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Abstract

Reed-Muller codes belong to the family of affine-invariant codes. As such codes they have a defining set that determines
them uniquely, and they are extensions of cyclic group codes. In this paper we identify those cyclic codes with multidimensional
abelian codes and we use the techniques introduced in [4] to construct information sets for them from their defining set. For first
and second order Reed-Muller codes, we describe a direct method to construct information sets in terms of their basic parameters.

I. INTRODUCTION

The family of Reed-Muller codes was introduced by D. E. Muller in 1954 [15] and a specific decoding algorithm for them
was presented by I. S. Reed in the same year [17]. Since then, many authors have paid attention to this family of codes for
many reasons. On the one hand, they can be implemented and decoded easily, and on the other hand they have a rich algebraic
structure which allows us to see them from different points of view. Originally, Reed-Muller codes were defined in terms of
boolean functions by Muller and, equivalently, from this point of view they can be constructed as polynomial codes. In another
context, they can be treated as geometric codes; specifically, they can be identified with codes of the designs of points and
flats in the affine space over the binary field. Finally, they also possess an algebraic structure that let us treat them as group
algebra codes. We are interested in this last point of view. Specifically, any Reed-Muller code can be identified with an ideal
in a group algebra of an elementary abelian group. Moreover, the family of Reed-Muller codes is contained in the family of
so-called affine-invariant codes and so a defining set can be defined for them. The reader may see [2] for a comprehensive
explanation on the structures of Reed-Muller codes.

In particular, we are interested in the problem of finding information sets for Reed-Muller codes, a question that has been
addressed for many authors earlier. From the geometric point of view several ideas for finding information sets has been
presented. In [8] and [16] Moorhouse and Blokhuis gave bases formed by the incidence vectors of certain lines valid for a
more general family of geometric codes. Later, J. D. Key, T. P. McDonough and V. C. Mavron extended these definitions in
[12] in order to apply the permutation decoding algorithm. Finally, in [13], the same authors gave a simple description of
information sets for Reed-Muller codes by using the polynomial approach.

In this work we use the fact that Reed-Muller codes can be seen as extended-cyclic affine-invariant codes to get information
sets. From this context any Reed-Muller code is a parity check extension of a cyclic group code, so any information set of that
cyclic code is obviously an information set for the Reed-Muller code; moreover, there exists a direct connection between the
respective defining sets. On the other hand, in [4] we introduced a method for constructing information sets for any abelian code
starting from its defining set. Then, the goal of this paper is to obtain information sets for Reed-Muller codes of first and second
order respectively by applying those techniques shown in [4] to the punctured cyclic group code seen as a multidimensional
abelian code.

The paper is structured as follows. Section II includes the basic notation and the necessary preliminaries about abelian
codes. In Section III we recall how the method given in [4] works in the particular case of two-dimensional abelian codes. In
Section IV we prove some necessary results related to the case of cyclic codes seen as two-dimensional cyclic codes; these
results will be essential in the rest of the paper. In Section V we focus on Reed-Muller codes: we recall their definition as
affine-invariant codes in an abelian group algebra and the description of the defining sets. Then we show how to apply the
results in Section IV to Reed-Muller codes under some restrictions on their parameters. Section VI and Secion VII are devoted
to develop in detail the construction of information sets for first-order and second-order Reed-Muller codes respectively. In
the case of first-order Reed-Muller codes we get a description of the information sets directly from the previous sections;
for second-order Reed-Muller codes, although the development is more complicated, involving several technical results, it is
remarkable that again the description turns out to be particularly simple in the end.

This work was partially supported by MINECO, project MTM2016-77445-P, and Fundación Séneca of Murcia, project 19880/GERM/15. An extended
abstract of a part of this paper was presented at Fith International Castle Meeting on Coding Theory and Applications, Estonia, 2017



2

II. PRELIMINARIES

In this paper we deal with Reed-Muller codes identified as abelian codes, so for the convenience of the reader we give an
introduction to abelian codes just in the binary case. Then all throughout F denotes the field with two elements.

A binary abelian code is an ideal of a group algebra FG, where G is an abelian group. It is well-known that there exist
integers r1, . . . , rl such that G is isomorphic to the direct product Cr1 × · · · × Crl , with Cri the cyclic group of order ri,
i = 1, . . . , l. Moreover, this decomposition yields an isomorphism of F-algebras from FG to

F[X1, . . . , Xl]/ 〈Xr1
1 − 1, . . . , Xrl

l − 1〉 .

We denote this quotient algebra by A(r1, . . . , rl) and we identify the codewords with polynomials P (X1, . . . , Xl) such that
every monomial satisfies that the degree of the indeterminate Xi is in Zri , the ring of integers modulo ri, and that we always
write as canonical representatives (that is, non negative integers less than ri). We write the elements P ∈ A(r1, . . . , rl) as
P = P (X1, . . . , Xl) =

∑
ajX

j, where j = (j1, . . . , jl) ∈ Zr1 × · · · × Zrl , X j = Xj1
1 · · ·X

jl
l and aj ∈ F. We always assume

that ri is odd for every i = 1, . . . , l, that is, we assume that A(r1, . . . , rl) is a semisimple algebra.
Our main tool to study the construction of information sets for abelian codes is the notion of defining set.

Definition 1. Let C ⊆ A(r1, . . . , rl) be an abelian code. Let Ri be the set of ri-th roots of unity, i = 1, . . . , l. Then the root
set of C is given by

Z(C) =

{
(β1, . . . , βl) ∈

l∏
i=1

Ri | P (β1, . . . , βl) = 0 for all P (X1, . . . , Xl) ∈ C

}
.

Then, for a fixed primitive ri-th root of unity αi in some extension of F, i = 1, . . . , l, the defining set of C with respect to
α = {α1, . . . , αl} is

Dα (C) = {(a1, . . . , al) ∈ Zr1 × · · · × Zrl | (αa11 , . . . , α
al
l ) ∈ Z(C)} .

It can be proved that, fixed a collection of primitive roots of unity, every abelian code is totally determined by its defining
set.

Remark 2. The reader may check that in the case l = 1 the previous definitions coincide with the classical notions of zeros
and defining set of a cyclic code.

In order to describe the structure of the defining set of an abelian code we need to introduce the following definitions.

Definition 3. Let a, r and γ be integers. The 2γ-cyclotomic coset of a modulo r is the set

C2γ ,r(a) =
{
a · 2γ·i | i ∈ N

}
⊆ Zr.

We shall write Cr(a) when γ = 1.

Definition 4. Given (a1, . . . , al) ∈ Zr1 × · · · × Zrl , its 2-orbit modulo (r1, . . . , rl) is the set

Q(a1, . . . , al) =
{(
a1 · 2i, . . . , al · 2i

)
| i ∈ N

}
⊆ Zr1 × · · · × Zrl .

It is well known that for every abelian code C ⊆ A(r1, . . . , rl), D (C) is closed under multiplication by 2 in Zr1 ×· · ·×Zrl ,
and so D(C) is a disjoint union of 2-orbits modulo (r1, . . . , rl). Conversely, every union of 2-orbits modulo (r1, . . . , rl) defines
an abelian code in A(r1, . . . , rl). From now on, we will only write 2-orbit, and the tuple of integers will always be clear by
the context.

To finish this section we give the notion of information set of a code in the context of abelian codes. For P =
∑
ajX

j ∈
A(r1, . . . , rl) and I be a subset of Zr1 × · · · × Zrl , we denote by PI the vector (aj)j∈I ∈ F|I|. Now, for an abelian code
C ⊆ A(r1, . . . , rl) we denote by CI the linear code {PI : P ∈ C} ⊆ F|I|.

Definition 5. An information set for an abelian code C ⊆ A(r1, . . . , rl) with dimension k is a set I ⊆ Zr1 × · · · × Zrl such
that |I| = k and CI = Fk.

The complementary set (Zr1 × · · · × Zrl) \ I is called a set of check positions for C.

As usual, we denote by C⊥ the dual code of C, that is, the set of codewords v ∈ A(r1, . . . , rl) such that v · u = 0, for all
u ∈ C, where “ · ” denotes the usual inner product. It is easy to see that any information set for C is a set of check positions
for C⊥ and vice versa.
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III. INFORMATION SETS FOR ABELIAN CODES

In [4] we introduced a method for constructing information sets for any multidimensional abelian code just in terms of its
defining set. In this section we only recall the two-dimensional construction because it is the unique case that we will use. So,
from now on we take l = 2 and the ambient space will be A(r1, r2).

Let e = (e1, e2) ∈ Zr1 × Zr2 . We define
m(e1) = |Cr1(e1)|

and
m(e) = m(e1, e2) =

∣∣C2m(e1),r2
(e2)

∣∣ . (1)

The construction of information sets is based on the computation of the parameters defined in (1) on a special subset of the
defining set of the given abelian code. Specifically this set has to satisfy the conditions described in the following definition.
For any A ⊂ Zr1 × Zr2 we denote its projection onto the first coordinate by A1.

Definition 6. Let D be a union of 2-orbits modulo (r1, r2) and D ⊂ D a complete set of representatives. Then D is called a
set of restricted representatives if D1 is a complete set of representatives of the 2-cyclotomic cosets modulo r1 in D1.

Remark 7. In [4] we gave the notion of restricted representatives associated to a fixed ordering on the indeterminates X1, X2.
In the two-dimensional case that definition is equivalent to Definition 6 when we fix the ordering X1 < X2. This will be our
default ordering, so we will make no reference to the order on the indeterminates in the rest of the paper.

Example 8. Consider r1 = 3, r2 = 5 and let C ⊆ A(3, 5) be the abelian code with defining set D(C) = Q(1, 1) ∪Q(1, 2) ∪
Q(0, 0), where Q(1, 1) = {(1, 1), (2, 2), (1, 4), (2, 3)}, Q(1, 2) = {(1, 2), (2, 4), (1, 3), (2, 1)} and Q(0, 0) = {(0, 0)}. Then,
according to Definition 6, the set of representatives {(1, 1), (2, 1), (0, 0)} is not restricted, because C3(1) = C3(2), while
{(1, 1), (1, 2), (0, 0)} is indeed restricted.

Now, let C ⊆ A(r1, r2) be an abelian code with defining set Dα ⊆ Zr1 ×Zr2 , with respect to α = {α1, α2}. Take D ⊂ Dα

a set of restricted representatives. Given e1 ∈ D1, let

R(e1) = {e2 ∈ Zr2 | (e1, e2) ∈ D}.

For each e1 ∈ D1, we define
M(e1) =

∑
e2∈R(e1)

m (e1, e2) (2)

and we consider the values {M(e1)}e1∈D1
. Then we denote

f1 = max
e1∈D1

{M(e1)} and

fi = max
e1∈D1

{M(e1) |M(e1) < fi−1}.

So, we obtain the sequence
f1 > · · · > fs > 0 = fs+1, (3)

that is, we denote by fs the minimum value of the parameters M(·) and we set fs+1 = 0 by convention. Note that M(e1) > 0,
for all e1 ∈ D1, by definition.

From the previous values fi we define for i = 1, . . . , s

gi =
∑

M(e1)≥fi

m(e1) (4)

and then we obtain the sequence
g1 < g2 < · · · < gs. (5)

Finally, we define the set

Γ(C) = {(i1, i2) ∈ Zr1 × Zr2 | there exists 1 ≤ j ≤ s with fj+1 ≤ i2 < fj , and 0 ≤ i1 < gj}. (6)

The following theorem, proved in [4] for any abelian code, establishes that Γ(C) is a set of check positions for C, and
consequently Γ(C) defines an information set for C⊥.

Theorem 9. Let r1, r2 be odd integers and let C be an abelian code in A(r1, r2) with defining set Dα(C) with respect to
α = {α1, α2}. Then Γ(C) is a set of check positions for C.

Let us observe that given an abelian code C ⊆ A(r1, r2) with defining set Dα(C) if one chooses different primitive roots
of unity, say γ = {γ1, γ2}, then the structure of the q-orbits in Dγ(C) is the same as in Dα(C), that is, we obtain the same
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values for the parameters (1) and (2), so we get the same set of check positions Γ(C) (see [7, p.100]). That is why we do not
use any reference to the roots of unity taken in the notation of the set of check positions. So, in the rest of the paper, for any
abelian code C we denote its defining set by D(C) and the corresponding set of check positions by Γ(C) without any mention
of the primitive roots.

Example 10. We continue with the code C considered in Example 8. Then D(C) = Q(1, 1) ∪Q(1, 2) ∪Q(0, 0) and we take
D = {(1, 1), (1, 2), (0, 0)} as set of restricted representatives. From (2) we have that M(1) = m(1, 1) +m(1, 2) = 2 + 2 = 4
and M(0) = m(0, 0) = 1. So f1 = 4 > f2 = 1 > f3 = 0. On the other hand, from (4) we obtain g1 = m(1) = 2, g2 =
g1 +m(0) = 3. Therefore,

Γ(C) = {(i1, i2) ∈ Zr1 × Zr2 | (1 ≤ i2 < 4 and 0 ≤ i1 < 2) or (0 ≤ i2 < 1 and 0 ≤ i1 < 3)}
= {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0)}

is a set of check positions for C.

Remark 11. In [4] we showed how to construct the previous set of check positions for any multidimensional abelian code.
As we have already mentioned, in this paper we only need to use the two-dimensional case which yields the same information
set that was introduced by H. Imai in [11].

IV. CYCLIC CODES AS TWO-DIMENSIONAL CYCLIC CODES

We are going to construct an information set for the punctured cyclic code of a Reed-Muller code viewed as a multidimen-
sional abelian code. So, we are interested in applying the results of the previous section when the original abelian code is in
fact cyclic.

Let C∗ be a binary cyclic code with length n = r1 ·r2. All throughout this section we assume that gcd(r1, r2) = 1 and r1, r2
are odd. Then let T : Zn → Zr1 × Zr2 be an isomorphism, and let us denote T = (T1, T2); that is, Ti(e) is the projection of
T (e) onto Zri , for i = 1, 2 and any e ∈ Zn.

The proof of the following result is straightforward.

Lemma 12. For every e ∈ Zn the equality T (Cn(e)) = Q (T (e)) holds; in particular |Cn(e)| = |Q(T (e))|. Moreover, one
has that the projection of Q(T (e)) onto Zr1 is equal to Cr1(T1(e)).

Let D∗ = Dα(C∗) ⊆ Zn be the defining set of C∗ with respect to an arbitrary primitive n-th root of unity α. Then, since
there exist integers η1, η2 such that η1r1 + η2r2 = 1, we have that α1 = αη2r2 and α2 = αη1r1 are primitive r1-th and
r2-th roots of unity respectively. Fix T an isomorphism as above and set T (1) = (δ1, δ2); observe that gcd(δ1, r1) = 1 and
gcd(δ2, r2) = 1. We define the abelian code C = C(C∗,T ) ⊆ A(r1, r2) as the code with defining set D = D(C) = T (D∗), with

respect to (β1, β2) = (α
δ−1
1

1 , α
δ−1
2

2 ). In this situation, we have that C is the image of C∗ by the map

A(n) −→ A(r1, r2)∑
aiX

i ↪→
∑

bjlX
jY l,

where bjl = ai if and only if T (i) = (j, l). Therefore, I is an information set for C if and only if T−1(I) is an information set
for C∗. Usually, we omit the reference to the original cyclic code and the isomorphism T in the notation of the new abelian
code, and we will write C instead of C(C∗,T ); those references will by clear by the context.

For the rest of this section we assume that we have fixed a choice of α and T (consequently, the roots β1, β2 are also fixed).
Then, the goal of this section is to describe the values of the parameters defined in (1) and (2), used to get a set of check

positions for C (see 6), just in terms of the defining set of C∗. This will allow us to define an information set for the original
cyclic code C∗ without any mention to the abelian code C.

Remark 13. Let us observe that, since the defining set D∗ = Dα(C∗) depends on the choice of α, if we fix another one β, we
get a new defining set Dβ(C∗) and consequently we obtain a different abelian code C. However, this new abelian code has a
defining set with the same structure of q-orbits so it yields the same set Γ(C) (see paragraph after Theorem 9).

On the other hand, it is easy to prove that any change of the isomorphism T is equivalent to a change of the primitive root
α in order to get the same abelian code in A(r1, r2). Nevertheless, this implies that, since we get the same set Γ(C), we could
obtain a different set of check positions T−1(Γ(C)) at the end. Therefore, by the method we are describing in this section we
get at most as many information sets as there are isomorphisms from Zn to Zr1 × Zr2 exist.

Let D∗ ⊆ D∗ ⊆ Zn be a complete set of representatives of the 2-cyclotomic cosets modulo n in D∗. As we have noted,
for any e ∈ D∗, T (Cn(e)) = Q(T (e)), so T (D∗) is a complete set of representatives of the 2-orbits modulo (r1, r2) in
T (D∗). However, it might not be a set of restricted representatives according to Definition 6. Then we introduce the following
definition.



5

Definition 14. Let D∗ ⊆ D∗ be a complete set of representatives of the 2-cyclotomic cosets modulo n in D∗. Then D∗ is said
to be a suitable set of representatives if T (D∗) is a set of restricted representatives of the 2-orbits in T (D∗).

The next lemma shows that we will always be able to take a suitable set of representatives in D∗.

Lemma 15. Let D∗ be the defining set of a cyclic code C∗ ⊆ A(n). Let C ⊆ A(r1, r2) be the abelian code with defining set
T (D∗). Then, there always exists a suitable set of representatives D∗ ⊆ D∗.

Proof. From Lemma 12, for any e ∈ D∗ we have that Q(T (e))1 = Cr1(T1(e)). Let D∗ be a complete set of representatives of
the 2-cycloctomic cosets modulo n in D∗. Take A a complete set of the 2-cyclotomic cosets modulo r1 in {T1(e) : e ∈ D∗}.
Now, take e ∈ D∗ and let a ∈ A be such that T1(e) ∈ Cr1(a). Then there exists e′ ∈ Cn(e) that satisfies T1(e′) = a; if e′ 6= e
then we redefine D∗ by replacing e with e′. This concludes the proof.

Example 16. Let us consider binary cyclic codes of length n = 21, so r1 = 3, r2 = 7. Let C∗ ⊆ A(21) be the cyclic
code such that its defining set, with respect to a 21-th primitive root of unity α, is the following union of 2-cyclotomic
cosets modulo 21, D∗ = {1, 2, 4, 8, 11, 16} ∪ {3, 6, 12} ∪ {7, 14}. Take T : Z21 → Z3 × Z7 the isomorphism given by the
Chinese Remainder Theorem. Then C denotes the abelian code in A(3, 7) with defining set D = T (D∗), that is, the following
union of 2-orbits modulo (3, 7), T (D) = {(1, 1), (2, 2), (1, 4), (2, 1), (2, 4), (1, 2)} ∪ {(0, 3), (0, 6), (0, 5)} ∪ {(1, 0), (2, 0)}.
The set B = {2, 3, 7} ⊆ D∗ is a complete set of representatives of the 2-cyclotomic cosets in D∗; however it is not a
suitable set of representatives since T (B) = {(2, 2), (0, 3), (1, 0)} is not a restricted set of representatives in D (note that
C3(1) = C3(2)). We may solve this problem by replacing 2 by 1. Then D∗ = {1, 3, 7} is a suitable set of representatives
because T (D∗) = {(1, 1), (0, 3), (1, 0)} is a restricted set of representatives in D.

Now we deal with the construction of a set of check positions for the abelian code C = C(C∗,T ) ⊆ A(r1, r2) just in terms
of D∗, the defining set of the cyclic code C∗.

Given D∗ ⊆ D∗ a suitable set of representatives, we consider ∼ the equivalence relation on D∗ given by the rule

a ∼ b ∈ D∗ if and only if a ≡ b mod r1. (7)

From now on we denote by D∗ a suitable set of representatives and U ⊆ D∗ a complete set of representatives of the equivalence
classes related to ∼. In addition, for any u ∈ U we write

O(u) = {a ∈ D∗ | a ∼ u}.

Observe that if D = T (D∗) then D1 = T1(U). Furthermore, for any e ∈ D∗ there exists a unique u ∈ U such that
T1(u) = T1(e). By abuse of notation, we will write

Cr1(e) = Cr1(T1(e)) = Cr1(T1(u)) = Cr1(u).

Example 17. Following Example 16, from the suitable set of representatives D∗ = {1, 3, 7} we may define, for instance,
U = {1, 3}. Note that O(1) = {1, 7}.

Lemma 18. For any e ∈ D∗ one has that

m (T (e)) =
|Cn(e)|
|Cr1(u)|

,

where u is the unique element in U such that T1(u) = T1(e).

Proof. By using the equalities in Lemma 12 and the definition of T one has that |Q(T (e))| = m(T1(e)) ·m(T (e)). On the
other hand m(T1(e)) = m(T1(u)) = |Cr1(T1(u))| = |Cr1(u)|, so we are done.

The following proposition shows how we can write the parameters (1) over the elements of D = T (D∗) ⊆ Zr1 × Zr2 in
terms of elements in U ⊆ D∗.

Proposition 19. Take e ∈ D∗ and u ∈ U (unique) such that T1(u) = T1(e). Let D = T (D∗) ⊆ Zr1 × Zr2 . For each
k ∈ R(T1(e)) there exists a unique vk ∈ O(u) ⊆ D∗ satisfying T (vk) = (T1(e), k) and

m(T1(e), k) =
|Cn(vk)|
|Cr1(u)|

.

Proof. Take k ∈ R(T1(e)). Then (T1(e), k) ∈ D = T (D∗), so there exists a unique vk ∈ D∗ such that T (vk) = (T1(e), k).
Moreover, vk ∈ O(u) because T1(vk) = T1(e) = T1(u). Now

|Cn(vk)| = |Q(T (vk))| = |Q(T1(e), k)| = m(T1(e)) ·m(T1(e), k) = m(T1(u)) ·m(T1(e), k) = |Cr1(u)| ·m(T (e1), k).
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Now, we use the previous result to obtain the values M(·) (defined in (2)) corresponding with the set D = T (D∗) ⊂ Zr1×Zr2 ,
in terms of the elements in U ⊆ Zn.

Theorem 20. For each (e1, e2) ∈ D = T (D∗), there exists a unique u ∈ U such that T1(u) = e1 and

M(e1) =
1

|Cr1(u)|
∑

v∈O(u)

|Cn(v)| =
∑

v∈O(u)

|C
2|Cr1 (u)|,r2

(T2(v))|.

Proof. Take (e1, e2) ∈ D and e ∈ D∗ such that T (e) = (e1, e2). Then

M(e1) =
∑

k∈R(e1)

m(e1, k) =
∑

k∈R(e1)

m(T1(e), k) = M(T1(e)).

By Proposition 19, for any k ∈ R(e1) there exists a unique vk ∈ O(u) ⊆ D∗ such that T (vk) = (T1(e), k) and m(T1(e), k) =
|Cn(vk)|
|Cr1 (u)|

. Now, note that if k 6= k′ ∈ R(e1) then vk 6= vk′ because T (vk) = (e1, k) 6= (e1, k
′) = T (vk′). Finally, if v ∈ O(u)

then T1(v) = T1(u) = e1, and then there exists k ∈ R(e1) such that T (v) = (e1, k), so v = vk. This finishes the proof.

To sum up, fixing a n-th primitive root of unity α and an isomorphim T : Zn → Zr1 ×Zr2 , let C∗ be a cyclic code in A(n)
with defining set with respect to α, D∗, and let C = C(C∗,T ) ⊆ A(r1, r2) be the abelian code with defining set D = T (D∗)
(taking as reference the suitable primitive roots of unity mentioned at the beginning of this section). We have shown that we
can take a suitable set of representatives D∗ ⊆ D∗ and a set U ⊆ D∗, with T1(U) = D1 (D = T (D∗)), in such a way that we
are able to construct the set of check positions given in (6) for C in terms of U as follows:

Since for any e1 ∈ D1 there exists a unique element u ∈ U that satisfies T1(u) = e1, by abuse of notation, we may write
M(u) = M(T1(u)) = M(e1). Then, the set of values (2) can be described asM(u) =

1

|Cr1(u)|
∑

v∈O(u)

|Cn(v)| | u ∈ U

 (8)

which yields the sequence f1 > · · · > fs > 0 = fs+1 (see (3)). On the other hand, for any k = 1, . . . , s the values (4) can be
computed as

gk =
∑
u∈U

M(u)≥fk

|Cr1(u)|

which give us the sequence g1 < g2 < · · · < gs (see (5)) and hence the set Γ(C).

Remark 21. From the development of the method we have described, the reader may note that the isomorphism T has no
influence on the construction of Γ(C). So, as we have said in Remark 13, we obtain at most as many information sets as there
are isomorphisms.

Example 22. We apply the results in this section to the code C∗ given in Example 16. Recall that its defining set is D∗ =
{1, 2, 4, 8, 11, 16} ∪ {3, 6, 12} ∪ {7, 14} and we were using the isomorphism given by the Chinese Remainder Theorem. We
have chosen D∗ = {1, 3, 7} as suitable set of representatives and U = {1, 3}. Then, from (8) we have

M(1) =
1

|C3(1)|
(|C21(1)|+ |C21(7)|) =

1

2
(6 + 2) = 4,

M(3) =
1

|C3(3)|
· |C21(3)| = 1

1
· 3 = 3,

and so f1 = 4 > f2 = 3 > f3 = 0. On the other hand, g1 = m(1) = 2 < g2 = 2 +m(0) = 3. These sequences yield the set
of check positions for C

Γ(C) = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2)}.

Finally, we have that T−1(Γ(C)) = {0, 1, 2, 3, 7, 8, 9, 10, 14, 15, 16} is a set of check positions for C∗.
Now, let us consider the isomorphism T̂ : Z21 → Z3 × Z7 given by T̂ (1) = (1, 2). Then

T̂−1(Γ(C)) = {0, 1, 4, 7, 8, 11, 12, 14, 15, 18, 19},

which is a different set of check positions for C∗.



7

V. REED-MULLER CODES

In this section we shall introduce Reed-Muller codes from the group-algebra point of view. Specifically, we are going to
present Reed-Muller codes as a type of code contained in the family of so-called affine-invariant extended cyclic codes (see,
for instance, [1], [2] or [9]).

Recall that F denotes the binary field. Let G be the additive subgroup of the field of 2m elements. So G is an elementary
abelian group of order |G| = 2m and G∗ = G \ {0} is a cyclic group. From now on we write n = 2m − 1. We consider the
group algebra FG which will be the ambient space for Reed-Muller codes. We denote the elements in FG as

∑
g∈G agX

g

and then the operations are written as follows∑
g∈G

agX
g +

∑
g∈G

bgX
g =

∑
g∈G

(ag + bg)X
g

c ·
∑
g∈G

agX
g =

∑
g∈G

(c · ag)Xg (c ∈ F)∑
g∈G

agX
g

 ·(∑
h∈G

bhX
h

)
=

∑
g∈G

( ∑
g1+g2=g

ag1bg2

)
Xg.

Notice that X0 is the unit element in FG. The following definitions introduce the family of affine-invariant extended cyclic
codes. All throughout this section we fix α, a generator of the cyclic group G∗, that is, a primitive n-th root of unity.

Definition 23. Let α be a generator of G∗. A code C ⊆ FG is an extended cyclic code if for any
∑
g∈G

agX
g ∈ C one has that∑

g∈G
agX

αg ∈ C and
∑
g∈G

ag = 0.

Definition 24. We say that an extended cyclic code C ⊆ FG is affine-invariant if for any
∑
g∈G

agX
g ∈ C one has that∑

g∈G
agX

hg+k belongs to C for all h, k ∈ G, h 6= 0.

It is clear that if C ⊆ FG is affine-invariant then C is an ideal in FG and C∗ ⊆ FG∗, the punctured code at the position X0,
is cyclic in the sense that it is the projection to FG∗ of the image of a cyclic code via the map

A(n) −→ FG
n−1∑
i=0

aiX
i ↪→

(
−
n−1∑
i=0

ai

)
X0 +

n−1∑
i=0

aiX
αi , (9)

where α is the fixed n-th root of unity.
Now, for any s ∈ {0, . . . , n = 2m − 1} we consider the F-linear map φs : FG→ G given by

φs

∑
g∈G

agX
g

 =
∑
g∈G

agg
s

where we assume 00 = 1 ∈ F by convention.

Definition 25. Let C ⊆ FG be an affine-invariant code. The set

D(C) = {i | φi(x) = 0 for all x ∈ C}

is called the defining set of C.

Note first that since C is an extended-cyclic code, one has that 0 ∈ D(C) because φ0

(∑
g∈G

agX
g

)
=
∑
g∈G

agg
0 =

∑
g∈G

ag .

Furthermore, it follows from the equality φ2s(x) = (φs(x))2 (x ∈ C) that D(C) is a union of 2-cyclotomic cosets modulo n.
On the other hand, keeping in mind the map (9), we talk about the set of zeros an the defining set of C∗ when we are making
reference to those of the corresponding cyclic code in A(n). So, fixing α a n-th primitive root of unity, the zeros of the cyclic
code C∗ are {αs | s ∈ D(C), s 6= 0} and the defining set of C∗ (according to Definition 1 and with respect to that root of
unity), is D(C∗) = D(C) \ {0}.

It is easy to prove that any affine-invariant code is totally determined by its defining set. Conversely, any subset of {0, . . . , n}
which is a union of 2-cyclotomic cosets and contains 0 defines an affine-invariant code in FG.

Remark 26. It may occur that n, 0 ∈ D(C) which could yield confusion considering the 2-cyclotomic cosets modulo n. Those
elements are considered distinct and they indicate different properties of the code C; namely, 0 always belongs to D(C) because
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C is an extended cyclic code, while if n belongs to D(C) then the cyclic code C∗ is even-like which implies that C is a trivial
extension.

Finally, to introduce the family of Reed-Muller codes as affine-invariant codes we need to recall the notions of binary
expansion and 2-weight. For any natural number k its binary expansion is the sum

∑
r≥0 kr2

r = k with kr ∈ {0, 1}. The
2-weight or simply weight of k is wt(k) =

∑
r≥0 kr.

Definition 27. Let 0 < ρ < m. The Reed-Muller code of order ρ and length 2m, denoted by R(ρ,m), is the affine-invariant
code in FG with defining set

D(R(ρ,m)) = {i | 0 ≤ i < 2m − 1 and wt(i) < m− ρ}.

From the classical point of view, Reed-Muller codes are also defined for the cases ρ = 0,m, but they correspond with the
trivial cases R(m,m) = FG and R(0,m) = 〈

∑
g∈G g〉 (the repetition code) which do not have interest in the context of this

paper. The following result summarizes some well known results about Reed-Muller codes that we will refer to further. The
reader may see [2].

Proposition 28. Let 0 < ρ < m.
1) The Reed-Muller code R(ρ,m) is a code of length 2m, dimension

k =

(
m

0

)
+

(
m

1

)
+ · · ·+

(
m

ρ

)
and minimum distance 2m−ρ.

2) R(m− 1,m) = {
∑
g∈G

agg |
∑
g∈G

ag = 0}, that is, the code of all even weight vectors in FG.

3) R(ρ,m)⊥ = R(m− ρ− 1,m).

Since R(m− 1,m)⊥ = R(0,m) the problem of searching for information sets has no interest in the case ρ = m− 1, so in
the rest of the paper we will assume that ρ < m− 1.

As a consequence of Definition 27 we have that the defining set of the punctured code R∗(ρ,m), at the position X0 and
with respect to the fixed n-th root of unity α, is given by the following union of cyclotomic cosets modulo n

D(R∗(ρ,m)) =
⋃

i∈D(R(ρ,m))\{0}

Cn(i).

In the following sections we will deal with the application of the results contained in Section IV to the cyclic code
R∗(ρ,m) in order to obtain an information set for R(ρ,m). To use a notation congruent with that used in that section we
write D∗ = D(R∗(ρ,m)). We assume that there exist integers r1, r2 such that n = 2m − 1 = r1 · r2 with r1, r2 odd and
gcd(r1, r2) = 1. Now, we fix some notation and introduce some definitions and important results that will be needed.

Remark 29. Note that for any fixed primitive root of unity α, following the notation used to describe the elements in FG,(
−
n−1∑
i=0

ai

)
X0 +

n−1∑
i=0

aiX
αi ∈ FG, a set I ⊆ {0, α0, . . . , αn−1} is an information set for a code C ⊆ FG with dimension k,

if |I| = k and CI = F|I|.
On the other hand, since R∗(ρ,m) is contained in FG∗ we have that any information set for it will be a subset of

{α0, . . . , αn−1}. Obviously, an information set for R∗(ρ,m) is an information set for R(ρ,m) too. However, note that if Γ is
a set of check positions for R∗(ρ,m) then a set of check positions for R(ρ,m) is Γ ∪ {0}.

Now, we need to fix some notation. For any integer 0 < K < m− 1 we define

Ω(K) = {0 < j < 2m − 1 | wt(j) = K} =
{

2t1 + · · ·+ 2tK | 0 ≤ t1 < · · · < tK < m
}

and hence,

D∗ =

m−ρ−1⋃
K=1

{0 < j < 2m − 1 | wt(j) = K} =

m−ρ−1⋃
K=1

Ω(K).

Example 30. Take m = 4. Then n = 24 − 1 = 15, r1 = 3, r2 = 5. For these parameters one has that

Ω(1) = {1, 2, 4, 8},Ω(2) = {3, 5, 6, 9, 10, 12} and Ω(3) = {7, 11, 13, 14}.

The code R(1, 4) has defining set D(R(1, 4)) = {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12} and so D∗ = D(R∗(1, 4)) = Ω(1) ∪ Ω(2) =
{1, 2, 3, 4, 5, 6, 8, 9, 10, 12}.

Finally, the code R(2, 4) has defining set D(R(2, 4)) = {0, 1, 2, 4, 8}, which implies D∗ = D(R∗(2, 4)) = Ω(1).

Now, we take D∗ a suitable set of representatives in D∗ and a set U as in the previous section (see Definition 14 and
subsequent paragraphs).
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We are interested in handling convenient elements in the fixed suitable set of representatives in order to compute the necessary
cyclotomic cosets. We will describe them in Theorem 32. First, we need a lemma.

Lemma 31. Let j < i < K < m be natural numbers. Then

1) m−
⌊
im
K

⌋
=
⌊
(K−i)m

K

⌋
or
⌊
(K−i)m

K

⌋
+ 1.

2)
⌊
im
K

⌋
−
⌊
jm
K

⌋
=
⌊
(i−j)m
K

⌋
or
⌊
(i−j)m
K

⌋
+ 1.

Proof. Let
⌊
im
K

⌋
= im

K − δ with 0 ≤ δ < 1. Then

m−
⌊
im

K

⌋
= m− im

K
+ δ =

(K − i)m
K

+ δ.

So, if δ = 0 then
⌊
(K−i)m

K

⌋
= m−

⌊
im
K

⌋
, and if δ > 0 then

⌊
(K−i)m

K

⌋
= m−

⌊
im
K

⌋
− 1. This proves 1).

Now, let
⌊
jm
K

⌋
= jm

K − δ
′ with 0 ≤ δ′ < 1. Then⌊

im

K

⌋
−
⌊
jm

K

⌋
=

(i− j)m
K

+ δ′ − δ.

Note that −1 < δ′ − δ < 1. So, if δ ≥ δ′ then
⌊
(i−j)m
K

⌋
=
⌊
im
K

⌋
−
⌊
jm
K

⌋
; otherwise,

⌊
(i−j)m
K

⌋
=
⌊
im
K

⌋
−
⌊
im
K

⌋
− 1. This

finishes the proof.

It is clear that if e = 2s ∈ Ω(1), with 0 ≤ s < m, then Cn(e) = Cn(1). The following theorem establishes a more general
result for Ω(K) with 1 < K < m− 1.

Theorem 32. Let e = 2s0 + 2s1 + · · · + 2sK−1 ∈ Ω(K) with 0 ≤ s0 < · · · < sK−1 < m and 1 < K < m − 1. Then there
exists

e′ = 1 + 2t1 + · · ·+ 2tK−1 , (10)

with ti ≤
⌊
im
K

⌋
for all i = 1, . . . ,K − 1, such that Cn(e) = Cn(e′).

Proof. We can assume w.l.o.g. that e = 1 + 2s1 + 2s2 + · · · + 2sK−1 ∈ Ω(K) with 0 < s1 < · · · < sK−1 < m and
1 < K < m− 1. If e verifies the required conditions we are done, so suppose that e do not satisfies them and let δ1, δ2 be the
integers such that

si ≤
⌊
im
K

⌋
for all i = 1, . . . , δ1 − 1,

sδ1 >
⌊
δ1m
K

⌋
,

sK−i ≤
⌊
(K−i)m

K

⌋
for all i = 1, . . . , δ2;

and K > δ1 + δ2, that is, the binary expansion of e has at least δ1 + δ2−1 exponents satisfying the desired condition. Observe
that δ1 ≥ 1, δ2 ≥ 0.

We define u = m − sδ1 and consider e′ = 2ue modulo n. Then, it is easy to see that e′ = 1 + 2s
′
1 + · · · + 2s

′
K−1 , with

0 < s′1 < · · · < s′K−1 < m, where

s′j ≡ sδ1+j + u ( mod m) if j = 1, . . . ,K − δ1 − 1 (11)

s′K−δ1 = u

s′j = sδ1+j−K + u if j = K − δ1 + 1, . . . ,K − 1. (12)

We claim that s′j ≤
⌊
jm
K

⌋
for any j = K − (δ1 + δ2), . . . ,K − 1. Let us define A = {K − δ1 + 1,K − δ1 + 2, . . . ,K − 1}

and B = {K − (δ1 + δ2),K − (δ1 + δ2)− 1, . . . ,K − δ1 − 1}, then A ∪B ∪ {K − δ1} = {K − (δ1 + δ2), . . . ,K − 1}. Note
that in the cases δ1 = 1, δ2 = 0 one has that A = ∅, B = ∅ respectively.

On the one hand, by (12), one has that s′j = sδ1+j−K + u for any j ∈ A. Let us observe that sδ1 − sδ1−i >
⌊
δ1m
K

⌋
−⌊

(δ1−i)m
K

⌋
≥
⌊
im
K

⌋
for any i = 1 . . . , δ1 − 1 (see Lemma 31). Then,

s′j = m− sδ1 + sδ1−(K−j) = m− (sδ1 − sδ1−(K−j)) < m−
⌊

(K − j)m
K

⌋
≤
⌊
jm

K

⌋
+ 1

(see Lemma 31), and so s′j ≤
⌊
jm
K

⌋
for any j ∈ A. Furthermore,

s′K−δ1 = u = m− sδ1 < m−
⌊
δ1m

K

⌋
≤
⌊

(K − δ1)m

K

⌋
+ 1,
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which implies s′K−δ! ≤
⌊
(K−δ1)m

K

⌋
.

On the other hand, by (11), for any j ∈ B we have that s′j ≡ sδ1+j + u = m− sδ1 + sδ1+j = m− (sδ1 − sδ1+j) mod m,
so s′j = sδ1+j − sδ1 (note that sδ1+j > sδ1 ). This leads us to

s′j = sδ1+j − sδ1 <
⌊

(δ1 + j)m

K

⌋
−
⌊
δ1m

K

⌋
≤
⌊
jm

K

⌋
+ 1,

and then s′j ≤
⌊
jm
K

⌋
, so we are done.

Therefore, e′ = 2ue satisfies that its binary expansion has at least δ1 + δ2 exponents verifying the desired condition, one
more than in the case of e. If we repeat the argument successively by replacing e by e′ then we get what we wanted. This
finishes the proof.

The previous result shows that for any element e ∈ Ω(K), 1 < K < m − 1, there exists another element e′ ∈ Cn(e)
satisfying condition (10). As we will see in the next section, in the case K = 2, this fact becomes essential for our purposes.
In addition, let us observe that the elements in a given suitable set of representatives might not satisfy condition (10); we
include the next example to show that case.

Example 33. Let us consider the Reed-Muller code R(3, 6). So m = 6, n = 26−1 = 63, r1 = 7, r2 = 9. For these parameters
we have

Ω(1) = C63(1) = {1, 2, 4, 8, 16, 32}

and
Ω(2) = C63(3) ∪ C63(5) ∪ C63(9) = {3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 33, 34, 36, 40, 48}.

The defining set of R∗(3, 6) is D∗ = Ω(1)∪Ω(2). The set D∗ = {1, 3, 10, 36} is a suitable set of representatives according to
Definition 14; however while 1 and 3 satisfy condition (10) the elements, 10 = 2 + 23 and 36 = 22 + 25 do not satisfy it. The
reader may check that there does not exist any suitable set of representatives such that all its elements satisfy condition (10).

VI. INFORMATION SETS FOR FIRST-ORDER REED-MULLER CODES

In this section we are applying the results of Section IV to the punctured codes of first-order Reed-Muller codes. Specifically,
we shall construct an information set for the punctured code R∗(1,m) by using those techniques and then we shall give an
information set for the Reed-Muller code R(1,m). To use the mentioned results we need to assume that there exist odd integers
r1, r2 such that n = 2m − 1 = r1 · r2 and gcd(r1, r2) = 1, r1, r2 > 1.

All throughout this section we fix a primitive n-th root of unity α and T : Zn → Zr1 × Zr2 an arbitrary isomorphism of
groups.

We have two different possibilities to get an information set for the code R(1,m); namely, from an information set of
R∗(1,m), which comes from the defining set of R∗(1,m), and from a check of set positions of R(1,m)⊥ = R(m − 2,m),
which depends on the defining set of R∗(m − 2,m). In general it is more convenient to develop the results in terms of
R∗(m− 2,m) whose defining set is much smaller than that of R∗(1,m).

Let us denote C∗ = R∗(m− 2,m). Then, following the notation fixed in the previous section, we have that

D∗ = Ω(1)

where Ω(1) = {2t | 0 ≤ t < m}. Observe that Ω(1) = Cn(1) so we take D∗ = {1} as our suitable set of representatives
(see Definition 14). Then U = {1}.

The following theorem gives us the description of an information set for the code R(1,m). We denote by Ordr1(2) the
order of 2 modulo r1, that is, the smallest integer such that 2Ordr1 (2) ≡ 1 modulo r1.

Theorem 34. Suppose that n = 2m − 1 = r1 · r2, where r1, r2 are odd integers such that gcd(r1, r2) = 1, r1, r2 > 1. Let
C∗ = R∗(m − 2,m) and a = Ordr1(2). Let D∗ ⊆ Zn be the defining set of C∗ with respect to α, a primitive n-th root of
unity, and let C ⊆ A(r1, r2) be the abelian code with defining set D(C) = T (D∗). Then, the set T−1 (Γ) where

Γ = Γ(C) =
{

(i1, i2) ∈ Zr1 × Zr2 | 0 ≤ i1 < a, 0 ≤ i2 <
m

a

}
is a set of check positions for R∗(m − 2,m). Furthermore, {0, αi | i ∈ T−1 (Γ)} is an information set for R(1,m) and
{αi | i /∈ T−1 (Γ)} is an information set for R(m− 2,m).

Proof. By definition D∗ = Ω(1). We take D∗ = U = {1}. To construct the set Γ(C) given in (6) we need to compute the
sequences (3) and (5). By the results in Section IV we have that those sequences are obtained from (8).

In this case, since D∗ = U = O(1) = {1}, we have a unique value

M(1) =
1

|Cr1(1)|
· |Cn(1)| = m

a
.
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Note that Cn(1) = {1, 2, . . . , 2m−1} and since r1 divides n then a divides m. Then, the sequences (3) and (5) are

f1 =
m

a
> f2 = 0 and g1 = m(1) = a.

Therefore Γ = Γ(C) = {(i1, i2) ∈ Zr1 × Zr2 such that f2 ≤ i2 < f1, 0 ≤ i1 < g1}.
Finally, by Theorem 9, Γ is a set of check positions for C, and then T−1 (Γ) is a set of check positions for R∗(m− 2,m).

So, {0, αi | i ∈ T−1 (Γ))} is a set of check positions for R(m− 2,m) (see Remark 29). Since R(m− 2,m) = R(1,m)⊥ we
are done.

Examples 35. The first value for m that satisfies the required conditions is m = 4. In this case, n = 24 − 1 = 15, r1 =
3, r2 = 5,Ord3(2) = 2. So, let us give an information set for R(1, 4). By Theorem 34 we have that

Γ = {(i1, i2) ∈ Zr1 × Zr2 | 0 ≤ i1 < 2, 0 ≤ i2 < 2} = {(0, 0), (1, 0), (0, 1), (1, 1)}.

Then, by taking the isomorphism given by the Chinese Remainder Theorem, we have that T−1(Γ) = {0, 1, 6, 10} and then
{0, 1, α, α6, α10} is an information set for R(1, 4). Moreover {αi | i 6= 0, 1, 6, 10} is an information set for R(2, 4). Table I
shows the different information sets that we can get by using all the possible isomorphisms from Z15 to Z3 × Z5; the first
column includes the image of 1 ∈ Z15 which determines the corresponding isomorphism, while the second column gives the
set of exponents I such that {0, αi | i ∈ I} is an information set for R(1, 4).

T(1) I
(1,1) {0,1,6,10}
(2,1) {0,3,5,8}
(1,2) {0,3,10,13}
(2,2) {0,6,8,10}
(1,3) {0,7,10,12}
(2,3) {0,2,5,12}
(1,4) {0,4,9,10}
(2,4) {0,5,9,14}

TABLE I
INFORMATION SETS FOR R(1,4)

The next value for m is m = 6. In this case, n = 26 − 1 = 63, r1 = 7, r2 = 9, a = 3. So

Γ = {(i1, i2) ∈ Zr1 × Zr2 such that 0 ≤ i1 < 3, 0 ≤ i2 < 2} = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1)}.

Since T−1(Γ) = {0, 1, 9, 28, 36, 37} one has that {0, 1, α, α9, α28, α36, α37} is an information set for R(1, 6) and {αi | i 6=
0, 1, 9, 28, 36, 37} is an information set for R(4, 6). Again, we have taken the isomorphism given by the Chinese Remainder
Theorem

Finally, let us see the case m = 8, that is, the Reed-Muller codes of length 256. This is an interesting case because we have
three possible decompositions of n = 28 − 1 = 255, namely, (r1 = 3, r2 = 85), (r1 = 5, r2 = 51) and (r1 = 15, r2 = 17).
Table II shows the sets T−1(Γ) obtained for each decomposition; in all cases we are considering the isomorphism given by
the Chinese Remainder Theorem.

r1 r2 a T−1(Γ)
3 85 2 {0,1,3,85,87,88,171,172}
5 51 4 {0,1,51,52,102,103,153,205}
15 17 4 {0,1,17,18,120,136,137,153}

TABLE II
INFORMATION SETS FOR R(6,8)

To finish this section, we include Table III which shows the suitable values of m up to length 2048. The values m = 2, 3, 5, 7
yield a prime number for n = 2m − 1.

VII. INFORMATION SETS FOR SECOND-ORDER REED-MULLER CODES

In this section we deal with second-order Reed-Muller codes. As in the previous section, we shall apply the results of
Section IV, so we need to assume that there exist integers r1, r2 such that n = 2m−1 = r1 ·r2 and gcd(r1, r2) = 1, r1, r2 > 1.
Once more, we fix a primitive n-th root of unity α and T : Zn → Zr1 × Zr2 an arbitrary isomorphism of groups.

In a similar way to the case of R(1,m), we have two possibilities to get an information set for the code R∗(2,m). Again,
we prefer to develop the results in terms of R∗(m− 3,m) which yields an information set for R(m− 3,m) = R(2,m)⊥.
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m n r1 r2 a
4 15 3 5 2
6 63 7 9 3
8 255 3 85 2
8 255 15 17 4
8 255 5 51 4
9 511 7 73 3

10 1023 3 341 2
10 1023 11 93 10
10 1023 31 33 5
11 2047 23 89 11

TABLE III
PARAMETERS FOR FIRST ORDER RM CODES UP TO LENGTH 2048

Throughout this section we denote C∗ = R∗(m− 3,m). In this case we have that

D∗ = Ω(1) ∪ Ω(2)

where Ω(1) = {2t | 0 ≤ t < m} and Ω(2) = {2t1 + 2t2 | 0 ≤ t1 < t2 < m}. Let D∗ ⊆ D∗ be a suitable set of
representatives and take U ⊆ D∗ a complete set of representatives of the equivalence classes modulo r1 (see (7)). We will
always assume that 1 ∈ U ⊆ D∗ (recall that Ω(1) = Cn(1)).

To get the expressions (8) we need to compute the cardinalities |Cn(e)|, for all e ∈ D∗, and |Cr1(u)| for any element u in
the fixed set U . As we have seen in the previous section, these computations can be made directly in the case of elements in
Ω(1), however, they turn to be much more complicated when we work with the set Ω(2). So, we impose some conditions on
r1 in order to make the mentioned computations possible, namely, all throughout we also assume that r1 = 2a − 1, with a an
integer. Then, we can sum up the restrictions on the paremeters as follows

n = 2m − 1 = r1 · r2, where r1 = 2a − 1 and gcd(r1, r2) = 1, r1, r2 > 1. (13)

Note that from these conditions it follows that a = Ordr1(2) and so the notation is consistent with that used in Theorem 34.
In what follows we write m = ab.

The first lemma, probably a well-known result, shows that the value of the cardinalities |Cn(e)| and |Cr1(e)| can be easily
computed for the elements in Ω(2) of the form 1 + 2t.

Lemma 36. Let µ, ν integers such that µ = 2ν − 1. Then |Cµ (1)| = ν and for any natural number 0 < t ≤ ν − 1

∣∣Cµ (1 + 2t
)∣∣ =


ν

2
in case t =

ν

2

ν otherwise

Proof. The equality |Cµ (1)| = ν is clear. To see the second one, denote δ = |Cµ (1 + 2t)|. Then 2δ ·(1+2t) = 2δ+2δ+t ≡ 1+2t

modulo µ. So, either δ = ν (and δ + t ≡ t mod ν) or δ + t = ν and δ = t. The second condition implies δ = t = ν/2.

As we have observed in the previous section the elements in the suitable set D∗ might not satisfy condition (10). However,
we can relate any element in D∗ with another one in the same 2-cyclotomic coset modulo n that satisfies that condition (see
Theorem 32). The following result details this relationship.

Proposition 37. Let D∗ be a suitable set of representatives. There exists a bijection ε : D∗ \ {1} −→ {s ∈ Z | 1 ≤ s ≤
⌊
m
2

⌋
}

where, for any e ∈ D∗ \ {1}, ε(e) is the unique integer such that 1 + 2ε(e) belongs to Cn(e) and satisfies condition (10).

Proof. By Theorem 32, for any e ∈ D∗ \ {1} there exists e′ = 1 + 2s, where 0 < s ≤
⌊
m
2

⌋
, such that Cn(e′) = Cn(e). We

define ε(e) = s and we are going to prove that e′ is unique in Cn(e) satisfying condition (10).
Suppose that exists e′′ = 1+2s

′ ∈ Cn(e), e′′ 6= e′, satisfying the required condition. Then there must exist v ∈ {1, . . . ,m−1}
such that e′′ ≡ 2ve′ ≡ 2v + 2v+s mod n. Necessarily this implies v+ s = m, v = s′. So, s′ = m− s ≥ m−bm/2c ≥ bm/2c;
since e′′ 6= e′ then s′ > bm/2c, a contradiction. So, we can say that ε is well-defined. Now, for any s ∈ {1, . . . ,

⌊
m
2

⌋
} the

element 1 + 2s belongs to Ω(2) and so there exists e ∈ D∗ \ {1} such that Cn(e) = Cn(1 + 2s). Moreover, if e 6= e′ ∈ D∗
then Cn(e) 6= Cn(e′) and so ε(e) 6= ε(e′). This implies that ε is a bijection.

Remark 38. Observe that for all e = 2t1 + 2t2 ∈ Ω(2) one has that 1 + 2δ , with δ = min{t2 − t1,m− t2 + t1}, belongs to
Cn(e) and verifies (10), therefore ε(e) = min{t2 − t1,m− t2 + t1}.

Under the notation introduced by Proposition 37 we can say that for any e ∈ Ω(2) the element 1 + 2ε(e) is the unique
element in Cn(e) satisfying condition (10).
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Now, from Proposition 37 and Lemma 36 we obtain the next result which gives us the desired cardinalities.

Proposition 39. Let n = 2m − 1 = r1 · r2 satisfying (13), that is, m = ab, with a such that r1 = 2a − 1 and (r1, n/r1) = 1.
For any e ∈ Ω(2) one has that

1) |Cn(e)| =


m

2
in case ε(e) =

m

2

m otherwise

2) |Cr1(e)| =


a

2
in case ε(e) ≡ a

2
mod a

a otherwise

Proof. Let e = 2t1 + 2t2 ∈ Ω(2) and e′ = 1 + 2ε(e). Then Cn(e) = Cn(e′). Moreover ε(e) = t2 − t1 or ε(e) = m− (t2 − t1)
(see Remark 38). By Lemma 36 |Cn(e′)| = m/2 if ε(e) = m/2 and |Cn(e‘)| = m otherwise, which yields 1).

To prove 2) note that there exists an integer v ∈ {0, . . . ,m − 1} such that e′ ≡ 2ve modulo n. Since n = r1 · r2 we have
that e′ ≡ 2ve modulo r1. Then Cr1(e) = Cr1(e′) and so |Cr1(e)| = |Cr1(e′)|. Note also that e′ ≡ 1 + 2µ mod r1 where µ
is the residue of ε(e) modulo a. By Lemma 36 |Cr1(e′)| = a/2 if ε(e) ≡ a/2 mod a and |Cr1(e′)| = a otherwise. Finally,
observe that if ε(e) ≡ 0 mod a then e′ ∈ Cr1(1) and so |Cr1(e′)| = |Cr1(1)| = a. This finishes the proof.

Now, all that is required to obtain the expressions (8) is the description of the sets O(u) with u ∈ U , that is, O(1) and O(e)
with e ∈ Ω(2) ∩ U . The next results solve this problem. The first one gives the information we need about O(1). Recall that
all throughout D∗ denotes a suitable set of representatives.

Proposition 40. 1) O(1) = {1} ∪ {e ∈ D∗ | ε(e) = λa with 1 ≤ λ ≤
⌊
b
2

⌋
}.

2) |O(1)| = 1 + bb/2c.
3) If b is even then ε−1(m/2) ∈ O(1),

∣∣Cn(ε−1(m/2))
∣∣ = m/2, and |Cn(e)| = m for any e ∈ O(1) \ {ε−1(m/2)}.

4) If b is odd then |Cn(e)| = m for any e ∈ O(1).

Proof. Let e ∈ D∗, e 6= 1, such that e ≡ 1 mod r1. Then Cr1(1 + 2ε(e)) = Cr1(e) = Cr1(1). Let µ be the residue of ε(e)
modulo a, then Cr1(1 + 2ε(e)) = Cr1(1 + 2µ) = Cr1(1). So 1 + 2µ and 1 are different elements in {1, . . . , r1−1} that belongs
to the same 2-cyclotomic coset modulo r1; this is only possible in the case µ = 0. Therefore ε(e) ≡ 0 mod a. Let ε(e) = λa
with λ a natural number. It is easy to see that this implies 1 ≤ λ ≤

⌊
b
2

⌋
because ε(e) ≤

⌊
m
2

⌋
(recall that n = 2m − 1 where

m = ab). Conversely, if e ∈ D∗ and ε(e) = λa then Cr1(e) = Cr1(1 + 2λa) = Cr1(2) = Cr1(1). Since D∗ is a suitable set
of representatives we conclude that e ≡ 1 modulo r1. This proves 1).

Statement 2) is immediate from 1) and Proposition 37.
Now, suppose that b is even. Then m

2 = a · b2 , so ε−1(m/2) ∈ O(1) by 1). The last part of 3) follows from Proposition 39.
Finally, suppose that b is odd. Then, in case m even, m2 ≡

a
2 modulo a, so ε−1(m/2) /∈ O(1). Therefore, |Cn(e)| = m for

any e ∈ O(1) by Proposition 39. This finishes the proof.

Remark 41. As we have already seen we assume that 1 ∈ U ⊆ D∗. Furthermore, depending on the parity of a and b we will
take the following elements in U by convention:

1) If m is even we also assume that ε−1(m/2) ∈ U unless ε−1(m/2) ∈ O(1).
2) If a is even we assume that ε−1(a/2) ∈ U unless ε−1(a/2) ∈ O(ε−1(m/2)). Observe that ε−1(a/2) never belongs to
O(1).

The next result yields the description of the set O(e) for any e ∈ U \ {1}. Let us observe that e ∈ U \ {1} implies
e ∈ U ∩ Ω(2).

Proposition 42. Let e ∈ U \ {1}. Then O(e) = {e′ ∈ D∗ | ε(e′) ≡ ε(e) mod a or ε(e′) ≡ a− ε(e) mod a}.

Proof. Let e′ ∈ D∗ such that e′ ≡ e mod r1. Then Cr1(1 + 2ε(e)) = Cr1(1 + 2ε(e
′)). Let µ and µ′ be the residues of ε(e) and

ε(e′) modulo a respectively. So Cr1(1 + 2µ) = Cr1(1 + 2µ
′
), that is, 1 + 2µ and 1 + 2µ

′
are elements in {1, . . . , r1 − 1} that

belong to the same 2-cyclotomic coset modulo r1. This is only possible in the cases µ = µ′ or µ = a− µ′.
Conversely, suppose that e′ ∈ D∗ and ε(e′) ≡ ε(e) modulo a. Then, Cr1(e) = Cr1(1 + 2ε(e)) = Cr1(1 + 2ε(e

′)) = Cr1(e′).
Since D∗ is a suitable set of representatives this implies e′ ≡ e modulo r1. Finally if e′ ∈ D∗ and ε(e′) ≡ a − ε(e) modulo
a we have the following sequence of equalities: Cr1(e′) = Cr1(1 + 2ε(e

′)) = Cr1(1 + 2a−ε(e)) = Cr1(1 + 2ε(e)) = Cr1(e).
Again, we conclude that e′ ≡ e modulo r1. So we are done.

The following propositions complete the information about the sets O(e), with e ∈ U \{1}, by making a distinction between
the cases b even and b odd (m = ab).



14

Proposition 43. Let e ∈ U \ {1} and suppose that b is even. Then
1) For any e′ ∈ O(e) one has that |Cn(e′)| = m.
2) If a is odd then |O(e)| = b and |Cr1(e)| = a.
3) If a is even then in case e = ε−1(a/2) one has that |O(e)| = b/2, |Cr1(e)| = a/2 and otherwise |O(e)| = b, |Cr1(e)| = a.

Proof: First of all note that since b is even then m
2 ≡ a modulo a which implies ε−1(m/2) ∈ O(1) (see Proposition 40),

so e′ 6= ε−1(m/2) for all e′ ∈ O(e). This proves 1) by Proposition 39.
In the rest of proof we denote by µ the residue of ε(e) modulo a. Observe that µ 6= 0 because e ∈ U \ {1}. Let us define

A = {e′ ∈ D∗ | ε(e′) ≡ ε(e) mod a} and B = {e′ ∈ D∗ | ε(e′) ≡ a− ε(e) mod a}. By Proposition 42, O(e) = A ∪B. Note
also that A ∩B 6= ∅ if and only if µ = a/2, that is, if and only if O(e) = A = B = A ∩B.

Now we write A = {e′ ∈ D∗ | ε(e′) = λa+µ, with λ a natural number}. To get the cardinality of A we need to study the
range of values of λ. By definition of ε one has that 1 ≤ ε(e′) ≤

⌊
m
2

⌋
, and since

b

2
a+ µ =

m

2
+ µ >

m

2
≥
⌊m

2

⌋
and (

b

2
− 1

)
a+ µ =

m

2
− a+ µ <

m

2
,

we conclude that |A| =
∣∣{λ ∈ Z | 0 ≤ λ < b

2}
∣∣ = b/2. An analogous argument yields |B| = b/2.

To prove 2) we assume that a is odd. Then, |O(e)| = |A| + |B|, that is, |O(e)| = b
2 + b

2 = b. The equality |Cr1(e)| = a
follows from Proposition 39.

Finally, we suppose that a is even. Then ε−1(a/2) ∈ U (see Remark 41). If e = ε−1(a/2) then |O(e)| = |A| = b/2 and
|Cr1(e)| = a/2. If e 6= ε−1(a/2) then, by repeating the arguments of the previous paragraph, we obtain |O(e)| = b and
|Cr1(e)| = a.

Proposition 44. Let e ∈ U \ {1} and suppose that b is odd. Then |Cn(e′)| = m for all e′ ∈ O(e) \ {e} and
1) If a is odd then |O(e)| = b, |Cr1(e)| = a and |Cn(e)| = m.
2) If a is even then

a) If e = ε−1(m/2) then |O(e)| = (b+ 1)/2, |Cn(e)| = m/2 and |Cr1(e)| = a/2.
b) If e 6= ε−1(m/2) then |O(e)| = b, |Cn(e′)| = m and |Cr1(e)| = a.

Proof:
We denote by µ the residue of ε(e) modulo a (µ > 0). We are going to use a similar technique to that was used in the proof

of the previous proposition. We define A = {e′ ∈ D∗ | ε(e′) ≡ ε(e) mod a} and B = {e′ ∈ D∗ | ε(e′) ≡ a − ε(e) mod a}.
Then O(e) = A ∪B. Observe that A ∩B 6= ∅ if and only if µ = a/2 if and only if O(e) = A = B = A ∩B. Then⌊

b

2

⌋
a+ µ =

b− 1

2
a+ µ =

m

2
− a

2
+ µ ;

this value is less than or equal to
⌊
m
2

⌋
if and only if µ ≤

⌊
a
2

⌋
. So |A| =

∣∣{0 ≤ λ ≤ ⌊ b2⌋}∣∣ =
⌊
b
2

⌋
+ 1 in case µ ≤

⌊
a
2

⌋
and

|A| =
∣∣{0 ≤ λ < ⌊ b2⌋}∣∣ =

⌊
b
2

⌋
otherwise.

To compute the cardinality of B we observe that⌊
b

2

⌋
a+ a− µ =

b− 1

2
a+ a− µ =

m

2
+
a

2
− µ.

It is easy to see that this value is less than or equal to
⌊
m
2

⌋
if and only if µ ≥

⌈
a
2

⌉
. Then |B| =

⌊
b
2

⌋
+ 1 in case µ ≥

⌈
a
2

⌉
and

|B| =
⌊
b
2

⌋
otherwise.

Now, suppose that a is odd. Then ⌈a
2

⌉
=
a

2
+

1

2
,
⌊a

2

⌋
=
a

2
− 1

2

and so µ ≤
⌊
a
2

⌋
if and only if µ <

⌈
a
2

⌉
. Therefore, |O(e)| = |A|+ |B| = 2

⌊
b
2

⌋
+ 1 = b. On the other hand, since a and m

are odd, for all e′ ∈ O(e) one has that |Cn(e′)| = m, |Cr1(e′)| = a, by Proposition 39. This proves 1).
Finally, suppose that a is even. Note that since b is odd we have m

2 ≡
a
2 modulo a, so ε−1(m/2) ∈ U and ε−1(a/2) ∈

O(ε−1(m/2)) (see Remark 41 and Proposition 42).
First, assume that e = ε−1(m/2). Then µ = a/2 and |O(e)| = |A| = |B| =

⌊
b
2

⌋
+ 1 = (b + 1)/2. Moreover, we have

|Cr1(e)| = a/2, |Cn(e)| = m/2 and |Cn(e′)| = m for any e′ ∈ O(e) \ {e}. This proves 2 a).
In the case e 6= ε−1(m/2) we have that µ 6= a

2 because e, ε−1(m/2) ∈ U and they satisfy Cr1(e) = Cr1(1 + 2µ)
and Cr1(ε−1(m/2)) = Cr1(1 + 2a/2). Note that µ 6= a

2 implies again µ ≤
⌊
a
2

⌋
= a

2 if and only if µ <
⌈
a
2

⌉
= a

2 . So
|O(e)| = |A|+ |B| = 2

⌊
b
2

⌋
+ 1 = b. In addition, |Cr1(e)| = a and |Cn(e′)| = m for all e′ ∈ O(e).
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The last result we need before enunciating our main theorem gives us the cardinality of any choice of the set U . It uses the
mentioned concept of 2-weight of an integer (see paragraph before Definition 27). We talk about the 2-weight of a 2-cyclotomic
coset when one of its elements (and so all of them) has that 2-weight.

Lemma 45. For any election of the set of representatives U one has that

|U| = 1 + |{Cr1(e) | e ∈ U ∩ Ω(2)}| = 1 + ba/2c .

Proof. First of all, as we have noted in Remark 41 we always assume that 1 ∈ U , so we restrict our attention to the cardinality
of U \ {1}. We define a map

ϕ : U \ {1} → {Cr1(e) | e ∈ U ∩ Ω(2)}

given by ϕ(e) = Cr1(e). We are going to see that ϕ is a bijection.
Let e ∈ U \{1}. Then Cr1(e) = Cr1(1 + 2ε(e)). Note that, by Proposition 40, the case ε(e) ≡ 0 modulo a implies e ∈ O(1)

which yields a contradiction, so Cr1(e) is a coset of weight 2 and ϕ is well-defined.
Now, let e′, e ∈ U \ {1}, e 6= e′. By the definitions of suitable set of representatives and U we have that Cr1(e) 6= Cr1(e′),

so ϕ is injective. Take Cr1(e) such that e ∈ U ∩Ω(2). Then e 6= 1 because e ∈ Ω(2), so Cr1(e) = ϕ(e) which implies that ϕ
is surjective.

Finally, to see the right hand equality take any integer s ∈ {1, . . . ,
⌊
a
2

⌋
}. Then 1+2s ∈ Ω(2) ⊂ D∗. Since T1(1+2s) = 1+2s

and T (D∗) is a restricted set of representatives, there exists e ∈ D∗ ∩Ω(2) such that Cr1(e) = Cr1(1 + 2s); moreover, in case
e /∈ U , there must exist u ∈ U \{1} such that u ≡ e mod r1 and then Cr1(u) = Cr1(e) = Cr1(1+2s). Finally, if u ∈ U ∩Ω(2)
then there exists su ∈ {1, . . . ,

⌊
a
2

⌋
} such that 1 + 2su ∈ Cr1(u), and if u 6= u′ then su 6= su′ because T (D∗) is a restricted

set of representatives. This finishes the proof.

Now, we can present the main result for second-order Reed-Muller codes.

Theorem 46. Let C∗ = R∗(m − 3,m). Suppose that n = 2m − 1 = r1 · r2, where m = ab, r1 = 2a − 1 and gcd(r1, r2) =
1, r1, r2 > 1. Let D∗ ⊆ Zn be the defining set of C∗, with respect to α, a primitive n-th root of unity, and C ⊆ A(r1, r2) the
abelian code with defining set D(C) = T (D∗). Then, the values of fi and gi from (3) and (5) are

f1 = b2, f2 =
b(b+ 1)

2
and g1 =

a(a− 1)

2
, g2 =

a(a+ 1)

2
,

respectively.
Therefore the set T−1 (Γ) where Γ = Γ(C) = {(i1, i2) ∈ Zr1 × Zr2 such that

0 ≤ i1 <
a(a− 1)

2
and 0 ≤ i2 < b2

or

a(a− 1)

2
≤ i1 <

a(a+ 1)

2
and 0 ≤ i2 <

b(b+ 1)

2


is a set of check positions for R∗(m − 3,m). Furthermore, {0, αi | i ∈ T−1 (Γ)} is an information set for R(2,m) and
{αi | i /∈ T−1 (Γ)} is an information set for R(m− 3,m).

Proof: Let C ⊆ A(r1, r2) be the abelian code with defining set D(C) = T (D∗). In order to get the set Γ(C) we are going
to compute the sequences (3) and (5) by using the expressions (8). To do that we have to study different cases depending on
the parity of a and b respectively. As we will see, in any case we will obtain the same set of check positions.
• Case m odd (a, b odd).

Take 1 ∈ U . By applying Proposition 40 we have that

M(1) =
1

|Cr1(1)|
∑

v∈O(1)

|Cn(v)| = 1

a

∑
v∈O(1)

|Cn(v)| = 1

a
·m ·

(⌊
b

2

⌋
+ 1

)
= b · b+ 1

2
=
b(b+ 1)

2
.

For any e ∈ U \ {1} we use Proposition 44 1) and we obtain

M(e) =
1

|Cr1(e)|
∑

v∈O(e)

|Cn(v)| = 1

a
·m · b = b2.

Therefore f1 = b2 > f2 = b(b+1)
2 . By definition, the sequence g1 < g2 is obtained as follows

g1 =
∑

M(v)=f1

|Cr1(v)| = a · |U \ {1}| = a ·
⌊a

2

⌋
= a · a− 1

2
,
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and
g2 =

∑
M(v)≥f2

|Cr1(v)| = a · |U| = a · a+ 1

2
,

where we have used Lemma 45.
• Case a odd and b even. In this case ε−1(m/2) ∈ O(1) (see Proposition 40 4)).

Take 1 ∈ U . By Proposition 40

M(1) =
1

|Cr1(1)|
∑

v∈O(1)

|Cn(v)| = 1

a

∣∣Cn(ε−1(m/2))
∣∣+

∑
v∈O(1)\{ε−1(m/2)}

|Cn(v)|

 =

=
1

a

(
m

2
+
b

2
·m
)

=
b

2
+
b2

2
=
b(b+ 1)

2
.

On the other hand, for any e ∈ U \ {1} one has that

M(e) =
1

|Cr1(e)|
∑

v∈O(e)

|Cn(v)| = 1

a
· b ·m = b2.

Therefore, f1 = b2 > f2 = b(b+1)
2 . The sequence g1 < g2 is

g1 =
∑

M(v)=f1

|Cr1(v)| =
∑

u∈U\{1}

|Cr1(u)| = a− 1

2
· a =

a(a− 1)

2
,

g2 = g1 + |Cr1(1)| = a(a− 1)

2
+ a =

a(a+ 1)

2
,

• Case a and b even.
Take 1 ∈ U . Then M(1) is computed exactly as in the previous case, so M(1) = b(b+1)

2 .
Now, consider ε−1(a/2) ∈ U . Then, by Proposition 43 3)

M(ε−1(a/2)) =
1

|Cr1(ε−1(a/2))|
∑

v∈O(ε−1(a/2))

|Cn(v)| = 2

a
· b

2
·m = b2.

Finally, for any e ∈ U \ {1, ε−1(a/2)} one has

M(e) =
1

|Cr1(e)|
∑

v∈O(e)

|Cn(v)| = 1

a
· b ·m = b2.

We conclude f1 = b2 > f2 = b(b+1)
2 . The values g1, g2 are

g1 =
∑

M(v)=f1

|Cr1(v)| = a · (|U| − 2) +
∣∣Cr1(ε−1(a/2))

∣∣ = a ·
(a

2
− 1
)

+
a

2
=
a(a− 1)

2
,

and
g2 = g1 + |Cr1(1)| = a(a− 1)

2
+ a =

a(a+ 1)

2
,

• Case a even and b odd. In this case ε−1(m/2) /∈ O(1) and ε−1(m/2) ∈ U (see Remark 41). Observe that ε−1(a/2) ∈
O(ε−1(m/2)) and so ε−1(a/2) /∈ U .
For 1 ∈ U we have

M(1) =
1

|Cr1(1)|
∑

v∈O(1)

|Cn(v)| = 1

a
· |O(1)| ·m =

1

a
· b+ 1

2
·m =

b(b+ 1)

2
.

Now consider ε−1(m/2) ∈ U . Then, by Proposition 44 2) a)

M(ε−1(m/2)) =
1

|Cr1(ε−1(m/2))|
∑

v∈O(ε−1(m/2))

|Cn(v)| = 2

a
·
[(

b+ 1

2
− 1

)
·m+

m

2

]
= (b− 1) · b+ b = b2.

Finally, for any e ∈ U \ {1, ε−1(m/2)} we use Proposition 44 2) b) and we obtain M(e) = 1
a · b ·m = b2. Therefore, as

in all the previous cases f1 = b2 > f2 = b(b+1)
2 , and once more

g1 =
∣∣Cr1(ε−1(m/2)

∣∣+
(a

2
− 1
)
· a =

a

2
+
a− 2

2
· a =

a(a− 1)

2
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and

g2 = g1 + |Cr1(1)| = a(a− 1)

2
+ a =

a(a+ 1)

2
.

In conclusion, all the cases yield the same sequences f1 > f2, g1 < g2. Finally, by Theorem 9, Γ(C) is a set of check
positions for C, and then T−1 (Γ) is a set of check positions for R∗(m− 3,m). So, {0, αi | i ∈ T−1 (Γ))} is a set of check
positions for R(m− 3,m) (see Remark 29). Since R(m− 3,m) = R(2,m)⊥ we are done.

Examples 47. The first value for m that satisfies conditions (13) is m = 4. In this case, n = 24− 1 = 15, r1 = 3, r2 = 5, a =
b = 2. So, let us give an information set for R(2, 4). By Theorem 46 we have that

Γ = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2), (0, 3)}.

Then, by taking the isomorphism given by the Chinese Remainder Theorem, we have that T−1(Γ) = {0, 1, 2, 3, 5, 6, 7, 10, 11, 12}.
So {0, αi | i ∈ T−1 (Γ)} is an information set for R(2, 4) and {αi | i /∈ T−1 (Γ)} is an information set for R(1, 4). In the
same sense than in the previous section, Table IV shows the different information sets that we can get by using all the possible
isomorphisms from Z15 to Z3 × Z5; the first column includes the image of 1 ∈ Z15 which determines the corresponding
isomorphism, while the second column gives the set of exponents I such that {0, αi | i ∈ I} is an information set for R(2, 4).
From these information sets we can obtain the corresponding ones for R(1, 4); the reader may check that we get four new
information sets with respect to that obtained in Table I.

T(1) I
(1,1) {0,1,2,3,5,6,7,10,11,12}
(2,1) {0,1,2,3,5,6,7,10,11,12}
(1,2) {0,1,3,5,6,8,9,10,11,13}
(2,2) {0,1,3,5,6,8,9,10,11,13}
(1,3) {0,2,4,5,6,7,9,10,12,14}
(2,3) {0,2,4,5,6,7,9,10,12,14}
(1,4) {0,3,4,5,8,9,10,12,13,14}
(2,4) {0,3,4,5,8,9,10,12,13,14}

TABLE IV
INFORMATION SETS FOR R(2,4)

The next value for m is m = 6. In this case, n = 26 − 1 = 63, r1 = 7, r2 = 9, a = 3 and b = 2. So

Γ = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (0, 2), (1, 2), (2, 2), (3, 2), (4, 2),

(5, 2), (0, 3), (1, 3), (2, 3)}.

By taking as isomorphism that given by the Chinese Remainder Theorem, we obtain

T−1(Γ) = {0, 1, 2, 9, 10, 11, 18, 19, 21, 28, 29, 30, 36, 37, 38, 45, 46, 47, 54, 56, 57},

so we have that {0, αi | i ∈ T−1(Γ)} is an information set for R(2, 6) and {αi | i /∈ T−1(Γ)} is an information set for
R(3, 6).

Finally, we see the case m = 8. In this case, there are two decompositions of n = 28− 1 = 255 that satsify conditions (13),
namely, (r1 = 3, r2 = 85) and (r1 = 15, r2 = 17). Table V shows the sets T−1(Γ) obtained for each decomposition; in both
cases we are considering the isomorphism given by the Chinese Remainder Theorem.

r1 r2 a T−1(Γ)
3 85 2 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 85, 86, 87, 88, 89, 90, 91, 92, 93,

94, 96, 99, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 183 }
15 17 4 { 0, 1, 2, 3, 17, 18, 19, 20, 34, 35, 36, 51, 52, 53, 68, 69, 105, 120, 121, 122, 136,

137, 138, 139, 153, 154, 155, 170, 171, 172, 187, 188, 189, 204, 240, 241}

TABLE V
INFORMATION SETS FOR R(5,8)

To finish our explanation, we include the following table which shows the suitable values of m up to length 4096. The values
m = 2, 3, 5, 7 yield a prime number for n = 2m− 1, while the value m = 11 only admits a decomposition (r1 = 23, r2 = 89)
that does not satisfy the conditions (13).
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m n r1 r2 a b
4 15 3 5 2 2
6 63 7 9 3 2
8 255 3 85 2 4
8 255 15 17 4 2
9 511 7 73 3 3

10 1023 3 341 2 5
12 4095 7 585 3 4
12 4095 63 65 6 2

TABLE VI
PARAMETERS FOR SECOND ORDER RM CODES UP TO LENGTH 4096

VIII. CONCLUSIONS

We have described information sets for Reed-Muller codes of first and second-order respectively. We have seen them as
group codes and we have constructed those information sets from their defining sets; that is, from an intrinsical characteristic
of this family of algebraic codes. This supposes a relevant difference with regard to other approaches to the same problem,
such as those proposed from a geometrical point of view ( [12], [13], [18]). Moreover, the definition of the information sets
turn be very simple in the end and it is given only in terms of their basic parameters.

It is also pertinent to wonder about the benefits that our results may imply in relation to the applicability of certain decoding
algorithms such as the permutation decoding algorithm, which is especially appropriate for abelian codes. In [5] we showed
a generic study of this algorithm for abelian codes starting from the information sets introduced in [4]. Therefore, since the
present work manage to adapt the results in [4] to Reed-Muller codes, it is reasonable to believe that the results in [5]can
also be apply to them. Furthermore, the vision of Reed-Muller codes as affine-invariant codes allows us to search for a PD-set
within the group of all affine transformations, beyond the translations. For all these reasons, the application of the permutation
decoding algorithm to Reed-Muller codes, starting from the results obtained in this work instead of the geometric point of
view, supposes an interesting open problem.
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