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Abstract

The problem of choosing the optimal wind turbine for a speci�c site is of special

importance in the desing process of wind farm. Manifestly, the selection of the optimal

wind turbine should depend on a certain criteria. In this paper, optimal wind turbine

selection is studied in terms of the capacity factor of wind turbine generator and the

Expected Energy not Supplied which is one of the most commonly used reliability

indices for power systems. The latter one considers the load pro�le of the system and is

suitable to compare di¤erent wind farm compositions while the former one completely

ignores the load pro�le of the system. This paper presents general theoretical results
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that are helpful to compare performance of wind turbines and wind farms without

data collection and further numerical assesment. In particular, the conditions on

wind turbine characteristics and availability values of wind turbines are determined

to compare wind turbines and wind farms in terms of the capacity factor and Expected

Energy not Supplied.

Keywords. Capacity factor; Expected Energy not Supplied; Reliability; Sto-

chastic dominance; Wind power.

Nomenclature

CF: Capacity factor

FOR: Forced-Outage-Rate

LOLP: Loss of Load Probability

EENS: Expected Energy not Supplied

SSD: Second order stochastic dominance

WT: Wind turbine

WF: Wind farm

1 Introduction

The amount of power generated by a wind turbine at a speci�c site depends on

many factors such as wind speed conditions at the location, the characteristics of the

wind turbine generator itself, particularly the cut-in, rated and cut-out wind speed
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parameters (Billinton and Chen (1999)). In a long term, the power produced by the

wind turbine also depends on its availability/reliability. There are many di¤erent

types of wind turbine models commercially available. Thus, it is desirable to choose

a wind turbine which is most suitable for a particular site to obtain the maximum

capacity bene�t. To this end, various measures have been proposed and calculated

based on wind speed distribution and wind turbine models.

Reliability of a wind power system, in a general sense, is a measure of the ability

of the system to generate and supply electrical energy (Nemes and Munteanu (2010)).

In the context of power systems, reliability has two main aspects: system adequacy

aspect and system security aspect. The former is concerned with the existence of

su¢ cient facilities within the system to satisfy the load demand while the latter

one is the ability of the system to respond to the disturbances arising within the

system. That is, the security aspect is related to the mechanical failure/operation

of the system�s components, i.e. wind turbines for the wind power system. A good

reliability index should combine both aspects. Reliability based planning of wind

power systems has been of great interest. The methods of power system reliability

assessment have been reviewed by Wen et al. (2009). Lin et al. (2014) investigated

the features of reliability models of wind power, reliability assessment algorithms and

its applications in wind power related decision making problems. Mani et al. (2016)

proposed a reliability model for wind turbines considering their subcomponent failure
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rates and downtimes. µCepin (2019) analyzed the replacement of nuclear power plant

with wind power plants to compare both cases in terms of power system reliability.

Devrim and Eryilmaz (2020) considered a hybrid system that consists of a speci�ed

number of wind turbines and solar modules, and evaluated the performance of the

system using weighted-k-out-of-n system model.

Various reliability indices have been de�ned and studied to evaluate power sys-

tems. The most commonly used reliability indices are Loss of Load Probability

(LOLP), Loss of Load Expectation (LOLE) and Expected Energy not Supplied (EENS).

These indices have been widely used in reliability and performance evaluation, and

optimization of power systems. Volkanovski et al. (2008) developed a method for

the optimization of maintenance scheduling of generating units in power system by

minimizing the LOLE. Volkanovski (2017) investigated the impact of the introduction

of the wind generating units in the power system using LOLP. Beyza et al. (2020)

evaluated the performance of interconnection lines by measuring their impacts on the

main reliability indicators of interconnected power systems by using LOLP, LOLE

and EENS indices. Beyza and Yusta (2021) analyzed the reliability and vulnerability

of electrical networks to quantify systems�performance by increasing and decreasing

renewable resources using LOLP, LOLE and EENS indices. LOLP, LOLE and EENS

have also been used to select the most suitable wind turbine model. Fotuhi-Firuzabad

and Dobakhshari (2009), Nemes and Munteanu (2010), Mohiley and Moharil (2013)
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discussed reliability-based selection of wind turbines for a speci�c wind farm by cal-

culating power system reliability indices such as LOLP, LOLE and EENS.

In the existing literature, optimal wind turbine selection and performance com-

parison of di¤erent wind farm compositions have been investigated through numerical

evaluations which are based on wind speed data observed at a particular location. The

choice of optimal wind turbine is of special importance since the wind turbines that

are used by a wind farm heavily e¤ects the reliability of the entire wind power system.

Thus, for two given wind turbine models that may have di¤erent characteristics and

availability values, it is important to choose the better one in terms of performance

and reliability. For example, a wind farm that has a smaller EENS value has a larger

reliability. Therefore, it is important to obtain necessary conditions to compare two

di¤erent wind farm compositions in terms of reliability which considers both system

adequacy and security aspects.

This work is motivated by the purpose of obtaining general theoretical results

that will enable us to compare performance of wind turbines and wind farms without

wind speed data and further numerical assessment. In particular, we determine some

conditions on wind turbine characteristics to compare the capacity factors of two wind

turbine models and to stochastically compare the powers produced by the turbines.

The conditions are also obtained to compare the powers produced by di¤erent wind

farm compositions. By the help of these �ndings, we can compare the two wind farm
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compositions in terms of EENS.

The results and application-oriented �ndings of the present paper are reported in

the following order. In Section 2, an overview of reliability modeling in the context of

wind power systems is presented in order to explain the basic concepts. Section 3 is

devoted to optimal wind turbine selection with respect to the capacity factor and the

power produced by wind turbine. In Section 4, the comparison of di¤erent wind farm

compositions is discussed. Finally, in Section 5, the theoretical results are illustrated

with numerical examples.

2 Reliability Modeling

The development of a reliability model for a wind turbine (WT) generator requires

consideration of three factors which a¤ect the output of the wind turbine (Giorsetto

and Utsurogi (1983)). The �rst of these factors is the random nature of the wind speed

at the location which can be modeled by a proper probability distribution. The second

factor is the functional relationship between wind speed and power output of the WT.

The last one is the Forced-Outage-Rate (FOR) or equivalently the unreliability of the

WT generator. Thus, the stochastic model that describes the long term performance,

i.e. the output of the WT can be represented as

PWT = g(V ) �X, (1)
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where V denotes wind speed random variable, X is a binary variable that represents

the state of the WT generator such that X = 1 if the WT works and X = 0 if the WT

has failed, g : (0;1)! [0; Pr] is a function that describes the relation between wind

speed and power output of the WT, where Pr denotes the nominal power of the WT.

The probability P fX = 0g gives the FOR of the WT. Equivalently, the probability

p = P fX = 1g = 1 � FOR de�nes the reliability (availability) of the WT. Thus,

the probability distribution of the WT output which is de�ned by (1) can be derived

based on the following:

1. The probability distribution of the wind speed random variable, i.e. F (v) =

P fV � vg :

2. The shape of the function g and WT characteristics.

3. The FOR = 1� p or equivalently the availability value p of the WT.

In the literature, numerous works have been devoted to determine the suitable

probability distribution for the wind speed data obtained at selected locations. Var-

ious well-known probability distributions such as Weibull distribution, Birnbaum-

Saunders distribution, and Gamma distribution have been found to be useful for

modeling wind speed data (Poboµcíková et al. (2017), Wais (2017), Mohammadia et

al. (2017)). Various forms of the function g has been considered to de�ne the relation

between the wind speed and the WT power output (see, e.g. Diyoke (2019)). In the

present paper, we consider the following function which de�nes a cubic relationship
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between the wind speed and the WT output. Such a function has been found to be

accurate in various cases (see, e.g. Villanueva and Feijoo (2020)).

g(v) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0; if v < vci or v � vco

Pr
(v3�v3ci)
(v3r�v3ci)

; if vci � v < vr

Pr; if vr � v < vco;

(2)

where the WT characteristics vci; vr and vco respectively denote the cut-in wind speed,

rated wind speed and cut-out wind speed values. The cut-in wind speed vci is the

speed at which the wind turbine starts producing power. If the wind speed is below the

cut-in wind speed, then turbine cannot produce electricity. When the wind speed is

between the cut-in wind speed vci and rated wind speed vr, the wind turbine produces

power and there is a cubic relationship between the wind speed and the power. If the

wind speed is above the rated wind speed vr and below the cut-out wind speed vco,

then the wind turbine produces its nominal power. When the wind speed is above the

cut-out wind speed vco, the turbine is stopped since it is in a danger of mechanical

failure and hence no power is produced.

The determination of the FOR of the WT or equivalently the availability is also

necessary for �nding and evaluating the power output of the WT. A WT can be mod-

eled as a series system consisting of speci�ed number of components, e.g. electrical
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system, electronic control, yaw system, rotor blades. If each component of the WT is

modeled with two mechanical states as complete failure and perfect functioning, then

under Markov process based modeling, the availability of the ith component of the

WT is

Ai(t) =
�i

�i + �i
+

�i
�i + �i

exp f�(�i + �i)tg :

Thus, the long term availability of the ith component is

pi = Pr fXi = 1g = lim
t�!1

Ai(t) =
�i

�i + �i
;

where �i and �i represent respectively the failure and repair rates of the ith compo-

nent. Therefore, the overall availability of the WT can be computed from

p =
nY
i=1

pi;

where n is the number of components within the WT. The FOR can be calculated

from 1 � p. In the present paper, we are not interested in computing the value of

p. The models for computing the reliability value p have been reviewed by Alhmoud

and Wang (2018).

If the random variables V and X are independent, i.e. the availability (or FOR)

is not a¤ected by the wind speed, then the cumulative distribution function of the
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power output of the WT de�ned by (1) is

H(x) = Pr fPWT � xg =

8>>>>>><>>>>>>:
0; if x < 0

pQ1(x) + 1� p; if 0 � x < Pr

1; if x � Pr;

(3)

where

Q1(x) = 1� F (vco) + F
 �

x

Pr
(v3r � v3ci) + v3ci

� 1
3

!
(see, e.g. Eryilmaz and Devrim (2019)). The distribution of the power output of the

WT has been obtained and evaluated by Kan et al. (2020) when there is dependence

between wind speed and wind turbine availability. De�ne the following conditional

WT availabilities:

r1 = P fX = 1 j V < vcig

r2(x) = P

(
X = 1 j vci < V <

�
x

Pr
(v3r � v3ci) + v3ci

� 1
3

)
; x > 0

r3 = P fX = 1 j V > vcog :

Let Hd(x) = P fPWT � xg denote the cumulative distribution function of the

power produced by a single turbine when V and X are dependent. Then, for 0 � x <

Pr; Kan et al. (2020) derived the following expression:

Hd(x) = 1� p+ r1F (vci)

+r�2(x)

"
F

 �
x

Pr
(v3r � v3ci) + v3ci

� 1
3

!
� F (vci)

#
+r3 [1� F (vco)] ;
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where r�2(x) = r2(x) if x > 0 and r
�
2(x) = 0 if x = 0. Clearly, H

d(x) = 0 if x < 0 and

Hd(x) = 1 if x � Pr:

Throughout the present paper, the random variables V and X are assumed to

be independent. For a wind farm consisting of n identical WTs each having rated

power Pr and availability p, let PWF = g(V ) �Sn denote the wind farm output, where

Sn denotes the total number of available turbines. Then, the cumulative distribution

function of the random variable PWF can be computed from

Pr(PWF � x) =
nX
i=0

�
n

i

�
pi(1� p)n�iQi(x); (4)

where

Qi(x) =

8>>>>>><>>>>>>:

0; if x < 0

1� F (vco) + F
�h

x
i�Pr (v

3
r � v3ci) + v3ci

i 1
3

�
; if 0 � x < i � Pr

1; if x � i � Pr;

with Q0(x) = 0 if x < 0 and Q0(x) = 1 if x � 0 (see, e.g. Eryilmaz and De-

vrim (2019)). Note that Qi(x) denotes the cumulative distribution function of the

wind farm power output when there are exactly i working/available wind turbines.

It should be noted that in (4), the wind speed is assumed to have a continuous

probability distribution and no discretization is applied. In the literature, the cu-

mulative distribution function of the wind farm output has also been calculated by

discretizing the wind speed distribution (see, e.g. Giorsetto and Utsurogi (1983),

Fotuhi-Firuzabad and Dobakhshari (2009), Li and Zio (2012)).
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LOLP is de�ned to be the probability that the local load L exceeds the available

generating capacity. For a wind farm, with output PWF , it is de�ned by LOLP =

Pr fPWF < Lg. A wind farm that has a smaller LOLP has a higher reliability in terms

of providing the required energy demand. Another useful reliability index denoted as

EENS, is the expected energy that will not be supplied when the local load L exceeds

the available generation. It is de�ned by

EENS = E(max(L� PWF ; 0)):

For a wind farm that consists of n WTs with rated powers Pr, the EENS can be

computed from the following equation (see, e.g. Eryilmaz et al. (2021)):

EENS = L�
min(L;nPr)Z

0

P fPWF � ug du: (5)

3 Optimal Wind Turbine Selection

The earliest method for selecting the optimal WT is based on WT capacity factor

(Salameh and Safari (1992)). The capacity factor (CF) of a WT describes the gap

between nominal and realistic power production of a WT. It is the ratio of the wind

turbine�s actual power output to its nominal power output. Mathematically,

CF =
�WT

Pr
; (6)
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where �WT denotes the mean power produced by theWT. For a continuous wind speed

distribution F (v) = P fV � vg, it can be computed from the following equation

�WT = E(PWT ) = p

24PrF (vco)� PrZ
0

F

 �
x

Pr
(v3r � v3ci) + v3ci

� 1
3

!
dx

35 ; (7)

where p denotes the availability value of the WT (see, e.g. Eryilmaz et al. (2021)). As

it is clear from (6) and (7), the computation of the capacity factor of a WT needs wind

speed distribution, WT characteristics and WT availability (or FOR). The inclusion

of the wind speed distribution in the equation clearly exhibits the dependence of

the capacity factor on the location of the wind farm. That is, the turbines having

same characteristics and availability values may have di¤erent capacity factors at

di¤erent locations. Substituting (7) in (6) and then applying the transformationh
x
Pr
(v3r � v3ci) + v3ci

i 1
3
= u; the capacity factor can be represented as

CF = p

24F (vco)� 3

v3r � v3ci

vrZ
vci

u2F (u)du

35 : (8)

Thus, the capacity factor of the WT is independent of the turbine�s rated power.

Mathematically, one can write

CF = CF (vci; vr; vco; p;F ):

For the two wind turbine models having respective characteristics (vci;1; vr;1; vco;1) and

(vci;2; vr;2; vco;2); and availability values p1 and p2, wind turbine 1 (WT1) is preferred

to wind turbine 2 (WT2) with respect to the capacity factor at a location with
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distribution F if

CF1(vci;1; vr;1; vco;1; p1;F ) � CF2(vci;2; vr;2; vco;2; p2;F ); (9)

where

CF1(vci;1; vr;1; vco;1; p1;F ) = p1

264F (vco;1)� 3

v3r;1 � v3ci;1

vr;1Z
vci;1

u2F (u)du

375 ;
and

CF2(vci;2; vr;2; vco;2; p2;F ) = p2

264F (vco;2)� 3

v3r;2 � v3ci;2

vr;2Z
vci;2

u2F (u)du

375 :
In the literature, capacity factors of wind turbines have been numerically compared

based on wind speed data obtained at a certain location. That is, to choose the

optimal WT, the capacity factors are calculated for given turbine characteristics and

wind speed distribution and the decision is made based on the numerical comparison

of the capacity factors. In this paper, we aim to obtain the necessary conditions

on (vci;1; vr;1; vco;1) and (vci;2; vr;2; vco;2) to have the relation (9). This enables us to

compare the capacity factors of the two wind turbine models without any numerical

calculation and wind speed data collection. The �rst result can be stated as follows.

Proposition 1. There exists � 2 [vci; vr] such that

CF (vci; vr; vco; p;F ) = p [F (vco)� F (�)] :

Proof. By the mean value theorem (see, e.g. Bao-lin (1997)), there exists a
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number � 2 [vci; vr] such that

vrZ
vci

u2F (u)du = F (�)

vrZ
vci

u2du = F (�)

�
v3r � v3ci
3

�
:

Thus, from (8), we have

CF (vci; vr; vco; p;F ) = p

�
F (vco)�

3

v3r � v3ci
F (�)

�
v3r � v3ci
3

��
= p [F (vco)� F (�)] :�

For x < y, de�ne a function

m(x; y) =
1

y3 � x3
Z y

x

u2F (u)du:

Then, from (8), the CF of the wind turbine can be represented as

CF (vci; vr; vco; p;F ) = p [F (vco)� 3m(vci; vr)] :

In the following, we investigate some properties of the function m which will be

useful in our developments.

Proposition 2. (a) The function m is increasing in both x and y. (b) The

function m uniquely determines F (i.e. each wind characteristics have its own unique

function m).

Proof. From the de�nition we get

(y3 � x3)m(x; y) =
Z y

x

u2F (u)du:
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Then

(y3 � x3)@1m(x; y)� 3x2m(x; y) = �x2F (x)

and

@1m(x; y) =
x2

y3 � x3 (3m(x; y)� F (x)):

Analogously, we get

@2m(x; y) =
y2

y3 � x3 (F (y)� 3m(x; y)):

Moreover, we know that

m(x; y) =
1

y3 � x3
Z y

x

u2F (u)du � F (y)

y3 � x3
Z y

x

u2du =
F (y)

3

and

m(x; y) =
1

y3 � x3
Z y

x

u2F (u)du � F (x)

y3 � x3
Z y

x

u2du =
F (x)

3
:

Hence both partial derivatives are non-negative.

The proof of part (b) is immediate from

(y3 � x3)@1m(x; y)� 3x2m(x; y) = �x2F (x):�

In the following, we obtain necessary conditions to compare the CFs of two WTs.

Theorem 1. Let WT1 have characteristics vci;1; vr;1; vco;1 and WT2 have charac-

teristics vci;2; vr;2; vco;2. The WTi has availability value pi i = 1; 2: Suppose p1 � p2:

Then,
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(a) Let vco;1 = vco;2. If

m(vci;1; vr;1) � m(vci;2; vr;2); (10)

then

CF1(vci;1; vr;1; vco;1; p1;F ) � CF2(vci;2; vr;2; vco;2; p2;F ):

(b) If vci;1 � vci;2; vr;1 � vr;2 and vco;1 � vco;2, then

CF1(vci;1; vr;1; vco;1; p1;F ) � CF2(vci;2; vr;2; vco;2; p2;F ):

Proof. The proof of part (a) is immediate from

CF (vci; vr; vco; p;F ) = p [F (vco)� 3m(vci; vr)] :

The proof of part (b) follows from Proposition 2 (a). �

Various comparisons can be made based on Theorem 1. For example, for the two

wind turbines that have same rated and cut-out wind speed values, a wind turbine

that has a smaller cut-in wind speed is better in terms of the capacity factor. Similarly,

for the two wind turbines that have same cut-in and cut-out wind speed values, a wind

turbine that has a smaller rated wind speed is better in terms of capacity factor.

The results presented in Theorem 1 can also be given in terms of the function

de�ned by

�m(x; y) =
1

y3 � x3
Z y

x

u2 �F (u)du;
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where �F (u) = 1 � F (u). For some wind speed distribution models it is easier to

compute this function. As

m(x; y) =
1

3
� �m(x; y)

the properties of �m are similar. Indeed, �m is decreasing in both x and y and it

uniquely determines F: (10) is equivalent to �m(vci;1; vr;1) � �m(vci;2; vr;2).

To illustrate the shape of the functionm, we give an example when the wind speed

distribution is Weibull with known parameter values. Weibull distribution is one of

the most commonly used wind speed distributions (see, e.g. Wais (2017)). It has been

shown to be suitable for modeling wind speed regime at many locations. In practice,

the unknown parameters of the Weibull distribution are estimated mostly using the

method of maximum likelihood based on daily average wind speed values measured

at a certain location. In the present paper, we are not interested in estimating the

parameters and hence the parameter values are chosen in such a way to obtain a

reasonable mean wind speed.

Let F (u) = 1� exp(�(u=9)3) for u � 0. Then

m(x; y) =
1

3
� �m(x; y) =

1

3

1

y3 � x3
Z y

x

u2 exp(�(u=9)3)du

for 0 � x < y. Hence,

m(x; y) =
1

3
� 1
3
93
exp(�(x=9)3)� exp(�(y=9)3)

y3 � x3

for 0 � x < y. The plots for m are given in Figure 1.
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Figure 1.a. 3D-plot for the function m
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Figure 1.b. Level curves for the function m

3.1 Stochastic comparison of the powers of two wind turbines

Consider the wind turbines whose characteristics are presented in Table 1. Both

turbines are assumed to have equal FOR = 0:04; i.e. availability p = 0:96: As-

sume that these turbines are installed at a location where the wind speed distri-

bution follows a Weibull model with cumulative distribution function F (v) = 1 �

e�(
v
�)

�

with � = 9 and � = 2. Because vco;1 = vco;2 and the condition (10)

is satis�ed, we have CF1(vci;1; vr;1; vco;1; p;F ) � CF2(vci;2; vr;2; vco;2; p;F ). Indeed,

CF1(vci;1; vr;1; vco;1; p;F ) = 0:3505 and CF2(vci;2; vr;2; vco;2; p;F ) = 0:2667.
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Table 1. Characteristics of two wind turbine models

WT1 (1.5 s-GE) WT2 (1.5 sle-GE)

vci 4 m/s 3.5 m/s

vr 12 m/s 14 m/s

vco 25 m/s 25 m/s

Pr 1.5 MW 1.5 MW

In Figure 2, we plot the cumulative distribution functions of the power produced

by each WT, i.e. H1(x) = P fPWT1 � xg and H2(x) = P fPWT2 � xg. Clearly,

H1(x) � H2(x) does not hold for all x: That is, we do not have the stochastic ordering

relation PWT1 �st PWT2. Note that a random variable X is stochastically larger than

the random variable Y (denoted by X �st Y ) if P fX � xg � P fY � xg for all x

(see, e.g. Belzunce et al. (2016)). Manifestly, if X �st Y then E(X) � E(Y ). That

is, if X is stochastically larger than Y , then the mean of X is greater than the mean

of Y . This example demonstrates that although the WT1 has a larger capacity factor,

the power produced by the WT1 is not necessarily larger than the power produced

by the WT2. In Proposition 3, we obtain a necessary and su¢ cient condition to

have PWT1 �st PWT2 for the two turbines having same cut-out wind speed values and

di¤erent cut-in and rated wind speed values, nominal powers and FOR values.
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Figure 2. The cumulative distribution functions of

the power outputs of two WTs

Proposition 3. Let WT1 have characteristics vci;1; vr;1; vco;1; Pr;1 and WT2 have

characteristics vci;2; vr;2; vco;2; Pr;2 with vco;1 = vco;2 = vco. Then,

P 1WT �st P 2WT i¤ p2 [F (vco)� F (vx;2)] � p1 [F (vco)� F (vx;1)] for all x;

where

vx;1 =

�
x

Pr;1
(v3r;1 � v3ci;1) + v3ci;1

�
; vx;2 =

�
x

Pr;2
(v3r;2 � v3ci;2) + v3ci;2

�
:

Proof. Immediately follows from (3). �

Theorem 2. Let vco;1 = vco;2 and Pr;1 = Pr;2; i.e. the turbines have the same

cut-out wind speed values and nominal powers.
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(a) If p1 � p2; vci;1 = vci;2 and vr;1 � vr;2, then PWT1 �st PWT2;

(b) If p1 = p2, vci;1 � vci;2 and v3r;1 � v3ci;1 � v3r;2 � v3ci;2; then PWT1 �st PWT2:

Proof. Under the conditions of part (a), we clearly have vx;1 � vx;2 which implies

F (vx;1) � F (vx;2) because F is nondecreasing. Thus, since p1 � p2

p1 [F (vco)� F (vx;1)] � p1 [F (vco)� F (vx;2)] � p2 [F (vco)� F (vx;2)]

for all x, and hence the proof of part (a) follows from Proposition 3. The proof of

part (b) can be established similarly.�

For an illustration, consider the wind turbine models given in Table 2. Assume that

FOR values for both turbines are 0.04. Because vci;1 � vci;2 and v3r;1�v3ci;1 � v3r;2�v3ci;2;

we have PWT1 �st PWT2: That is, if the two turbines are installed at the same location,

then the power produced by WT1 becomes larger than the power generated by WT2.
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Table 2. Characteristics of two WT models

WT1 (N70-1.5) WT2 (1.5 sle-GE)

vci 3 m/s 3.5 m/s

vr 13 m/s 14 m/s

vco 25 m/s 25 m/s

Pr 1.5 MW 1.5 MW

4 Comparisons of wind farms

Consider two wind farm compositions which are denoted by WF1 and WF2. The

WF1 consists of n1 identical WTs having common availability p1, and turbine char-

acteristics vci;1; vr;1; vco;1 and Pr;1; and the WF2 consists of n2 identical WTs having

common availability p2 and turbine characteristics vci;2; vr;2; vco;2 and Pr;2: Then, the

power outputs of the wind farms can be represented respectively as

PWF1 = g1(V ) � S1n1 ; (11)

and

PWF2 = g2(V ) � S2n2 ; (12)

where Sini ; i = 1; 2 follows a Binomial distribution with the probability mass function

P
�
Sini = k

	
=

�
ni
k

�
pki (1� pi)ni�k;

for k = 0; 1; :::; ni: The functions g1 and g2 have the form of (2) with respective turbine

characteristics (vci;1; vr;1; vco;1; Pr;1) and (vci;2; vr;2; vco;2; Pr;2). Our aim is to compare
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the power outputs (11) and (12) with respect to the turbine characteristics.

Theorem 3. Let vco;1 = vco;2 and Pr;1 = Pr;2; i.e. the turbines within the wind

farms have the same cut-out wind speed values and nominal powers. For n1 � n2; if

the following three conditions hold true, then PWF1 �st PWF2:

(i) (1� p1)n1 � (1� p2)n2 :

(ii) vci;1 � vci;2:

(iii) v3r;1 � v3ci;1 � v3r;2 � v3ci;2:

Proof. Because ln(x) is an increasing function of x, it is su¢ cient to show that

lnPWF1 �st lnPWF2 under the listed conditions. Clearly,

lnPWF1 = ln g1(V ) + lnS
1
n1
;

lnPWF2 = ln g2(V ) + lnS
2
n2
:

For n1 � n2 and (1�p1)n1 � (1�p2)n2, it is known that S1n1 �st S2n2 (see, e.g. Klenke

and Mattner (2010)). Because ln(x) is increasing in x, we have lnS1n1 �st lnS2n2. On

the other hand,

P fg1(V ) � xg = 1� F (vco;1) + F
 �

x

Pr;1
(v3r;1 � v3ci;1) + v3ci;1

� 1
3

!
;

for 0 � x < Pr;1; and

P fg2(V ) � xg = 1� F (vco;2) + F
 �

x

Pr;2
(v3r;2 � v3ci;2) + v3ci;2

� 1
3

!
;

for 0 � x < Pr;2. If (ii) and (iii) hold true, then P fg1(V ) � xg � P fg2(V ) � xg

for all x, which implies g1(V ) �st g2(V ) and hence ln g1(V ) �st ln g2(V ): Combining
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lnS1n1 �st lnS2n2 and ln g1(V ) �st ln g2(V ) we obtain lnPWF1 �st lnPWF2. Thus, the

proof is complete. �

It should be noted that if there is a signi�cant di¤erence between n1 and n2; then n1

and n2 are of prior importance when comparing two WFs even if other characteristics

of the WTs are not considered. However, in practice the di¤erence between n1 and

n2 is not large and the WT characteristics play important role in choosing the better

WF composition. This is numerically shown in Section 5.

A random variable X second order stochastically dominates (SSD) another ran-

dom variable Y (X �SSD Y ) if

tZ
0

P fX > xg dx �
tZ
0

P fY > yg dy for all t > 0

(see, e.g. Levy (1992)). It should be noted that if X �st Y , then X �SSD Y .

The wind farm that has a smaller EENS value has a higher reliability. Therefore,

EENS can be used in optimal wind farm composition selection. Consider two wind

farm compositions such that n1Pr;1 = n2Pr;2. That is, the nominal powers of the two

wind farms are assumed to be same. Clearly, if PWF1 �SSD PWF2, then

EENS1 = L�
min(L;n1Pr;1)Z

0

P fPWF1 � ug du

� L�
min(L;n2Pr;2)Z

0

P fPWF2 � ug du = EENS2:

Based on the last statement, we establish the following de�nition.
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De�nition 1. A wind farm composition WF1 is said to be preferred to another

wind farm composition WF2 with respect to EENS if

PWF1 �SSD PWF2;

where PWFi denotes the power output of WFi, i = 1; 2:

Because usual stochastic ordering implies SSD ordering, we obtain the following

Corollary as an immediate consequence of Theorem 3.

Corollary 1. Consider two wind farms WF1 and WF2. Assume that each WF

consists of n WTs such that vco;1 = vco;2; Pr;1 = Pr;2 and p1 = p2. If vci;1 � vci;2; and

v3r;1� v3ci;1 � v3r;2� v3ci;2; then WF1 is preferred to WF2 with respect to EENS. That

is, the WF1 has a smaller EENS value.�

In reality, there might be more than two possible wind farm compositions and the

main problem is the determination of the optimal one among all possible alternatives.

In the following, we de�ne the optimal wind farm in terms of EENS.

De�nition 2. Let ni denote the number of WTs used by WFi; and let Pr;i be

the rated power of the WT used by WFi; i = 1; 2; :::;m. Assume that

n1Pr;1 = n2Pr;2 = ::: = nmPr;m:

A wind farm WF � is said to be EENS-e¢ cient if there is no feasible WF such that

PWF �SSD PWF � :

Corollary 2. Consider m wind farms each having nWTs. Let Pr;1 = Pr;2 = ::: =
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Pr;m and p1 = p2 = ::: = pm; where pi denotes the reliability of the WTs in WFi;

i = 1; 2; :::;m. Then, the wind farm WFk is EENS-e¢ cient if

vci;k � min(vci;1; :::; vci;k�1; vci;k+1; :::; vci;m);

and

v3r;k � v3ci;k � min(v3r;1 � v3ci;1; :::; v3r;k�1 � v3ci;k�1; v3r;k+1 � v3ci;k+1; :::; v3r;m � v3ci;m):

5 Discussion with numerical examples

With the �ndings presented in the previous sections, for given WT models and/or

WF compositions, comparisons on capacity factors and EENS values can be estab-

lished with respect to turbine characteristics without any numerical assessment. In

this section, we corroborate our theoretical �ndings with numerical results. To this

end, in Table 3, we compute and present EENS values for the wind farm compo-

sitions previously considered by Nemes and Munteanu (2010) when the wind speed

distribution is Weibull with parameters � = 9 and � = 2. Each WF consists of n

identical WTs with FOR = 0:04 (p = 0:96). The nominal power of each WF is �xed

as 30 MW. The CF of each WT model is also computed. As it is clear from Table

3, the WFs that consist of the WTs having same capacity factors may have di¤erent

EENS values.

Among all possible alternatives listed in Table 3, the wind farm that consists of

n = 20WTmodels of type 1.5xle-GE is EENS-e¢ cient. Although we have computed
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EENS values to compare the WF compositions, some pairwise comparisons in terms

of EENS can be done without any calculation only using Corollary 1. Indeed, let

WF1 consist of n = 20 WTs of type N70-1.5 (vci;1 = 3; vr;1 = 13) and WF2 consist of

n = 20 WTs of type 1.5sle-GE (vci;2 = 3:5 and vr;2 = 14). Then, because vci;1 � vci;2;

and v3r;1 � v3ci;1 � v3r;2 � v3ci;2; WF1 is preferred to WF2 with respect to EENS. As

it is observed from Table 3, a wind farm with a fewer number of WTs may have a

smaller EENS value due to the characteristics of the WTs used by the WF. Indeed,

as it can be observed from Table 3, the wind farm that consists of n1 = 20 WTs of

1.5sle-GE model has a larger EENS than the wind farm with n2 = 15WTs of V90-2

model. Thus, the characteristics of the used wind turbines within a wind farm have

a signi�cant e¤ect on wind farm performance.

From Theorem 1 (b), we can immediately state that the WT of type 1.5xle-GE

has a larger CF than the WT of type 1.5s-GE. This is numerically demonstrated in

Table 3.
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Table 3. CF and EENS values for a WF consisting of di¤erent types of WTs

(FOR = 0:04 for each WT and L = 10 MW)

Wind farm

WT Model Pr
(MW )

vci
(m=s)

vr
(m=s)

vco
(m=s)

CF n EENS

1.5xle-GE 1.5 3.5 11.5 20 0.3752 20 4.1094

1.5sle-GE 1.5 3.5 14 25 0.2667 20 5.1212

1.5s-GE 1.5 4 12 25 0.3505 20 4.3986

2.5xl-GE 2.5 3.5 12.5 25 0.3319 12 4.4802

V90-2 2 4 12 25 0.3505 15 4.3994

V90-3 3 3.5 15 25 0.2297 10 5.5359

N70-1.5 1.5 3 13 25 0.3128 20 4.5973

N80-2.5 2.5 3 13 25 0.3128 12 4.5991

6 Concluding Remarks

The research reported in this paper is the �rst attempt to compare wind turbines and

wind farms without using wind speed data. The theoretical results have been estab-

lished to compare the performances of the wind turbines and wind farm compositions

with respect to the turbine characteristics. Speci�cally, necessary conditions have

been obtained to compare the CFs of di¤erent WT models. The conditions have also

been obtained to compare WF compositions in terms of stochastic ordering. As it
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has been pointed out, the second order stochastic dominance is closely related to the

ordering of EENS values of WF compositions. Some results obtained in the paper

are wind speed distribution free and useful to select optimal WT model for a WF.

Although we have chosen Weibull distribution to model wind speed in the numerical

illustrations, some theoretical results hold true for an arbitrary choice of the wind

speed distribution.

In the development of the results, the wind speed and wind turbine availability

were assumed to be statistically independent. As a future work, analogous theoretical

results could be obtained when there is a dependence between the wind speed and

the wind turbine availability.
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