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A B S T R A C T

Daily work of Fusion Data Research (FDR) scientists faces three practical challenges: (i) getting access to vast
amounts of validated, curated, and (ideally) annotated discharge data, (ii) applying a wide variety of standard,
domain-specific, and home-made analysis and visualization software libraries and routines, and (iii) using fast,
specialized, and not easy to obtain hardware and software installations. This paper introduces a novel web
platform that addresses these three challenges in a federated way. Based on a client–server architecture, the
new platform allows for easy use and exchange of curated data, validated analysis and visualization routines,
and even networked hardware and software installations among the FDR community. This exchange goes
beyond the mere use of a code repository, but facilitates the creation of an actual ready-to-use network of
computers which can be used remotely to configure and perform data analysis. The network functions in a
federated way, in which each member of the community contributes, using the same web platform, with its
data, programming experience, and hardware and software availability. The platform is open source.
1. Introduction

Experimental programs of nuclear fusion devices aim for the char-
acterization of plasma properties. Typically, plasma parameters have to
be derived indirectly, which requires the solution of difficult inversion
problems. In general, all raw data are stored for off-line analysis, which
causes a first important concern in data analysis: the vast amount of
data. (As an example, ITER will collect about 2 PBytes of data per
day [1].) However, dealing with massive databases is not the only
problem in the analysis of discharges. Other issues to be taken into
account are: data quality (poor calibration methods, approximate error
bars, or insufficient validation), statistical relevance (insufficient and
biased databases), image processing (massive quantities of data, diffi-
cult interpretation), predictions (complex systems, fast instabilities, and
non-linear interactions), diagnostic design and experimental planning
(principled design criteria or support to simulations), and adoption of
new technologies (FPGAs, GPUs, intelligent data retrieval, and data
mining, among others).

The discharge analysis can be seen as made up of two sequential
steps. Firstly, automatic data processing (that usually does not require
human intervention) is accomplished to carry out data reduction. The
objective of this data reduction is to prepare the data for human
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inspection. Secondly, specialized software codes are launched to help
scientists to obtain results. For the purpose of this article, all the
analysis involved in the above description will be referred to as Fusion
Data Research (FDR). The daily research activity of FDR scientists faces
a number of practical challenges.

In the first place, in addition to having a lot of data, in some cases,
these are not open to the public or not downloadable for security
or practical reasons. Getting access to experimental data – usually
stored at a central, firewall-protected facility – involves obtaining au-
thorization and either a very fast intranet connection or huge hard disk
availability. Moreover, data should be validated, curated, and (ideally)
annotated. Current experimental data is typically found in raw form,
even if it has been already cleaned or processed by other research
groups as part of their work. Even more, intermediate research results,
produced through the application of Machine Learning (ML) techniques
[2–8], may be also of interest to the community, but are typically
only accessible to the research group that created it. This limits the
FDR scientists’ access to provenance-controlled cleaner, annotated data
and train/test/validate subsets, that would facilitate both future work
and the reproducibility of published research by other members of the
community.
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Second, FDR analysis typically use some (actually, many) standard
data analysis and visualization software tools, together with domain
specific libraries and user-created experimental routines. Both novel
and senior scientists need to be fluent in the so many varied software
libraries available (which may be written in different programming
languages, be updated or expanded every so often, and have a not very
up-to-date documentation) to wisely combine standard routines with
perhaps their own code to create full or partial data workflows... which
may have been built previously by, or be of future interest for other
FDR scientists. Lack of availability to reusable and well-tested (even
publication-supported) data-processing pipelines, trained ML models,
or sets of metadata, sometimes results in the community spending
unnecessary time repeating coding or computations.

Finally, the large amount of data to process or the complexity of
the algorithms may result in the need for high computational power
which requires, perhaps, parallel computation or dedicated hardware
(such as GPU or FPGA) [9,10], or the installation of particular soft-
ware platforms (such as some ML libraries or proprietary software).
Reproducing other scientists’ work or applying similar techniques to
new data would then imply every member of the community having
access to every possible such installation. But accessing, installing, and
maintaining such frameworks – which can in many cases be shared
through a network – can be a very hard, expensive, and time-consuming
activity in itself.

These three challenges make research results in FDR laborious to
obtain, hard to communicate, and – a key point – particularly difficult
to reproduce by other scientists. There is a need for the FDR community
to either agree on a common software or platform for the development
of the discipline or, better yet, establish a sort of open and federated
way for scientists to work in this field. A way that simplifies access to
annotated data, fine-trained models, and the latest validated analysis
software and hardware platforms, offers freedom to choose from the
many that exist or to use custom ones and facilitates communication,
reproducibility, and replicability of results.

This paper presents IODA (acronym for Input-Output Data Analysis),
a novel Web platform created specifically with this need in mind. The
platform is based on a client–server architecture with the clients run-
ning on any standard Web-enabled device (including PCs, laptops, and
tablets) and allowing simple, graphical edition of data workflows, and
with a server that offers users access to a whole federated ecosystem
providing:

• simplified, secure access to remote, distributed data,
• verified software routines for analysis and visualization, in differ-

ent programming languages,
• access to network-available specific computing hardware and

software platforms,
• the capability to introduce the user’s own code for particular

analysis, and
• the possibility for members of the community to easily contribute

to the ecosystem with new elements.

The IODA platform can serve the FDR community in its need to share
access to raw or curated data, publish provenance controlled data-
workflows and models, and even share software or hardware resources
for members who may need it, in a controlled way.

Other software tools (such as Orange [11], Apache NiFi [12], and
Simulink [13], among others) provide users with the capability of
designing data workflows in simplified, graphical form. But none of
them provides the advanced, federated capabilities offered by IODA.

The client-side user interface of the platform is described in Sec-
tion 2. The server-side, which provides the real engine of the federated
data analysis capabilities is described in Section 3. Finally, Section 4
discusses design decisions and the future implementation of platform
components that will address the different needs described above.

Readers and potential users interested to learn in more detail
about some technical aspects (installation, adding new servers, security
issues, federation management. . . ) can also consult the IODA web
site [14].
2

Fig. 1. IODA Web-based graphical user interface running on a tablet and showing a
directed graph for data analysis and visualization.

2. IODA user interface

The platform is operated by users using any modern Web browser,
since the client is programmed using W3C standards: HTML, JavaScript,
and CSS [15]. Therefore, virtually any Internet-enabled device can
display this Web-based graphical user interface (WebUI), from PCs to
tablets and cell phones (but a small screen makes it harder to read).
The server authenticates the user and serves the client web page using
the HTTPS standard. The WebUI allows users to create one or more
projects, each of one of the server-provided dedicated types. The server
can customize the types of projects it offers to each user based on user’s
preferences or authorization level. Projects consist of one or several
pages of data analysis and visualization workflows expressed in form
of directed graphs (see Fig. 1).

A directed graph is composed of nodes and oriented connections
among them. Nodes are displayed in the client’s interface shown in
Fig. 1 as labeled icons, and represent instances of library elements
that the project type offers to the user for its perusal. Each element
represents a given piece of code with data algorithms or calls to visu-
alization routines, and has been created or curated by other scientists,
experts in the different tasks, and contributed to the platform. Elements
are added to a graph and their properties are customized by the user
using IODA’s WebUI. Properties turn into code parameters that help
fine-tune the behavior of the element, or represent input or output
of the element’s code. Users then draw directed arrows that establish
connections and send output properties of an origin node to be used
as input properties for a target node. This information is sent, during
run-time, using standard JSON format [16] and shared temporary data
files, allowing for elements written in different programming languages
to exchange data. The server will, in run mode, convert these nodes and
connections into a valid executable.

Elements are the key building blocks of the ecosystem and the
WebUI standardizes the way they are created and used. Projects offer a
menu with common, validated elements for most of the tasks required
by a project of a given type. For FDR, these include accessing data
in remote repositories, data processing or analysis algorithms, trained
and well-tested machine learning models, and visualization using spe-
cialized libraries. These domain-specific elements are added to the
ecosystem in a federated way: members of the FDR community can
contribute with new elements according to their programming exper-
tise, access to data, or availability of hardware or software platforms.
Besides the elements offered by each project type, users can create new
elements using their own algorithms and add them to those used in
their graphs. Servers can analyze the code before actually running it to
check for unauthorized access or incorrect uses. The process of using,
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Fig. 2. Big picture of IODA.

creating, and connecting elements to create an effective directed graph
is very natural, promotes open source practices (users can inspect the
elements’ code), provides in-place documentation — which can include
links to publications, and makes possible a fast learning curve.

Once a graph is created, the client can automatically check the
correctness of the nodes and connections, and offers a simulated step-
by-step execution, so that the user can see what nodes will be executed
and in which order. Finally, a single click sends all the information
to the server for the actual execution. The server then takes charge
and serves back, as the graph is executed, all the information that is
produced, including which executor (see below) run which node, the
hardware or software platform used, the time elapsed by each node,
and any intermediate or final outcome produced by the execution. This
information is provided in form of HTML pages that the client displays
to the user. The user can then replay the execution, inspecting inputs
and outputs of each step, which facilitates the detailed inspection,
detection of bottlenecks or errors, and download of intermediate and
final results of the whole workflow.

3. Server-side architecture

The server-side architecture, depicted in Fig. 2, is based on three
conceptually different components: one coordinator, that serves directly
the users and initiates and monitors all server-side tasks, one or more
executors that execute the directed graphs, and one or many computing
nodes that perform the actual computing. The three components may
be running on a single machine (for small tasks) or escalate to a cloud
of federated computers connected by an intranet or, in some cases,
the Internet. Although quite sophisticated, the client WebUI makes the
complexity of the platform transparent to the user.

Users are given, by the coordinator server machine, a profile and a
disk quota where the platform stores their projects, user-created private
elements, and all results created by the executions of their graphs. Users
can also upload their data to this disk for use in their analysis.

Once the user requests the execution of a graph from the WebUI,
the client creates a deep copy of the task, packaging the directed graph
with any user-uploaded data, current definitions of the elements, and
3

any other information relevant for the execution. (Since this informa-
tion could later be changed by their authors, this deep copy ensures
reproducibility.) The life cycle of the task begins when this package is
sent to the coordinator, which is responsible of (1) finding an executor
to process the task, (2) monitoring the running state, and (3) serving
back to the client all intermediate and final output results.

The executor relieves the coordinator from dividing the task into
steps, finding computing machines for each of them, and driving the
execution of the graph, passing information and data to and from
computing nodes as the execution proceeds. The coordinator server
can hence serve several clients simultaneously and these tasks will not
affect the performance of the execution of a graph. How the coordinator
chooses one executor from the possibly many available depends on its
capabilities or availability. It is important to remark that the execu-
tors may be heterogeneous machines and therefore provide different
computing possibilities. Some executors may have access to computing
nodes with installed specific software platforms or dedicated hardware
(GPU or FPGA), or have local (fast) access to a data repository. Others
may be standard computational nodes or grids of them, suitable for
parallel computation. Since elements may include in their definition
run-time requirements or recommendations, the execution may demand
a given configuration from the executor. After the executor is assigned,
the coordinator prepares an execution environment, extracting the
information of the task in a distributed file system which the executor
can access. The coordinator then requests from the executor the start
of the graph execution.

When requested, the executor proceeds to process the nodes in
turn, following connections as indicated by the directed graph. The
executor then uses the asynchronous task queue manager Celery [17] to
communicate with its available computing nodes to prepare (schedule)
and synchronize the execution, and passing along any intermediate data
that would be required. Each node of the directed graph is mapped to
a Celery task that is, in turn, provided by one of the computing nodes.
The data exchange between nodes is done using different backends,
from passed JSON structures for small variables, to access details from
a temporary shared file system or database for larger data. This shared
file system is provided as a disk space reserved by the coordinator
exclusively for the execution of the graph. This disk space is then used
by the executor and computing nodes in turn as a common space where
to read and write intermediate data needed for the execution. The
executor coordinates this access so that only computing nodes involved
in a particular graph execution access this data, and only when they
need to. Once the graph execution is completed, access to the file
system is closed.

The computing nodes are the server-side components that perform
the actual processing. They receive the information on a given node
processing code, customized properties, and inputs received and create
and execute a computer process. They then send back the node’s output
and run-time information to the executor so that the workflow pro-
ceeds. The term computing nodes apply not only to number-crunching
machines. Some nodes may act as data providers, smart repositories of
experimental data both storing raw numbers and offering data curation
services to the users. These data-providers access their organization
data, which is not shared directly with the rest of the federation,
and optionally preprocess the data to respond to the user’s request,
expressed via the provided element’s properties. This ensures that the
platform respects the access policy of each member organization to
its data. Others nodes offer direct access to acceleration hardware or
specialized software [18].

Input and output data required and produced, respectively, by each
computing node is passed among graph elements via elements’ proper-
ties links. Each element must provide output properties for any informa-
tion required by further processing of the data by other elements (such
as time stamps, metadata, or results of any preprocessing done). Since
elements may run in different programming languages, data produced

by these languages must be converted to a set of standardized property
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types used to declare each element property type (this standardiza-
tion also helps IODA’s WebGUI check that links connect compatible
data types). Computing nodes automatically run ancillary code, before
and after running the code defined by the element, which cares for
this conversion, in a way transparent to the element’s designer. Each
implementation of a computing node, using a given programming lan-
guage, cares for converting these types into the programming language
types that can be operated equivalently. Current data types include
booleans, integer and double-precision numbers, strings, one and two-
dimensional matrices, structures, and others. . . providing support for
typical data-exchange needs. This list can be extended to accommodate
more types in the future, if it becomes necessary.

4. Design decisions and status

The initial requirements for the IODA platform included the need
to:

• Provide secure, remote access to large amounts of data and com-
puting power hosted in institutional data servers.

• Allow users to operate the client part in any modern device
(computers, tablets, even smartphones).

• Be intuitive to use and provide immediate on-line help, making it
easy to use, even for sophisticated data analysis.

• Run in a distributed environment, profiting from remote hosting
and computing power.

• Allow integration of heterogeneous data and user provided data
analysis codes in different programming languages.

• Support the building of a community of scientists which con-
tribute and use the platform in a federated form.

The decision to use a client–server architecture which communi-
ates using Internet standards was an obvious one. It allows separating
he implementation and maintenance of the client and server sides,
sing complete different technologies. The use of W3C standard soft-
are on the client side allows nearly universal deployment with no

nstallation, permits using common tools for modern, easy to appre-
end user interfaces, and offers resorting to the Internet for extended
ocumentation and links to publications.

The decision to configure the user experience in form of projects
ith pages of directed graph for data analysis was based on the daily
vidence that scientist very frequently use graphs when they explain
o each other their data analysis workflows [19]. In fact, several
ther applications use directed graphs to build a complete algorithm
edicated to one or more of the following jobs:

• Big data analysis: Usually allow users to access, modify, filter, and
visualize data [20]. Most of these tools include machine learning
and data visualization capabilities (KNIME, Orchest, Easy Data
Transform, Orange).

• Handling data streams: The main purpose of these tools is to
build data pipelines using a graphical interface. The pipelines are
created to automate a data flow between systems, where different
data sources, functions, and data sinks can be used [21]. Some
examples are Node-Red, Storm, Apache NiFi or StreamSets.

• Visual programming and hardware interaction: Allow the users to
focus on the analysis and the data exploration instead of coding.
Widgets, nodes, and pipes allow the creation of workflows as
easy-to-understand directed graphs [22]. A few examples of this
type of software are LabVIEW, Simulink, or Orange.

hough some of these tools satisfy some of the requirements for the
latform, none covered all of them.

On the server-side the well-know Python-based Django server [23]
as used to implement the coordinator. The platform for sharing disk

pace is currently based on good-old NFS, while support for other so-
utions is open. Executors are also developed in Python, implementing
4

both communication with the Django coordinator and the computation
nodes using Celery. Celery was chosen as task queue manager because
(i) it is fast, relatively simple, and very flexible, (ii) has a large support-
ing community and is in active development, and (iii) it is interoperable
with practically every technology that could be needed by the IODA
platform. The message broker RabbitMQ (RabbitMQ 2023) was chosen
as the underlying communication mechanism for Celery, because of
its wide range of uses, open source nature, and embedded security
mechanism.

The implementation of each computation node is open. Although
the project includes several prototypes (in Python) that each member
of the community can adapt, any contributor can design its own com-
putation node using different platforms, as long as it complies with
the Celery, NFS, and data type conversion requirements. An overall
design principle of IODA is to encapsulate the computing in individual
tasks, each with only one specific purpose, that will be exposed to the
executors using the Celery backend. The rationale for this decision is to
allow for an extensive list of individual reusable tasks that can be useful
for different users, to discourage the dependency on specific machines,
and to facilitate the contribution by members of the community using
their own available platforms and skills. For those with less experience,
easily customizable, ready to use instances of computing nodes are
distributed using Docker containers [24]. The complete platform is
open source.

Default installation files, in form of Docker-enabled packages, for
coordinator, executor, and computing node servers are provided. Gen-
eral hardware requirements for the three servers are limited to run-
ning the Docker application. The coordinator is the central piece of a
IODA federation and requires customization to set the IP address and
user/password security of the RabbitMQ communication system, set
NFS’ file system access permissions, and add new users’ profiles (using
standard Django administrative tools). Once done, the standard Docker
compose command will automatically download and install all required
software and run the server. Executor and computing node servers
need to be customized to comply with the access security provided by
the coordinator administrator and are then installed and run similarly.
These servers communicate with the coordinator to register themselves
in the federation at start-up. Administrators of computing nodes can,
optionally, customize the distribution to add extra libraries that only
run in their nodes; for instance, to provide access to their data, or
run specialized software or hardware, which needs to be installed
separately. (As an example, a Matlab computing node needs to install a
valid licensed copy of Matlab.) These procedures are described in detail
in the IODA web site [14].

The IODA platform is currently in its beta-testing period and is being
used to host a small experimental community. This community is build-
ing a wide variety of commonly used data analysis and visualization
elements, and installing executors and computing nodes using different
approaches and offering a wide range of services. The goal of this final
phase is to illustrate with examples the benefits of the contribution
of federated nodes with diverse computing resources or access to data
repositories. But, the most important objective is to show how a large
group of data analysis scientists, such as the FDR community, can use
the IODA platform to share their resources and know-how.

The IODA platform can also be of interest for communities in other
scientific domains which need to share access to data and run different
types of code to study it. The flexibility and openness of the process
of adapting and creating specialized graph elements, using routines
particular of each domain, facilitates adoption by scientists in other
fields looking for a similar federated platform.
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