 34]. This

85

https://doi.org/10.1145/3492321.3519572
https://doi.org/10.1145/3492321.3519572
https://doi.org/10.1145/3492321.3519572
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available

EuroSys ’22, April 5–8, 2022, RENNES, France Vardoulakis et al.

technique reduces I/O amplification by up to 10x [5] by intro-
ducing small and random read I/Os, which are not as harmful
for fast storage devices. Additionally, recent work [28, 45]
significantly improves garbage collection overhead for KV
separation [10, 38].

In this work, we design and implement Tebis, an efficient
replicated LSM-based KV store. The main novelty in Tebis
is that it reduces compaction overhead at the backups by
shipping a pre-built index from the primary. This approach
reduces read I/O amplification, CPU overhead, and memory
utilization in backup nodes.
The design of Tebis addresses a main and two secondary

challenges. The main challenge is an efficient rewrite mecha-
nism of the index at the backup nodes: The index received at
the backups contains segment offsets of the device in the pri-
mary. Tebis creates mappings between aligned primary and
backup segments. Then, it uses these mappings to rewrite
device locations at the backups efficiently.

Tebis replicates the data value log, using an efficient RDMA-
based primary backup communication protocol that does not
require the involvement of the backup CPUs in communica-
tion operations [40]. In addition, to reduce CPU overhead for
client server communication, Tebis uses one-sided RDMA
write operations. The protocol of Tebis supports variable
size messages that are essential for KV stores using a single
round trip to reduce the processing overhead at the server.
We evaluate Tebis using a modified version of the Ya-

hoo Cloud Service Benchmark (YCSB) [12] that supports
variable key-value sizes for all YCSB workloads, similar to
Facebook’s [9] production workloads. Our results show that
our index shipping method spends 1.06 − 1.54× fewer CPU
cycles per operation than a baseline implementation that
performs compactions at the backups. Furthermore, it has
1.13 − 1.48× higher throughput, and reduces I/O amplifica-
tion by 1.13 − 1.81×. Overall, our technique of sending and
rewriting a pre-built index trades CPU, memory, and read
I/O amplification for increased network traffic.

2 Background
In this section we briefly discuss LSM tree index structure
and KV separation, the Kreon [18, 34] key-value store, and
the basic RDMA operations.

LSM tree: LSM tree [32] is a write-optimized data struc-
ture that organizes its data in multiple levels whose sizes
grow by a constant growth factor 𝑓 . The first level size is
in the order of hundreds of MB and stored fully in mem-
ory, whereas the rest of the levels are stored in the device.
Although the in-memory level is named memtable in some
systems [17], for simplicity, we use the LSM terminology
and refer to it as 𝐿0. There are different ways to organize
data in levels [23, 32]. In this work, we focus on leveled KV
stores that organize each level in non-overlapping ranges,
which is also the most broadly used approach.

In LSM tree [32], a grotwh factor 𝑓 = 4 results in the
minimum I/O amplification [5]. However, KV stores in pro-
duction use larger growth factors, typically 8-12 [14], which
increase overall I/O amplification but reduce the number of
levels. Fewer levels result in less space usage on the device
for high update ratios, assuming intermediate levels contain
only update and delete operations.

Current KV store designs [10, 16, 26, 29, 34] use the ability
of fast storage devices to operate at a high percentage (close
to 80% [34]) of their maximum read throughput under small
and random I/Os to reduce I/O amplification. The main tech-
niques are KV separation [4, 10, 16, 26, 29, 34] and hybrid KV
placement [28, 45]. KV separation appends keys and values
in a separate value log, instead of storing values with the
keys in the index. The index keeps metadata to the corre-
sponding value in the log. As a result, they only re-organize
keys and value pointers in the multi-level structure. This
approach, depending on the KV-pair sizes, reduces I/O am-
plification by up to 10x [5]. Hybrid KV placement [28, 45] is
a technique that extends KV separation and reduces garbage
collection overhead, especially for medium (≥ 100 B) and
large (≥ 1000 B) KV pairs [9]. Hybrid KV placement also
places large KV pairs in a separte log, small KV pairs in place
within each LSM tree level, and medium KV pairs in seperate
value logs until the last, one or two, level(s) where it reclaims
the medium value log.

Kreon: Tebis uses Kreon [18, 34] to manage data within
each server. Kreon is a persistent LSM-based KV store de-
signed for fast storage devices (NVMe SSDs). Kreon increases
CPU efficiency and reduces I/O amplification using (a) KV
separation and (b) Memory-mapped I/O for its I/O cache and
direct I/O for writing data to the device. A multilevel LSM
structure is used to organize its index. The first level 𝐿0 re-
sides in memory, whereas the rest of the levels are on the
device. Kreon organizes each level internally as a B+ tree.
Leaves contain <key_prefix, value_location> pairs. All level
indexes and the value log are represented as a list of fixed-
size segments on the device (currently 2 MB).
Kreon uses two different I/O paths: (a) It uses memory-

mapped I/O to manage its I/O cache and access the storage
devices during read and scan operations. (b) It uses direct I/O
to read and write the levels during compactions and avoid
polluting the I/O cache. We modify Kreon to use explicit I/O
system calls, that bypass the buffer cache, for writing its KV
log to further reduce CPU overhead for consecutive write
page faults.

Remote Direct Memory Access: RDMA supports two-
sided send/receive operations and one-sided read/write op-
erations [3]. In send and receive, both the sender and the
receiver actively participate in the communication, consum-
ing CPU cycles. Read and write operations allow one peer to
directly read or write the memory of a remote peer without
involving the remote CPU, consuming CPU cycles only in

86

Tebis: Index Shipping for Efficient Replication in LSM Key-Value Stores EuroSys ’22, April 5–8, 2022, RENNES, France

KV Op Req/Rep

Zookeeper

Tebis Master

Tebis Region
Server #0

Tebis Region
Server #N

KV Op Req/Rep
Client Primary: R1

Backup: R2

Primary: R2
Backup: R1

Read Region Map Req/Rep

Client KV Op Req/Rep

. .
 .. .
 .

Read Region Map Req/Rep

Figure 1. Tebis overview.

the originating node. In Tebis, we use one-sided RDMA write
operations.

3 Design
3.1 Overview
Tebis partitions the key-value space into non-overlapping key
ranges, named regions. Tebis assigns each region to multiple
servers with either the primary or backup role. Each region
stores and organizes data in an LSM tree with KV separation.
Tebis consists of three main entities (Figure 1):

1. Tebis Region servers, which host the regions with either
a primary or backup role.

2. Themaster which orchestrates the recovery process in
case of failures and performs load balancing operations.
The master reads the region map during initialization
and issues open region commands to each region server
in the Tebis cluster, assigning a primary or a backup
role.

3. Zookeeper [22] stores information about the metadata
of each region. Zookeeper is not in the common path of
client operations in Tebis since changes in regions are
triggered either bymembership changes due to failures
or load balancing operations. Furthermore, the master
of Tebis uses the membership service of Zookeeper to
detect changes in server status (join or fail) and trig-
ger appropriate action. Tebis can make use of similar
systems [1, 35, 43] that provide strongly consistent
metadata replication and notifications services.

During initialization, clients read and cache the region
map, without consuming significant memory and CPU over-
head. The region map size is small and in the order of hun-
dreds of KB. Changes to the region map incur only after a
failure or load balancing operation. Prior to each KV oper-
ation, clients look up their local copy of the region map to
determine the primary region server where they should send
their request. When a client issues a KV operation to a region
server that is not currently responsible for the correspond-
ing range due to a system reconfiguration, the region server
instructs the client to update its region map.

Tebis implements a primary-backup protocol over RDMA
[8, 40]. Next, we discuss how Tebis replicates its log (Sec-
tion 3.2) and index (Section 3.3).

3.2 Primary-Backup Value Log Replication
Tebis replicates its log without involving the CPU of backups.
When it receives updates and inserts from clients, the pri-
mary replicates each operation to its set of backup servers in
three steps (Figure 2). It inserts the KV pair in Kreon which
returns the offset of the KV pair in the value log tail segment.
Then, it appends (via an RDMA write operation) the KV pair
to the RDMA buffer of each backup at the corresponding
offset (step 1 in Figure 2).Tebis waits for an acknowledgment
that all RDMA write operations have been replicated in the
memory of backup nodes. To detect that the RDMA write
operations are complete and the data are written in the re-
mote memory of the backups, Tebis uses the work completion
events of reliable queue pairs [3]. The CPU of the backup
server is not involved in any of these steps. When a client
receives an acknowledgment it means that its operation has
been replicated in the replica set.
On the other hand, persisting the tail segment involves

the CPU of both the primary and backups. When the tail
segment of the log in the primary becomes full, the primary
flushes the segment to persistent storage (step 2a in Figure 2)
and sends a flush tail message to each backup to persist their
RDMA buffer (step 2b in Figure 2). Upon receiving a flush
request, Backups write the corresponding RDMA buffer to
persistent storage (step 2c in Figure 2). Finally, they send an
acknowledgment to the primary (step 3 in Figure 2).
Each backup region maintains a log map with entries

<primary segment number, backup segment number>, spec-
ifying the location of each segment on the storage device in
the primary and the backup. Backups use these to rewrite
the primary pointers in the Send-Index method, as described
in Section 3.3. The log map has a small memory footprint in
the order of MB. Each entry in the map is 16 B and a value
log of 1 TB with a segment size of 2 MB requires a log map
of 8 MB.
For this purpose, the primary piggybacks flush message

with the tail segment number in its storage device. Backup
servers, after persisting their value log tail segment, use
this information to create the corresponding entry in their
log map (step 2d in Figure 2). Note that the log map in the
backups is valid until a primary changes due to a failure
or load balance operation. In these cases, Tebis promotes a
backup as the new primary and the rest of the backups need
to update their log map. This procedure is also an in-memory
operation without requiring I/O. The new primary sends its
log map to the rest of the backups. The backups iterate over
the map and replace the segment numbers of the previous
with the segment numbers of the new primary.

3.3 Index Shipping and Rewrite at the Backup
Tebis avoids the full compaction process at the backup re-
gions to save device read I/O throughput, CPU, and memory.
Instead, after each compaction the primary ships a new index

87

EuroSys ’22, April 5–8, 2022, RENNES, France Vardoulakis et al.

tail log
segment

KV KV...

memory
device

value
log KV KV...

L0

tail log
 segment

KV KV...

memory

device

segment 0

KV KV...

L0

1
Log Segment Map
Primary Backup

seg 0seg 0

KV KV...

segment 1

2b

Replicate

Flush

ACK3

segment 0

value
log KV KV

2a

2c

seg 1seg 1 2d

Figure 2. Value log replication in Tebis.

KV device offset

Segment 0

K
VK
V

Segment 1

K
V

segment N

K
V

key prefix

K
V

pivot keyheader index node device offset

Primary
 seg # seg #

Log Segment Map
Backup

L'i+1 B+-Tree index
root node

index
nodes

leaf nodes

va
lu

e
lo

g

index
nodes

....

per-pivot entry

Primary
 seg #

Index Segment Map
 Backup

seg #

....

header

....

in
de

x
se

gm
en

t
le

af
 s

eg
m

en
t

per-KV entry

....

segment 1segment 0

K
V

Figure 3. Tebis B+ tree index and value log organization on
the storage devices.

to the backups. The main challenge in Tebis is to rewrite the
index at the backups to contain valid device addresses since
servers do not share a global storage name space [2, 6, 21].

In the Send-Index method, when 𝐿𝑖 becomes full, the pri-
mary region executes the heavy, in terms of CPU and device
I/O, compaction process of 𝐿𝑖 and 𝐿𝑖+1. Then, the primary
sends the resulting index 𝐿′𝑖+1 to the backup regions. This
method reduces in each backup (a) device read I/O traffic
from reading 𝐿𝑖 and 𝐿𝑖+1, (b) CPU since it avoids in-memory
sorting, and (c) memory for 𝐿0. Backup regions do not need
to keep an in-memory 𝐿0. 𝐿0 is used to amortize I/O cost
during compaction with 𝐿1 by keeping KV pairs sorted in-
memory. For 𝐿0 to 𝐿1 compactions, backup regions do not
need to read 𝐿0 and 𝐿1. Instead, they receive and rewrite the
primary 𝐿′1 index. Omitting 𝐿0 in backup regions results in
reducing the memory budget for 𝐿0 by 2× for one replica per
region or by 3× for two replicas.
A consequence of the Send-Index method is that it in-

creases network traffic. Essentially, Send-Index sends over

the network the reorganized indexes. This increased traffic
uses network throughput instead of device read I/O. In addi-
tion, the CPU required for RDMA communication is reduced
compared to the CPU required for merge-sort and read I/O.

In Tebis, the main device structures are the value log and
the B+ tree indexes of the levels. Tebis stores both the value
log and the B+ tree indexes as a list of fixed segments. Similar
to log segments, each segment is 2 MB and its starting device
offset is segment aligned. During rewriting, Tebis replaces
the high order bits of the primary segment with the new
segment number in the backup device.

The index of a region (Figure 3) consists of leaf and index
nodes. For each KV pair, leaf nodes (bottom in Figure 3)
contain a key prefix, which reduces I/O operations to the
value log [34], and a device offset which points to the device
location of the KV pair in the value log. Index nodes store
variable size pivot keys and pointers to device locations of
their successor, index or leaf, nodes. Backups need to rewrite
the device offset of KV pairs in leaf nodes and index nodes
(dashed arrows in Figure 3).

Backups keep track of two mappings for segments: the log
map and the index map. The log map is updated during flush
operation of the log (Section 3.2). The index map is updated
dynamically during the Send-Index method and it is valid
only during compaction from 𝐿𝑖 to 𝐿𝑖+1. During compaction,
the primary builds its index bottom-up and left to right. As
a result, the primary can send the new index incrementally
as it is being build, segment by segment.
After producing an index segment for 𝐿′𝑖+1, the primary

sends it to its backups. The backup region allocates a new
local segment and adds a new entry to its index map. Then, it
parses and rewrites the index segment by modifying device
offsets for all pivot (index nodes) and KV pairs (leaf nodes).
For each source device offset it replaces the high order bits
with the local segment from the segment map.

Finally, on compaction completion, the primary sends the
offset of the root node in 𝐿′𝑖+1, which is the entry point of
the index, to each backup. Then, each backup translates to
the root offset of its storage space using its index map.

It is important to note that the index shipping and rewrit-
ing technique can be applied to KV stores that perform

88

Tebis: Index Shipping for Efficient Replication in LSM Key-Value Stores EuroSys ’22, April 5–8, 2022, RENNES, France

Client Server

Send Buffer Receive Buffer

Receive Buffer

2. RDMA Write request

1. Allocate
request & reply 3. RDMA Write reply

Worker N

Send Buffer

Figure 4. Allocation and request-reply flow of Tebis RDMA
Write-based communication protocol.

full compactions such as RocksDB [17] or use KV separa-
tion [16, 28, 29, 45]. In these systems SSTsmay contain device
offsets of the primary to its value log or an internal SST index
which need rewriting similar to Tebis.

3.4 RDMAWrite-based Communication Protocol
The main design points that Tebis addresses are the man-
agement of RDMA buffers without synchronization at the
server and support for variable size messages.

3.4.1 RDMA Buffer Management. Tebis performs client-
server communication via one-sided RDMA write opera-
tions [25] to avoid network interrupts and reduce the CPU
overhead in the server [24, 25]. After connection establish-
ment, the server and the client allocate a pair of buffers with
configurable size (currently 256 KB). The region server frees
these buffers when a client disconnects or fails. A thread
monitors inactive queue pairs and checks if the queue pair
is still in valid state. Currently, this thread spins on RDMA
buffer but could also use a sleep-wakeup approach.
Clients manage both request and reply buffers to avoid

synchronization among workers in the server. Clients al-
locate a pair of messages for each KV operation; one for
their request and one for the server reply (step 1 in Figure 4).
Each request header includes the buffer offset where the
region server can write its reply. Workers complete requests
asynchronously and respond to the client out of order.
For put requests, the reply is of fixed size, so the client

allocates the exact amount of memory needed prior to the
operation. On the other hand, for get and scan requests, the
reply size is variable and unknown a priori to the client. If
the value size is larger than the buffer size of the reply, the
region server sends part of the reply and informs the client to
increase its allocation size for reply buffers to avoid similar
cases in subsequent requests. Then, it retrieves the rest of
the value from an offset provided by the server. As a result,
the penalty, in this case, is a round trip with a small impact
on overall latency.

Receive Buffer

Spinning
Thread

1. Detect header

2. Detect end of payload

Worker Queue

3. Enqueue
Task

Worker

4. Dequeue & Process Task

5. Reply to Client

Figure 5. Message detection and task processing pipeline in
Tebis. For simplicity, we only draw one circular buffer and a
single worker.

Scaling the RDMA protocol of Tebis to large numbers of
clients requires using more memory for RDMA buffers and
polling for newmessages in more rendezvous points. To limit
the required memory for RDMA buffers, Tebis could divide
this memory elastically between more and less active clients.
Also, other approaches such as LITE [41] could be appro-
priate for persistent LSM KV stores since the 90-percentile
tail latency of LSM KV stores is in the order of hundreds
of 𝜇s. Polling a large number of rendezvous points can be
mitigated by adjusting the number spinning threads in Tebis
and distinguishing hot from cold clients to reduce the polling
frequency. We leave these as extensions for future work.

3.4.2 Variable Size Messages and Task Scheduling.
The main design challenge with variable size messages is
how to detect their arrival at the region server without using
network interrupts.
All messages in Tebis consist of a message header of size

128 B and a variable size payload. To support variable size
payloads, Tebis pads the payload to a multiple of the message
header size. To detect incoming messages each region server
uses a spinning thread, as shown in Figure 5. The spinning
thread polls a fixed memory location in each RDMA buffer
it shares with a client. The spinning thread detects a new
message by checking for a rendezvous magic number at
the last four bytes of the current message header. Then, it
reads the payload size from the message header to determine
the end of the variable size message and the next header. A
second rendezvous point is used at the end of the payload to
check that the whole message has arrived. Upon receiving
a message, the spinning thread creates a new client request
for one of its workers, zeroes of the message in the RDMA
buffer, and advances its rendezvous point to the next message
header. The fact that all messages are multiple of message
header size has the benefit that the spinning thread does not
have to zero the whole message memory area. Instead, it
only zeroes the possible locations of message header size in
the area where future message headers may arrive.

When clients reach the end of the RDMA buffer, the client
informs the server spinning thread to reset the rendezvous
points at the start of the buffer. There are two possible cases:

89

EuroSys ’22, April 5–8, 2022, RENNES, France Vardoulakis et al.

(a) When the last message received reaches the end of the
buffer, the spinning thread sets automatically the rendezvous
point without any communication with the client. (b) When
the remaining space in the circular buffer is not enough
for the current message, the client sends a NOOP request
message to the serverwith a size equal to the remaining space
in the buffer. The spinning thread detects it and assigns it to
a worker. The worker then sends a NOOP reply. When the
clients detect the NOOP reply, it proceeds as in case a.

Tebis uses a configurable number of workers. Each worker
has a private task queue where the spinning thread places
new tasks (Figure 5). Workers poll their queue to retrieve a
new request and sleep if the spinning thread does not assign
a new task within a period (currently 100 𝜇𝑠). To limit the
number of wake-up operations, the spinning thread assigns
a new task to the same worker as long as its task queue has
fewer pending tasks than a threshold (currently set to 64).
Then, the spinning thread selects the next running worker
with fewer than threshold tasks. If none exists, it proceeds
to wake-up a sleeping worker.

3.5 Failure Detection and Recovery
Tebis uses the ephemeral nodes mechanism of Zookeeper
to detect failures. Zookeeper automatically deletes an ephe-
meral node when the node stops responding to heartbeats.
Every region server creates and registers an ephemeral node
with its hostname during initialization.

Tebis has to handle three distinct failure cases: 1) backup
failure, 2) primary failure, and 3) master failure. Since each
region server is part of multiple region groups, a single node
failure results in numerous primary and backup failures,
which the master handles concurrently.

In case of a backup failure, themaster replaces the crashed
region server with a new node that is not already part of the
region. In this case, the new node has backup role and the
master instructs the rest of the region servers in the group to
transfer their region data to the new backup. The region expe-
riencing the backup failure will remain available throughout
the whole process since its primary is unaffected.

In case of a primary failure, the master first promotes one
of the existing backups in the region group to the primary
role and updates the region map. The new primary already
has a complete KV log and an index for levels 𝐿𝑖 , where
𝑖 ≥ 1. The new primary region server replays the last few
segments of its value log to construct 𝐿0 in its memory before
starting to serve client requests. The 𝐿0 size that Tebis has to
replay is in the order of tens or hundreds of MB. When the
new primary region server is ready, the master handles this
failure as a backup failure. During primary reconstruction,
Tebis cannot serve client requests for the affected region.
When the master fails, Zookeeper notifies the rest of the

region servers through the ephemeral node mechanism. Then,

the region servers use Zookeeper to elect a new master. Dur-
ing downtime, Tebis can serve requests from existing pri-
maries but will not handle any additional failure. If a pri-
mary or backup region fails, the respective region become
unavailable until a new master is elected and it handle the
primary or backup failure as before.

4 Evaluation Methodology
Our experimental setup consists of three identical servers
equipped with two Intel(R) Xeon(R) CPU E5-2630 running at
2.4 GHz, with 16 physical cores for a total of 32 hyper-threads
and with 256 GB of DDR4 DRAM. All servers run CentOS 7.3
with Linux kernel 4.4.159. Each server has a 1.5 TB Samsung
PM173X NVMe SSD and a 56 Gbps Mellanox ConnectX 3
Pro RDMA network card. To ensure our experiments exhibit
significant I/O activity, we use cgroups to limit the buffer
cache used by memory-mapped I/O to 25% of the dataset size
in all cases as shown in Table 2.

In our experiments, we run the YCSB benchmark [12] and
its workloads Load A and Run A to Run D. Table 1 sum-
marizes the operations run during each workload. We run
Tebis with 32 regions equally distributed across all servers.
Furthermore, each server has two spinning threads and eight
worker threads in all experiments. Servers use the remaining
cores to perform compactions.
In all experiments, we use two separate servers to run

the clients. In each server, we run four client processes with
four threads per process. To generate enough outstanding
requests for each server, each client process uses four queue
pairs per serverwhich are shared among each client’s threads.
Clients send requests asynchronously to all 32 regions as
long as there is space in the RDMA buffers of the channel to
each server, therefore, the outstanding number of requests
is limited by RDMA buffer size. Each client generates the
same number of operations. The total number of operations
is 100 million requests for Load A and 50 million operations
for each of the Run A – Run D phases in YCSB.

Similar to other KV stores that use KV separation [10, 29]
Kreon uses garbage collection to reclaim free space from
the value log. It moves valid values from the head of the
log to the tail and trims space. In Tebis, the primary informs
backups for this operation and they only perform the trim.
In all our experiments the log is not garbage collected in
the primary (both Build-Index and Send-Index) because we
wanted to focus on compaction.

In our evaluation, we also vary the KV pair sizes according
to the KV sizes proposed by Facebook [9], as shown in Table 2.
We first evaluate the following workloads where all KV pairs
have the same size: either Small (S), Medium (M), or Large
(L). For this purpose, we use a C++ version of YCSB [36] and
we modify it to produce different values according to the KV
pair size distribution we study.

90

Tebis: Index Shipping for Efficient Replication in LSM Key-Value Stores EuroSys ’22, April 5–8, 2022, RENNES, France

Workload
Load A 100% inserts
Run A 50% reads, 50% updates
Run B 95% reads, 5% updates
Run C 100% reads
Run D 95% reads, 5% inserts

Table 1. Operation mix for YCSB. Workloads use Zipfian
distribution and Run D uses the latest distribution.

KV Size Mix Dataset Cache per
S%-M%-L% #KV Pairs Size (GB) Server (GB)

S 100-0-0 100M 3.0 0.38
M 0-100-0 100M 11.4 1.4
L 0-0-100 100M 95.2 11.9
SD 60-20-20 100M 23.2 2.8
MD 20-60-20 100M 26.5 3.3
LD 20-20-60 100M 60.0 7.5

Table 2. KV size distributions we use for our YCSB evalua-
tion. Small KV pairs are 33 B, medium KV pairs are 123 B,
and large KV pairs are 1023 B. We report the record count,
dataset size, and cache size per server used with each KV
size distribution.

In addition, we evaluate workloads that use mixes of small,
medium, and large KV pairs. We use a small-dominated (SD)
KV size distribution as proposed by Facebook [9], as well
as a medium dominated (MD) and a large dominated (LD)
workload. We summarize these KV distributions in Table 2.

We examine the throughput (ops/s), efficiency (cycles/op),
I/O amplification, and network amplification of Tebis for the
following three setups: (1) without replication (No Replica-
tion), (2) with replication, using our mechanism for sending
the index to the backups (Send-Index), and (3) with replica-
tion, where the backups perform compactions to build their
index (Build-Index), which serves as a baseline. In all three
configurations we use an 𝐿0 size that stores 96K KV pairs. We
note that Build-Index uses one 𝐿0 for each replica, whereas
Send-Index uses a single 𝐿0 for the primary replica only.
Thus, Send-Index is more memory-efficient than Build-Index

We measure efficiency in cycles/op and define it as:

efficiency =
CPU_utilization

100 × 𝑐𝑦𝑐𝑙𝑒𝑠

𝑠
×cores

average_ops
𝑠

𝑐𝑦𝑐𝑙𝑒𝑠/𝑜𝑝,
(1)

where CPU_utilization is the average of CPU utilization
among all processors, excluding idle and I/O wait time, as
given by mpstat. As 𝑐𝑦𝑐𝑙𝑒𝑠/𝑠 we use the per-core clock fre-
quency. Finally, average_ops/𝑠 is the throughput reported by
YCSB, and 𝑐𝑜𝑟𝑒𝑠 is the number of system cores, including
hyperthreads.

I/O amplification measures the excess device traffic gener-
ated due to compactions (for primary and backup regions)

Load A
Run A

Run B
Run C

Run D

Throughput (Kops/s)

0

500

1000

1500

2000

93
7

69
8

11
61

11
56

11
2912

78

79
7

12
39

12
07

11
79

22
53

88
5

12
45

12
16

11
98

Load A
Run A

Run B
Run C

Run D

Efficiency (Kcycles/op)

0

10

20

30

40 39 41

26

23

2829

35

24 24

27

18

30

23 23

26

Build-Index Send-Index No-Replication

Figure 6. Performance and efficiency of Tebis for workloads
Load A, Run A – Run D with the SD KV size distribution.

by Tebis, and we define it as:

IO_amplification =
device_traffic
dataset_size

,

where device_traffic is the total number of bytes read from
or written to the storage device and dataset_size is the total
size of all key-value requests issued during the experiment.

We measure network amplification as traffic to all servers
over application data written and read by the clients.

network_amplification =
network_traffic
dataset_size

,

where network_traffic is the total number of bytes sent and
received by the server(s). Note that application data do not in-
clude network overhead (headers, acknowledgements), there-
fore, network traffic is always higher than application data. In
addition, our RDMA client-server protocol uses a minimum
payload of 256 B to reduce CPU use for detecting variable
size messages in the servers, since for small messages the
bottleneck is the packet rate in the NICs. This minimum
payload is reflected in client-server network traffic for all
experiments, including the No-Replication configuration.

5 Experimental Evaluation
Our goal is to answer the following questions:

1. How does our backup index shipping method (Send-
Index) compare to performing compactions in backup
regions (Build-Index) to construct the index?

2. Where does Tebis spend its CPU cycles? How many
cycles does Send-Index save compared to Build-Index
for index maintenance?

3. How does Send-Index improve performance and effi-
ciency in small-dominated workloads?

4. What are the gains in throughput, efficiency, and I/O
amplification for three-way replication?

91

EuroSys ’22, April 5–8, 2022, RENNES, France Vardoulakis et al.

S M L SD MD LD

Throughput (Kops/s)

0

500

1000

1500

2000

2500

97
7

10
12

69
2 97

0

92
7

80
4

13
52

13
41

91
2

12
31

12
09

10
75

24
77

24
10

17
06

22
39

22
54

18
65

S M L SD MD LD

Efficiency (Kcycles/op)

0

10

20

30

40

50

37 38

49

39 40

45

29 29

37

30 31 33

18 18 20 18 18 20

S M L SD MD LD

I/O Amplification (%, x100)

0

10

20

30

40

50 48

14
.2

3.
5 8.

1

7.
4 12

.1

31
.9

9.
8

3

5.
9

5.
4 9.

7

24
.1

7.
1

1.
8 4.

1

3.
7 6.

1

S M L SD MD LD

Network Amplification (%, x100)

0

10

20

30

40

50

43
.2

3

13
.4

1

4.
23 7.

97

7.
39

13
.5

2

55
.0

8

16
.3

7

4.
57 9.

41

8.
65

15
.0

4

28
.8

1

8.
27

1.
85 4.

45

4.
06 6.

43

Build-Index Send-Index No-Replication

(a) Load A

S M L SD MD LD

Throughput (Kops/s)

0

200

400

600

800

1000

1200

1400

96
6

87
4

33
6

70
5

65
3

43
4

11
63

99
2

34
6

80
1

79
1

47
8

13
56

11
82

39
4

87
4

81
4

48
6

S M L SD MD LD

Efficiency (Kcycles/op)

0

10

20

30

40

50

60

34 37

62

41 42

53

30 32

58

36 35

46

26 26

49

32 32

43

S M L SD MD LD

I/O Amplification (%, x100)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

18
.1

6.
9

3.
6 5.

1

4.
9

11
.312

.8

5.
2

3.
2 4 3.

9

9.
510

.1

4.
2

2.
6 3.

3

3.
2

7.
8

S M L SD MD LD

Network Amplification (%, x100)

0

10

20

30

40

35
.6

3

10
.2

4

2.
96 6.

07

5.
52

9.
72

39
.0

8

11
.1

1

3.
07 6.

49

5.
89

10
.1

6

28
.5

4

7.
69

1.
78 4.

33

3.
87 6.

19

Build-Index Send-Index No-Replication

(b) Run A

Figure 7. Throughput, efficiency, I/O amplification, and network amplification for the different key-value size distributions
during the (a) YCSB Load A and (b) Run A workloads.

5. Does using a smaller 𝐿0 in Build-Index, to counterbal-
ance the 𝐿0 memory budget compared to Send-Index,
has an impact on performance, efficiency, and I/O am-
plification?

5.1 Tebis Performance and Efficiency
In Figure 6, we evaluate Tebis for two-way replication using
YCSB workloads Load A and Run A to Run D for the SD KV
distribution [9]. Since replication does not have impact on
read-dominated workloads, the performance in workloads
Run B to Run D is similar for all three configurations. We
focus the rest of our evaluation on the insert and update
heavy workloads Load A and Run A, respectively.

We run Load A and Run A for all six KV distributions with
a growth factor of 4, which minimizes I/O amplification [5].
Figure 7 shows that compared to Build-Index and for all
KV size distributions, Send-Index increases throughput by

1.1 − 1.41×, CPU efficiency by 1.06 − 1.36×, and reduces I/O
amplification by 1.13 − 1.45×. This happens because Send-
Index 1) eliminates reads for 𝐿𝑖 and 𝐿𝑖+1 levels and 2) replaces
in-memory sorting with index rewriting in backup regions.
However, this trade-off favors Tebis since it uses available
network throughput to reduce device I/O traffic and CPU
usage.

We also measure the tail latency for YCSB workloads Load
A and Run A using SD (Figure 8). Compared to Build-Index,
Send-Index improves the 50, 70, 90, 99, 99.9, and 99.99% tail
latency between 1.05 − 1.77× for insert, 1.1 − 1.9× for read,
and 1.02 − 1.65× for update. The reduction we observe in
tail latency is due to the more efficient compactions in the
backup regions. Send-Index releases device, CPU, and mem-
ory resources which the system uses for its primary regions
and reduces stalls in 𝐿0 where requests wait for compaction
to finish.

92

Tebis: Index Shipping for Efficient Replication in LSM Key-Value Stores EuroSys ’22, April 5–8, 2022, RENNES, France

50 70 90 99 99
.9
99

.99

Request Percentile (%)

0
20
40
60
80

100
120

Ti
m

e
(m

s)

Load A Insert Latency

50 70 90 99 99
.9
99

.99

Request Percentile (%)

0
20
40
60
80

100
120

Run A Read Latency

50 70 90 99 99
.9
99

.99

Request Percentile (%)

0
20
40
60
80

100
120

Run A Update Latency

Send-Index Build-Index No-Replication

Figure 8. Tail latency for Load A and Run A using SD.

5.2 Overhead Breakdown
To identify the percentage of time spent by each server thread
in different parts of Tebis, we profile the system with perf
and call graph tracking enabled for Load A. We use the call
graph profiles generated for Send-Index and Build-Index
to produce the corresponding flamegraphs and extract the
percentage of time spent in each system component. We
convert this utilization to CPU cycles using Equation 1. We
break execution time into the following components:

Insert in 𝐿0: Cost for inserting KV pairs in the 𝐿0 B+ tree
index of Kreon, when there is space in 𝐿0. This stage
also includes write I/O operations to persist the value
log on the device.

KV log replication: Cost for replicating KV pairs in the
value log of backups.

Compaction: Cost for compacting all primary and backup
regions. This stage includes read and write I/O opera-
tions as well as in-memory sorting.

Send index: Cost of sending the index from the primary
region to all backups. Note that this cost is zero in the
case of Build-Index.

Rewrite index: Cost to traverse and rewrite the index in
all backups. Note that this cost is zero in the case of
Build-Index.

Other: The rest of the cost in Tebis such as polling and
scheduling for incoming requests.

Table 3 summarizes our results. Compared to Build-Index,
Send-Index requires 23.1% fewer CPU cycles per operation,
overall. To replicate the 𝐿0 B+ tree index, Send-Index requires
45.7% fewer CPU cycles. Also, Send-Index does not build in
memory an 𝐿0 index for its backup regions, which results in
2× fewer 𝐿0 indexes than Build-Index. Compactions in Send-
Index include also the send index to replicas and rewrite
index stages. Overall, the total cost of compaction in Send-
Index requires 41.6% less CPU cycles. This reduction is due
to 1) less CPU for read I/O from the device and 2) replacing
in-memory sorting with index rewrite.

cycles/op in Load A, SD, 100 M KV pairs
Build-index Send-index Reduction

Insert in 𝐿0 5031 2730 45.7%
KV log replication 1170 1140 2.5%
Compaction 9640 2505

41.6%Send index 0 1770
Rewrite index 0 1350
Server to client reply 740 740 0%
Other 22419 19765 11.1%
Total 39000 30000 23.1 %
Table 3. Breakdown of the cycles spent by all server threads
in each component of Tebis for Send-Index and Build-Index.

5.3 Impact on Small KV Pairs
In this experiment, we investigate the improvement of Send-
Index specifically for small KV pairs. We use a growth factor
of 4 andwe keep one replica per region (two-way replication).
We examine four workloads where we vary the percentage
of small KV pairs to 40%, 60%, 80%, and 100%. We equally
divide the remaining percentage between medium and large
KV pairs in all four cases.

Figure 9 shows that compared to Build-Index, Send-Index
increases throughput by 1.13 − 1.38×, increases CPU effi-
ciency by 1.13 − 1.39×, and reduces I/O amplification by
1.23 − 1.5× across Load A and Run A. We see that the Send-
Index benefits increase as small KV pairs increase. KV sep-
aration technique benefits in I/O amplification decrease as
the percentage of small KV pairs increases since metadata in
the LSM index are comparable in size with the KV pairs in
the value log. As a result, I/O amplification from compaction
increases which consumes device throughput. The Send-
Index method benefits overall system performance because
it offloads read I/O traffic from the device to the network.

5.4 Three-way Replication
We run Load A and Run A for all six KV distributions with a
growth factor of 4. In this experiment, we keep two replicas
per region, in addition to the primary copy. We set the 𝐿0
size to 96K keys for the No-Replication, Build-Index, and
Send-Index configurations.

Figure 10 shows that for Load A, compared to Build-Index,
Send-Index improves throughput by 1.1 − 1.48×, increases
CPU efficiency by 1.16 − 1.54×, and decreases I/O amplifica-
tion by 1.23 − 1.81×. Compared to two-way replication we
see that the gains increase for throughput from 1.1 − 1.38×
to 1.1−1.48×, for efficiency from 1.06−1.36× to 1.16−1.54×,
and for I/O amplification from 1.13 − 1.45× to 1.09 − 1.82×.
Compared to two-way replication, in three-way replication
we observe this relative increase in throughput, efficiency,
and I/O amplification because we have more compactions
that compete for device I/O throughput.

93

EuroSys ’22, April 5–8, 2022, RENNES, France Vardoulakis et al.

40 60 80 100

Small KVs (%)

0

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 (K

op
s/

s)

90
4 97
0

97
0

97
712

03

12
31 12
98

13
52

21
17 22

39 23
43 24

77

40 60 80 100

Small KVs (%)

0

10

20

30

40

Ef
fic

ie
nc

y
(K

cy
cle

s/
op

)

41

39 39

37

31 30 30 29

18 18 18 18

40 60 80 100

Small KVs (%)

0

10

20

30

40

50

I/O
 A

m
pl

ifi
ca

tio
n(

%
)

6.
3 8.

1 12
.6

48

4.
7 5.
9 8.

8

31
.9

3.
1 4.
1 6.

3

24
.1

40 60 80 100

Small KVs (%)

0

10

20

30

40

50

Ne
tw

or
k

Am
pl

ifi
ca

tio
n

6.
48 7.
97 11

.8

43
.2

3

7.
48 9.
41 14

.3
8

55
.0

8

3.
34 4.
45 7.

1

28
.8

1

Build-Index Send-Index No-Replication

(a) Load A

40 60 80 100

Small KVs (%)

0

200

400

600

800

1000

1200

1400

Th
ro

ug
hp

ut
 (K

op
s/

s)

44
9

70
5 77

5

96
6

50
8

80
1

99
9 11

63

52
1

87
4

10
80

13
56

40 60 80 100

Small KVs (%)

0

10

20

30

40

50

Ef
fic

ie
nc

y
(K

cy
cle

s/
op

)

51

41 40

34

43

36

31 30

42

32

29

26

40 60 80 100

Small KVs (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
I/O

 A
m

pl
ifi

ca
tio

n(
%

)

6.
5

5.
1 6.

9

18
.1

5.
3

4

4.
9

12
.8

4.
4

3.
3 3.
9

10
.1

40 60 80 100

Small KVs (%)

0

10

20

30

40

Ne
tw

or
k

Am
pl

ifi
ca

tio
n

4.
82 6.
07 9.

28

35
.6

3

5.
11 6.
49 10

.0
3

39
.0

8

3.
29 4.
33 6.

96

28
.5

4

Build-Index Send-Index No-Replication

(b) Run A

Figure 9. Throughput, efficiency, I/O amplification, and network amplification for increasing percentages of small KVs for (a)
YCSB Load A and (b) Run A.

5.5 𝐿0 Memory Usage
It is important to note that compared to Send-Index, Build-
Index uses 2× more memory for 𝐿0 when keeping two repli-
cas and 3× more memory for three replicas. A server may
host hundreds of regions, especially with increasing device
capacities, for concurrency and load balancing purposes. As
a result, the additional memory budget for Build-Index is in
the order of tens of GB, e.g. assuming an 𝐿0 size of 64 MB. In
the Send-Index configuration the excess DRAM may be used
for other purposes, such as RDMA communication buffers
or a larger I/O cache. To show the impact of higher memory
use, we use the configuration Build-Index Reduced 𝐿0 (Build-
IndexRL) which uses the same total memory budget for 𝐿0
as Send-Index, by setting 𝐿0 to 32K KV pairs for all primary
and backup regions.

Compared to Build-IndexRL, Send-Index improves throu-
ghput by 1.2−1.32×, increases CPU efficiency by 1.17−1.53×,

and decreases I/O amplification by 1.95 − 5.48×. Compared
to Build-Index, we observe that the 3× smaller 𝐿0 size of
Build-IndexRL increases I/O amplification proportional to
the number of small KV pairs which results in drop of throu-
ghput and efficiency.

6 Related Work
We group related work in the following categories: (a) dis-
tributed persistent KV stores and (b) efficient RDMA proto-
cols for KV stores.

Distributed persistent LSMKV stores: Acazoo [20] splits
its dataset into shards and keeps replicas for each shard. To
prevent write stalls due to compactions of the large LSM
levels, Acazoo applies the following technique. When a pri-
mary has to execute a heavy compaction task, it changes
one of the backup servers as primary. Then, the previous

94

Tebis: Index Shipping for Efficient Replication in LSM Key-Value Stores EuroSys ’22, April 5–8, 2022, RENNES, France

S M L SD MD LD

Throughput (Kops/s)

0

500

1000

1500

2000

2500

3000

3500

76
3 97

0

55
9

88
8

87
7

71
294

3

94
8

61
0 91

6

90
1

71
3

13
95

13
94

88
6

12
82

12
61

98
7

34
21

27
82

18
50

26
33 27
29

22
69

S M L SD MD LD

Efficiency (Kcycles/op)

0

20

40

60

80

56 56

86

61 61

72

53

57

80

58 59

71

42

37

52

39 40

48

18 20

26

20 20 22

S M L SD MD LD

I/O Amplification (%, x100)

0

25

50

75

100

125

150

175 16
7.

2

45
.3

8.
2

23
.9

21
.2 30

.6

72
.1

21
.2

5.
3 12

.2

11

18
.2

39
.8

12
.5

4.
2 7.
7

7.
2 13

.324
.1

7.
1

1.
8 4.
1

3.
7 6.
1

S M L SD MD LD

Network Amplification (%, x100)

0

20

40

60

80

57
.0

9

18
.5

5

6.
6 11

.4
9

10
.7

3 20
.6

3

57
.7

1

18
.5

5

6.
6 11

.5

10
.7

3 20
.6

2

81
.3

7

24
.4

7

7.
29

14
.2

9

13
.2

6 23
.6

628
.8

4

8.
19

1.
85 4.

45

4.
07 6.

43

 Build-IndexRL Build-Index Send-Index No-Replication

(a) Load A

S M L SD MD LD

Throughput (Kops/s)

0

500

1000

1500

2000

96
2

11
85

37
1

85
3

80
7

49
8

11
44

10
69

38
6

85
9

81
2

54
5

15
01

13
53

43
7

10
50

96
8

59
7

19
99

15
37

49
7

11
43

11
04

64
7

S M L SD MD LD

Efficiency (Kcycles/op)

0

20

40

60

80

100

47

41

10
6

51 53

79

44 44

85

50 52

65

36 35

70

40 42

56

25 29

58

34 35

50

S M L SD MD LD

I/O Amplification (%, x100)

0

20

40

60

80

82
.8

24
.3

8

14
.7

13
.6

26
.3

25
.8

9.
6

4.
3 6.

8

6.
4

13
.6

15
.1

6.
2

3.
5 4.
8

4.
6 10

.4

9.
9

4 2.
3 3.
2

3.
2 7.

1

S M L SD MD LD

Network Amplification (%, x100)

0

10

20

30

40

50

42
.6

3

12
.7

8

4.
13 7.

81

7.
17

13
.2

1

42
.3

8

12
.7

9

4.
13 7.

79

7.
16

13
.2

2

49
.3

1

14
.5

4.
34

8.
63

7.
87

14
.1

1

28
.4

2

7.
66

1.
78 4.

31

3.
86 6.

18

 Build-IndexRL Build-Index Send-Index No-Replication

(b) Run A

Figure 10. Throughput, efficiency, I/O amplification, and network amplification for three-way replication with different KV
size distributions for (a) Load A and (b) Run A.

primary performs the compaction task while the new pri-
mary serves new requests. Then, on compaction completion,
it reconfigures the system to set the server with the newly
compacted data as primary. DEPART [46] proposes a two-
level log approach in which each backup first appends all of
its KV pairs in a log. Then, periodically it groups KV pairs
in a per primary server log. It does this in order to insert
only the KV pairs of the primary in its LSM index during a
failure and reduce recovery time. Rose [37] is a distributed
key-value store, which replicates data using a log and builds
the replica index by applying write operations in an LSM
tree index. Furthermore, it uses compression to reduce I/O
amplification and increase replication throughput. Contrary
to these systems, Tebis performs the full compaction only at
the primary and ships the index to the backups.

RAMCloud [33] is a scale-out, distributed in-memory KV
store. It supports large-scale datasets by combining the main

memories of thousands of servers. RAMCloud provides dura-
bility and availability using a primary-backup approach for
data replication. A single (primary) copy of each object is
kept in DRAM, and multiple backup copies are kept on per-
sistent storage. RAMCloud achieves high availability by re-
covering data quickly in parallel from hundreds of devices
after a crash.

Efficient RDMA protocols for KV stores: Tailwind [40]
improves the performance of the replication protocol of
RAMCloud by using RDMA writes for data replication. For
control operations, it uses conventional RPCs. The primary
server transfers log records to buffers at the backup server by
using one-sided RDMA writes. Backup servers are entirely
passive; they flush their RDMA buffers to storage periodi-
cally when the primary requests it. Tebis adopts Tailwind’s
replication protocol for its value log but further proposes
index shipping to keep a full index at the backups efficiently.

95

EuroSys ’22, April 5–8, 2022, RENNES, France Vardoulakis et al.

Kalia et al. [25] analyze different RDMA operations and
show that one-sided RDMA write operations provide the
best throughput and latency metrics. Tebis uses one-sided
RDMA write operations to build its protocol.
A second parameter is whether the KV store supports

fixed or variable size KVs. For instance, HERD [24], a hash-
based KV store, uses RDMA writes to send requests to the
server, and RDMA send messages to send a reply back to the
client. Send messages require a fixed maximum size for KVs.
Tebis uses only RDMA writes and appropriate buffer man-
agement to support arbitrary KV sizes. HERD uses unreliable
connections for RDMA writes, and an unreliable datagram
connection for RDMA sends. Note that they decide to use
RDMA send messages and unreliable datagram connections
because RDMA write performance does not scale with the
number of outbound connections in their implementation. In
addition, they show that unreliable and reliable connections
provide almost the same performance. Tebis uses reliable
connections to reduce protocol complexity and examines
their relative overhead in persistent KV stores.
Other in-memory KV stores [15, 31, 44] use one-sided

RDMA reads to offload read requests to the clients. Tebis
does not use RDMA reads since lookups in LSM tree-based
systems are complex. Typically, lookups and scan queries
consist of multiple accesses to the devices to fetch data. These
data accesses must also be synchronized with compactions.

7 Conclusions
In this paper, we design Tebis, a replicated persistent LSM
KV store that targets fast storage devices and fast RDMA-
based networks. Tebis proposes a Send-Index method to keep
efficiently an up-to-date index at the backups. Instead of per-
forming compactions at the backup servers, the primary in
Tebis sends its pre-built index of 𝐿′𝑖+1 after each level com-
paction of 𝐿𝑖 with 𝐿𝑖+1 to all backups. As a result, backup
regions incur less I/O amplification since they do not read 𝐿𝑖
and 𝐿𝑖+1. In addition they incur less CPU overhead because
they replace in-memory sorting with a lightweight index
rewrite operation.

We find that in all setups where Send-Index has the same
𝐿0 size with Build-Index, Send-Index increases throughput by
1.13− 1.48×, CPU efficiency by up to 1.06− 1.54×, decreases
I/O amplification by 1.13 − 1.81×, and decreases tail latency
by up to 1.5× for Load A and Run A. On the other hand,
it increases server to server network traffic 1.09 − 1.82×.
Overall, we show that Send-Index benefits are analogous to
the percentage of small KVs.

Acknowledgments
We thankfully acknowledge the support of the European
Commission under the Horizon 2020 Framework Programme
for Research and Innovation through the project EVOLVE
(Grant Agreement ID: 825061) andHiPEAC (Grant No. 871174).

Pilar González-Férez was supported by the Spanish MCIU
and AEI, as well as European Commission FEDER funds
(grant “RTI2018-098156-B-C53”). We are thankful to Giorgos
Xanthakis for his helpful comments. Finally, we thank the
anonymous reviewers for their insightful comments and our
shepherd John Ousterhout for his help with preparing the
final version of the paper.

A Artifact Appendix
We have released Tebis under Apache2.0 License in github
(https://github.com/CARV-ICS-FORTH/tebis), where we con-
tinue the development of our prototype. Furthermore, we
have archived through Zenodo the version of Tebis used in
this work [42]. The repository includes instructions on how
to configure and run Tebis.

References
[1] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J.

Marathe, Athanasios Xygkis, and Igor Zablotchi. 2020. Microsecond
Consensus for Microsecond Applications. USENIX Association, USA.

[2] Apache. 2018. HBase. https://hbase.apache.org/.
[3] INFINIBAND TRADE ASSOCIATION. 2015. IB Specification Vol 1,

03,2015. Release-1.3. (2015).
[4] Aurelius. 2012. TitanDB. Retrieved September 30, 2021 from http:

//titan.thinkaurelius.com/
[5] Nikos Batsaras, Giorgos Saloustros, Anastasios Papagiannis, Panagiota

Fatourou, and Angelos Bilas. 2020. VAT: Asymptotic Cost Analysis
for Multi-Level Key-Value Stores. arXiv:2003.00103 [cs.DC]

[6] Laurent Bindschaedler, Ashvin Goel, and Willy Zwaenepoel. 2020.
Hailstorm: Disaggregated Compute and Storage for Distributed LSM-
Based Databases. In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association
for Computing Machinery, New York, NY, USA, 301–316. https:
//doi.org/10.1145/3373376.3378504

[7] Dhruba Borthakur et al. 2008. HDFS architecture guide. Hadoop apache
project 53, 1-13 (2008), 2.

[8] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg.
1993. Distributed Systems (2Nd Ed.). ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, Chapter The Primary-backup
Approach, 199–216. http://dl.acm.org/citation.cfm?id=302430.302438

[9] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020.
Characterizing, Modeling, and Benchmarking RocksDB Key-Value
Workloads at Facebook. In 18th USENIX Conference on File and Storage
Technologies (FAST ’20). USENIX Association, Santa Clara, CA, 209–
223.

[10] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. 2018.
HashKV: Enabling Efficient Updates in KV Storage via Hashing. In
Proceedings of the 2018 USENIX Conference on Usenix Annual Technical
Conference (Boston, MA, USA) (USENIX ATC ’18). USENIX Association,
Berkeley, CA, USA, 1007–1019. http://dl.acm.org/citation.cfm?id=
3277355.3277451

[11] Kristina Chodorow. 2013. MongoDB: The Definitive Guide (second ed.).
O’Reilly Media. http://amazon.com/o/ASIN/1449344682/

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(Indianapolis, Indiana, USA) (SoCC ’10). ACM, New York, NY, USA,
143–154. https://doi.org/10.1145/1807128.1807152

96

https://hbase.apache.org/
http://titan.thinkaurelius.com/
http://titan.thinkaurelius.com/
https://arxiv.org/abs/2003.00103
https://doi.org/10.1145/3373376.3378504
https://doi.org/10.1145/3373376.3378504
http://dl.acm.org/citation.cfm?id=302430.302438
http://dl.acm.org/citation.cfm?id=3277355.3277451
http://dl.acm.org/citation.cfm?id=3277355.3277451
http://amazon.com/o/ASIN/1449344682/
https://doi.org/10.1145/1807128.1807152

Tebis: Index Shipping for Efficient Replication in LSM Key-Value Stores EuroSys ’22, April 5–8, 2022, RENNES, France

[13] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s
highly available key-value store. ACM SIGOPS operating systems review
41, 6 (2007), 205–220.

[14] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur,
Tony Savor, and Michael Strum. 2017. Optimizing Space Amplification
in RocksDB. In CIDR 2017, 8th Biennial Conference on Innovative Data
Systems Research, Chaminade, CA, USA, January 8-11, 2017, Online
Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2017/papers/p82-
dong-cidr17.pdf

[15] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. 2014. FaRM: Fast Remote Memory. In Proceedings of
the 11th USENIX Conference on Networked Systems Design and Imple-
mentation. 401–414.

[16] Facebook. 2018. BlobDB. http://rocksdb.org/. Accessed: March 15,
2022.

[17] Facebook. 2018. RocksDB. http://rocksdb.org/.
[18] FORTH. 2021. Kreon. https://github.com/CARV-ICS-FORTH/kreon.
[19] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang,

Wenwen Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, Fei Feng, Yan
Zhuang, Fan Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu,
Zheng Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang, Dennis
Cai, and JieshengWu. 2021. When Cloud StorageMeets RDMA. In 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, 519–533. https://www.usenix.org/
conference/nsdi21/presentation/gao

[20] Panagiotis Garefalakis, Panagiotis Papadopoulos, and Kostas Magoutis.
2014. ACaZoo: A Distributed Key-Value Store Based on Replicated
LSM-Trees. In 2014 IEEE 33rd International Symposium on Reliable
Distributed Systems. 211–220. https://doi.org/10.1109/SRDS.2014.43

[21] Haoyu Huang and Shahram Ghandeharizadeh. 2021. Nova-LSM: A
Distributed, Component-Based LSM-Tree Key-Value Store. Association
for Computing Machinery, New York, NY, USA, 749–763. https://
doi.org/10.1145/3448016.3457297

[22] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin
Reed. 2010. ZooKeeper: Wait-free Coordination for Internet-scale Sys-
tems. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference (Boston, MA) (USENIXATC’10). USENIX Associa-
tion, Berkeley, CA, USA, 11–11. http://dl.acm.org/citation.cfm?id=
1855840.1855851

[23] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and Rama
Kanneganti. 1997. Incremental Organization for Data Recording and
Warehousing. In Proceedings of the 23rd International Conference on
Very Large Data Bases (VLDB ’97). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 16–25.

[24] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using
RDMA Efficiently for Key-value Services. In Proceedings of the 2014
ACM Conference on SIGCOMM (Chicago, Illinois, USA) (SIGCOMM
’14). ACM, New York, NY, USA, 295–306. https://doi.org/10.1145/
2619239.2626299

[25] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In Proceedings of
the 2016 USENIX Conference on Usenix Annual Technical Conference.
437–450.

[26] Chunbo Lai, Song Jiang, Liqiong Yang, Shiding Lin, Guangyu Sun,
Zhenyu Hou, Can Cui, and Jason Cong. 2015. Atlas: Baidu’s key-value
storage system for cloud data.. In MSST. IEEE Computer Society, 1–14.
http://dblp.uni-trier.de/db/conf/mss/msst2015.html#LaiJYLSHCC15

[27] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentral-
ized Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (April
2010), 35–40. https://doi.org/10.1145/1773912.1773922

[28] Yongkun Li, Zhen Liu, Patrick P. C. Lee, Jiayu Wu, Yinlong Xu, Yi
Wu, Liu Tang, Qi Liu, and Qiu Cui. 2021. Differentiated Key-Value

Storage Management for Balanced I/O Performance. In 2021 USENIX
Annual Technical Conference (USENIX ATC ’21). USENIX Association,
673–687.

[29] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2016. WiscKey: Separating
Keys from Values in SSD-conscious Storage. In 14th USENIX Confer-
ence on File and Storage Technologies (FAST 16). USENIX Association,
Santa Clara, CA, 133–148. https://www.usenix.org/conference/fast16/
technical-sessions/presentation/lu

[30] Yoshinori Matsunobu, Siying Dong, and Herman Lee. 2020. MyRocks:
LSM-Tree Database Storage Engine Serving Facebook’s Social Graph.
Proc. VLDB Endow. 13, 12 (Aug. 2020), 3217–3230. https://doi.org/
10.14778/3415478.3415546

[31] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-
sided RDMA Reads to Build a Fast, CPU-efficient Key-value Store.
In Proceedings of the 2013 USENIX Conference on Annual Technical
Conference (San Jose, CA) (USENIX ATC’13). USENIX Association,
Berkeley, CA, USA, 103–114. http://dl.acm.org/citation.cfm?id=
2535461.2535475

[32] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
1996. The Log-structured Merge-tree (LSM-tree). Acta Inf. 33, 4 (June
1996), 351–385. https://doi.org/10.1007/s002360050048

[33] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, BehnamMontazeri, Diego Ongaro, Seo Jin Park, Henry Qin,
Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen
Yang. 2015. The RAMCloud Storage System. ACM Trans. Comput. Syst.
33, 3, Article 7 (aug 2015), 55 pages. https://doi.org/10.1145/2806887

[34] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and
Angelos Bilas. 2018. An Efficient Memory-Mapped Key-Value Store
for Flash Storage. In Proceedings of the ACM Symposium on Cloud
Computing (Carlsbad, CA, USA) (SoCC ’18). ACM, New York, NY, USA,
490–502. https://doi.org/10.1145/3267809.3267824

[35] Marius Poke and Torsten Hoefler. 2015. DARE: High-Performance
State Machine Replication on RDMA Networks. In Proceedings of
the 24th International Symposium on High-Performance Parallel and
Distributed Computing (Portland, Oregon, USA) (HPDC ’15). Asso-
ciation for Computing Machinery, New York, NY, USA, 107–118.
https://doi.org/10.1145/2749246.2749267

[36] Jinglei Ren. 2016. YCSB-C. https://github.com/basicthinker/YCSB-C.
[37] Russell Sears, Mark Callaghan, and Eric Brewer. 2008. Rose: Com-

pressed, Log-Structured Replication. Proc. VLDB Endow. 1, 1 (Aug.
2008), 526–537. https://doi.org/10.14778/1453856.1453914

[38] Chen Shen, Youyou Lu, Fei Li, Weidong Liu, and Jiwu Shu. 2020.
NovKV: Efficient Garbage Collection for Key-Value Separated LSM-
Stores. (Oct. 2020), 8 pages.

[39] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble, Har-
shad Deshmukh, Dan Gibson, Milo M. K. Martin, Amanda Strominger,
Thomas F. Wenisch, and Amin Vahdat. 2021. CliqueMap: Production-
izing an RMA-Based Distributed Caching System. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA) (SIG-
COMM ’21). Association for Computing Machinery, New York, NY,
USA, 93–105. https://doi.org/10.1145/3452296.3472934

[40] Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, and Toni Cortes. 2018.
Tailwind: Fast and Atomic RDMA-based Replication. In Proceedings
of the 2018 USENIX Conference on Usenix Annual Technical Confer-
ence (Boston, MA, USA) (USENIX ATC ’18). USENIX Association,
Berkeley, CA, USA, 851–863. http://dl.acm.org/citation.cfm?id=
3277355.3277438

[41] Shin-Yeh Tsai and Yiying Zhang. 2017. LITE Kernel RDMA Support
for Datacenter Applications. In Proceedings of the 26th Symposium on
Operating Systems Principles (Shanghai, China) (SOSP ’17). Association
for Computing Machinery, New York, NY, USA, 306–324. https://
doi.org/10.1145/3132747.3132762

97

http://cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf
http://rocksdb.org/
http://rocksdb.org/
https://github.com/CARV-ICS-FORTH/kreon
https://www.usenix.org/conference/nsdi21/presentation/gao
https://www.usenix.org/conference/nsdi21/presentation/gao
https://doi.org/10.1109/SRDS.2014.43
https://doi.org/10.1145/3448016.3457297
https://doi.org/10.1145/3448016.3457297
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1145/2619239.2626299
http://dblp.uni-trier.de/db/conf/mss/msst2015.html#LaiJYLSHCC15
https://doi.org/10.1145/1773912.1773922
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://doi.org/10.14778/3415478.3415546
https://doi.org/10.14778/3415478.3415546
http://dl.acm.org/citation.cfm?id=2535461.2535475
http://dl.acm.org/citation.cfm?id=2535461.2535475
https://doi.org/10.1007/s002360050048
https://doi.org/10.1145/2806887
https://doi.org/10.1145/3267809.3267824
https://doi.org/10.1145/2749246.2749267
https://github.com/basicthinker/YCSB-C
https://doi.org/10.14778/1453856.1453914
https://doi.org/10.1145/3452296.3472934
http://dl.acm.org/citation.cfm?id=3277355.3277438
http://dl.acm.org/citation.cfm?id=3277355.3277438
https://doi.org/10.1145/3132747.3132762
https://doi.org/10.1145/3132747.3132762

EuroSys ’22, April 5–8, 2022, RENNES, France Vardoulakis et al.

[42] Michalis Vardoulakis, Giorgos Saloustros, Pilar González-Férez, and
Angelos Bilas. 2022. Tebis software. https://doi.org/10.5281/
zenodo.6349594

[43] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui.
2017. APUS: Fast and Scalable Paxos on RDMA. In Proceedings of
the 2017 Symposium on Cloud Computing (Santa Clara, California)
(SoCC ’17). Association for Computing Machinery, New York, NY,
USA, 94–107. https://doi.org/10.1145/3127479.3128609

[44] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen.
2015. Fast In-memory Transaction Processing Using RDMA and HTM.
In Proceedings of the 25th Symposium on Operating Systems Principles.

87–104.
[45] Giorgos Xanthakis, Giorgos Saloustros, Nikos Batsaras, Papagiannis

Anastasios, and Angelos Bilas. 2021. Parallax: Hybrib Key-Value Place-
ment in LSM-based Key-Value Stores. In Proceedings of the ACM Sym-
posium on Cloud Computing (Hybrid Event) (SoCC ’21). ACM, New
York, NY, USA.

[46] Qiang Zhang, Yongkun Li, Patrick P. C. Lee, Yinlong Xu, and Si Wu.
2022. DEPART: Replica Decoupling for Distributed Key-Value Storage.
In 20th USENIX Conference on File and Storage Technologies (FAST’22).
USENIX Association, Santa Clara, CA. https://www.usenix.org/
conference/fast22/presentation/zhang-qiang

98

https://doi.org/10.5281/zenodo.6349594
https://doi.org/10.5281/zenodo.6349594
https://doi.org/10.1145/3127479.3128609
https://www.usenix.org/conference/fast22/presentation/zhang-qiang
https://www.usenix.org/conference/fast22/presentation/zhang-qiang

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Overview
	3.2 Primary-Backup Value Log Replication
	3.3 Index Shipping and Rewrite at the Backup
	3.4 RDMA Write-based Communication Protocol
	3.5 Failure Detection and Recovery

	4 Evaluation Methodology
	5 Experimental Evaluation
	5.1 Tebis Performance and Efficiency
	5.2 Overhead Breakdown
	5.3 Impact on Small KV Pairs
	5.4 Three-way Replication
	5.5 L0 Memory Usage

	6 Related Work
	7 Conclusions
	A Artifact Appendix
	References

