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Abstract

The gilthead seabream IL-13 gene consists of five exons/four introns. The
complete coding sequence contains a 102 bp 5 untraslated region (UTR), a single open
reading frame of a 762 bp which translates into a 253 amino acid molecule, and a 407
bp 3’UTR with a polyadenilation signal 14 nucleotides upstream of the poly(A)tail. The
seabream sequence has highest degree of nucleotide (61.7%) and amino acid (53%)
identity with the trout IL-13 sequences. The IL-13 message was detected by RT-PCR in
head-kidney, blood, spleen, liver, gill and peritoneal exudate of both non-infected and
Vibrio anguillarum-challenged fish. More importantly, IL-1 was highly expressed by
purified macrophage monolayers and was up-regulated by lipopolysaccharide and

lymphocyte-derived macrophage-activating factor stimulation.



Introduction

Interleukin-13 (IL-1f) is a member of the IL-1 cytokine family having a [3-
trefoil structure composed of 12 [3-sheets (1), and plays a pivotal role in the
inflammatory response as well as in the maturation and proliferation of many immune
cell types (2). It is also known that IL-1[ is synthesised by activated monocytes and
macrophages as a precursor with little activity. This precursor is then processed by
caspase-1 (also called interleukin-1-converting enzyme, ICE), releasing a mature active
peptide (3).

We report the cloning of a IL-13 gene from the marine fish gilthead seabream
(Sparus aurata L.). IL-1 expression was also studied in different tissues from control
and Vibrio anguillarum-challenged fish. The up-regulation of IL-13 expression in
macrophages following activation with LPS and lymphocyte-derived macrophage-

activating factor (MAF) is reported for the first time.

Results
Cloning and sequencing

Three overlapping products were obtained by RT-PCR (Fig. 1), which contained
the full-length seabream IL-13 cDNA. The gene consisted of 1271 nucleotides
including a 762 bp single reading frame, a 102 bp 5' untraslated region (UTR) and a 407
bp 3' UTR, with the latter containing 7 cytokine RNA instability motifs (ATTTA)
typical of inflammatory cytokine genes, a 19 bp poly(A)tail and a polyadenylation
signal 14 nucleotides upstream of the poly(A)tail (Fig. 2). The translated open reading
frame gave a predicted 253 amino acid seabream IL-1( precursor peptide with a
molecular weight of about 29 kDa and two potential N-glycosylation sites. Multiple

alignments with others IL-1[3 sequences (Fig. 3) revealed a high level of conservation



within the 12 [3-sheets that formed a -trefoil structure, characteristic of all the members
of the IL-1 cytokine family (4). However, the seabream IL-13 precursor, as other non-
mammalian molecules sequenced to date, lacked the interleukin-1-converting enzyme
(ICE) recognition site.

We found the highest degree of nucleotide identity with the two trout IL-13
sequences (60.5% with type one and 61.7% with type two) and amino acid similarity
(67% with type one and 62% with type two). This close relationship with the trout IL-
13 molecules was also apparent in the phylogenetic tree analysis, since the seabream IL-
13 was close to the trout and carp sequences, and far from mammalian, amphibian and
bird IL-1 sequences (data not shown).

Finally, PCR amplifications of genomic DNA, using primers deduced from the
IL-13 cDNA sequence, revealed that the seabream IL-13 gene consists of five exons

and four introns (Fig. 2).

Expression studies

The IL-1( transcript was detected in all the tissues examined of V. anguillarum
challenged fish, although expression was clearly weakest in brain and strongest in blood
and peritoneal exudate (Fig. 4A). Interestingly, we found a basal expression of the IL-
1[3 transcript in most of the tissues from non-injected fish.

The in vitro studies revealed that the IL-1[3 transcript was found in purified
macrophages after only 20 PCR cycles, when it remained absent in total head-kidney
leukocytes. This was particularly evident after stimulation of macrophage samples with
LPS and/or MAF, since a much stronger expression was detected at both 20 and 30

PCR cycles (Fig. 4B).



Discussion

In this study the full IL-13 gene sequence from the marine fish gilthead
seabream is reported. The molecule shows a high degree of homology with the three
known fish IL-1[3s, especially with the trout IL-1(3 genes. The amino acid regions that
form the secondary structure of 12 (-sheets, a feature of the -trefoil cytokine family
(4), were the areas showing the highest homology. In common with inflammatory
molecules, the seabream sequence has numerous copies of the ATTTA motif in the 3'
UTR, suggesting that its mRNA expression is tightly regulated. Mammalian IL-1(3
precursor is cleaved by ICE in Asp-X bound (where X is normally a small hydrophobic
residue) to yield a 17 kDa carboxyl terminus-derived mature polypeptide which is then
transported out of the cells, supporting the hypothesis that IL-1f3 post-translational
processing involves a commitment to cell death (3). However, seabream IL-1[3 lacks the
ICE recognition sequence, as do other non-mammalian IL-13 sequences (5-8).
Therefore, the naturally IL-1(3 cut site and its releasing mechanism are undefined in
these animals.

Interestingly, the organisation of the seabream IL-13 gene is different to that in
mammals and fish, and comprises only five exons. Mammalian and carp IL-1[3 genes
contain seven exons (9), whereas the trout sequences consist of six exons (10).
Undoubtedly, more lower vertebrates 11-1[3 sequences are needed to fully understand the
evolution of the 11-13 family members.

Seabream challenged by V. anguillarum show a remarkable variety of tissue-
dependent expression changes, as assayed by RT-PCR. The strongest expression was
found in peritoneal exudate and peripheral blood cells, which was to be expected since
the bacterium was injected intraperitoneally and is a non-virulent strain unable to leave

the peritoneal cavity and colonise other fish organs. An unexpected result was that the



IL-13 transcript was also found in some of the tissues examined from non-injected fish,
in contrast with earlier findings in trout, where no basal expression of IL-1f3 was found
(6).

In mammals, IL-13 is mainly produced by monocytes and macrophages.
However, little is known about the cell types able to produce this molecule in fish. In
this study, seabream macrophage monolayers showed a much stronger degree of IL-1[3
expression than total head kidney cells, suggesting that they are a major source of IL-1[3
in fish. Interestingly, IL-1[3 expression by seabream macrophages is enhanced upon LPS
and/or MAF stimulation. This is the first demonstration that cytokines produced by
activated fish lymphocytes are able to up-regulate IL-1(3 production by macrophages,
suggesting that lymphokines produced during the course of an infection may regulate

the production of this pro-inflammatory molecule in vivo.

Material and Methods

RNA and genomic DNA isolation

Gilthead seabream (Sparus aurata L.) head-kidney was extracted as described
previously (11). Cell suspensions (5x10° cells/ml) were stimulated with 10 ug/ml of
lipopolysaccharide (LPS, Sigma) for 4 hours at 25°C. The cells were then centrifuged at
400xg and total RNA extracted from the cell pellets with TRIzol Reagent (Gibco)
following the manufacturer's instructions. Genomic DNA was isolated from fresh

seabream liver with TRIzol Reagent.



PCR, cloning and sequencing

The SuperScript 11 RNase H™ Reverse Transcriptase (Gibco) was used to
synthesise first strand cDNA with oligo-dTi,.15 primer (Gibco) from 5 pg of total RNA
at 42°C for 50 min. The cDNA was used in initial PCR with F13 and R primers (Fig. 1)
designed against conserved motifs of known IL-1( sequences. PCR products were
purified, cloned into the pGEM-T Easy Vector (Promega) and transfected into
competent Escherichia coli DH-5a cells. Plasmid DNA was isolated and sequenced
using a ABI PRISM 377 (Applied Biosystems, Perkin-Elmer).

Based on the partial seabream IL-1f3 sequence obtained with the product of
F13/R primers, several seabream specific primers (Fig. 1) were used to obtain the 3' and
5' ends of the gene by rapid amplification of cDNA ends (RACE)-PCR (8) as well as
the full gene by genomic PCR. Generated sequences were analysed using the ALIGN,

BLAST2 and CLUSTALW programs (12,13).

Expression studies

Expression of the IL-1p transcript was studied by RT-PCR using F3 and R2
primers (Fig. 1). For in vitro experiments, cDNA was extracted from head kidney cells
and purified macrophages incubated for 4h at 25°C in medium alone or containing 10
pg/ml LPS and/or a 1/20 dilution of macrophage-activating factor (MAF) (11). For in
vivo experiments, cDNA from several relevant tissues was isolated 24 h after
challenging fish with 5x10® cells of a non-virulent strain (ATCC 19264) of the fish

bacterial pathogen Vibrio anguillarum (14).
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Figure legends

Fig. 1 Primers used to amplify gilthead seabream IL-1(3 gene and products obtained. R
=A/G,Y =C/T.

Fig. 2 Compiled full-length gilthead seabream IL-1( sequence. The start and stop
codons, and RNA instability motif (ATTTA) in the 3' UTR are shown in bold. The
polyadenylation signal is underlined. The N-glycosylation sites are boxed. Intron

positions are indicated by vertical lines. EMBL accession no. AJ277166.

Fig. 3 Multiple alignment of the gilthead seabream IL-1(3 (in bold) with other known
IL-1Bs. Identical (*) and similar (. or :) residues identified by the CLUSTAL W
program are indicated. The arrow shows the caspase-1 cut site seen in all the
mammalian sequences. The amino acid regions that form the secondary structure of 12

[B-sheets are indicated.

Fig. 4 AB IL-1B in vivo (A) and in vitro (B) expression assayed by RT-PCR. The

results are representative of two independent experiments. HK = head kidney. PE =

peritoneal exudate.
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5" Adaptor primer  F3 F1 F2
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R1R2 R 3’ Adaptor primer
> 205 bp
719 bp
590 bp

1 IL-1p untranslated region (509 bp)

IL-1(3 coding sequence (762 bp)

Name

Forward (F)13
Reverse (R)
F1

F2

F3

R1

R2

Oligo-dT adaptor
Adaptor
B-actin F
B-actin R

Sequence (5’ - 3’)

GGGAAAGAATCTRTACCTGTCYTG
TGAGAGGTGCTGATGAAC
GCTTGCATCTGGAGGCGGTGG
GGGCTGAACAACAGCACTCTC
ATGCCCGAGGGGCTGGGC
GTCGCTGCCCGGGGTGATCC
CAGTTGCTGAAGGGAACAGAC
GGCCACGCGTCGACTAGTAC(T)
GGCCACGCGTCGACTAGTAC
ATCGTGGGGCGCCCCAGGCACC
CTCCTTAATGTCACGCACGATTTC

Figure 1
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