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Abstract. We consider a geographical region with spatially separated customers, whose demand is
currently served by some pre-existing facilities owned by different firms. An entering firm wants
to compete for this market locating some new facilities. Trying to guarantee a future satisfactory
captured demand for each new facility, the firm imposes a constraint over its possible locations
(a finite set of candidates): a new facility will be opened only if a minimal market share is captured in
the short-term. To check that, it is necessary to know the exact captured demand by each new facility.
It is supposed that customers follow the partially binary choice rule to satisfy its demand. If there
are several new facilities with maximal attraction for a customer, we consider that the proportion
of demand captured by the entering firm will be equally distributed among such facilities (equity-
based rule). This ties breaking rule involves that we will deal with a nonlinear constrained discrete
competitive facility location problem. Moreover, minimal attraction conditions for customers and
distances approximated by intervals have been incorporated to deal with a more realistic model. To
solve this nonlinear model, we first linearize the model, which allows to solve small size problems
because of its complexity, and then, for bigger size problems, a heuristic algorithm is proposed,
which could also be used to solve other constrained problems.
Key words: location, competitive model, heuristic algorithms.

1. Introduction

We consider a certain geographical area in which customers are supposed to be concen-
trated in demand points (see Francis et al., 2002). The demand of these customers is fixed
and currently satisfied by a set of facilities already established in that area belonging to
one or several firms. When a new firm wants to enter this market with the idea of capturing
as much demand as possible, the company is facing a problem of Competitive Location.
The entering firm must decide where to locate its own facilities in order to maximize its
total profit, which will depend on the total captured demand. This decision implies the
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study of the conditions that surround the distribution of a specific product, such as the
location space, the characteristics of the facilities (quality), the customer choice rule, and
additional constraints imposed by the firm, or by the local administration. The combina-
tion of all these factors will give rise to different competitive location models that will
need a different study and the use of different techniques to solve them (see Eiselt et al.,
1993, 2015; Friesz et al., 1988; Plastria, 2001; Revelle and Eiselt, 2005; Al-Yakoob and
Sherali, 2018).

A crucial issue in this type of models is to study the customers behaviour when choos-
ing the facility or facilities that will satisfy their demand. In the literature, it has been usual
to consider the distance to the facility as the first criterion used by the customer, so that
the demand is served by the closest facility (see Drezner, 1995; Hotelling, 1929). Distance
gives a first measure of attraction that each customer feels for each facility. Subsequently,
the way of evaluating the attraction of customers by the facilities was modified, consider-
ing that facilities at the same distance did not have to be equally attractive for a customer
if those facilities had different qualities (their size, number of parking spaces, leisure ar-
eas, etc). Different techniques emerge to measure the attraction between customers and
facilities, but all of them have in common that this attraction is directly proportional to the
quality of the facility, and inversely proportional to some function of the distance between
them (Hodgson, 1978; Wilson, 1976). In this way, now the customer will be served by
the most attractive facility, which would coincide with the closest one if all the facilities
have the same quality. It was Huff (1964) who proposed for the first time a location model
in which customers satisfied their demand according to a rule of proportional behaviour:
customer demand will be split between all the facilities proportionally to the attraction it
feels for each one.

The most common customer choice rules are then the binary or deterministic rule (the
full demand of a customer is satisfied by only one facility, the one to which he is attracted
most – binary attraction), and the Huff, probabilistic or proportional rule (a customer
splits his demand over all facilities in the market proportionally with his attraction to each
facility – additive attraction), see Drezner and Drezner (2004), Serra et al. (1999b). Al-
though in many cases customers patronize facilities according to these two rules, there are
others in which these rules do not represent customer behaviour properly. In this paper we
are going to consider that customers follow the partially binary or multideterministic rule,
where it is supposed that several firms are present in the market with some pre-existing
facilities, and the full demand of a customer is served by all the firms but patronizing only
one facility from each firm, the facility with the maximum attraction, then its demand
is split between those facilities proportionally with their attraction (see Fernández et al.,
2017; Hakimi, 1990; Suárez-Vega et al., 2004).

This unusual rule explains the customers behaviour in some everyday cases better. For
example, suppose that to do his weekly shopping, a customer has several supermarkets
around his home belonging to two different firms. Most likely, the customer does not do
all the weekly shopping in a single supermarket, because there may be products that are
not available in the supermarkets of one of the firms, or that their prices are higher than
its competitor’s. Nor the customer will go to all supermarkets of the same firm, since it is
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assumed that all of them offer the same products at the same prices. Then, the customer
will go to one of the supermarkets of each firm, the one with maximum attraction, and
will buy more or less products in each supermarket depending of its attraction.

In our model, we will suppose that there exists a finite set of possible locations for
the new facilities (discrete location space), and that customers follow a partially binary
choice rule to serve their demand. So, the entering firm will serve a part of customers
demand proportionally to the maximum attraction between each customer and the new
facilities. It may happen that there are several new facilities with the maximum attraction
for a customer, so it must decide if its demand is served by one or more of those facilities.
But is this a real possible scenario? Can there be several facilities with the same maximum
attraction for a customer? As the attraction depends on the characteristics of the facility
(quality) and the distance to the customer, and it is feasible that the facilities belonging
to the same firm have the same characteristics, the answer depends on whether it is usual
for a customer to have several facilities of the same firm at the same distance. Although
this situation is possible, this is unlikely to happen if real distances between facilities and
consumers are considered. In fact, the customer does not use real distances to determine
their attraction to a centre, but an approximation, which will depend on their accuracy
when calculating distances between two points in a network, how often they use that route
or the traffic in the area. In this way, a customer can consider that all facilities with the
same characteristics whose real distances belong to an interval have the same attraction
to him. This would justify that there may be several facilities with the same maximum
attraction for a customer, being able to be equally chosen to serve their demand. To have
a better estimation of the market share captured by each new facility, we suppose that in
case of ties in the maximum attraction, customer’s demand is equally split among all these
facilities (equity-based rule, see Pelegrín et al., 2015).

As location decisions are long-term, the firm wants not only to maximize its total mar-
ket share, but also to ensure the viability of these facilities in the future, although the
customers demand will be unknown and its preferences could change. In this way, the
firm imposes the condition that a new facility will be opened only if it captures at least
a fixed minimal demand in the short-term, trying to guarantee a future satisfactory cap-
tured demand. This will be introduced into the model as new constraints for candidate
locations. So, it is necessary to know the exact captured demand by each new facility
when locations must be decided. The equity-based ties breaking rule involves that both
the objective function and the minimal market share constraints are nonlinear, so we will
deal with a nonlinear constrained discrete competitive facility location model (see Bal-
akrishnan and Storbeck, 1991; Benati and Hansen, 2002; Colomé et al., 2003; Ljubić and
Moreno, 2018; Serra et al., 1999a for minimum capture constrained models and Drezner
et al., 2002; McGarvey and Cavalier, 2005; Plastria and Vanhaverbeke, 2008 for other
constrained models).

This paper could be considered as an extension of Fernández et al. (2017), where
unconstrained discrete competitive facility location models were analysed under binary
and partially binary customer choice rules. There are some highlight differences between
the previous paper and this new one that justify its relevance. In the previous one, none



208 P. Fernández et al.

ties breaking rule was used if ties in maximum attraction occur for the new facilities, since
this was irrelevant for the entering firm when its market share was going to be maximized.
In this new one, we deal with a nonlinear constrained problem due to the use of the equity-
based ties breaking rule when there are several new facilities with maximal attraction for a
customer. In addition, and for each customer, it has been considered that a new facility will
capture part of the consumer’s demand if the attraction between them exceeds a certain
fixed threshold, so it may happen that there are customers with no captured demand by
the new facilities.

In summary, the contribution of the paper is as follows. A new discrete location model
is proposed where i) partially binary choice rule is applied to customers, ii) real distances
are approximated by intervals of different ranges, iii) minimum attraction conditions have
been considered for each customer, iv) an equity-based rule has been used in case of ties
in maximum attraction between facilities, and v) minimal market share constraints are
introduced to the new facilities unsure of a future captured demand.

The model is formulated as a binary nonlinear programming problem for which an
equivalent formulation as a binary linear programming problem is proposed. This allows
to solve small size problems using a standard optimizer (Xpress), and for more complex
problems a heuristic algorithm based on ranking of the search space elements with con-
straints handling is proposed, which could also be used to solve other constrained prob-
lems. This algorithm extends the one proposed in Fernández et al. (2017).

The rest of the paper is organized as follows. In Section 2 the unconstrained model
without ties breaking rule is described and an initial formulation is presented. In Sec-
tion 3 the constrained model with equity-based ties breaking rule is introduced, the first
nonlinear formulation is obtained, and then a linearization of the model is proposed. The
proposed resolution method based on ranking of the search space elements is presented
in Section 4, which could also be used to solve other constrained facility location prob-
lems. To justify the merit of the proposed algorithm, some computational experiments are
shown in Section 5. Finally, conclusions are listed in the last section.

2. Partially Binary Basic Model

In this section we are going to present the basic model (unconstrained and without ties
breaking rule), but introducing all the special characteristics of the model, and in the next
section we will add additional constraints that ensure that a new facility will be opened
only if it captures a minimal amount of customers demand. We will suppose that customers
are concentrated in demand points, and that their demand is known and fixed. As it is very
difficult for a customer to evaluate real distances to the facilities, we will consider distances
by intervals, that is, taking integer values as the intervals centres, all distances within a
fixed range interval will be approximated to its central value. Thus, for example, if we take
a range of 10 km, all distances on the interval (x − 5, x + 5] will be approximated to x, x

being an integer value.
A new firm wants to compete for the market share by opening some new facilities

in order to maximize the total captured demand. There are some pre-existing facilities
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belonging to other firms, and the partially binary customer choice rule is considered. With
this customer behaviour, the full demand of each customer is served by all the firms but
patronizing only one facility from each one, the facility with the maximum attraction, then
the demand is split between those facilities proportionally with their attraction. But there
could be customers whose demand was not served by any of the new facilities because
they were not attractive enough. To better adjust the problem to customer behaviour, we
will assume that a customer will be served by a given facility if its attraction is greater
than or equal to a fixed threshold value. For this, the attraction between each customer
and its possible facilities will be defined as the ratio between the quality of the facility and
a function of the distance between them, if this value is at least the threshold value set for
the customer, and zero otherwise. For each customer, its threshold value will be between
the minimum and the maximum attraction values of the most attractive facilities of the
firms already operating in the market.

2.1. Notation

The following general notation is used:

Indices
i, I index and set of demand points (customers),
k,K index and set of pre-existing firms,
j, J index and sets of facilities.

Data
wi demand at i,
qj quality of facility j ,
dij distance between demand point i and facility j considered by intervals of a fixed

range,
aij attraction that demand point i feels for facility j ,
ai(J ) maximum attraction that i feels for facilities in J ,

ai(J ) = max {aij : j ∈ J },
Ai minimum attraction required by customer i for a new facility,
Jk pre-existing facilities of firm k in the market area,
L set of possible locations for the new facilities.

Variables
X set of new facilities locations, X ⊂ L, |X| = s.

Due to the minimum attraction condition of customers for the new facilities, for each
i ∈ I and j ∈ L:

aij =
{

qj

f (dij )
if qj

f (dij )
� Ai,

0 otherwise,
(1)

where f (dij ) is an increasing function on distance dij .
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If Mpb(X) denotes the market share captured by the entering firm with facilities at X

when partially binary customer choice rule is considered,

Mpb(X) =
∑
i∈I

wi

ai(X)

ai(X) + ∑
k∈K ai(Jk)

and the problem is

Max
{
Mpb(X) : |X| = s,X ⊂ L

}
.

If the following variables are considered:

xj =
{

1 if a new facility is located at j,

0 otherwise, j ∈ L,

yij =
{

1 if i is allocated to j,

0 otherwise, i ∈ I, j ∈ L

(2)

the basic model has the following formulation as a binary nonlinear programming prob-
lem:

(PBBM)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max
∑

i∈I wi

∑
j∈L aij yij∑

j∈L aij yij +∑
k∈K ai(Jk)

s.t. yij � xj , ∀i ∈ I, ∀j ∈ L,∑
j∈L yij = 1, ∀i ∈ I,∑
j∈L xj = s,

xj ∈ {0, 1}, ∀j ∈ L,

yij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ L.

Note that since the objective function is increasing with respect to the numerator,
for each i ∈ I , the maximum captured demand for the entering firm will be obtained
when i is allocated to a new facility j with maximum attraction, that is, aij = max{air :
xr = 1, r ∈ L}. In addition, as

∑
j∈L yij = 1, each i will be allocated to only one new fa-

cility with maximum attraction, following the partially binary customer choice rule. Note
that constraints yij ∈ {0, 1} can be replaced by yij � 0. At optimality, yij may be positive
only if aij = max{air : xr = 1, r ∈ L}.

3. Partially Binary Constrained Model

In order to introduce the constrained model, suppose that the entering firm imposes the
condition that a new facility will be opened only if it captures at least a fixed amount of
customers demand in the short-term denoted by α. With this new constraint, it is neces-
sary to know what demand points are allocated to each new facility, and what part of the
demand is captured by the entering firm. Given i ∈ I , it is known what proportion of its
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demand will be captured by the entering firm, the proportion corresponding to its maxi-
mum attraction (this could be zero), but it is possible that there exist several new facilities
with non zero maximum attraction. Since the minimal market share constraints refer to the
new facilities, not to the entering firm, it is very important to know exactly the captured
demand by each new facility, and then it is crucial to know what breaking rule is going
to be used in case of ties in the maximum attraction. In this paper, instead of selecting
only one of them to serve the full demand, we assume a more realistic situation, so, if ties
occur, the demand of each customer captured by the entering firm will be equally split
among its open facilities with maximum attraction. Then, we consider the following new
variables:

zij =
{

1 if aij = max{air : xr = 1, r ∈ L},
0 otherwise, i ∈ I, j ∈ L. (3)

So the objective function becomes:

Max
∑
i∈I

wi

∑
j∈L aij zij∑

j∈L zij∑
j∈L aij zij∑

j∈L zij
+ ∑

k∈K ai(Jk)

(4)

=
∑
i∈I

wi

∑
j∈L aij zij∑

j∈L aij zij + (
∑

k∈K ai(Jk))
∑

j∈L zij

, (5)

where it must be verified that:

zij = 1 ⇔ aij = max{air : xr = 1, r ∈ L}. (6)

The necessary condition in (6) is verified by any optimal solution, since the objective
function is increasing with respect to the numerator. To guarantee the sufficient condition
in (6), besides that a demand point can only be allocated to open facilities, the following
set of constraints is necessary:

ε zij +
( ∑

h∈L

zihaih −
( ∑

h∈L

zih

)
aij

)
+|L|(1 − xj )amax � ε, ∀i ∈ I, ∀j ∈ L, (7)

where ε is small enough and amax = Max{aij : ∀i ∈ I, ∀j ∈ L}.
Note that if aij = max{air : xr = 1, r ∈ L} and zij = 0, then the left side of (7)

becomes
∑

h∈L zihaih − (
∑

h∈L zih)aij � 0 and then (7) doesn’t hold. On the other hand,
if aij < max{air : xr = 1, r ∈ L} = aik and zij = 1, then for j = k the left side of (7)
becomes

∑
h∈L zihaih − (

∑
h∈L zih)aij < 0 and (7) doesn’t hold.

Moreover, from (7) it follows that
∑

j∈L zij � 1, ∀i ∈ I , even if max{air : xr = 1,

r ∈ L} = 0, so the objective function is well defined.
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On the other hand, the minimal market share constraint for each new facility, when the
previously introduced ties breaking rule is considered, is expressed as:

∑
i∈I

wi

aij zij∑
j∈L zij∑

j∈L aij zij∑
j∈L zij

+ ∑
k∈K ai(Jk)

� αxj , ∀j ∈ L ⇔ (8)

∑
i∈I

wi

aij zij∑
j∈L aij zij + (

∑
k∈K ai(Jk))

∑
j∈L zij

� αxj , ∀j ∈ L (9)

that is a similar expression than the objective function, so it is also well defined.
So, the final formulation of the model as a binary nonlinear programming problem is:

(PBCMα)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max
∑

i∈I wi

∑
j∈L aij zij∑

j∈L aij zij +(
∑

k∈K ai(Jk))
∑

j∈L zij

s.t. zij � xj , ∀i ∈ I, ∀j ∈ L,∑
j∈L xj = s,∑
i∈I wi

aij zij∑
j∈L aij zij +(

∑
k∈K ai(Jk))

∑
j∈L zij

� αxj , ∀j ∈ L,

ε zij + (
∑

h∈L zihaih − (
∑

h∈L zih)aij ) + |L|(1 − xj )amax � ε,

∀i ∈ I, ∀j ∈ L,

xj ∈ {0, 1}, ∀j ∈ L,

zij ∈ {0, 1},∀i ∈ I, ∀j ∈ L.

3.1. Linearization of the Constrained Model

(PBCMα) model is a nonlinear programming problem due to both the objective function
and the minimal market share constraints set, but both can be linearized using the follow-
ing sets of variables (see Benati and Hansen, 2002; Biesinger et al., 2016; Fernández et
al., 2017; Haase and Muller, 2014; Kochetov et al., 2013 for similar linearizations):

qi = 1∑
j∈L aij zij + (

∑
k∈K ai(Jk))

∑
j∈L zij

, ∀i ∈ I,

vij = qizij , ∀i ∈ I, ∀j ∈ L,

(10)

where 0 � qi � M , being M = maxi
1∑

k ai (Jk)
.

Then, the discrete competitive facility location model with partially binary customer
choice rule and minimal market share constraints (PBCMα) has the following formulation
as a mixed binary linear programming problem:
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(LPBCMα)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max
∑

i∈I

∑
j∈L wiaij vij

s.t.
∑

j∈L aij vij + (
∑

k∈K ai(Jk))
∑

j∈L vij = 1, ∀i ∈ I,

vij � Mzij , ∀i ∈ I, ∀j ∈ L,

vij � qi, ∀i ∈ I, ∀j ∈ L,

qi � vij + M(1 − zij ), ∀i ∈ I, ∀j ∈ L,

zij � xj , ∀i ∈ I, ∀j ∈ L,∑
j∈L xj = s,∑
i∈I wiaij vij � αxj , ∀j ∈ L,

εzij + ∑
r∈L airzir − (

∑
r∈L zir )aij ) + |L|(1 − xj )amax � ε,

∀i ∈ I, ∀h ∈ L,

xj ∈ {0, 1}, ∀j ∈ L,

qi � 0, ∀i ∈ I,

zij ∈ {0, 1}, vij � 0, ∀i ∈ I, ∀j ∈ L.

4. Ranking-Based Random Search

The Ranking-based Discrete Optimization Algorithm (RDOA) has been applied to solve
facility location problems in Fernández et al. (2017). The RDOA is specially adopted to
discrete facility location and is based on ranking of candidate locations. The algorithm
demonstrated good efficiency when solving different instances of unconstrained discrete
facility location problems and outperformed well-known algorithms suitable to solve sim-
ilar problems.

However, the RDOA does not have any strategy for constraint handling and, therefore,
cannot be directly applied to solve our constrained facility location model. In this section
we propose a modified RDOA, which includes constraints for the solutions (RCDOA).

4.1. Ranking-Based Constrained Discrete Optimization Algorithm

Ranking-based Constrained Discrete Optimization Algorithm (RCDOA) starts with an
initial solution

Y = {y1, y2, . . . , ys}, (11)

which is a subset of all candidate locations L and is considered as the best solution found
so far. Here s is the number of facilities expected to locate. The initial solution can be
generated at random or obtained by other optimization methods, but must be feasible ac-
cording to the problem constraints.

A new solution

Y ′ = {
y′

1, y
′
2, . . . , y

′
s

}
(12)
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is generated by in turn taking candidate locations from the best known solution Y and
changing them to another ones randomly selected from the set of all possible candidate
locations excluding those which already form Y or Y ′. Each location yk is changed to
probability 1/s, and is copied without changing to probability 1 − 1/s:

y′
k =

{
l ∈ L \ (Y ∪ Y ′), if ξk < 1/s,

yk, otherwise, (13)

where ξk is a random number uniformly generated over the interval [0, 1], and i =
1, 2, . . . , s. Location l is randomly selected among the location candidates not already
included in Y ∪ Y ′ using a roulette wheel strategy.

A candidate location li ∈ L can be selected with probability

πi = ri

d(li , yk)
∑|L|

j=1
rj

d(lj ,yk)

, (14)

where ri is a rank of candidate location li and d(li , yk) is a geographical distance between
candidate location li ∈ L and candidate location yk ∈ Y which is being changed (k =
1, 2, . . . , s).

The ranks of all candidate locations initially are equal to 1 and are automatically ad-
justed depending on success and failures when generating a new solution. If the newly
generated solution Y ′ is feasible and market share M(Y ′) is greater than the market share
M(Y) of the best known solution, then (1) the ranks of all locations which form better
solution Y ′ are increased by one and (2) the ranks of all locations that form outperformed
solution Y , but do not form Y ′, are reduced by one:

ri =
⎧⎨
⎩

ri + 1, if li ∈ Y ′,
ri − 1, if li ∈ Y \ Y ′,
ri , otherwise.

(15)

If the newly generated solution Y ′ is not feasible or M(Y ′) is not greater than M(Y), then
the ranks of all candidate locations forming unsuccessfully generated solution Y ′, but do
not forming the best known solution Y , are reduced by one:

ri =
{

ri − 1, if li ∈ Y ′ \ Y,

ri, otherwise. (16)

If the newly generated solution outperforms the best solution found so far, then Y is
changed to Y ′ and iteration is assumed to be successful; otherwise, Y remains unchanged
and iteration is assumed to be unsuccessful.

4.2. Pre-Optimization Stage

In order to take advantage of the RCDOA, the best known solution Y used to generate
new ones must be feasible. However, finding a feasible solution can be a non-trivial task,
requiring significant computational effort.
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The pre-optimization stage is used to find a feasible initial solution for RCDOA, which
starts with a randomly generated solution, which can even be infeasible. If the generated
solution is feasible, then the pre-optimization stage is skipped and the optimization pro-
cedure continues with the RCDOA.

The constraint for minimal market share obliges to find locations for the new facilities
so that each facility would attract at least a given part α of the market share. Otherwise the
solution is treated as infeasible and cannot be considered as a candidate solution for the
problem. Let’s denote by m1,m2, . . . , ms the market share captured by facilities located
in yi ∈ Y . Then violation of the minimal market share constraint of facility located in yi

is expressed by market share deficiency:

vi =
{

α − mi, if mi < α,

0, otherwise, (17)

where i = 1, 2, . . . , s. The violation of the whole solution Y is

V (Y ) =
s∑

i=1

vi. (18)

Equation (17) guarantees that (18) is a sum of non-negative values. Thus makes V (Y ) a
non-negative function with zero lower bound, which indicates that solution Y is feasible;
larger V (Y ) indicates larger violation of the constraint.

The pre-optimization stage is based on solution of unconstrained optimization sub-
problem with objective function V (Y ), which is subject to minimize:

Y ∗ = arg min
Y⊂L

V (Y ). (19)

A new solution Y ′ is generated by changing the best known solution Y using the same
strategy as in RDOA – the algorithm for unconstrained optimization. The ranking of can-
didate locations is also performed using similar strategy as in RDOA: if V (Y ′) is lower
than V (Y ), then ranks of the candidate locations forming Y ′ are increased by one and
ranks of the candidate locations in Y \ Y ′ are reduced by one; similarly, if V (Y ′) is not
lower than V (Y ), then ranks of the candidate locations in Y ′ \ Y are reduced by one.

The stopping criterion of the pre-optimization stage is formulated as to find the lower
bound of the objective function value. If a decision variable Y such that V (Y ) = 0 cannot
be found using a predefined number of function evaluations or within a reasonable time
devoted to solve the whole optimization problem, then it is stated that a feasible solution
cannot be found. The complexity of the pre-optimization stage, depends on the optimiza-
tion problem instance and will be investigated hereinafter.

After a feasible solution is found, the algorithm proceeds to the next stage aimed at
maximization of the market share for the new facilities using RCDOA with a feasible
initial solution found in pre-optimization stage. The RCDOA starts with ranks of candidate
locations adjusted when looking for feasible solutions: candidate locations that fail in
forming a feasible solution have lower ranks comparing to other candidate locations.
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Fig. 1. Left: demand points. Right: location candidates.

Table 1
Distribution of preexisting locations.

Firm Indices of demand points
3 facilities per firm 5 facilities per firm

J1 1, 4, 7 1, 4, 7, 10, 13
J2 2, 5, 8 2, 5, 8, 11, 14
J3 3, 6, 9 3, 6, 9, 12, 15

5. Experimental Investigation

The (LPBCMα) described in Section 3 has been solved by the deterministic optimiza-
tion algorithm using Xpress (FICO Xpress Mosel, 2014) and the RCDOA, described in
Section 4.

The database with real geographical data of coordinates of 1624 municipalities in
Spain with population greater or equal to 2500 inhabitants has been considered as demand
points. The set of 247 most populated demand points (municipalities with a population
greater or equal to 25000 inhabitants) was used as the set of location candidates L (see
Fig. 1).

For distances between demand points and facilities, two different ranges have been
used on computational experiments, 10 and 20 km, and for the attraction function, it has
been supposed that qj = 1, ∀j ∈ L, and f (dij ) = 1 + dij , ∀i ∈ I , j ∈ L.

It was considered that there are 3 preexisting firms with 3 or 5 facilities per firm already
located in the most populated demand points. Distribution of candidate locations among
the firms is presented in Table 1.

The minimal market share for a new facility is expressed as percent of estimated aver-
age market share per existing facility after location. The average market share per facility
can be expressed by

m̃ = W

|J1| + |J2| + |J3| + s
, (20)
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Table 2
Minimal market share per new facility (α) for different (PBCMα) instances.

(|Jk |, s) 0% 10% 20% 30% 40% 50% 60% 70% 80%

(3, 5) 0 253310 506620 759930 1013240 1266550 1519860 1773170 2026480
(3, 10) 0 186650 373300 559950 746600 933250 1119900 1306550 1493200
(5, 5) 0 177310 354620 531930 709240 886550 1063860 1241170 1418480
(5, 10) 0 141850 283700 425550 567400 709250 851100 992950 1134800

where

W =
|I |∑
i=1

wi (21)

is the total demand of all customers in I . Then the minimal market share is considered
as 0% to 80% of m̃, depending on the problem instance, but only the results for some of
them will be shown, the ones with significative information for the model. For small α

values, Xpress is able to find the optimal solutions, which do not usually change, and only
when α values increase, the optimal solutions can change, if any, and it is even possible
that Xpress can not find them because of the time limit. The values of minimal market
share α are presented in Table 2, knowing that the total demand W of I is 35462869.

To define Ai , the minimum attraction level for customer i, we consider Amax
i =

max{ai(Jk) : k ∈ K} and Amin
i = min{ai(Jk) : k ∈ K}, then Ai = Amin

i +δ(Amax
i −Amin

i )

with 0 � δ � 1. Four δ values have been selected for the result tables, δ = 0, 0.2, 0.6, 1,
in order to reduce the table size.

5.1. Validation of RCDOA

The set of 144 instances for each distance range with different combinations of the number
of pre-existing facilities per firm (|Jk|), the number of facilities expected to locate (s),
the minimal market share α and δ values were solved using Xpress and RCDOA. The
computations with Xpress have been executed until the whole search space was explored
or the predefined time limit was exceeded (18000 s). The RCDOA has been executed for
10000 function evaluations. Due to stochastic nature of RCDOA, each problem instance
was solved 100 times to get statistically significant results.

The results, obtained solving (LPBCMα) instances with 3 preexisting facilities per
firm, are presented on the left part of Tables 3 and 4, and results, obtained solving
(LPBCMα) instances with 5 preexisting facilities per firm, on the right part of the tables,
but only for α (%) = 0, 30, 60, 70 and 80, since only for large α values Xpress has prob-
lems to obtain the optimal solutions. The acronym UNF in the table means that Xpress
was unable to complete computation within the predefined time limit (unfinished). The
acronym FNF stands for Feasible Not Found and means that an algorithm was unable to
find a feasible solution – within a predefined time with Xpress and within 10000 function
evaluations with RCDOA.
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Table 3
Results obtained using Xpress and RCDOA for solving (LPBCMα) with 10 km as distance range.

(|Jk |, s) δ α (%) M(Y) (|Jk |, s) δ α (%) M(Y)

XPress RDOA XPress RDOA

(3, 5) 0 0 12819396 12819396 (5, 5) 0 0 10936974 10936974
30 12819396 12819396 30 10936974 10936974
60 12819396 12819396 60 10936974 10936974
70 12819396 12819396 70 10936974 10936974
80 UNF FNF 80 UNF FNF

0.2 0 12342550 12342550 0.2 0 10150267 10150267
30 12342550 12342550 30 10150267 10150267
60 12342550 12342550 60 10150267 10150267
70 UNF FNF 70 10026202 10026202
80 UNF FNF 80 UNF FNF

0.6 0 11579618 11579618 0.6 0 9552229 9552229
30 11579618 11579618 30 9552229 9552229
60 11579618 11579618 60 9552229 9552229
70 UNF FNF 70 8679257 8679257
80 FNF FNF 80 FNF FNF

1 0 11177870 11177870 1 0 9040555 9040555
30 11177870 11177870 30 9040555 9040555
60 UNF FNF 60 8435659 8435659
70 FNF FNF 70 FNF FNF
80 FNF FNF 80 FNF FNF

(3, 10) 0 0 16128566 16128566 (5, 10) 0 0 14110653 14110653
30 16128566 16128566 30 14110653 14110653
60 UNF FNF 60 UNF FNF
70 UNF FNF 70 UNF FNF
80 UNF FNF 80 UNF FNF

0.2 0 16122297 16122297 0.2 0 13969654 13969654
30 16122297 16122297 30 13969654 13969654
60 UNF FNF 60 UNF FNF
70 UNF FNF 70 13595768 13595768
80 FNF FNF 80 UNF FNF

0.6 0 15995766 15995766 0.6 0 13429857 13429857
30 15995766 15995766 30 13429857 13429857
60 15784480 15784480 60 UNF FNF
70 UNF FNF 70 UNF FNF
80 FNF FNF 80 FNF FNF

1 0 15887608 15887608 1 0 12978556 12978556
30 15887608 15887608 30 12978556 12978556
60 15489291 15489291 60 11925893 11925893
70 FNF FNF 70 FNF FNF
80 FNF FNF 80 FNF FNF

The computations with Xpress last from 30 seconds (the fastest) to around 14000 sec-
onds (when optimal solutions found), or remain unfinished. The CPU times are similar
for both distance ranges, perhaps somewhat higher for the 20 km range when δ values
increase. In general, times increase when α or δ increase and the rest of the parameters
are fixed. When δ increases, the minimum level of attraction for customers increases, and
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Table 4
Results obtained using Xpress and RCDOA for solving (LPBCMα) with 20 km as distance range.

(|Jk |, s) δ α (%) M(Y) (|Jk |, s) δ α (%) M(Y)

XPress RDOA XPress RDOA

(3, 5) 0 0 12862282 12862282 (5, 5) 0 0 11043517 11043517
30 12862282 12862282 30 11043517 11043517
60 12862282 12862282 60 11043517 11043517
70 12862282 12862282 70 11043517 11043517
80 UNF FNF 80 UNF FNF

0.2 0 12406408 12406408 0.2 0 10356344 10356344
30 12406408 12406408 30 10356344 10356344
60 12406408 12406408 60 10356344 10356344
70 UNF FNF 70 10254115 10254115
80 UNF FNF 80 UNF FNF

0.6 0 11645211 11645211 0.6 0 9746979 9746979
30 11645211 11645211 30 9746979 9746979
60 11645211 11645211 60 9746979 9746979
70 UNF FNF 70 9018939 9018939
80 FNF FNF 80 FNF FNF

1 0 11212067 11212067 1 0 9272288 9272288
30 11212067 11212067 30 9272288 9272288
60 FNF FNF 60 9272288 9272288
70 FNF FNF 70 7936323 7936323
80 FNF FNF 80 FNF FNF

(3, 10) 0 0 16266416 16266416 (5, 10) 0 0 14291976 14291976
30 16266416 16266416 30 14291976 14291976
60 UNF FNF 60 UNF FNF
70 UNF FNF 70 14210030 14210030
80 UNF FNF 80 UNF FNF

0.2 0 16224017 16224017 0.2 0 14185476 14185476
30 16224017 16224017 30 14185476 14185476
60 UNF FNF 60 14050852 14050852
70 UNF FNF 70 14050852 14050852
80 UNF FNF 80 FNF FNF

0.6 0 16040410 16040410 0.6 0 13643691 13643691
30 16040410 16040410 30 13643691 13643691
60 15950660 15950660 60 13310686 13310686
70 UNF FNF 70 UNF FNF
80 FNF FNF 80 FNF FNF

1 0 15938689 15938689 1 0 13259531 13259531
30 15938689 15938689 30 13259531 13259531
60 15668471 15668471 60 FNF FNF
70 FNF FNF 70 FNF FNF
80 FNF FNF 80 FNF FNF

it is possible that instances that were feasible become infeasible because of the decreasing
in the number of demand points that each facility can capture. If α and/or δ increase too
much, the instances can be infeasible. Meanwhile, RCDOA performs its 10000 function
evaluations within less than a half minute independent of the instance.
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Table 5
Results obtained using RCDOA for solving CFLP with 1000 location candidates and 10 km as distance range.

(|Jk |, s) δ α M(Y ) FNF FFA
Avg Min Max

(5, 5) 0 0 10943317 10936974 10950470 0 1
30 10942777 10936974 10950470 0 3
60 10941666 10758392 10950470 0 61
70 10940315 10744730 10950470 0 321
80 7379300 7150127 9862744 96 580

0.2 0 10146666 9995868 10167048 0 1
30 10146520 10008293 10167048 0 4
60 10143395 9978345 10167048 0 311
70 9932472 7879719 10044660 43 1939
80 N/A N/A N/A 100 N/A
0 9526613 9259547 9552229 0 1
30 9535052 9410487 9552229 0 15

0.6 60 9450394 5837770 9552229 2 1716
70 8637104 6888141 8726454 67 2723
80 N/A N/A N/A 100 N/A

(5, 10) 0 0 14076637 13936239 14128881 0 1
30 14071104 13930319 14128881 0 12
60 13454097 8845844 13751062 3 883
70 12915529 10160219 13751062 19 1685
80 N/A N/A N/A 100 N/A

0.2 0 13910487 13797369 13987882 0 1
30 13918547 13702294 13987882 0 16
60 12801503 9333460 13607286 2 860
70 13229673 12115228 13605241 77 2518
80 N/A N/A N/A 100 N/A

0.6 0 13393572 13265791 13448805 0 1
30 13393438 13180237 13448805 0 33
60 12264524 12168197 12316132 93 3603
70 N/A N/A N/A 100 N/A
80 N/A N/A N/A 100 N/A

All optimal solutions found by Xpress were also identified by RCDOA, and the results
for the selected δ and α values can be seen on Tables 3 and 4. Although, solutions found
by RCDOA only are not proven to be optimal, their objective values are similar to the
optimal ones found by Xpress when solving similar problem instances.

5.2. Investigation of RCDOA

The RCDOA was applied to solve the CFLP with the same set of demand points, but with
1000 location candidates and 10 km distance range for measuring attractiveness of facili-
ties. The budget of 10000 function evaluation was fixed for solution of a single instance.
Due to the stochastic nature of the algorithm each problem was solved 100 times (starting
from a randomly generated initial solution) and statistical results were recorded.

The results are presented in Table 5, where average, minimal, and maximal objective
function values of the best solution are presented. Additionally, the number of trials when
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a feasible solution was not found (FNF) and average number of function evaluations re-
quired to find a feasible solution (FFA, Feasible Found After) are presented in the table.
If the algorithm fails to find a feasible solution for some trials, these trials are ignored and
statistics is derived from trials in which a feasible solution was found. The acronym N/A
means that statistics are not available because the algorithm fails to find a feasible solution
in all trials.

One can see from Table 5 that RCDOA is able to find a feasible solution for most of
problem instances. A feasible solution can be found within 1000 function evaluations for
all instances with α � 30%. The instances with large α values required more than 1000
function evaluations to determine a feasible solution. A feasible solution was not found
for instances with larger constraint for the minimal market share (α = 80% in most cases
and α = 70% for one instance), except the instance with |Jk| = 5, s = 5, and δ = 0
where a feasible solution was found even using the largest constraint.

The best solutions found for the CFLP with 1000 location candidates give larger ob-
jective function values than the optimal solutions for the same problem instances but with
smaller set of location candidates (see Table 3). Moreover, a feasible solution was found
for some instances, for which Xpress and RCDOA failed when the set of location candi-
dates was smaller. This is because a larger set of location candidates lets us form better
solutions and RCDOA is able to determine them.

Table 6 shows probability to find the best known solution and its approximation with
up to 5% error. One can see from the table that probability depends on the values of δ and
α: larger values – smaller probability. On the other hand, it is probability equal to 1 to find
approximation with 5% error for most problem instances, except for 7 instances, where
probability was lower, and instances where feasible solution was not found at all.

6. Conclusions

In this paper a new constrained discrete competitive facility location model has been anal-
ysed in which, besides assuming that customers follow a partially binary choice rule for
selecting the facility or facilities that will serve their demand, equity-based ties breaking
rule is proposed and minimal market share constraints have been incorporated to ensure
the viability of the new facilities (a new facility will be opened if it captures a minimal
amount of customer demand in that area). A formulation as a nonlinear binary program-
ming problem has been proposed, and after defining new sets of variables, it has been
possible to present a linearization of the proposed constrained model (LPBCMα), which
allows to obtain optimal solutions for small size problems using a standard optimizer.

Due to the complexity of the (LPBCMα) model, a heuristic algorithm for random
search based on ranking of location candidates and geographical distance has been ap-
plied for the resolution of more complex problems. This procedure uses two labels for
each location candidate point: the ranking label and the violation label of the minimal
market share constraint. The viability of the proposed algorithm has been investigated for
different problem instances and compared with the standard optimizer Xpress, showing
that RCDOA always obtains the same solutions as Xpress. For more complex instances,
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Table 6
Probability to find the optimal solution and its approximation with up to 5% error using RCDOA.

(|Jk |, s) δ α Probability to find the best known solution
0% 1% 2% 3% 4% 5%

(5, 5) 0 0 0.47 1.00 1.00 1.00 1.00 1.00
30 0.43 1.00 1.00 1.00 1.00 1.00
60 0.48 0.99 1.00 1.00 1.00 1.00
70 0.39 0.99 1.00 1.00 1.00 1.00
80 0.25 0.75 1.00 1.00 1.00 1.00

0.2 0 0.15 0.98 1.00 1.00 1.00 1.00
30 0.12 0.97 1.00 1.00 1.00 1.00
60 0.12 0.96 1.00 1.00 1.00 1.00
70 0.40 0.89 0.89 0.89 0.90 0.89
80 N/A N/A N/A N/A N/A N/A

0.6 0 0.14 0.96 0.97 0.97 1.00 1.00
30 0.18 0.99 1.00 1.00 1.00 1.00
60 0.19 0.98 0.98 0.98 1.00 0.98
70 0.21 0.97 0.97 0.97 1.00 0.97
80 N/A N/A N/A N/A N/A N/A

(5, 10) 0 0 0.06 0.97 1.00 1.00 1.00 1.00
30 0.06 0.93 1.00 1.00 1.00 1.00
60 0.04 0.76 0.89 0.91 0.90 0.95
70 0.01 0.69 0.72 0.73 0.80 0.88
80 N/A N/A N/A N/A N/A N/A

0.2 0 0.01 0.88 1.00 1.00 1.00 1.00
30 0.02 0.92 0.99 1.00 1.00 1.00
60 0.01 0.54 0.64 0.65 0.70 0.66
70 0.04 0.52 0.61 0.61 0.60 0.61
80 N/A N/A N/A N/A N/A N/A

0.6 0 0.06 0.89 1.00 1.00 1.00 1.00
30 0.01 0.89 1.00 1.00 1.00 1.00
60 0.14 0.86 1.00 1.00 1.00 1.00
70 N/A N/A N/A N/A N/A N/A
80 N/A N/A N/A N/A N/A N/A

only RCDOA has been used, and the results show that in all cases, the algorithm either
obtains the best possible solution, or converges to its approximation if a feasible solution
is available.
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