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Abstract

In Industry 4.0, security begins with the workers’ authentication, which can be done individually or in groups. Recently, group
authentication is gaining momentum, allowing users to authenticate as group members without the need to specify the particular
individual. Continuous authentication and federated learning are promising techniques that might help group authentication by
providing privacy, by its own design, and extra security compared to traditional methods based on passwords, tokens, or biometrics.
However, these techniques have not previously been combined or evaluated for authenticating workers in Industry 4.0. Thus, this
paper proposes a novel continuous group authentication privacy-preserving (CGAPP) platform that is suitable for the industry. The
CGAPP platform incorporates statistical data from workers’ smartphones and employs federated learning-based outlier detection
for group worker authentication while ensuring the privacy of personal data vectors. A series of experiments were performed to
measure the framework’s suitability and address the following research questions: i) What’s the cost of using FL compared to
full data access in industrial scenarios? ii) How robust is federated learning against adversarial attacks, specifically, how much
malicious data is required to deceive the model? and iii) How much noise is required to disrupt the authentication system? The
results demonstrate the effectiveness of the CGAPP platform in the industry since it provides factory safety while preserving
privacy. This platform achieves an accuracy of 92%, comparable to the 96% obtained by traditional approaches in the literature that
do not address privacy concerns. The platform’s robustness is tested against attacks in the second and third experiments, and various
countermeasures are evaluated. While the CGAPP platform exhibits certain vulnerabilities to data injection attacks, straightforward
countermeasures can alleviate them. Nevertheless, the system’s performance experiences a notable impact in the event of a data
perturbation attack, and the countermeasures investigated are ineffective in addressing this issue.
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1. Introduction

Production lines in today’s Industry 4.0 are automated and
controlled by electronic devices, which are, in turn, operated or
programmed by highly trained employees. Since processes are
geared to maximize production, any incorrect or mischievous
operation can cause significant time and/or money losses and
seriously affect production. This makes security a central issue
in modern factories [1]. Security begins with authentication
from dedicated devices [2] of workers who operate the produc-
tion machines. Allowing a worker to perform a task that is not
under his/her prescribed duties or for which he or she has yet
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to be trained can pose a significant risk of failure. Even worse,
allowing access to the factory or its systems of unauthorized
persons or attackers (saboteurs) is an ever-present severe secu-
rity risk.

Authentication is a broad and well-studied topic that still
poses open research questions. Although authentication is con-
sidering the use of some futuristic techniques, such as DNA
sampling, the most commonly used mechanisms in indus-
tries for user authentication are identification cards, passwords,
and biometrics [3]. Identification cards allow quick access to
premises through doors or turnstiles, but they can be lost, stolen,
cloned, or exchanged among workers. Passwords can provide
moderately fast access to the factory and computer systems, but
they can also be stolen or exchanged (and frequently forgot-
ten). Finally, biometric systems, like facial or fingerprint, are
high-speed access mechanisms that are more difficult to imper-
sonate, and definitely not forgettable. Still, their use requires
dedicated sensors, which can sometimes interfere with the per-
sonal protective equipment worn by workers, such as glasses
or face masks, making their use unpractical or even impossible
in some situations. Therefore, a more passive, non-intrusive,
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and non-equipment-restrictive authentication method is neces-
sary for these situations.

In many factories, workers operate the production line us-
ing electronic devices. These devices can continuously collect
information of the worker’s behavior derived from generic sen-
sors or usage statistics. The acquisition of all this data over
time enables the utilization of continuous authentication (CA)
systems [4] for worker verification and intrusion detection. A
CA system, like any authentication systems, requires an initial
data acquisition phase (enrollment) to subsequently authenti-
cate users. During this period, which in this study lasted 14
days, workers must be authenticated through alternative meth-
ods specified by the company. Once enrollment is complete,
CA systems enhance the security of the factory by continuously
authenticating users [5], not just on an occasional basis. If an
intrusion is detected, the CA system has the capability to report
it to the management, block the device, or even, when feasible,
undo the last actions, effectively preventing potential security
breaches or production line failures.

Most conventional user authentication schemes are based
on individual or one-to-one authentication, where the system
checks if the device is operated by a particular legitimate user .
In general, to obtain effective models for individual authentica-
tion, the system would require access to the personal and private
data of these individuals. As individual users become increas-
ingly concerned and assertive about their privacy rights, even in
their work environments, there is a growing interest in authen-
tication systems that prioritize the protection of these rights.
In certain industry scenarios, group-oriented tasks exist where
security concerns do not really necessitate individual identifica-
tion, and group membership alone suffices. A suitable scheme
for such group-oriented applications is group authentication [6],
wherein the system verifies the user’s affiliation with a specific
group. To fully respect user privacy, these systems must al-
low for the indication of such group membership while being
trained in a manner that guarantees the protection of user’s pri-
vate personal data. Members of the group must have identical
privileges, such as access to locations, responsibilities, tasks
and more. Group authentication enhances the privacy of users
by solely confirming their membership within the group with-
out disclosing private personal data.

Therefore, combining continuous and group-oriented ap-
proaches makes continuous group authentication (CGA) sys-
tems an ideal solution for enhancing security in industrial en-
vironments while also safeguarding the personal data privacy
of individual workers. A CGA system can be designed for dif-
ferent workers’ devices, such as smartphones, laptops, tablets
or PDAs. The CGA system generates a model containing all
users’ behavior, and use this collective information to authenti-
cate each user as a group member. Unfortunately, as previously
mentioned, to develop such a model many learning algorithms
require extracting personal user data from the devices and send-
ing this private data to some repository or server, which may
conflict with personal data users’ privacy. However, in recent
years, a new paradigm for training machine learning models,
called Federated Learning (FL) [7] has emerged, which elim-
inates the need for sending private data. FL methods allow

for building collective models of different participants without
sharing their data. Instead, to train a model, each federated par-
ticipant shares training weights or gradients. These parameters
are then merged into a single global model and distributed back
to each participant. After several rounds of this process, a final
model trained with all clients’ knowledge is obtained. There-
fore, this training paradigm solves the issue of data leakage and
data privacy in some algorithms used to create CGA systems,
as user private data no longer need to leave the device to build
the model.

This solution, which provides privacy of workers’ per-
sonal data, can suffer different attacks on the server and the
clients, [8]. Since the company provides the server, it is con-
sidered honest and reliable, and therefore adversarial attacks
can only be carried out on the client side. There are a variety
of attacks, some more complex and some more straightforward.
The most worrisome attacks can be carried out without techni-
cal knowledge of the application, such as injection or perturba-
tion during data collection or enrollment. In an injection attack,
a malicious user can use a legitimate worker’s device to intro-
duce fabricated or impersonated behavioral data. Conversely, in
a data perturbation attack, a compromised worker intentionally
alters his behavior to induce a system failure.

In particular, this work focuses on an application scenario for
Industry 4.0 that uses continuous group authentication trained
in an unsupervised way (it only trains with users’ data). This
specific scenario raises some interesting research questions that
need to be addressed:

1. In an industrial scenario, what is the cost in the accuracy
of using systems that learn with this increased data pri-
vacy protection, such as FL, versus systems that require
full data access in training and operation?

2. How robust is the federated approach when confronted
with adversarial attacks? In particular, how much data
from an unauthorized worker must be maliciously injected
to make the model consider a member of the group?

3. If a group worker becomes compromised or attempts to
disrupt the authentication process, what degree of data per-
turbation should the worker introduce? How much noise
is required to compromise the integrity of the system?

To address these questions, with the aforementioned applica-
tion scenario in mind:

• A new continuous group authentication platform, the
CGAPP platform, has been designed and developed. This
new platform is aimed to provide industrial companies
with a CGA scheme for smartphones using an outlier de-
tection approach. The code for the CGAPP platform server
is available in [9].

• The validation of the CGAPP platform took place within
an industry-centered scenario where workers utilized
smartphones as their work devices. To facilitate this val-
idation, an existing public dataset was employed in this
study. The users in the dataset have been first analyzed to
find a group of workers sharing enough characteristics to
be considered a workforce.

2



• To answer the first research question, the first experiment
aimed to validate the CGAPP platform and evaluate its
performance in terms of security and privacy.

• Finally, the two last experiments address the second and
third research questions by evaluating the system robust-
ness against two types of adversarial attacks: an injection,
in which an impostor tries to inject data into a worker’s
record, and a poisoning attack, in which some workers de-
liberately send corrupted data.

The paper is structured as follows. Section 2 analyses related
work. Section 3 describes the new platform, a CGA trained with
FL. Section 4 reviews the adversarial attacks considered and
possible countermeasures. Section 5 describes the scenario and
the results obtained from the different experiments to discuss
the results finally. To end, Section 6 draws conclusions and
sketches possible future work.

2. Related Work

CGA using machine learning while maintaining data privacy
is a novel research topic that has not been previously studied.
Therefore, a general state-of-the-art review of the different con-
stituent techniques applied in this work is carried out below. A
summary of the related works can be found in Table 1.

Group authentication (GA) is specially designed for group-
oriented applications, in which it is unnecessary to know the
particular identity of users [6]. It is quite common to find works
using group authentication in the fields of Network Communi-
cations [10], Internet of Things (IoT) [11], and Internet of Ve-
hicles (IoV) [12]. A comprehensive review of recent work can
be found in [13]. Again, group authentication applied to people
authentication has not been thoroughly studied. In [14], Shaon-
ing et al. present a method for authenticating an individual’s
membership to a dynamic group without revealing the individ-
ual’s identity and without restricting the group size or the mem-
bers of the group. These authors use a facial recognition system
with an SVM classifier and a private dataset with 1355 face im-
ages of 271 people (5 face images per person). The proposed
system achieves a success rate of over 96% for different group
sizes, from 10 to 40 users.

Since CGA has not being previously studied in depth, some
of the most relevant and recent works in continuous authentica-
tion in smartphones are detailed below. If grouped by the source
of information used, it is possible to find various works that use
device sensors, such as accelerometers, gyroscopes, or magne-
tometers. In [15], Li et al. use a two-stream Convolutional Neu-
ral Network to extract the top 25 features and a one-class sup-
port vector machine as a classifier. In experimental results using
a private dataset and the BrainRun Dataset, their Scanet system
achieves a 90.04% accuracy and a 5.14% equal error rate. In
[16], Li et al. propose the CAGANet system, which includes
a generative adversarial network to do data augmentation and
use four different one-class classifiers. The CAGANet system
achieved, with the Isolation Forest classifier, the lowest equal
error rate (EER) of 3.64%. Other sources have also been used,

such as touchscreen data. Shuwandy et al., in [17] propose the
BAWS3TS system, which uses a template-matching algorithm.
Their test was conducted with three adult volunteers, and the
system presented a high accuracy rate of 98%.

The increasing availability of many data sources on the same
device, combined with its growing computing power to process
them, enables the combination of two or more of these data
sources to create a more robust solution. The most typical com-
bination involves all or some of the previously mentioned sen-
sors along with a new, distinct source. Sensors, statistics, and
voice are used in [18], where the authors evaluate, in an unsu-
pervised way, different algorithms using the S3-Dataset, achiev-
ing more than 90% accuracy when all the sources are available.
The same authors apply in [5] continuous authentication for the
Industry 4.0 following a supervised approach. Using sensors
and statistics, Jorquera et al. in [19] present an Intelligent and
Adaptive Continuous Authentication System that it is validated
in a online app bank . Also using sensors and statistics, Sánchez
et al. present in [20] a multi-device platform for continuous
authentication using XGBoost. The system presents up to an
89,35% improvement in the FPR compared to the single-device
approach. Sensors and touch screen data are used in [21] to
present the DAKOTA system to authenticate users in a banking
app. The Dakota system uses a SVM model and achieves an
11.5% equal error rate in a private dataset of 30 users. More
work on continuous authentication can be found in the recent
survey in [22].

Regarding privacy-preserving, in biometric authentication
methods such as facial or speaker recognition, developers typ-
ically focus on protecting the pattern that is extracted from the
biometric sample with its pattern extractor algorithm. Two re-
cent examples are [23, 24], where the authors encapsulate the
pattern as soon as it is extracted and leaves the device. In [25],
the authors propose a novel user active authentication training,
Federated Active Authentication (FAA), that utilizes the prin-
ciples of FL and Split Learning to fine-tune a pattern extrac-
tor with the users’ data. More details on privacy-preserving
techniques can be found at [26]. All these options imply the
existence of a pattern extractor previously trained with a vast
database. Currently, these massive databases do not exist in
continuous authentication, leaving these techniques inapplica-
ble for the time being.

As seen in this section, the list of works dealing with CGA
systems trained explicitly in a federated way is somewhat lim-
ited. The rest of the related works that share some character-
istics do not address the problems considered in this paper, ei-
ther. For this reason, this paper proposes a new platform where
workers are authenticated continuously in a group authentica-
tion scheme. The system proposed below uses only statistical
information but can be adapted to other available device sources
with minor changes.

3. CGAPP Platform

This section describes the design and implementation details
of the CGAPP platform. The platform task is to continuously
authenticate a group of industry workers while preserving their
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Table 1: Comparison of related works

Ref.
Continuous

Auth.
Group
Auth.

Privacy
Preserving

Industry

[5] (2022) ✓ x x ✓

[10] (2015) x ✓ x x

[11] (2020) x ✓ x x

[12] (2022) x ✓ x x

[14] (2003) x ✓ x x

[15] (2020) ✓ x x x

[16] (2021) ✓ x x x

[17] (2022) ✓ x x x

[18] (2021) ✓ x x x

[19] (2018) ✓ x x x

[20] (2020) ✓ x x x

[21] (2020) ✓ x x x

[23] (2020) x x ✓ x

[24] (2021) x x ✓ x

[25] (2021) x x ✓ x

This work ✓ ✓ ✓ ✓

data privacy. To do this, the CGAPP platform generates an out-
lier detection model that contains the workers’ behavior, trained
following a federated approach to preserve data privacy. The
platform is designed to use smartphones as workers’ work de-
vices. For the use of other different devices, such as laptops or
tablets, it could be easily extended by slightly varying some of
the modules that compose it.

3.1. Architecture

The CGAPP platform client-server architecture consists of an
application client running on the workers’ devices and a cen-
tral server. Each client application collects its worker’s data
and processes it in order to send limited information to the
server. The server then builds the group authentication model
from these parameters and distributes it to all connected appli-
cation clients. After receiving the model, the applications are
in charge of authenticating the workers. All communications
between server and client are end-to-end encrypted to ensure
communication security. The general details of the application
and the server are specified as follows. A schematic description
of the main functionalities is displayed in Figure 1.

3.1.1. Client Application
The client application creates a training dataset by monitor-

ing the worker’s data, trains a local machine learning model,
and sends the local model parameters to the server. The server
then aggregates the models from all group members, and sends
the updated group model back to the client application. This

Figure 1: Main parts and functionalities of the CGAPP platform

process repeats for multiple rounds as needed, and when the
training is complete, the application receives the final group ag-
gregated model. Finally, the application monitors the worker,
and evaluates the data against the model to authenticate him/her
as a group member. To this end, the modules that make up this
application are (see also Figure 2):

Figure 2: Main parts and functionalities of the CGAPP platform

• Data Acquisition This module is responsible for acquir-
ing workers’ behavioral data when he/she interacts with
industrial smartphones. The data monitored are detailed in
Subsection 3.3.1

• Storage. This module creates and maintains the training
dataset for each worker. Data vectors never leave the de-
vice.

• Data Preprocessing. This module pre-processes the data
(e.g., applying proper scaling).

• Intelligent Trainer. This module is in charge of training
the model locally.
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• Communication. This module sends and receives the en-
crypted information from the server.

• Intelligent Authentication. This module checks new
sample data against the generated group model to authen-
ticate the worker.

3.1.2. Server
The server acts as a central entity responsible for facilitating

communication among all clients within the system. Its primary
role involves aggregating a variety of information to construct
the behavioral model for the group. To create the group behav-
ioral model, the server receives only the minimum necessary
information from each client application. Once the model is
constructed, the server distributes the group model back to each
client application. In addition to receiving weights and gradi-
ents for the federation, the server also acquires other pertinent
information, such as preprocessing parameters or thresholds, as
dictated by the implementation details. Figure 2 shows the three
modules of which the server is composed:

• Communication. This module receives the model param-
eters from each client application and sends them back the
aggregated model. It also receives and sends the prepro-
cessing and threshold values.

• Intelligent Generator. This module generates the feder-
ated group authentication model from the received model
parameters.

• Storage. This module stores the model parameters of each
worker. It also contains other information received and any
other necessary for the correct functioning of the server.

3.2. Federated Learning

Federated Learning paradigms are used to train the machine
learning (ML) and deep learning (DL) models required by the
CGAPP platform. Model parameters/weights are calculated lo-
cally during training in the device by the client application, us-
ing the worker’s private data vectors that are only present in that
device . It is important to note that these private data vectorsre-
main confined to the device, thereby preserving privacy. These
model weights are then sent to the server to be aggregated with
those from other clients, thus building a single global model
for all the clients. The model is then returned to the clients to
repeat the training process for a few rounds. Finally, when a
given number of iterations is reached, the final model is sent to
the clients, ready for group authentication.

3.3. Implementation Details of the Modules

For the sake of reproducibility, the next subsections follow
the process flow, providing details about each module imple-
mentation and the subsequent experiment development.

3.3.1. Data Acquisition
The Data Acquisition module is in charge of monitoring the

smartphone events in each of the selected dimensions at time
intervals or whenever they are produced. In this work, app
usage statistics is the only dimension used because other data
sources are often unavailable. (For example, in an industrial
scene, the device is frequently attached to the machine, or the
voice or facial are unavailable if the worker uses personal pro-
tective equipment.) The design and most configuration values
of the data acquisition are based on results from previous work
[20, 19].

The data vectors contain information about the different ap-
plications used by the workers in the last 60 seconds. Each
vector of statistics is then calculated every 60 seconds and con-
tains:

• Foreground application counters (number of different and
total apps) for the last minute and the last day.

• Most common app ID and the number of usages in the last
minute and the last day.

• ID of the currently active app.

• ID of the last active app prior to the current one.

• ID of the application most frequently utilized prior to the
current application.

• Bytes transmitted and received through the network inter-
faces.

It was decided to use the existing S3 Dataset [27] to address
the open research questions stated in Section 1. The S3 Dataset
contains the behavior statistics of applications of 21 volunteers
interacting with their smartphones for more than 60 days. (The
dataset also contains sensors and voice data, which are not in-
teresting for this work.) The type of users is diverse: males and
females aged 18 to 70 were included in the dataset generation.
The wide range of age is a crucial aspect due to the impact of
age on smartphone usage.

The data in this dataset can be extrapolated to the situation
considered in this work because the dataset shares important
similarities with it: the type of device it uses (smartphone) can
be provided by the company as a work assistant and authenti-
cation device, the dataset contains statistics app usage data –
which are always available–. It considers regular use of the de-
vice. (This dataset would be even more suitable if it contained
different user devices, the users shared the device, the number
of users was more significant, or if it contained adversarial data
attacks.)

For completeness, the portions of the database used in this
work are detailed below, as well as an abbreviated explanation
of how the information contained in the statistics vector has
been calculated. More specific details can be found in [27].
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3.3.2. Data Preprocessing
Once the data have been captured and stored, a simple pre-

processing is applied to the data vectors before model train-
ing. Specifically, Min-Max scaling, i.e., x′ = x−xmin

xmax−xmin
is applied

to each of the elements. To apply this scaling it is necessary
to calculate the xmin and xmax values. In earlier stages of this
research, the performance of calculating them individually for
each worker or globally was evaluated. The results showed that
a global calculation of these values gives better results than an
individual one. Therefore, this module is in charge of calcu-
lating these values xk

min and xk
max for each client k and, using

the Communication module, of sending them to the server. The
server will then calculate the global ones, xG

min and xG
max, and

send them back to each client. The min-max values are com-
puted locally with the worker’s data, and these min and max
values, which contain worker-specific indirect data, are shared
with the server during this stage.

3.3.3. Intelligent Trainer
This module’s primary function is to train, with the workers’

data, a round of the Federated Learning model desired for group
authentication. The training begins once the required worker’s
data has been acquired and preprocessed. The trigger to start
the training can be either having collected a fixed number of
vectors, or the end of an initial time period previously config-
ured for data capturing only. For this research, a time period
of 14 days of device use was set (see Section 5.1). The module
trains an initial model sent by the server via the Communication
module.

Three types of ML models were finally chosen among those
suitable for a federated approach, and these were chosen among
those in widespread use for outlier detection to ease compari-
son. Other types were also pre-evaluated during the prepara-
tory work of this research, but Autoencoders (A), Variational
Autoencoders (VA), and k-nearest neighbor (KNN) presented
the best results in that preliminary exploration and are the ones
fully researched and reported here. In the same way, the hyper-
parameters (that is, the parameters of the learning algorithms
and the structural parameters that are fixed in the learning) pre-
sented below were obtained during that preparatory work:

• Autoencoder. Two 1-hidden-layer models, with 16 and 8
neurons each, and four 2-hidden-layers models with 16-8,
18-4, 8-4, and 8-2 neurons.

• Variational Autoencoder. Two 1-hidden-layer models,
with 16 and 8 neurons each, and four 2-hidden-layers mod-
els with 16-8, 18-4, 8-4, and 8-2 neurons.

• k-nearest neighbor. With 1, 2, 5, 10, 20, 30, and 50 clus-
ters.

The Variational and Autoencoder models use RELU in each
hidden layer and sigmoid as activation function in the output.
No Batch Normalization or other type of regulation or dropout
was used in any layer, and the training was performed using
the stochastic gradient descent (SGD) algorithm with a fixed
learning rate fixed of 0.01.

Note that Autoencoders and KNN use slightly different meth-
ods to calculate the score (sc). An encoder and a decoder form
an Autoencoder. The encoder transforms the input by reduc-
ing the number of dimensions to a coding dimension, and the
decoder attempts to map the encoded output back to the origi-
nal input. The training aims to reduce the Mean Squared Error
(MSE) between the input and the reconstructed features. In an
authentication scene, an Autoencoder is trained with the worker
data. Given a new sample, a low reconstruction error indicates
that the sample is from a genuine worker, while a high recon-
struction error indicates that the sample belongs to an impostor.
For Autoencoders, the MSE of a sample is considered the au-
thentication score:

sc(x|A) = MSE(x, x′) (1)

where x′ is the Autoencoder’s reconstruction of x.
On the other hand, the KNN model groups all the training

samples into clusters to represent the workers’ behavior. There-
fore, the distance of one sample to the different clusters indi-
cates the degree of membership of that sample to the workers
and thus gives an authentication score. Thus, a low score indi-
cates that the new sample belongs to one of the clusters of the
KNN model and, thus, to the worker. Conversely, a high score
indicates that it belongs to an impostor.

sc(x|KNN) = dist(x; KNN) (2)

Finally, the threshold must be calculated. In this work, this
calculation used the training data of all workers. No data set
aside from the training set was used. The formula used was:

thr = mean(sc(x)) + std(sc(x)). (3)

Note that this is a federated approach, which means that nei-
ther the server nor any client application has full access to all the
training data from all workers to calculate the threshold. Each
client has access only to its private worker data. Therefore,
each client application calculates the mean and standard devia-
tion of the samples of that device and sends it to the server along
with the number of samples used for its calculation. These val-
ues, are not considered private data, and sharing them with the
server does not compromise user privacy. Once the server re-
ceives all this information, it calculates the global threshold us-
ing (3).

3.3.4. Intelligent Generator
This server module is in charge of aggregating the weights

sent by each client application and obtaining a global model
that includes the behavior of all workers. The Weighted Fed-
Avg Algorithm [7] was selected because each client application
may use a different amount of vector data in the training round.
Therefore it makes sense to counterbalance it. Once the global
model has been built, it is passed to the server’s communication
module to be sent to all the client applications.
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3.3.5. Intelligent Authentication
Once the group model is trained and ready, the client ap-

plication starts the Intelligent Authentication module. During
operation, the Data Acquisition module gets a new sample, the
Pre-processing module prepares it, and the Intelligent Authen-
tication module uses it to perform the group authentication. A
sample is authenticated to belong to the group if the score ob-
tained (when applying the group model to it) reaches or exceeds
a particular threshold value (which must be properly set).

4. Adversarial Attacks and Countermeasures

Even when privacy is an issue of great concern, security
should not be neglected. Federated Learning models can be
the target of a particular type of attack that must be considered:
Adversarial Attacks. This section details some of the different
adversarial attacks that can be addressed in a CGA scene with a
federated model: how they operate and how to avoid or prevent
them.

4.1. Adversarial Attacks
In FL, for its proper functioning, it is assumed that all partic-

ipants, clients, and server are honest and therefore do not aim to
harm the common good. Unfortunately, this is not always the
case, and both clients and server could be malicious. The effect
of one of these parties becoming malicious implies a degrada-
tion in the functioning, harming the whole system. Since the
server is a service controlled by the company’s security de-
partment, this work does not consider its malicious potential
and will be considered completely honest. On the other hand,
the security department cannot guarantee that the application
client is always behaving honestly. In a group authentication,
there may be a compromised worker who wants to carry out
an attack, either by corrupting the system or by allowing an
attacker to gain access. The study of attacks and countermea-
sures, therefore, will be focused on the client application part
of the CGAPP platform.

The list of attacks is classified into different groups according
to where the attack occurs [8]. The focus of this work is on
Data poisoning, a type of attack in which a client intentionally
introduces malicious data to the system, causing a behavioral
change in the models indirectly through the data used to train
them. These attacks can be carried out through the worker’s
device or by accessing the device’s code or hardware. Among
the various types of data poisoning attacks, two prominent ones
are:

• Data Injection. This attack occurs when a compromised
worker aims to impersonate an outside worker as a group
member. To achieve this, the compromised client sends the
behavioral data of the impostor to the federated model to
authenticate the fake worker. Although the global model
remains fully functional, it now erroneously authenticates
an outside worker as a member of the group.

• Data Perturbation. Unlike the previous attack, this one
aims to render the model useless by sabotaging it. To

achieve this, one or more compromised workers send con-
taminated data to confuse the model and make it non-
functional. As a result, the model either authenticates any-
one who tires to access it or, to reject all workers alto-
gether.

4.2. Countermeasures

To mitigate the adversarial attacks mentioned above, slight
modifications can be made to the aggregation function used by
the FedAvg algorithm, which typically uses the average weights
to build the overall model. Among the available possibilities
[28], this work evaluates two alternative functions: median and
clipping [29]. The reasons for selecting these functions were
the following: i) they are the simplest functions and require the
least amount of computation, which in an industrial environ-
ment is appreciated. ii) these functions are robust to the distri-
bution of the data, which is useful because each FL participant
is only trained with the data of one worker, and iii) they are
robust even when the number of FL participants is small. The
aggregation methods compared are then:

• Mean. This is the usual aggregation function, where the
mean (or average) of the weights is used. This function
does not resolve adversarial attacks but is the baseline for
comparison with the other functions.

• Median. Using this aggregation function, the mean of the
weights is replaced by the median to exclude outliers ef-
fectively.

• Clipping values (Xth percentile). In this case, the 60th

and 80th percentiles are calculated for each of the weights
and removed. Once the extreme values are removed, the
mean is used.

5. Experiments

This section first details the scenario and the metrics used
in the experiments for attack detection. Then, the results of the
three experiments are explained in detail. The experiments con-
ducted are: 1) evaluation of the CGAPP platform and compar-
ison with other approaches that relax privacy, 2) evaluation of
injection attacks and the robustness of countermeasures, and 3)
data perturbation attacks. Finally, a discussion about the results
is given.

5.1. Scenario

The key characteristics of this work scenario are the follow-
ing: i) an automated industrial environment, ii) workers oper-
ating the production line using smartphones, iii) only a group
of authorized workers can perform specific tasks, iv) the in-
trusion of an unauthorized worker or external person poses a
severe risk, v) workers wear personal protective equipment that
may prevent the capture of some biometric characteristics, and
vi) the electronic device may be anchored at certain times and
not portable. Attending to these characteristics, the S3-Dataset
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(previously detailed in Section 3.3.1) was used for all the ex-
periments.

To emulate a group authentication situation, two groups of
users were selected from all the S3-Dataset. The first group
consisted of legitimate workers authorized to operate a given
process who wished to be authenticated anonymously. The sec-
ond group consisted of attackers who were also workers of the
same company but lacked the proper authorization. The work-
ers’ group is formed by the identities 1, 2, 8, 11, 20, and 21 of
the S3-Dataset. The second group of users, with identities 3, 4,
12, and 19, is considered to be the attackers. All other users in
the dataset were discarded. This user selection was performed
using a KNN classifier during the preparatory phase of the re-
search. The users forming the workers’ group showed a great
deal of similarity and could then be considered as workers in
the same operation line. The attackers showed some similarities
among them, but with important differences with the workers.
They could then be considered as workers of other areas of the
company or operators of different lines. Finally, the discarded
users were very different from those two groups and could be
considered as not belonging to the same company.

Figure 3 shows a visual T-SNE representation of the training
data. In this figure, the legitimate workers are colored with blue
and green tones, while the four impostors are colored yellow,
orange, red, and pink. As can be seen in the group of legitimate
workers, their samples are very much intermixed, and clusters
per worker can hardly be differentiated. On the contrary, the
impostors do show very well differentiated clusters, with three
types of workers: worker 12, very far from the group; workers
3 and 19, adjacent to the group; and worker 4, who is separated
but is more surrounded by the samples of the group.

ID 1
ID 2
ID 8
ID 11
ID 20
ID 21
ID 3
ID 4
ID 12
ID 19

Figure 3: T-SNE for worker selected. Tones blue and green are the workers in
the group, while yellow, orange, red, and pink are the impostors

The dataset has been split into train and test parts for the ex-
periments. More precisely, the data of the first 14 days has been
selected for training, which will generate the workers’ profiles,
and data from days 15th up to 60th has been used for testing.
The choice of the 15th day for partitioning the data is based
on the results of [18], which showed that unsupervised systems
needed that many days of data to generate profiles with high
enough precision.

It is important to note that although there are both positive
and negative samples, this approach is unsupervised because
the models are trained solely with negative examples, which
are assumed in this work to belong to the group of legitimate
workers. Positive examples are used only to evaluate perfor-
mance during testing and represent people who are not in the
group of legitimate workers. Therefore, even though both pos-
itive and negative examples are included in the evaluation, the
approach is still considered unsupervised in the sense that there
is no explicit labeling or annotation of the examples used for
training (only negative ones). The labeling of positive sam-
ples as non-members of the legitimate group follows an attack
detection interpretation. Hence, true positives are successfully
detected attacks, and true negatives correspond to non-attacks
that did not raise the alarm.

Likewise, Pattacker is the number of outsider samples, Nworker

is the number of legitimate worker samples, True Negatives
(TN) denote correct authentications, True Positives (TP) show
correct denials of authentication (rejections) to outside workers,
False Negatives (FN) correspond to outside workers authenti-
cated as legitimate, and False Positives (FP) represent a failure
to authenticate a legitimate worker. Accuracy shows the rate
of correct rejections for outside samples and correct authenti-
cation for genuine samples, Precision represents the rate of all
rejections of the system that were truly outsider samples, and
Recall is the true positive rate; that is, the rate of total outsider
samples that were rejected by the system. F1 is the geometric
mean of Recall and Precision.

5.2. Experiments

The details and results of each experiment are now given.
The experiments have focused on evaluating the performance
of the CGAPP platform in terms of security and privacy and
the robustness of the CGAPP platform against data injection
attacks and also data perturbation attacks.

5.2.1. Experiment 1: Performance of Group Authentication
The objective of this first experiment is twofold: to evalu-

ate the performance of the CGAPP Platform in the use case
explained above and to compare it against other existing ap-
proaches in the literature that relax privacy concerns. To
this end, two unsupervised approaches (outlier detection) with
fewer security/privacy constraints are described below, provid-
ing the necessary details for their implementation without re-
peating redundant information from the federated approach.

Privacy Level 0: centralized approach. This approach has
no privacy concerns, and all private data is sent to the server.
The group authentication model (outlier detection model) is
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trained on the server, and the final model is sent back to each
client. This approach has some significant advantages, such as
the availability of greater computing power on the server for
training models and the flexibility to use other artificial intel-
ligence models beyond those providing FL capabilities. How-
ever, the main disadvantage is the complete breach of privacy
resulting from private data leaving the devices and being sent to
a centralized framework.

Privacy Level 1: Individual approach. In this approach,
each legitimate group worker (i.e., client application) trains
their outlier detection model on their own device using only
their data. Once the model is trained, it is sent to the server
where it is anonymized. After all models of group members
have been collected in the server, they all are sent back to all the
client applications. Scores and thresholds are calculated simi-
larly as in the federated approach.

Privacy Level 2: Federated Learning. As described
in section3.2, is an approach in which the model parame-
ters/weights are calculated locally on the client’s device dur-
ing training, using the worker’s private data. This data is only
present on the personal device and never leaves it, ensuring full
data privacy.

Once the approaches have been presented, they can be eval-
uated and compared with the FL approach to answer the first
research question of Section 1. The Autoencoder, Variational
Autoencoder, and KNN models are used for this experiment.
These are models that have an FL algorithm for training.

Different model hyperparameters and scaling strategies were
tested in a preliminary experimentation phase. Likewise the
hyperparameters of each model have been optimized using the
centralized approach and can be found in Table 2. The compar-
ison of the different approaches keeps these hyperparameters
fixed.

Regarding scaled strategies, for the centralized approach, the
one that works best is min-max. For the individual approach, it
was observed that individual scaling works best for each model.
Finally, for the federated approach, the best is min-max, de-
tailed in Section 3.3.2. For the federated approach (Privacy
Level 2), the FedAvg algorithm was used, and different num-
bers of epochs were tested in a preliminary phase. The best
results were found using 200 steps, which were then used in the
final experiments.

Table 2: Hyperparameters for each model

Model Best Params

Autoencoder 16 neurons
Variational A. 16 neurons
Autoencoder 2 layers 16-8 neurons
Variational A. 2 layers 16-8 neurons
KNN n-neighbors = 50

The authentication results, using the previously defined met-
rics for each security level, are shown in Table 3. The global
best metrics are shown in bold, and the best metrics for each
privacy level are underlined (not done for results in bold).

The results show that the CGAPP platform (Privacy level 2)
can achieve acceptable accuracy for operation in an industrial
environment. The 2-layer Autoencoder has metrics better than
90% in all metrics but the lower bound of Precision, and it is
the best model for accuracy and the F1 metric. This model,
Autoencoder of 2 layers, is selected and it will be used for ex-
periments 2 and 3. This model encompasses 725 trainable pa-
rameters and weighs approximately 80 kilobytes. To establish a
baseline reference, the training and inference times of the model
were evaluated in a federated environment on a PC equipped
with an Intel Core i7-6800 3.40GHz processor. The training
process was completed within 40 seconds, while the inference
time amounted to a mere 0.03 milliseconds. To provide con-
text, previous work [20], conducted measurements on a similar
application running on the device. The results revealed an au-
thentication time of approximately 1 millisecond, a dataset size
of less than 1 megabyte, and an estimated battery consumption
of approximately 150 milliampere-hours per hour of runtime.

Compared to the centralized approach (Privacy level 0),
where there is no restriction to guarantee privacy, the CGAPP
platform presents lower results but is close to the centralized
approach. Regarding Privacy Level 1, where the individual ap-
proach is used, the results clearly show that the system’s per-
formance degrades significantly. In most algorithms, there is a
drop of nearly 20 percentage points in accuracy, precision, and
F1 can be seen. This may be due to the aggregation of different
individual models. Remember that in this approach, whenever
one of the individual models authenticates a user, they are au-
thenticated as a member of the group. Hence, a false negative in
any single individual model triggers an error in group authenti-
cation. If an individual model is poor, the entire group model
is also poor. Furthermore, when the number of members in the
group increases, there will be more individual models to use,
and as a result, the chances of one model failing increase, and,
consequently, the entire group authentication would fail.

5.2.2. Experiment 2: Robustness Against Adversarial Attacks -
Injection Attack

This experiment studies the impact of Injection Attacks on
the proposed CGAPP platform (privacy level 2) and the robust-
ness of the countermeasures discussed in Section 4.2. To carry
out this attack, the attacker will inject their data into the au-
thentication system during the training phase using a compro-
mised worker. Although this paper does not focus on the spe-
cific method of introduction, it could be performed using the
worker’s device during the training phase. In the experiment,
all attackers will be cross-referenced with all workers, and dif-
ferent injection levels will be evaluated.

The most interesting metric to analyze this experiment is the
False Negative rate, which can be calculated as FNRattacker =

FNattacker/Pattacker. This rate shows the percentage of sam-
ples with which the attacker manages to fool the system af-
ter perpetrating the attack. Additionally, the true negative rate
T NRworker = T Nworker/Nworker will be examined as well, which
shows the rate of correct authentications for legitimate worker
samples. This rate will illustrate how the behavior of the at-
tacked system degrades. This experiment employs a ratio of
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Table 3: Results of experiment 2. Comparison of the different approaches (privacy levels). The results are shown as 95% confidence intervals

Model Privacy Accuracy Precision Recall F1

Autoencoder Level 0 96.03 - 96.29 97.55 - 98.26 94.54 - 95.55 96.32 - 96.57
Autoencoder Level 1 81.45 - 82.79 74.92 - 76.37 99.33 - 99.57 85.47 - 86.37
Autoencoder Level 2 91.04 - 91.52 91.04 - 91.53 92.39 - 93.55 91.87 - 92.35

Autoencoder 2 layers Level 0 95.33 - 95.60 95.40 - 95.97 95.86 - 96.24 95.75 -95.99
Autoencoder 2 layers Level 1 74.73 - 78.26 68.94 - 72.20 98.42 - 98.84 81.11 - 83.31
Autoencoder 2 layers Level 2 91.92 - 92.21 89.82 - 90.21 95.94 - 96.44 92.87 - 93.13

KNN Level 0 87.80 - 91.78 83.31 - 88.97 96.85 - 98.04 89.93 - 92.78
KNN Level 1 78.09 - 78.09 88.22 - 88.22 69.27 - 69.27 77.60 - 77.60
KNN Level 2 87.67 - 90.58 86.65 - 89.37 91.02 - 94.73 89.00 - 91.66

Variational A. Level 0 95.71 - 96.21 96.05 - 97.11 95.65 - 96.45 96.09 - 96.52
Variational A. Level 1 76.80 - 78.47 70.66 - 72.34 98.39 - 98.79 82.35 - 83.38
Variational A. Level 2 91.36 - 91.60 89.28 - 89.48 95.56 - 96.10 92.38 - 92.61

Variational A. 2 layers Level 0 95.06 - 95.26 95.03 - 95.51 95.76 - 96.12 95.51 - 95.69
Variational A. 2 layers Level 1 73.77 - 75.87 68.07 - 69.94 98.15 - 98.57 80.45 - 81.73
Variational A. 2 layers Level 2 91.98 - 92.10 89.40 - 89.55 96.74 - 96.98 92.97 - 93.08

attacker samples to compromised but genuine worker samples,
i.e., samples from outside sources over legitimate ones. Us-
ing only a single compromised worker, the metrics analyzed
in the previous stage will be examined across a range of ra-
tios to illustrate how the intensity of the injection could poten-
tially degrade the system. The ratio ranges between 0.005 to
1.00. Note that 1.00 means the presence of as many outsider
data samples as from the legitimate worker. A higher sample
ratio has not been considered since it means that there would
be more training samples from the attacker than from the le-
gitimate worker. From the unsupervised modeling viewpoint
in general, and anomaly detection in particular, the group with
more samples would naturally be interpreted as the normal one.

Figure 4 shows the attacker’s FNR (left column) and
worker’s TNR (right column) metrics for each attack. The at-
tacks are conducted by different attack workers (IDs 3, 4, 12,
and 19) using a particular legitimate worker compromised (IDs
1, 2, 8, 11, 20, and 21) to inject its data. Analyzing first the
FNR plots, three different behaviors can be observed. In the first
place, attacker 4, which in Figure 3 was isolated from the other
attackers, shows a high miss rate from the beginning. However,
even when it injects all of its data, its FNR is at most 30 percent.
On the other hand, attacker 12 needs a ratio higher than 0.2 to
get a noticeable FNR. Finally, workers 3 and 19 show some
FNR from the beginning (with higher values for worker 3), and
the percentage of miss rates increases as the ratio increases.

The FNR plots indicate that worker 2 (dark blue line) is the
most vulnerable worker in the group, as injection of attacker
data causes the biggest disruption. Attackers 3, 12, and 19 are
able to perpetrate a significant number of authentications with
a lower sample rate when worker 2 is the compromised one. In
contrast, worker 21 is the most robust against this type of attack,
with very few successful attacks from worker 12.

Additionally, in the second column of Figure 4, the worker’s
TNR can be observed when attackers inject their data. This

metric shows either an increment or remains very stable. Only
for attacker 4 and workers 2 and 20 a worsening of the met-
ric is observed as the ratio increases, but minimal. This sys-
tem behavior would imply that the compromised worker would
not notice that they are being the victim of an attack, which
would aggravate the situation. After analyzing these metrics,
the global TNR of the system was also evaluated to check if the
rest of the workers would be harmed, but the results were simi-
lar. This suggests that when new data is injected, the system be-
comes more permissive and accepts more samples as genuine,
causing dubious samples of a genuine worker that would have
been previously rejected (a false positive) to now be correctly
recognized (true negatives). Hence the TNR improves.

Given the danger of this type of attack, the different coun-
termeasure aggregation methods mentioned in Section 4.2 are
evaluated below to mitigate the effects of these attacks. Fig-
ure 5 shows the same data as Figure 4 but now uses the median
of the weights as the aggregation method. The other aggrega-
tion function proposed in Section 4.2 has also been evaluated,
but it did not show a noticeable improvement over using the
median. Figure 5 shows a significant reduction of the FNR for
attackers 3, 12, and 19. The behavior in attacker 4 remains sim-
ilar. It is worth noting that for attacker 12, except for worker 2,
the FNR barely exceeds 15%, for all ratios.

Figure 6 shows a bar chart for the most vulnerable worker
of the group, worker 2. In addition, the sample ratio has been
set to 0.5 since, at that point, the worker causes a miss rate
higher than 30 percent for all attackers. If analyzed, worker 2
has about 2900 samples in the training set, which means about
48 hours of device use in the 15 days, an average of 3.5 hours
per day. Therefore, at the 0.5 ratio, the impostors should enter
about 24 total hours or 1.75 hours per day. As seen in the bar
chart, the proposed aggregation methods improve on the stan-
dard mean, with the median being the best-performing system,
reducing the miss rate caused by the attacker to about half. The
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Figure 4: The left column of the y-axis is the attacker’s FNR, and the right
column is the worker’s TNR of the authentication system for a backdoor attack
when an attacker is able to inject its own data as if it were data of one compro-
mised genuine worker. The X-axis is the ratio of data between the attacker and
the compromised worker. Each row is a different attacker, and each color line
represents the same compromised worker in all the graphics. The aggregation
method used for this plot is the mean

exception is attacker 4, where any aggregation function shows
no improvement.

As observed in the results of this experiment, an injection
attack poses a severe risk to the system. Not only can the at-
tacker access the system, but the group worker’s usability re-
mains unaffected, and the TNR even improves, making it much
more challenging to detect the compromised worker to stop the
injection attack. Fortunately, the results suggest that if the con-
sidered countermeasures are applied, the FNR rate will be re-
duced, increasing the system’s robustness against injection at-
tacks. Among the countermeasures shown, the median offers
the best robustness against these attacks.
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Figure 5: The y-axis is the attacker’s FNR, left column, and the worker’s TNR,
right column, for a backdoor attack when a compromised member of the group
introduces data for an attacker. The X-axis is the ratio of data between the
attacker and the compromised worker. Each row is a different attacker, and
each color line represents the same compromised worker in all the graphics.
The aggregation method used for this plot is the median

5.2.3. Experiment 3: Robustness Against Adversarial Attacks -
Data Perturbation

This final experiment studied the impact of Data Perturbation
Attacks on the proposed CGAPP platform (Privacy Level 2) and
the robustness of the countermeasures that were discussed in
Section 4.2. To perpetrate this attack, a worker must contami-
nate its data in a way that breaks the authentication system. In
this experiment, two methodologies of perturbing the data are
evaluated. In addition, the behavior of several workers carry-
ing out the attack and the level of the attack, considered by the
proportion of corrupted samples, are tested.

A simple-to-achieve and hard-to-detect attack would consist
in contaminating a worker’s data using its own dispersion range
or that of the legitimate group as a whole. This experiment
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Figure 6: Bar plot for the FNR in an injection attack of the group worker ID 2, at
a ratio of 0.5. The different colors represent the different aggregation methods
of federated weights

addresses this strong attack, where the data is contaminated
by replacing a percentage of the worker’s genuine data with
random data following a uniform distribution in its dispersion
range considering i) the compromised worker’s data only and
ii) data of all the workers in the group. This will create uni-
form clouds in the input space, covering the whole range of
input values present in-group members, effectively eliminating
any complexity in its shape and allowing substantial areas of
the input space as genuine.
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Figure 7: TPR (Upper) and TNR (Lower) for each percent (X-axis) of samples
poisoned from the different numbers of compromised workers (color lines),
ranging from 1 to 6 compromised workers

The first study considers that a compromised worker con-
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Figure 8: TPR and TNR for each percent (X-axis) of samples poisoned from a
single compromised client

taminates its data by following its own data dispersion range.
For this experiment, a ranging percent of samples contaminated
are considered, as well as different numbers of compromised
workers. Figure 7 shows the obtained TPR and TNR depend-
ing on the percentage of contaminated samples and the number
of compromised workers. As can be seen, the TPR shows a
downward trend and accumulates a loss of less than four per-
centage points. Meanwhile, the TNR is very stable for a sin-
gle compromised worker and decreases progressively when the
number of compromised workers increases. Even in the case
of six compromised workers, when 80 percent of the data is
contaminated, the TPR is already reduced to 70 percent. The
behavior observed in this graph shows that the system loses a
little security, but its usability is greatly affected.

Next, the case when an attacker uses data that follows the
feature value range of that of all workers is studied. This in-
formation can be obtained by the client app of a compromised
worker because the scaling module of the system has the global
maximum and minimum of each feature of the data. As previ-
ously, the experiment would vary the percent of perturbed sam-
ples and the number of workers compromised. The results are
shown in Figure 8. Since the system degrades rapidly, in this
figure, only the case of a single compromised worker is shown.
In this type of attack, the above hypothesis of creating uniform
clouds in the input hyperspace is tested. The TNR increases
to 100% so that no sample from a worker in the group is re-
jected. In comparison, TPR plummets just introducing a few
contaminated data. In this case, security has been breached,
and any worker can easily access the system, while usability
has not been affected. This attack may not be detected by gen-
uine workers, as they would be authenticated as usual (even
with fewer false rejections) as their system authentication per-
formance is unaffected. System administrators could detect it if
they perceive that the rate of global rejections drops. However,
this can be difficult to detect in environments where the number
of attacks is overwhelmingly lower than genuine checks.

As in the case of the previous experiment, the data per-
turbation attacks can significantly compromise the security of
the CGAPP platform. Therefore, it was necessary to evaluate
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whether the different aggregation proposals could mitigate this
situation. The experiments conducted to this end showed that
all the countermeasure aggregation mechanisms work similarly,
and none is an improvement over the original one. The fact that
no countermeasure can alleviate the effects of this attack high-
lights the clear danger it poses and underscores the need for
future work to find a solution against this type of attack.

5.3. Discussion
5.3.1. Experiments

The results presented in this work depend highly on the cho-
sen dataset and the distribution of workers. Therefore, the first
task performed at the beginning of the research was to select
workers to be characterized as the legitimate group. These
workers would be those whose behavior was similar to that
of workers in an industry with similar jobs or tasks. On the
other hand, other group of workers was selected, looking for
those workers whose behavior was similar yet different and who
could be considered employees of the same company but in dif-
ferent positions or ranks. The rest of the workers who did not
fit into these two groups were discarded. This makes the prob-
lem harder than if very different workers were selected as the
legitimate group versus the non-authorized group.

Experiment 1, Section 5.2.1, evaluated the overall perfor-
mance and accuracy that could be achieved in this type of prob-
lem with different levels of privacy. The best model, the Au-
toencoder, showed an accuracy of 96%. Subsequently, as data
privacy increased with the individual and federated approaches,
the system performance degraded, as could be expected. In the
federated approach, it suffered a minor degradation, achieving
92% accuracy. However, in the individual approach (Privacy
Level 1), the degradation was much more significant, dropping
to 82%, more than 14 percentage points. The particularities
of the workers and their quite reduced number may cause this
fact. As can be seen in Figure 3, which shows the TSNE of
the workers, the samples of the workers in the group are dis-
tributed in such a way that the workers in the group cannot be
distinguished internally. This may result in the individual mod-
els being unable to fit each user’s behavior well. Therefore, the
aggregation of all of them does not constitute a good model.
These results clashed with the anticipated results since an in-
termediate performance between the other two approaches was
expected for this approach.

In Experiment 2, Section 5.2.2, the response to injection at-
tacks was evaluated. Figure 4 shows the different behaviors
presented by the different attackers. The color lines also show
the different workers’ behavior. Among the peculiarities, at-
tacker 4 stands out since, in the beginning, independently of the
worker that has been compromised, it is able to get accepted
with around 30% of the samples. Yet, no matter how much it
increases the attack, it does not manage to increase its percent-
age of success. This points to an attacker that, while some of
its own behavior is already and previously similar to the group
members (near 20%), the non-similar areas of its characteriza-
tion cloud are too far from the group model for the learning
algorithm to be pushed to enclose it, even with a quite substan-
tial amount of injection. Injecting more attacker data than the

genuine data of the compromised worker is out of the scope
of this work because, as mentioned previously, that would be
a case of a worker replacement attack rather than a data injec-
tion attack. Attackers 3, 12, and 19 manage, at different ratios,
to perform more successful attacks. Experiment 2 also allows
the establishment of a sort of ranking from weakest to strongest
among the legitimate workers who are compromised: 2, 1, 11,
20, 8, and 21. The most important thing to note is that none of
the attacked workers would detect that they are being compro-
mised because the attackers do not hamper their authentication
rates and even improve them.

Finally, in Experiment 3, Section 5.2.3, the group workers’
data is perturbed in two different ways: first with their own in-
put ranges, and then with the characteristics range of the whole
group. For the first type of perturbation, there is hardly any
strong degradation if only one worker is contaminating its data,
and several workers need to be compromised to degrade the sys-
tem. However, with the second type of perturbation, the effect
is immediate and very drastic: the TNR rises to 100%, and the
TPR decays rapidly. Fortunately, this attack would easily alert
workers that an attack is underway and put the system on alert.

The experiment results show the great potential of the
CGAPP platform for its use by the industry, even in situations
where the number of workers is rather small. The CGAPP plat-
form provides CGA based on FL in a novel way, increasing
workers’ privacy and their data while keeping an accuracy close
to that obtained by systems that do not protect privacy. How-
ever, the system shows some weaknesses when confronted with
adversarial attacks, albeit some may be substantially alleviated
with the evaluated countermeasures. All in all, before incorpo-
rating this platform into the productive industrial environment,
it would be necessary to carry out a series of works to evaluate
and minimize the limitations of this work.

5.3.2. General Comments
Despite the contributions and advancements made in this

study, it is important to acknowledge certain limitations that
warrant further consideration. Firstly, the transmission of pre-
processing and threshold values required for the operation of
the system raises concerns regarding privacy preservation. In
this work, it has been considered that sharing such data between
the client and the trusted server through encrypted communica-
tion does not result in privacy compromise. This is due not
only to the fact that these values do not directly involve pri-
vate personal data collected from users, unlike the data vectors
that remain exclusively on personal devices, but also because
other clients and external entities are unable to access this infor-
mation anyway, thereby maintaining the confidentiality of the
client’s data. However, it would be valuable to explore methods
that eliminate the explicit sharing of this information or embed
it within the parameters of the federation. Additionally, study-
ing the extent to which information can be inferred from these
data would be worthwhile.

Next, a validation in a realistic and industrial scenario, evalu-
ating and validating the platform deployed in a company, would
provide more robust insights into its practical effectiveness.
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Additionally, this work focuses on a single group within the
continuous authentication system. However, exploring the po-
tential for multiple groups with different roles and privileges,
delving into the study of their interrelationships, and investi-
gating their performance would be valuable directions for fu-
ture research. Gaining a comprehensive understanding of the
dynamics and challenges associated with managing multiple
groups would enhance the applicability and scalability of our
approach.

Furthermore, an aspect that deserves future further attention
in the current work is the limited scope of adversary attacks
studied. Specifically, only two types of Data Poisoning attacks
have been considered, where it has been assumed that the server
is trustworthy and that the clients do not have the knowledge to
carry out complex attacks. Other types of adversarial attacks
are membership inference or model inversion attacks. Look-
ing at Figure 3, it can be seen how the workers’ data are very
mixed, which could indicate that this type of attack would have
moderate success, but it should be evaluated in the future.

Another notable aspect of the work that requires future con-
sideration is the handling of compromised workers within the
continuous group authentication system, an aspect not explic-
itly addressed. Devising effective strategies to detect and man-
age the presence of corrupt workers poses a significant chal-
lenge. While this paper focuses on developing and validat-
ing the authentication framework, the specific mechanisms for
dealing with compromised workers are beyond its scope. Mul-
tiple options, such as implementing anomaly detection algo-
rithms, employing redundancy mechanisms, or conducting reg-
ular audits, can be considered. However, determining the most
suitable approach requires expertise from the company’s secu-
rity department. Thus, it is essential for the security department
to collaborate with the research team to devise appropriate mea-
sures to mitigate the impact of compromised workers, ensuring
the overall robustness and security of the authentication sys-
tem.

6. Conclusions

This work presents the Continuous Group Authentication
Platform (CGAPP), an innovative solution that serves as a proof
of concept for industrial companies seeking to develop and im-
plement non-intrusive continuous group authentication for their
workforce. By adopting the CGAPP platform, companies can
enhance factory security while wnsuring the privacy of work-
ers’ data. This is achieved through the CGAPP platform design
and development, which follows an outlier detection approach
and is trained with a federated learning scheme that provides
data privacy to the workers.

A series of experiments were conducted to validate the
CGAPP platform in an industry-centric scenario using an ex-
isting and public dataset, providing promising evidence of fea-
sibility. Dataset S3 has the following features that satisfy the
peculiarities of the application scenario: i) an automated indus-
trial environment, ii) electronic devices utilized by workers, iii)
specific tasks performed by a designated group of authorized
workers, iv) the presence of an unauthorized external individual

or worker poses a grave threat, v) personal protective equipment
worn by workers may impede the capture of certain biometric
traits, and vi) at certain times, the electronic device may be sta-
tionary and not portable. The S3 Dataset has behavior stats of
21 volunteers using their smartphones for over 60 days. Various
users, both male, and female, between 18 to 70 years old, were
involved in the dataset creation.

The first objective of the work was to evaluate the perfor-
mance of the federated system in an industrial environment and
compare it with other approaches that may compromise data
privacy. It is related to the first research question, “In an in-
dustrial scenario, what is the cost in the accuracy of using sys-
tems that preserve data privacy versus systems that require full
data access in training and operation?”. To answer it, Exper-
iment 1 has been carried out, where the federated, individual,
and centralized approaches are compared. The best algorithm
found for the federated learning approach, where no private data
ever leaves personal devices, is the Autoencoder with two lay-
ers, with an accuracy of nearly 92%. Then, the performance
when privacy is relaxed was also evaluated. In the individ-
ual approach, where full models of each individual worker are
sent to the server, the accuracy drops to 82% while, in the cen-
tralized approach, where full worker private data is sent to the
server, it grows to 96%. To address the next research question
concerning security versus attacks, the robustness of the feder-
ated approach has been studied by evaluating its susceptibility
to different types of attacks and how it would affect it. Specif-
ically, in this work, two poisoning attacks have been consid-
ered. The first, evaluated in Experiment 2, is an injection attack
in which an external subject compromises a legitimate worker
by injecting its own data into the model, thereby trying to be
recognized as a legitimate user. Alleviating countermeasures
were proposed and tested. Finally, Experiment 3, addresses
the last research question, which is also related to security but
concerns data perturbation attacks, a type of poisoning attack
aimed at breaking down the authentication system. The results
of the experiment indicate that the robustness of the authenti-
cation system against data perturbation attacks depends largely
on the specific characteristics of the worker and of the attacker.
In some situations, the attack barely succeeds, while in others,
it can have a success rate greater than 80%. The most important
conclusions drawn are that the attacker’s success rate increases
as the ratio of its data samples to those of the compromised
workers grows, as can be expected, and that the attack can go
unnoticed by the workers of the group. However, the use of
alternative aggregation measures, such as the median, can miti-
gate this situation.

Future work in this area will aim to address the limitations
identified and mentioned in Section 5.3, and explore various
avenues for improvement. This includes considering additional
characteristic features for continuous authentication, such as in-
corporating sensor data or similar information. Furthermore,
the study will be extended to encompass a broader range of
Machine Learning models, allowing for a more comprehensive
evaluation. Efforts will be made to overcome the limitations as-
sociated with the dataset used in this study. This may involve
acquiring an actual industrial environment dataset or a dataset
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that better represents the characteristics of the specific scenario,
including the inclusion of real adversarial attacks. By incor-
porating such data, the research can provide a more realistic
evaluation of the proposed approaches and their effectiveness.
Lastly, the research will explore techniques to effectively de-
tect and handle corrupted workers within the federated learning
framework.
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