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A B S T R A C T   

Population disaggregation methods are a land management tool that is necessary to robustly assess the exposure 
of populations to natural hazards. The aim of these methods is to translate population values from large spatial 
units to smaller spatial units. Due to their improvement, the accuracy in quantifying the population exposed to 
natural hazards has increased significantly in recent years. However, in the case of floods, where the actual 
exposure to the hazard depends on the height of the buildings, there is a methodological deficiency with regard 
to reaching the necessary level of detail. This is a methodological challenge that is exacerbated in urban areas 
specialising in tourism, where there are a large number of dwellings dedicated to the housing of tourists. In this 
paper we propose a 3D cartographic dasymetry (DDF) method that, based on cadastral information and the 
population and housing census, manages to solve these problems of flood hazard exposure assessment reasonably 
well. For validation, the results are compared with three widely used 2D methods. Our work shows that the 
proposed method offers better outputs for use in high-precision work; but also, when such detail is not necessary, 
more basic methods achieve results with only marginal differences.   

1. Introduction 

Floods are the most frequent natural hazard on the planet (CRED, 
2015; UNISDR, 2017) and the one that causes the greatest economic 
losses (Marchi et al., 2010; UNISDR & CRED, 2015). In Europe, the in
tensity and frequency of floods recorded in recent years (Gaume et al., 
2009; Llasat et al., 2005; Marchi et al., 2010) have led to an increase in 
the number of related disasters (Barredo, 2007, 2009; CEA, 2007; Eu
ropean Environment Agency (EEA), 2010). 

Two main types of measures are usually adopted to address this 
problem: structural and non-structural. The former are aimed at miti
gating the intensity and propagation of floods by means of in
frastructures (dams, modification of channels, diversion channels, etc.). 
On the other hand, non-structural measures are considered as preventive 
measures and are based on correct land-use planning. The objective of 
non-structural measures is to minimise the damage caused by floods by 
reducing exposure to the hazard (Berga, 1990; Klijn et al., 2015). 

The scientific community seems to have given the importance it 
deserves to preventive measures in recent decades (Olcina, 2009; Van 
Alphen et al., 2009). However, it is still necessary to devote more time to 

the implementation of this type of action, to reduce the risk to the 
population (Blaikie & Muldavin, 2014; Hirabayashi et al., 2013; Jong
man et al., 2012; Lugeri et al., 2006). In this sense, adequate risk map
ping that spatially identifies flood-prone areas and the 
socio-demographic characterisation of the exposed population are the 
most useful tools for mitigation of the impact of floods (Pérez-Morales, 
2012). 

The methodologies used to assess exposure have evolved signifi
cantly in recent years. These methodologies can be classified according 
to the scale of the work to which they are applied. The methods used to 
assess large regions, despite the possible masking of information that 
their implementation entails, are currently at a very acceptable level of 
development, thanks to the improved availability of information at a 
global level and statistical or machine learning techniques (Smith et al., 
2019). High-spatial-resolution or small-scale analysis has reached a high 
level of precision due to huge advances in spatial hazard delimitation 
and the increased availability of socio-demographic information (Smith 
et al., 2019; Spielman et al., 2020). Unfortunately, with notable ex
ceptions (Andrienko et al., 2021; Kogure & Takasaki, 2019), 
high-resolution work is subject to the limits of statistical confidentiality 
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and therefore provides data that are disaggregated into broad spatial 
units (census tracts, districts, postcodes, etc.). These units are often too 
large and irregular to capture the real heterogeneity of the exposed and 
non-exposed populations. For this reason, it is necessary to apply 
downscaling techniques in a similar way as for climatic variables (Wilby 
et al., 2004). 

Spatial disaggregation methods are generally used to overcome the 
above limitation. According to (Goerlich & Cantarino, 2013), these 
methods consist of “transferring data from an area of origin to various 

destination areas, when these constitute a partition of the first”. In other 
words, the information from the spatial units delimited by the public 
administration (census track, postcode area, etc.) is disaggregated into 
others of higher resolution and spatial precision. 

These population disaggregation methods can be classified initially 
into three main groups (Wu et al., 2005; Bakillah et al., 2014; Maantay & 
Maroko, 2017, p. 670). Firstly, there are statistical modelling methods, 
which attempt to estimate the number of inhabitants by means of 
explanatory statistical models that have the population as the dependent 

Fig. 1. Comparison of dasymetric methods: Areal Interpolation (1), Binary (2), CEDS (3) and Dasymetry Dash Flood (4). Methods 1, 2 and 3 were obtained from 
(Maantay et al., 2007). The red circle represents the exposed area. 
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variable and other socioeconomic and physical variables as independent 
variables (Bielecka, 2005; De Cos Guerra, 2004; García González & 
Cebrián Abellán, 2006; Ye et al., 2019; Shang et al., 2021). The second 
group is constituted by the methods known as Areal interpolation 
(Fig. 1-1) (Mora-García & Marti-Ciriquian, 2015; Preciado, 2015; Zor
aghein & Leyk, 2019). These consist of apportioning the population in 
each tract according to the amount of the tract that is within the affected 
surface area (e.g. buffer, continuous surface, …) (Maantay et al., 2007; 
Maantay & Maroko, 2017, p. 670). One major deficiency of this 
approach is that it is based on the erroneous assumption that the pop
ulation is distributed evenly and equally throughout the unit of aggre
gation. The third group is Dasymetric mapping, whose main 
characteristic is that it uses additional or auxiliary information for 
disaggregation. The most primitive interpretation of the term dasymetry 
corresponds to a cartographic technique used to represent, continuously 
but irregularly, variables distributed in space, in a continuous or dotted 
manner, by means of a set of areas with discrete values (Dent et al., 
1999; Robinson, 1961). An example of an early application of dasymetry 
to population distribution is that of (Wright, 1936), who considered 
areas of different population densities and used knowledge of the city to 
disaggregate the population by means of choropleth maps. 

Among the dasymetric methods, one of the most basic is the Binary 
Method (Eicher & Brewer, 2001), also known as filtered areal weighting 
(Fig. 1-2). With Binary, the disaggregation process consists of trans
ferring the information from the source unit proportionally to the area of 
each target unit. This is done by distinguishing between inhabited and 
non-inhabited units, usually by means of land use/land cover (LULC) 
such as Corine Land Cover (CLC). 

In recent decades, population disaggregation using dasymetric 
techniques has reached a high level of development, supported by 
sources of data diverse in origin and detail. The Cadastral Expert Dasy
metric System method (CEDS) of Maantay et al. (2007) stands out for its 
simplicity of execution and successful results (Fig. 1-3). This method 
uses census tracts as an aggregate starting unit and cadastral parcels 
with information on buildings as target units. In other words, the 
method uses the buildings where the population lives. The distribution 
of the population by building is determined taking into account the 
number of dwellings or the total residential area. With the above, this 
method overcomes the disaggregation limitations of those methods that 
only use footprints or remote sensing products as auxiliary data due to 
unavailability (Yao et al., 2017). 

Although the dasymetric techniques described so far present an 
acceptable accuracy for the estimation of the population with a high 
level of detail (Pavía & Cantarino, 2017b), when they are applied to 
specific tasks in the assessment of the exposure to certain natural haz
ards, their limitations and shortcomings become evident. The main 
problem usually arises when the exposure to the hazard is of a differ
ential type and is limited to low-rise portions of buildings, as in the case 
of floods (Maantay & Maroko, 2009; Zhu et al., 2020) or atmospheric 
pollution (Maroko et al., 2019). Recently, to overcome these limitations 
and achieve greater accuracy, the use of CEDS has been improved by 
incorporating the third dimension or building height (Lwin & Mur
ayama, 2009; Maroko et al., 2019), mainly through the LIDAR-based 
approach (Chen et al., 2021; Ural et al., 2011). 

Despite these recent advances, there is still ample room for 
improvement, which could be covered with more detailed data on 
buildings and population typology. Regarding the former, volunteered 
geographic information (VGI) and countries’ official cadastral infor
mation have substantially added to this advance. VGI has recently been 
widely used in those situations where official data is not readily avail
able (Yao et al., 2017; Chen et al., 2021). In this regard, Bakillah et al. 
(2014) proved its great usefulness in population disaggregation tasks. As 
for official cadastral data, a so detailed level of accuracy is being ach
ieved that it allows for outstanding exposure assessment work to be 
developed (Maroko et al., 2019). 

Nevertheless, population-wise, there are promising solutions such as 

GPW, GRUMP or the recent WorldPop. Thanks to these open access 
databases, it is becoming increasingly possible to assess population 
spatial heterogeneity in high resolution. However, despite the major 
progress made with mobile location-based services, population mobility 
entails certain challenges (Yao et al., 2017). Hence, population censuses 
remain as the most conservative and rich in demographic features 
sources to be used in population disaggregation tasks. In this regard, the 
lastest censuses of some advanced countries include new variables that 
facilitate distribution and differentiation by population type: gender, 
age, ethnicity (Maantay et al., 2007; Maantay & Maroko, 2017, p. 670). 
Despite these improvements, studies about the type of dwelling (main, 
secondary or vacant) or about the type of population that is dis
aggregated in said dwellings are still difficult to find (resident or sea
sonal population) (Zandbergen, 2011). Having this data available is 
crucial when preventing over- and underestimation issues regarding 
hazard exposure, given that the exposed population data may vary 
greatly depending on timing (Camarasa-Belmonte et al., 2011; Yao et al., 
2017). Such obstacles are even more striking in areas where the popu
lation varies seasonally, as are touristic cities. 

In the case of Spain, the limitations mentioned above have been 
partially overcome thanks to the valuable data collected in the latest 
census on population (year 2011) and cadastral housing characteristics. 
This has enabled the proposal of a new methodological approach for 3D 
population disaggregation based in CEDS: Dasymetry Dash Flood (DDF) 
(Fig. 1-4). The main reason to use this new high-precision method is that 
it allows for the evaluation of the population exposure to flood hazards 
in urban areas with a large floating population (mainly tourists). In a 
novel way, the proposed technique achieves two notable advances. 
Firstly, it overcomes the homogeneous distribution of the population 
within the buildings in case of flooding. For this purpose, the resident 
and seasonal populations are assigned to the dwellings intended for 
primary and secondary use, respectively. In addition, dwellings regis
tered as vacant are excluded from the population distribution. Secondly, 
only those occupied dwellings that intersect in height (z) with the height 
of the sheet of water estimated for different return periods (10, 100 and 
500 years) are considered as dwellings exposed to the risk of flooding. 

The new methodological procedure was applied to the coastal mu
nicipalities of the Region of Murcia (Southeast Spain). This study area 
has been especially affected by floods in recent decades (Gil-Guirado 
et al., 2019; García-Ayllon & Radke, 2021), mainly due to the increase in 
exposure motivated by two factors: the boom in “sun and beach” tourism 
and the “real estate boom” prior to the 2008 crisis (Pérez-Morales et al., 
2018). 

The overall structure of this paper takes the form of five chapters. 
The following section is concerned with the data used for the case study 
and the methodological approach. Then, the experiments, the results 
and the reliability assessment of the method are presented in section 3. 
The discussion of said results is included in section 4 and conclusions are 
comprised in the final section. 

2. Materials and methods 

2.1. Data sources 

The methodological procedure usually used in disaggregation and 
exposure studies combines three types of databases: one representing 
the hazard or physical factor and two referring to the exposure or human 
factor (Table 1). 

Regarding the physical factor, the information used in this work 
comprised the flood zones and the height in centimetres of the sheet of 
water, obtained from hydrological modelling of the Sistema Nacional de 
Cartografía de Zonas Inundables (MTERD, 2020). Return periods (T) of 
10, 100 and 500 years, in raster and vector format, were used for this 
work. 

The human factor was characterised by two databases that were 
related by means of DDF. The first of these was the Spanish Cadastre 
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(Ministerio de Hacienda, 2021). This constitutes the inventory of the 
country’s immovable goods (Martín-Varés, 2007). Its basic spatial ag
gregation unit is the building (Preciado, 2015) and the spatial infor
mation is provided in vector format. Following the methodology 
proposed by (García, 2013), the number of floors per building and then 
the use of said floors (residential, commercial and industrial) were 
added to the information vectors. 

The data on the type of population and dwellings disaggregated in 
each floor of these buildings were obtained from the 2011 population 
and housing census (INE, 2013). In both cases, the information was 
aggregated at the census track level except for the seasonal population 
variable, where the starting aggregation unit was the municipality. This 
is because the Spanish National Statistics Institute (INE) does not pro
vide seasonal population data for the census tracts, being the munici
palities the most detailed disaggregation unit. 

Finally, domestic water consumption is used to verify DDF reliability 
in touristic cities, to ascertain the occupation rate of secondary dwell
ings on a monthly basis. Data was extracted from the Spanish official 
water suppliers of each municipality (Villar-Navascués & Pérez-Morales, 
2018). 

2.2. Methodology 

The proposed methodology followed a sequential stepwise proced
ure that is summarised in Fig. 2. First (Fig. 2, step 1), non-residential 
uses (industrial and commercial) were filtered out from the cadastre 
database and the information for each dwelling was added to the vector 
information layer of the buildings by means of the cadastral reference 
field. Second, the main, secondary and vacant dwellings of each census 
section were randomly distributed among the cadastre buildings located 

within those same sections (Fig. 2, step 2). As the cadastre and the 
census are sources that differ in the frequency of their updating (census 
every 10 years, cadastre every 4 months) the number of dwellings in 
their different categories may not coincide. To correct this and to avoid 
estimation errors, the proportion of dwellings in each category of the 
census was taken as a reference and was applied to the absolute number 
of dwellings in the cadastre in each building so that the proportion was 
the same. 

Once the number of dwellings per category in each building was 
known, the resident population of the section was distributed among the 
main dwellings using a random distribution (Fig. 2, step 3). In similar 
works (Maantay et al., 2007), this placement was carried out in two 
ways. The simplest one is to obtain the average number of inhabitants 
per main dwelling and generalise this value per dwelling to all buildings 
in the study area. Other more complex options use the residential area in 
m2, when working with 2D (Mora & Marti, 2015), or the volume in m3, 
when mapping in 3D (Lwin & Murayama, 2009; Maroko et al., 2019). 
Although the latter distribution might seem more accurate, it entails 
important biases, especially in large dwellings, where inflated popula
tion figures are obtained when the type or model of building (dwellings 
in single-family buildings vs. dwellings in multi-family buildings) is not 
considered. To overcome this, in the present work, a process of assigning 
population density weights by categories modulated according to the 
average surface area of the dwellings (data available at the census sec
tion level) was carried out. These categories have been estimated from a 
calculation of deciles of surface area, as the relationship between 
dwelling size and number of inhabitants is positive, but non-linear. The 
use of deciles allows for the complexity of this relationship to be re
flected in a simple way while maintaining it. The estimation of these 
decile-based categories followed the formula: 

Table 1 
Data sources and variables definitions.  

Factor Variable Categories Spatial 
aggregation 

Spatial 
disaggregation 

Definition Source 

Human Main use of each 
floor of the 
building 

Residential Building Building floor Buildings and buildings’ floors which main use is 
residential: dwellings. 

Cadastre (Ministeriode 
Hacienda, 2021) 

Commercial Building Building floor Buildings and buildings’ floors which main use is 
commercial: shops, pharmacies, coffeehouses, etc. 
Given its non-residential use, it is excluded from 
population disaggregation. 

Industrial Building Building floor Buildings or buildings’ floors which main use is 
industrial: workshops, factories, etc. Given its non- 
residential use, it is excluded from population 
disaggregation. 

Building floor Floor number Building Building floor Number of floors per building. 
Building area Floor area Building Building floor Surface area of each building. 
Population Resident 

population 
Census track Building floor People who established their habitual residence within 

the study area at the time the census was conducted. 
National Population 
and Housing Census ( 
INE, 2013) Seasonal 

population 
Municipality Building floor Set of people who spend certain periods of time during 

the year (such as holidays or weekends) within the 
study area, as well as those who live, work or study 
there. 

Dwellings Main dwellings Census track Building floor Dwellings in use all or most of the year as habitual 
residences of one or more individuals. These dwellings 
were assumed to accommodate the resident population. 

Secondary 
dwellings 

Census track Building floor Dwellings used only part of the year, on a seasonal, 
periodic or sporadic basis, which are not habitual 
residences. These were assumed to accommodate the 
seasonal population. 

Vacant dwellings Census track Building floor Uninhabited dwellings which are neither habitual 
residences nor used seasonally, periodically or 
sporadically by anyone. Thus, they were excluded from 
population disaggregation. 

Physical Floodable area Height of the 
sheet of water in 
each T 

Raster with 2 m 
× 2 m resolution 

– Floodable area raster for return periods of 10, 100 and 
500 years used to assess buildings exposure. 

SNCZI (MTERD, 2020)  
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Fig. 2. Outline of the methodology.  
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Dkc = Li +

⎛

⎜
⎝

k×Nc
10 − Fi− 1

fi

⎞

⎟
⎠

where Dkc is the decile or class boundary k of the average floor area of 
the main dwellings in the census tract c, Li the lower limit of the selected 
interval, N the total number of census tracts, fi the absolute frequency of 
the interval i and Fi− 1 the cumulative absolute frequency of the class 
above the selected interval i. In this way, the census tracts were classified 
in nine classes according to the average housing area at the census track 
level (k). 

Subsequently, for each of these census tract classes kc, the average 
density of inhabitants per main dwelling of these census tract classes was 
calculated, according to the following expression: 

skc =
1

Nkc

×
∑Nkc

i=1
skci  

where Nck is the total number of census tracts c in the class k and skci 
the 

mean population density per main dwelling associated with the i census 
tract c in class k. Thus, for the 9 ordinal categories of average housing 
area at each census track level (kc), an associated mean population 
density value was obtained (sk). The dwellings in the study area were 
also classified in 9 ordinal surface area classes by deciles, as in the 
previous procedure: 

Dkv = Li +

⎛

⎜
⎝

k×Nv
10 − Fi− 1

fi

⎞

⎟
⎠

where Dkv is the decile or class boundary k of the average floor area of 
the dwellings in the study area v, Li the lower limit of the selected in
terval, Nv the total number of dwellings, fi the absolute frequency of the 
interval i and Fi− 1 the cumulative absolute frequency of the class pre
vious to. i.

This procedure makes it possible to associate dwellings with popu
lation density values (s), since kv and kc are ordinal categorical variables 
with the same levels. By means of these variables, the skc values are 
related to kv, considering kc ⊆ kv, which implies that skv ∶ = skc , and 
that s corresponds to the population density associated with dwellings v 

of category k. 
Finally, this value of population density associated with the dwell

ings was used as a weighting in the following formula: 

hv =
Hc × skv∑

skvc  

where hv is the population assigned to each dwelling v, Hc the total 
population of the section c, skv the population density associated with 
the dwelling v in category k and skvc 

the total of the s values associated 
with the dwellings v inside a section c. 

After the aforementioned calculations, the breakdown of the popu
lation resident in the main dwellings of each census section was ob
tained. In turn, for the breakdown of the seasonal population, a 
procedure almost identical to the previous one was followed, in which 
the population linked to the secondary dwellings was redistributed, with 
the exception that the starting aggregation unit was the municipality. 
Both breakdowns are summarised in Fig. 3. 

In the fourth step of the procedure (Fig. 2, step 4), the assessment of 
the exposure of the buildings, dwellings and population was carried out 
using the occupancy models described above. To identify the exposed 
buildings, the procedure of (Pérez-Morales et al., 2015) was followed. In 
relation to the dwellings, the height of the sheet of water affecting each 
plot was considered, as well as the use of the building by floor, excluding 
uses other than dwellings. In other words, only dwellings located on 
ground or underground floors where the height of the sheet of water of 
the floodable surface is equal to or greater than 20 cm were taken into 
account. This height threshold was considered since, according to (Baro 
et al., 2012), from this height onwards, substantial economic losses and 

Fig. 3. 3D representation of the structure of the spatial information obtained after the dasymetric disaggregation process.  

Table 2 
Comparison of the disaggregation capacity by variables of the different methods 
used in this work. Marked in green when the comparison was possible and in red 
when it was not.  

Method Population Buildings Dwellings 

Resident population Seasonal population 

Areal ☑ ☒ ☒ ☒ 
Binary ☑ ☒ ☒ ☒ 
CEDS ☑ ☒ ☑ ☒ 
DDF ☑ ☑ ☑ ☑  
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damage begin to occur inside dwellings. For the population, the DDF 
method was used to assess the resident population living in primary 
dwellings and the associated population in secondary dwellings. 

Finally, with the aim of demonstrating the proposed method validity 
and reliability (Fig. 2, step 5), two test were carried out. In the first one, 
the results were analysed and compared with those of Areal, Binary and 
CEDS when there was a coincidence in the level of disaggregation among 
the methodologies, which is shown in Table 2. 

In the second, to prove DDF reliability in touristic cities, an analysis 
of the relevance and variation of seasonal population within the study 
area was required. To do so, exposed resident population was compared 
to the total population (resident and seasonal combined) that is exposed 
to hazards throughout the year. Resident population was assumed to 
remain consistent every month while seasonal population varies. To 
simulate such variation, the database of domestic water consumption 
per municipality was used to get the occupation coefficient of the sec
ondary dwellings. 

This occupation coefficient is the result of the normalisation 

ni =
Xi

maxX  

where x corresponds to the domestic water consumption accrued in the 
study area in m3, i is a certain month and n the occupation coefficient. 

Accordingly, to estimate the seasonal population in secondary 
dwellings that is exposed for every RP, month and census tract, the 
following formula is used: 

SPEjci =

(
nci ​ yjc

)

TPc  

where SPE is the proportion of exposed population in the census tract c; i 
is a certain month; j the return period; n is the occupation coefficient; y is 
the seasonal population, and TP the total population. 

Finally, means are contrasted to check if there are important differ
ences between the proportion of the exposed resident population and the 
proportion of total exposed population in every return period, monthly 
and per census tract. 

2.3. Study area and descriptive statistics 

The study area is comprised of the 8 coastal municipalities of the 
Region of Murcia (Águilas, Los Alcázares, Cartagena, Lorca, Mazarrón, 
San Pedro del Pinatar, San Javier and La Unión). Between them they 
cover a surface area of 2886 km2 (Fig. 4). The hydrographic network is 
typical of the dry Mediterranean climate and is represented by more 
than 50 basins drained by coastal ephemeral and ephemeral wadis 
(Olcina-Cantos, 1999; Calvo, 2001). 

These municipalities, together with those in the neighbouring 
province of Alicante, experienced one of the most pronounced urban 
growth rates in the whole of the European Union during the first decade 
of the 21st century (Pérez-Morales et al., 2018). The practically unlim
ited and generalised increase in the housing stock throughout the 
Spanish Levante region was accelerated by speculation in residential 
tourism (Gaja, 2008). This led to a 400.6% increase in the number of 
secondary and vacant dwellings in the study area during the decade, and 
the proportion of the total number of dwellings that they represented 
(35.7%) was well above the Spanish average (15.2%) (INE, 2013). 
Consequently, urban morphology was characterised by expanded cities 
where urban agglomeration focused on coastal zones, and peri-urban 
areas experiment the most intense variation of seasonal population. 
Table 3 compiles population, dwellings and buildings typology accord
ing to INE (2013) and cadastre data. 

The environmental effects of this urban development have been very 
negative in terms of the flood risk since, in addition to having 

Fig. 4. Study area and flood zones for each return period.  

Table 3 
The population, dwellings and buildings in the study area.  

Population Dwellings Buildings 

Resident population 465,640 Main dwellings 163,825 102,739 
Seasonal population 237,172 Second dwellings 88,949 

Total population 
(Resident +
Seasonal) 

702,812 Vacant dwellings 52,098  

Total dwellings 
(Main + Second +

Vacant) 

304,872  
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accelerated exposure to flood beds (López-Martínez & Pérez-Morales, 
2017; Pérez-Morales et al., 2015), the artificialisation of the soil with the 
consequent sealing (Romero-Díaz et al., 2017) has contributed to an 
increase in surface runoff and, consequently, an increase in the fre
quency of flooding (Gil-Guirado et al., 2019). In fact, the precipitation 
threshold above which problems occur on the Mediterranean coast is 
decreasing (Gil-Guirado et al., 2014). 

3. Results 

3.1. Comparing DDF results with other methods 

This section presents the results of the exposure assessment using 
DDF and their comparison with the results obtained using other meth
odologies (Areal, Binary, CEDS), considering, firstly, exposed buildings; 
secondly, the exposed population; and thirdly, exposed primary dwell
ings, secondary dwellings and ground floor vacant dwellings. 

With respect to the buildings, only DDF and CEDS achieved this level 
of disaggregation. Thus, when using the Cadastre as auxiliary informa
tion in both methods, the results are identical. The values show that for 
T500 there are 22,772 buildings exposed to flooding, which represent 
22.2% of the total number of buildings. Hence, 77.8% of the buildings 
are not exposed (Table 4). 

For the exposed resident population, depending on the method, the 
differences can exceed 18 percentage points (Table 5). However, these 
variations are consistent with those reported by Maantay and Maroko 
(2017, p. 670). That is, the number of people exposed to flooding 
gradually increases as the area of the flood zone increases, for all four 

Table 4 
Number of buildings exposed to a flood hazard, for the year 2011, for the DDF 
and CEDS methods.  

Return Period Buildings % 

T10 8863 8.62 
T100 17,676 17.20 
T500 22,772 22.16 

NON-EXPOSED 79,967 77.84 
TOTAL 102,739 100  

Table 5 
The population exposed, by assessment method and return period, and the percentage with respect to the total population (N = 465,610).  

Methodology T10 % T100 % T500 % 

DDF 17,342.92 3.72 39,797.54 8.55 61,094.35 13.12 
AREAL 17,316.82 3.72 48,457.75 10.41 77,332.76 16.61 
BINARY 13,214.77 2.83 42,456.92 9.12 71,976.3 15.46 

CEDS 29,904.94 6.42 94,360.71 20.27 145,956.6 31.35  
(%MAX-%MIN) 3.59  11.71  18.22  

Fig. 5. Graphical comparison of the exposed population by census tract calculated using Areal, Binary, CEDS and DDF. Panel A shows, in box and violin plots, the 
proportion of the exposed population by census tract, return period and applied method. Panel B shows, for each return period, matrices with bivariate scatter plots 
displaying the percentage of the population exposed according to the contrast of methods, histograms of the percentage of the population exposed according to each 
method and R2 results for the crossing of each method with the rest. 
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methods, as do the differences between the methods used. 
The discrepancies noted above are more evident, visually, in Fig. 6. 

Broadly speaking, Areal and Binary are increasingly very similar in their 
assessments for each return period due to the similarity of their calcu
lation procedures (Fig. 5, Panel A). However, it is worth remembering 
that, although the differences are marginal, significantly lower values 
are observed for all return periods in Binary compared to Areal, due to 
the fact that Binary uses the auxiliary information of the inhabited space 
provided by Corine Land Cover (CLC) within each section to improve its 
accuracy. 

As for CEDS, its resemblance to DDF is high at T10, as shown by the 
scatter plot and the r2 value of 0.84 (Fig. 5, Panel B). However, the fit 
worsens dramatically at T100 and T500, as shown by the frequency 
distribution of CEDS when polarised at T100 and T500. This should be 
interpreted as CEDS overestimating the population in non-floodable 
census tracts and underestimating non-floodable census tracts as the 

exposed area increases. This decline in the similarity between CEDS and 
DDF can be explained in spatial terms (Fig. 6). As can be seen in the 
corresponding mapping of the differences (DDF vs CEDS), as less densely 
populated exposed census tracts with a larger surface area are included, 
such as those in the peri-urban area of the affected populations (T100 
and T500), CEDS tends to overestimate to a greater extent than the other 
methods. Consequently, its use is not recommended for this type of peri- 
urban area, as pointed out by Pavía and Cantarino (2016) and, when no 
other option is available, it is opportune to correct it with other statis
tical methods (Cockx & Canters, 2015). In comparison with DDF, both 
Areal and Binary generally underestimate the population of exposed 
sections at T10 and overestimate it at T100 and T500. These results are 
logical because, as the flood zone increases and exposure reaches the 
peri-urban area, the differences are accentuated in those sections where 
the population is dispersed. Therefore, in order to avoid this type of 
error, it is not advisable to use Binary or Areal in works of precision 

Fig. 6. Map of the exposed population by census tract according to DDF and the differences found with respect to Areal, Binary and CEDS in percentage terms.  

Table 6 
Wilcoxon test of hypotheses for the comparison of the proportion of the population exposed to a flood hazard, by census tract, calculated by DDF with that of the other 
methods. P-value <0.01 = **; <0.001 = ***; ns = not significant.   

T10 T100 T500 

Areal Binary CEDS Areal Binary CEDS Areal Binary CEDS 

DDF *** ns ns ** ns ** *** ns ***  
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where the sections are large and the population is scattered. 
As a final check on the exposed population data, the hypothesis test 

shown in Table 6 was carried out to find the possible statistically sig
nificant differences between DDF and the other methods. This shows the 
improvement in the overall results of DDF compared to the other 
methods. In this sense, the statistical similarity between Binary and DDF 
for all return periods is striking. Thus, both methods could be used for 
the same purpose if the accuracy requirements are lax, as the differences 
can be considered marginal (Pavía & Cantarino, 2017a). In relation to 
CEDS, as long as the census tracts in the study area are densely popu
lated, the differences from DDF are negligible, as can be seen for T10. 

As another interesting result in relation to the exposed population, 
DDF makes it possible to find out, due to the information available in the 
census on the non-resident or seasonal population, the maximum pop
ulation exposed to the flood hazard and, with this, fill a gap that most 
methods tend to have. In the case study, the seasonal population is 
237,172 inhabitants, representing 50.9% of the 465,640 residents at 
times of peak occupancy such as during summer holiday periods. 
Consequently, according to Table 7, if we consider (a) as the minimum 
exposed population and (b) as the maximum, there is a percentage in
crease that would vary between 1.02%, for T10, and 2.31%, for T500. 
Furthermore, if the population disaggregation process is carried out 
considering this seasonal population, the similarity between DDF and 
Binary disappears, with significant differences between them in the 
T100 and T500. Given the high number of second homes in the study 
area, this information may be of great importance in the avoidance of 
large errors of omission. 

In relation to dwellings, only DDF reaches this level of detail 
necessary to carry out the disaggregation due to the cadastral informa
tion and its relationship with that of the INE population and housing 

censuses (INE, 2013). According to the data in Table 8, between 3.89 
and 12.91% of the main ground floor dwellings would be exposed to 
flooding where there is a sheet of water greater than 20 cm. However, 
although the above data are striking, it is also noteworthy that the 
fraction of secondary and vacant dwellings exposed is greater than that 
of the main dwellings, in all the return periods. 

3.2. DDF reliability assessment 

To assess DDF reliability in touristic cities, it is necessary to check 
whether or not the inclusion of seasonal population is truly represen
tative in the exposure results when compared to total population. In 
order to achieve that, the proportion of resident population and the 
proportion of total population exposed in each return period per month 
and census tract are contrasted. P-value monthly results are summarised 
in Fig. 7, where significant differences can be appreciated when 
considering exposed seasonal population during high season months 
(July and August) for T100 and T500, while no differences are observed 
during low season months. 

Thus, during highest touristic activity periods, it is confirmed that 
secondary dwellings and seasonal population that temporarily live there 
must be considered when using DDF to avoid underestimating the actual 
population exposed to hazards. 

4. Discussion 

Due to the improved availability of demographic information, 
disaggregation methods have been increasing in number, accuracy and 
consideration as useful tools to be applied for such important purposes 
as the assessment of exposure to natural hazards (Maantay et al., 2007; 
Mennis, 2009; Pavía & Cantarino, 2017a). However, the results may 
differ significantly between the different existing methodologies 
depending on the degree of accuracy and the hazard considered. Maroko 
et al. (2019) pointed out that, when the exposure only affects certain 
parts of the building, methodologies that estimate the population by 
surface area or in 2D tend to exaggerate the exposed population 

Table 7 
Variation in the population exposed to flooding, for the resident population and for the resident and seasonal populations combined, according to DDF (Total 
population = 702,812).   

T10 % (total population =
100) 

T100 % (total population =
100) 

T500 % (total population =
100) 

(a) Resident population exposed 17342.9 2.4 39797.54 5.6 61094.3 8.6 
(b) Resident population + seasonal population 

exposed 
31890.7 4.5 66316.61 9.4 92422.2 13.1 

(b) - (a) 14547.8  26519.07  31327.9   

Table 8 
Ratio of exposed primary, secondary and vacant dwellings to total dwellings (N 
= 308,503), according to DDF.   

Total exposed 
main dwellings 

% Main dwellings exposed 
(100 = total main 
dwellings) 

% Main dwellings 
exposed (100 = total 
dwellings) 

T10 6512 3.89 2.11 
T100 14,652 8.75 4.75 
T500 21,622 12.91 7.01      

Total exposed 
secondary 
dwellings 

% Secondary dwellings 
exposed (100 = total 
secondary dwellings) 

% Secondary 
dwellings exposed 

(100 = total 
dwellings) 

T10 6400 7.20 2.07 
T100 11,218 12.61 3.64 
T500 12,844 14.44 4.16      

Total exposed 
vacant 

dwellings 

% Exposed vacant 
dwellings (100 = total 

vacant dwellings) 

% Exposed vacant 
dwellings (100 = total 

dwellings) 
T10 2909 5.58 0.94 
T100 4971 9.54 1.61 
T500 6422 12.33 2.08  

Fig. 7. Lines show p-value variation when contrasting resident population and 
total population (resident + seasonal). Bars show the variation of the seasonal 
population based on domestic water consumption. 
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compared to those that estimate the population by volume or in 3D. 
These problems particularly arise for flood hazards, the effects of 

which are generally confined to the lower parts of buildings. To solve 
this problem of differential assessment according to the height, DDF 
represents a valuable tool for several reasons. Firstly, it overcomes the 
problem of overestimation of exposure arising from the assumption of a 
homogeneous distribution within a building by distinguishing between 
floors and only considering those that are commonly affected by 
flooding; i.e., the lower floors. Secondly, it differentiates between three 
types of dwellings (primary, secondary and vacant), which also allows 
the filtering out of those that are not occupied and that with other 
methods are considered as occupied. Thirdly, DDF provides a more 
realistic approximation of the real exposure than other methods due to 
the information on the population that tends to occupy its secondary 
dwellings temporarily (mainly weekends and holiday periods). This 
way, limitations mentioned in literature are partially overcome (Zand
bergen, 2011; Cockx & Canters, 2015). 

However, results obtained using other techniques such as Binary, 
Areal or CEDS should not be underestimated. Depending on the scale of 
the work, the way the population is distributed and the urban 
compactness (Mubareka et al., 2011), the results can vary drastically. 
Consequently, as indicated by (Maantay & Maroko, 2017, p. 670), it can 
be argued that each method provides better results depending on the 
scale of the work and the objective. With our case study data, if the 
objective were the assessment of the overall exposure of the study area, 
the Binary and DDF results could be treated in an analogous way, as the 
statistical differences are marginal. Given the calculation characteristics 
of these two methods and the information limitations that exist in less 
developed countries, the use of Binary is recommended on small scales, 
for general results and when no auxiliary information from the cadastre 
is available. A similar consideration should be made with respect to 
CEDS. When applied to densely populated areas, it is almost as accurate 
as DDF, but shows shortcomings when the population density is lower if 
it is not applied with a 3D volume technique (Pavía & Cantarino, 2017a) 
or a dasymetric mapping with a spatial non-stationary approach (Cockx 
& Canters, 2015). 

Despite the great advantages achieved with DDF, the application of 
methods such as DDF for exposure assessment still has much room for 
improvement. Firstly, because census data only take into account the 
residential location of the population, who may not be at home as many 
hours as assumed since they are in school or at work, thereby over
estimating the population that might be impacted (Maantay & Maroko, 
2009). A number of recent studies have explored the daily spatial 
mobility of individuals to demonstrate the heterogeneity of the activity 
of many people (Yao et al., 2017), and such information has been 
studied in relation to flooding (Camarasa et al., 2011). 

Secondly, although the results provide a fairly accurate simulated 
scenario of the above situation, they should be treated with reservations 
because of a number of limitations. In this respect, secondary dwellings 
or the resident population in each main dwelling could also tend to 
follow a certain spatial clustering that does not conform to a random 
distribution. That is, urban socio-economic or spatial dynamics may be 
spatially concentrated while the census tract does not show this. In 
touristic cities, it is common to find completely vacant buildings while at 
the same time there are others where all the dwellings have a similar 
density of inhabitants. 

Finally, with regard to the DDF results for the study area, the expo
sure of the population to flood hazards is generalised but, depending on 
the typology of the dwellings, notable spatial differences can be 
observed. For the main dwellings and the resident population in them, 
there is an increase in exposure where the urban development model 
incorporates low compactness values (García, 2016). In other words, in 
compact urban areas (municipal capitals such as Lorca and Cartagena), 
as there is a predominance of multi-storey buildings, the exposure values 
are proportionally lower than in those municipalities with urban sprawl 
growth aimed at meeting the needs of residential tourism (the case of 

Los Alcázares, San Pedro del Pinatar, San Javier and Águilas) 
(López-Martínez and Pérez-Morales, 2017). 

The exposed fraction of the secondary and vacant dwellings exceeds, 
in proportional terms, that of the main dwellings in the flood zones, for 
all the return periods. This is explained by the fact that in the study area 
the non-flood-prone areas were the first to be occupied due to their safe 
condition. These are where the oldest dwellings are located, where the 
majority of the permanent population resides (Pérez-Morales et al., 
2021). Subsequent urban growth occurred at the expense of flood beds. 
This lack of planning is explained by the demand for developable land 
during the real estate bubble prior to the 2008 economic crisis 
(López-Martínez et al., 2020). 

5. Conclusions 

Given that economic losses triggered by floods have been rising in 
the last decades —and that climate change is expected to worsen the 
situation—, the need for detailed studies to assess exposure by using 
mapping fine-scale population distributions has increased. Nevertheless, 
in order to improve this assessment and as shown in Dasymetric map
ping literature, detailed information on the type, size, floor and vacancy 
of residential units and the type of individuals living in them must be 
included. To tackle this issue, we proposed a framework for population 
estimation (DDF) at the dwelling level by integrating the three- 
dimensional morphological information derived from cadastral data 
and the human activity information extracted from population and 
dwelling censuses. With this three-dimensional data we could accurately 
identify those dwellings that are actually exposed to flood hazards, since 
the only ones affected are usually ground floors. Meanwhile, informa
tion on the type of dwellings (main, secondary or vacant) and type of 
individuals (residents or seasonal) allows for the distinction between 
permanently inhabited dwellings (by resident population) and tempo
rarily inhabited dwellings (by seasonal population) to be made. To 
assess our framework reliability in touristic cities, a domestic water 
consumption database was used and, to validate the proposed method
ology, results were compared to three other widely used methods. 

When there is no need for a population differentiation, our findings 
show that both binary and DDF methods can be applied with similar 
results. Nonetheless, if the exposure assessment is applied to touristic 
cities, where seasonal population increases substantially during high 
season months, we strongly suggest using DDF to avoid underestimation 
problems when feasible. 
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Maroko, A., Maantay, J., Pérez Machado, R. P., & Barrozo, L. V. (2019). Improving 
population mapping and exposure assessment: Three-dimensional dasymetric 
disaggregation in New York city and São Paulo, Brazil. Papers in Applied Geography, 5 
(1–2), 45–57. 

Martín-Varés, A. V. (2007). La parcela catastral en las Infraestructuras Nacionales de 
Datos Espaciales (NDSI) y en INSPIRE. Resultados del grupo de trabajo sobre el papel de 
la parcela catastral en Europa. CT: Catastro, 60, 7–74. 

Mennis, J. (2009). Dasymetric mapping for estimating population in small areas. 
Geography Compass, 3(2), 727–745. 

Ministerio de Hacienda, M. H.( (2021). Dirección General del Catastro. http://www. 
sedecatastro.gob.es/. (Accessed 22 January 2021). 

Mora-García, R. T., & Marti-Ciriquian, P. (2015). Desagregación poblacional a partir de 
datos catastrales. Análisis Espacial y Representación Geográfica: Innovación y 
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Pérez-Morales, A., Gil-Guirado, S., & Olcina-Cantos, J. (2018). Housing bubbles and the 
increase of flood exposure. Failures in flood risk management on the Spanish south- 
eastern coast (1975–2013). Journal of Flood Risk Management, 11, S302–S313. 

Preciado, J. M. S. (2015). La cartografía catastral y su utilización en la desagregación de 
la población. Aplicación al análisis de la distribución espacial de la población en el 
municipio de Leganés (Madrid). Estudios Geográficos, 76(278), 309–333. 
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