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Abstract: The effect of fungicides on fermentation is of paramount importance to control the
quality and safety of wines. In this work, the quality (enological parameters, color, phenolic
content, antioxidant activity, and fungicide residues) of wines from Monastrell grapes fortified
with iprovalicarb, mepanipyrim, and tetraconazole fungicides was evaluated. Along the winemaking
process, initial residues of mepanipyrim and tetraconazole were removed in more than 90% while
the dissipation of iprovalicarb was around 73%. Significant statistical differences were found in the
presence of iprovalicarb and mepanipyrim residues, especially at the highest concentration assayed.
For both fungicides, increases in the volatile acidity (between 4 and 8.6 times), the lactic acid content
(between 8.6 and 20.5 times), the percentage of polymeric anthocyanins (between 1.3 and 1.7 times),
and also a slight increase of the total phenolic index and the total anthocyanin content determined
by spectrophotometry were observed. On the contrary, the total monomeric anthocyanins content
decreased about 16.3% and 28.6% in the presence of iprovalicarb and mepanipyrim, respectively.
These results could be related to a higher development of acetic acid or lactic bacteria in the presence
of these fungicides. The color of the final wines was also different in comparison with the control,
with a higher yellow component, color intensity, tonality, and hue angle because of pH changes in the
medium. Tetraconazole fermentations had a more similar trend to the control wine, probably due
to the lower concentration of this fungicide in the grape must at the initial time. No effects on the
antioxidant activity was observed for any of the target fungicides. A multivariate statistical analysis
was done to view the interrelationships between different variables (color and anthocyanins profile).
The obtained model allowed the wines to be separated according to the fungicide treatment applied.

Keywords: fungicides; wine quality; winemaking process; anthocyanins; antioxidant activity

1. Introduction

The control of vine diseases is one of the most important factors to obtain quality grapes and,
consequently, quality wines. Fungicide treatment during the season is the most effective method to
fight against them. Iprovalicarb, mepanipyrim, and tetraconazole are fungicides frequently applied
on vineyards to combat different fungal diseases. They belong to different chemical groups and
have different modes of action. Iprovalicarb is a valinamide carbamate fungicide used against
Plasmopara viticola in viticulture practices, and its target site of action is the cellulose synthase of
the cell wall. Mepanipyrim is an aniline–pyrimidine fungicide used against Botrytis cinerea and
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affects methionine biosynthesis. Tetraconazole is used to fight against Uncinula necator in grapevines.
It belongs to the triazoles chemical group and acts to avoid sterol biosynthesis on the membrane [1].

The concentration of fungicide residues in grapes depends on the active substance, formulation,
applied dose, time interval from application, and climatological conditions [2]. Diverse studies have
found residues of fungicides at trace levels on vinification grapes after harvest [3–5], although levels in
the range of 0.5–2.5 mg·kg�1 were reported in others [6–8]. Some enotechnological processes (crushing,
pressing, racking, clarification, and filtration) can influence the dissipation of fungicides along the
winemaking process, reducing their levels [4,6,9–11].

The color of red wines is a quality factor highly affected by a different distribution of monomeric
and polymeric anthocyanins [12,13]. Phenolic compounds are considered the origin of color, taste,
and astringency (tannins) and have a nutritional interest due to their antioxidant properties [14,15].
The presence of fungicide residues on grape must may modify the color and the phenolic composition of
wines [16–20]. Mulero and coworkers observed that the addition of different fungicides (famoxadone,
fenhexamid, fluquinconazole, kresoxim-methyl, quinoxyfen, and trifloxystrobin) to Monastrell grapes
led to wines with different phenolic profiles [16]. Modifications on the phenolic content of Tempranillo
and Graciano wines were observed when grapes were treated with metrafenone and boscalid +
kresoxim-methyl under good agricultural practices [17,18] and fenhexamid and mepanipyrim under
critical agricultural practices [18,19]—monomeric anthocyanins being the most affected compounds.
The addition of a tetraconazole commercial formulation to Mencía grapes reduced the phenolic content
of wines by more than 45% [20]. Anthocyanins (reductions of about 64–75%) and flavan-3-ol monomers
(reductions of about 35%) were the most affected compounds. Published results suggest that the effects
depend on the cultivar, the kind of fungicide and its concentration, and the considered phenolic family.

In the present study, for the first time, the effect of three fungicides (iprovalicarb, mepanipyrim,
and tetraconazole), added to the grape must at different concentration levels, on the chromatic
characteristics (color and phenolic composition) of Monastrell red wines of the Designation of Origin
(DO) Jumilla (southeast Spain) was evaluated. Monastrell grapes are the most representative of DO
Jumilla, growing on over 80% of the cultivated area [21]. The dissipation of the fungicides during
the winemaking process was studied, as well as the effect of the fungicides on several enological
parameters and antioxidant activity.

2. Results and Discussion

2.1. Fungicide Dissipation

Dissipation with winemaking depended on the target fungicide (Table 1)—97% (in mass units) for
mepanipyrim, 91–92% for tetraconazole, and 72–74% for iprovalicarb. Since the Maxima Residue Level
(MRL) for tetraconazole in grapes is four times lower than for the other two fungicides, their residual
levels in clarified wines decreased as follows: 2.6–6.0 mg·L�1 (iprovalicarb) > 0.2–0.7 mg·L�1

(mepanipyrim) > 0.2–0.5 mg·L�1 (tetraconazole).
Between 33–38% (in mass units) of the residues of iprovalicarb and mepanipyrim and 65–72%

of tetraconazole were eliminated in the grape pomace after pressing. Cabras et al. [9] have already
reported a high affinity of tetraconazole for the solid matter, whereas an inverse behavior was found
for iprovalicarb [3]. An additional 2–6% was removed with the lees, whereas the clarification step had
an important impact on the mepanipyrim residues (a decrease of 22–24% with respect to the wine
before clarification).
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Table 1. Fungicide concentrations (mg·kg�1) found in the different liquid and solid phases separated
along the winemaking process (average ± standard deviation) with the final dissipation (% in mass
units) determined in the clarified wine. In addition, the mean transfer factor from grapes to wine and
the acceptable daily intake (ADI, %) are shown.

Step

Iprovalicarb Mepanipyrim Tetraconazole

10 mg·kg
�1

(5MRL)

4 mg·kg
�1

(2MRL)

10 mg·kg
�1

(5MRL)

4 mg·kg
�1

(2MRL)

2.5 mg·kg
�1

(5MRL)

1 mg·kg
�1

(2MRL)

Must-wine after pressing (5.3 L) 6.44 ± 0.21 3.19 ± 0.08 1.79 ± 0.04 0.68 ± 0.03 0.92 ± 0.18 0.37 ± 0.03
Grape pomace (2.2 kg) 12.12 ± 2.39 5.56 ± 0.08 12.41 ± 1.40 5.04 ± 0.28 5.90 ± 0.45 2.63 ± 0.46

Wine (3.5 L) 6.23 ± 0.31 2.86 ± 0.43 0.87 ± 0.05 0.33 ± 0.01 0.46 ± 0.04 0.20 ± 0.01
Lees (0.5 kg) 9.26 ± 1.56 3.17 ± 0.03 3.22 ± 0.08 1.34 ± 0.06 1.59 ± 0.14 0.78 ± 0.09

Clarified wine (3.5 L) 5.99 ± 0.13 2.60 ± 0.05 0.68 ± 0.04 0.25 ± 0.02 0.47 ± 0.04 0.21 ± 0.03
ADI (%) 85.6 37.1 12.1 4.5 25.2 11.3

Mass transfer factor 0.60 0.65 0.07 0.06 0.19 0.21
Fungicide dissipation (%) 71.6 73.8 97.3 97.0 90.8 91.8

For mepanipyrim, the sum of the amounts (mg) in the must-wine after pressing and the grape
pomace was lower than the initial amount in crushed grapes. The aqueous degradation of mepanipyrim
in aqueous solutions [22,23] and in a grape juice analog [24] could be the explanation for this finding.

Taking into account that the acceptable daily intake (ADI) for iprovalicarb, mepanipyrim,
and tetraconazole is 0.015, 0.012, and 0.004 mg·kg�1 bw per day, respectively [25–27], in the
case of a reference person weighing 70 kg, the maximum allowable intake would be 1.05, 0.84,
and 0.28 mg·day�1. Thus, a moderate consumption of wine (a cup of 150 mL) represents an intake
lower than 25% of the ADI for the most dissipated fungicides (mepanipyrim and tetraconazole) and
37.14% and 85.57% of the ADI for iprovalicarb at 2MRL and 5MRL, respectively (Table 1).

2.2. Enological Parameters

With the evolution of must density during fermentation, it was proved that all vinifications had
a regular course. Therefore, the initial fungicide levels in grapes do not inhibit yeast metabolism.
The global parameters obtained for wines in the presence and absence of fungicides are shown
in Table 2. Statistically significant differences were found in most of the enological parameters
in the presence of fungicides, especially with iprovalicarb and mepanipyrim residues at the
highest concentration assayed (5MRL). The volatile acidity of these wines (expressed as acetic acid
concentration) was 8.6 times higher than that observed in the control wine. High acetic acid values
in wines are considered a fault and are typically associated with the respiratory metabolism of
ethanol by acetic acid bacteria [28]. However, the effect of lactic acid bacteria should be also taken
into account. Lactic acid bacteria can metabolize malic acid, sugars, and citric acid to produce
lactic acid. However, the development of heterofermentative bacteria, such as those from the genus
Leuconostoc and Oenococcus, produce carbon dioxide, ethanol, and acetic acid in addition to lactic
acid [29]. It is hypothesized that a secondary malolactic fermentation happened spontaneously in the
presence of fungicide residues, especially with iprovalicarb and mepanipyrim. In fact, the extension
of the malolactic fermentation was fungicide concentration dependent and did not occur in the
control samples (without fungicides). Consequently, a de-acidification of high acid wines, by the
transformation of malic acid into lactic acid, was observed [30]. Although, in general, bacterial
development occurs after yeast development, the presence of fungicide residues could have helped the
development of bacteria by extending the lag phase of the yeast. Under these conditions, with high
sugar levels in the medium, an important increment of the volatile acidity during the malolactic
fermentation could be observed [29].
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2.3. Phenolic Characterization

Iprovalicarb and mepanipyrim produced significant increments on the total phenolic index and
the total anthocyanin content measured by spectrophotometry, these increments being fungicide
concentration dependent (Table S1 of Supplementary Material and Table 2). For both fungicides,
a different distribution of the monomeric and polymeric anthocyanins was obtained. The monomeric
anthocyanin content decreased about 1.5–3.8 times with respect to the control wine while the content of
the polymeric forms was 1.3–1.6 times higher (Table S1 of Supplementary Material). For tetraconazole
at 5MRL, a similar trend was observed although in a lower extension.

In addition, significant differences were also found in the total monomeric anthocyanin content
determined by High Performance Liquid Chromatography (HPLC) in the presence of iprovalicarb and
mepanipyrim residues at 5MRL (Table S1 of Supplementary Material). Decreases of about 16.3% and
28.6%, in the total monomeric anthocyanin content with respect to the control wine were observed
for iprovalicarb and mepanipyrim, respectively. The most affected anthocyanins were the malvidin
(decreases between 14.6% and 29.0%) and petunidin (decreases between 28.1% and 35.5%) derivatives.
No significant differences were found for the other fungicide treatments (Figure 1). Differences in
the anthocyanin content between the spectrophotometric and the chromatographic methods were
observed, because only free anthocyanins are determined by HPLC while the contribution of other
pigments is possible by spectrophotometry [31]. Since vinifications were done at the same time,
and in the same way, and also compared with a control vinification (without fungicides), the observed
behavior should be attributed only to the presence of fungicide residues in the must.
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Figure 1. Results correspond to the average ± standard deviation (n = 3) of the anthocyanin
concentration (mg·L�1) extracted from the control and treated wines. * Statistically significant
differences at p < 0.05.

Similar results were found in Tempranillo and Graciano wines treated with mepanipyrim,
with decreases in the total monomeric anthocyanin content of 24.7–36.4% [19]. Low monomeric
anthocyanin concentrations in wines in the presence of other fungicides (metrafenone, boscalid
kresoxim-methyl, famoxadone, and trifloxystrobin) were also reported [16,17].
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The presence of acetic acid or lactic acid bacteria could explain the higher percentage of polymeric
anthocyanins and the decrease of monomeric anthocyanins (especially malvidin derivatives) in the
presence of iprovalicarb and mepanipyrim at 5MRL. Acetic acid bacteria can oxidize ethanol to
acetaldehyde [32,33]. The presence of acetaldehyde was associated with a rapid polymerization
process between anthocyanins and catechin or tannins, increasing wine color stability [30,34].
In fact, the condensation of malvidin-3-O-glucoside with acetaldehyde was demonstrated in model
solutions [35].

2.4. Color Changes

As expected, the most important color changes in respect of the control wine were observed
for iprovalicarb and mepanipyrim, especially at 5MRL (Table 2). In the color space defined by the
International Commission on Illumination (CIELab), these wines showed a higher yellow component
(b*) and a slight decrease of the red component (a*) (Figure 2). Consequently, an increment in the
saturation (Cab*) was also observed. A significant increment of the yellow component was also
confirmed by Glories with increments in the absorption at 420 nm, and as a result the color intensity
and tonality increased. As stated above, these changes could be attributed to a higher polymerization
rate observed for these wines that reduces the red component and increases the yellow color [36–38].
An important influence of mepanipyrim on the color of Tempranillo, Graciano and Mencía wines has
also been observed in previous works [19,20].
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Colorimetric differences can be considered as visually detectable when the value of the Euclidean
distance (DEab*) is higher than 3.0 CIELab units [39]. As it can be seen in Table 2, values higher than 11
were obtained for iprovalicarb and mepanipyrim at 5MRL. Therefore, these wines could be perceived
as different.

2.5. Antioxidant Activity

Fungicide residues in the must did not induce changes in the antioxidant activity of the wines in
comparison to the control wine (11.54 mM·mL�1 of Trolox ± 0.32), even at the highest concentration
assayed (5MRL). Mulero et al. [16] also observed that the antioxidant activity of Monastrell red wines
was not altered by the presence of quinoxyfen, fluquinconazole, or famoxadone residues. However,
the antioxidant activity found in those wines was lower than the one found in this study.

2.6. Relationship between Anthocyanins and Color for Differentiation among the Wines

With the aim of linking anthocyanin concentrations with color parameters, the following
multivariate statistics were done. A PLS2 was used to correlate anthocyanin profiles with color
data. As it can be seen in Figure 3, a two-factor model explaining 98% of the variance in X (anthocyanin
profiles) and 71% of that in Y (color data) was obtained. The model was evaluated via the root mean
square error for predictions (RMSEP), which was lower than 10 for Y values. The scores plot in
Figure 3a shows how the target wines can be separated into different quadrants. PC2 can separate
the control wines at the bottom from the rest. To separate the treated wines, PC1 is necessary; with its
help, wines can be separated in the upper PC2 half in the following order from right to left: Mepan 5 >
Iprov 5 > Mepan 2 = Iprov 2 = Tetra 2 > Tetra 5. All variables inside the ellipsoids between 0.7 and 1.0
for PCs 1 and 2 (Figure 3b) can be correlated among them (r > 0.700). Some color parameters such as
hue angle (H), b*, IC, tonality, and yellow% were negatively correlated with mainly CYAN and PETU
derivatives and red%. These correlations were connected to iprovalicarb and mepanipyrim treatments
at 5MRL. The rest of the treated wines were more similar to the control wines. A cluster analysis of the
anthocyanin concentrations and the color data (Figure 4a) allowed, by cutting the dendrogram at a
linkage distance of 450, four main clusters or groups to be obtained for the same correlated variables
shown in Figure 3b.
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Figure 3. Two-dimensional PLS2: (a) scores plot for the control and treated wines, together with
(b) correlations between the loadings of X (anthocyanin profiles in blue) and Y variables (color
parameters in red).

Since the anthocyanin profiles and color data can be used to separate wines, a discriminant
analysis was performed (Figure 4b). Iprovalicarb and mepanipyrim treatments at 5MRL can be
separated from the rest of the treatments using the linear discriminant function 1 (85% of variance),
mainly because of the weight of the hue angle and b*. For the discrimination between iprovalicarb
5MRL and mepanipyrim 5MRL, the discriminant function 2 (9% of the variance) can be used, with the
weights of cyanidin glucoside and delphinidin coumaryl being higher for iprovalicarb 5MRL.
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Ward’s method (a). Four groups can be detected by cutting the dendrogram at a linking distance of
about 450; from left to right, they are the same correlated variables shown in Figure 3b: upper-left,
down-left, down-right, and upper-right quartiles. The upper-right quartile is the one with the color
parameters more affected by iprovalicarb and mepanipyrim at 5MRL. The rest of the treated wines were
more similar to the control wines. Discriminant biplot (b) for the classification variables of anthocyanin
and color values.

3. Materials and Methods

3.1. Chemicals and Standards

The analytical standards of the fungicides iprovalicarb, mepanipyrim, and tetraconazole (Pestanal
grade) were purchased from Supelco (Bellefonte, PA, USA). The standard of malvidin-3-O-glucoside
chloride was purchased from Extrasynthese (Genay, Lyon, France). The solvents (residue analysis
grade) were ethyl acetate, ultrapure water, and methanol from Sigma Aldrich (St. Louis, MO, USA)
and ethanol from Scharlau (Barcelona, Spain). Trifluoroacetic acid was also purchased from Sigma
Aldrich. Strata C18-E (2 g, 12 mL size) cartridges from Phenomenex (Torrance, CA, USA) were used
for anthocyanins extraction.

3.2. Wine Samples

Red grapes, Vitis vinifera var. Monastrell from Jumilla (Murcia, Spain), were harvested in 2016.
The grape characterization showed the following results: sugar content of 13.5%, pH 3.27, total acidity
of 4.7 g·L�1, 2.41 g·L�1 of malic acid, and <0.01 g·L�1 of gluconic acid (determined using an Enological
Multiparametric Analyzer Bacchus FTIR-Vis-UV MultiSpec (Tecnología Difusión Ibérica, Barcelona,
Spain)). In addition, the amino acid content was determined through HPLC–DAD analysis after a
sample derivatization with diethyl(ethoxymethylene) malonate, following the method described by
Oliva et al. [40]. The total amino acid concentration in Monastrell grapes was 6.5 g·kg�1 and that of free
amino acids lower than 4 g·kg�1, with glutamic acid (2.2 g·kg�1), proline (1.1 g·kg�1), and arginine
(1.0 g·kg�1) being the main amino acids.

Vinifications were made, in triplicate, with 8 kg of destemmed and crushed grapes in the
presence of fungicide residues: three with mepanipyrim, three with tetraconazole, and three with
iprovalicarb standard solutions at two concentration levels corresponding to two and five times their
MRL in grapes, established in the EU regulation [41–44], simulating critical agricultural practices.
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A control vinification (without fungicides) was also carried out, in triplicate, for comparative purposes.
Twenty-one vinifications were carried out.

The winemaking process was performed as follows: crushed grapes (8 kg) were transferred to
fermentation vessels (15 L) and sulphites (80 mg·kg�1) were added. The fermentation process was led
in the presence of Saccharomyces cerevisiae var. bayanus Lalvin T73™ (25 g·HL�1) from Lallemand Wine
(Montreal, QC, Canada). A maceration–fermentation step was done at 18 ± 2 �C to avoid volatile
aroma compound losses. The temperature was controlled by recirculating refrigerated water around
the fermentation vessel. During the maceration–fermentation time (10 days), a daily homogenization
was performed to guarantee polyphenol extraction. Density and temperature were measured every
day to control for delays or stoppages in the fermentation. The obtained must was pressed and left to
ferment for another 4 days. After 7 days of sedimentation, the wine was transferred to other clean
vessels and the lees were discarded. A clarification step was developed with bentonite (40 g·HL�1)
and gelatin (8 g·HL�1) and, after 6 days, the wine was filtered (0.45 µm). The free SO2 content was
analyzed in one sample of each experimental treatment obtaining values around 10 ± 1.5 mg·L�1,
independently of the fungicide treatment applied. In order to stabilize the obtained wines, 30 mg·L�1

of SO2 was added to all the wines before bottling.

3.3. Fungicide Residue Analysis

Fungicides were extracted from the matrix following a QuEChERS multiresidue method that
uses acetonitrile as an extraction solvent [45,46]. The obtained extract was acidified with formic
acid and then directly injected into the liquid chromatograph. Liquid chromatography with tandem
mass spectrometry (LC-MS/MS) analyses were performed following the chromatographic conditions
described by Cermeño and coworkers [47].

3.4. Wine Characterization

3.4.1. Enological Parameters

Alcoholic degree, total acidity, volatile acidity, pH, malic and lactic acid content, glucose/fructose
ratio, dry extract, and total polyphenol index (TPI, based on the characteristic absorption at
280 nm of the benzene cycles of the majority of phenols [48]) were measured using an Enological
Multiparametric Analyzer Bacchus FTIR-Vis-UV MultiSpec. The clarified wine samples were placed
into the autosampler in 10 mL test tubes. Samples were suctioned and passed through an inert filter
to prevent the entry of higher particles into the system (greater than 30 µm). A degasser prevented
air or carbon dioxide from entering the measuring cells. Before the measurement, thermostatization
of the sample at 25 �C took place. After measurement by the equipment, an automatic cleaning of
the system took place. All wines were analyzed in duplicate. In order to be assured of a correct
quantification through FTIR, wine control samples (whose enological parameters were previously
characterized according to classical methods of the International Organization of Vine and Wine (OIV))
were incorporated into the sample sequence and also the influence of the target fungicides on the FTIR
quantification was evaluated using hydro-alcoholic solutions (13%) of these fungicides.

3.4.2. Color Determination

The chromatic characteristics were determined by means of a Beckman Coulter DU730 Life
Science UV/Vis spectrophotometer (Fremont, CA, USA). After wine centrifugation (15 min at 1006⇥ g)
in a Rotina 35R centrifuge (Hettich Zentrifugen, Tuttlingen, Germany), spectrophotometric measures
were taken using quartz cells from Hellma (Müllheim, Germany) of 1 mm and 1 cm of path length
for undiluted and diluted samples, respectively. The visible spectrum (200–800 nm) was recorded
(D� = 5 nm) to calculate the colorimetric indices (% yellow, % red, % blue, tonality, and color intensity)
according to Glories [49]. All measurements were carried out in triplicate. A hydro-alcoholic solution
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(12% ethanol) was used as a blank. CIELab parameters (lightness (L*), color components (a* and b*),
Chroma (Cab*), and hue angle (hab)) were also determined [50].

3.4.3. Phenolic Composition and Distribution

Both the total anthocyanin content and its distribution into monomeric, polymeric,
and copigmented fractions were determined according to Boulton [51]. The monomeric anthocyanin
profile was determined according to Briz-Cid et al. [17]. All the anthocyanins (malvidin, petunidin,
peonidin, delphinidin, and cyanidin derivatives) were quantified as malvidin-3-O-glucoside by a
standard calibration curve, with adsorption being measured at 520 nm.

3.4.4. Antioxidant Activity

The samples were analyzed following the method reported by Brand-Williams et al. [52].
The scavenging activity of the free radicals, using the ↵,↵-diphenyl-�-picrylhydrazyl (DPPH) free
radical reaction, was evaluated. The results were expressed as equivalent mM·mL�1 of Trolox®

(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a vitamin E analog [16].

3.5. Multivariate Statistical Analysis

Partial Least Squares Regression (PLS2) analysis was used for relating CIELab color parameters
(Y matrix) and anthocyanin concentrations (X matrix), through a linear multivariate model, performed
with The Unscrambler software from CAMO. The root mean square error for predictions (RMSEP)
was used to validate the obtained model. The RMSEP calculates the residual variation as a function of
the number of components. The result presents, for each component, the estimated cross validation
error and the cumulative percentage of variance explained. A cluster analysis to group variables
(color parameters and phenolic concentrations) based on the squared Euclidean similitude distance by
Ward’s method [53] was performed, together with discriminant analyses to separate the wines, using
the statistical software package Statgraphics Centurion XVI from StatPoint Technologies Inc.

4. Conclusions

High fungicide dissipation rates along the winemaking process were obtained for mepanipyrim
and tetraconazole (higher than 91%) while around 27% of the iprovalicarb concentration added to
the must remained in the final wine. For the first time, the effect of these fungicides on the color
and phenolic profile of Monastrell wines was evaluated. While no significant changes were observed
for tetraconazole, those wines obtained in the presence of mepanipyrim and iprovalicarb residues,
especially at the highest concentration assayed (5MRL), were different from the control wine. For both
mepanipyrim and iprovalicarb, an increase of the volatile acidity, the lactic acid content, the total
phenolic index, and the percentage of polymeric anthocyanins was observed, while a decrease of the
total monomeric anthocyanins was found. The color of these wines was also different (higher yellow
component, color intensity, tonality, and saturation) in comparison with the control wines. Since
vinifications were done at the same time following the same enological conditions and also compared
with a control vinification (without fungicides), the behavior observed should be attributed only to the
presence of fungicide residues in the must that affected the yeast development and allowed a rapid
development of bacteria. This is also in concordance with the high concentration of both fungicides in
the must after pressing, in comparison to tetraconazole.

In conclusion, residues of the considered fungicides in wine, beyond the related possible
health risk, can modify the fermentation process, the wine microbiome, and, consequently,
the physicochemical properties and the quality of the wine. Although, the major effects on wine
quality were observed for iprovalicarb and mepanipyrim, it is important to remark that antibotritics
(such as mepanipyrim) are the last fungicide treatment applied on vineyards (about one month before
harvest). Therefore, they are likely to be present at higher concentration levels. In any case, the effect
observed on wine quality is fungicide concentration dependent. Therefore, under good agricultural
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practices, respecting the MRLs on grapes, the potential individual effects of those fungicides will be
lower than those observed in this work.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/6/
1447/s1.
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