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Dear Editor:

I enclose the revision of our manuscript which we have revised in agree-
ment with the comments received from the reviewers. Changes in the manuscript
are written in blue. We are very grateful for the opportunity to revise our
paper as well as the constructive advices we have got to improve it.

The main changes in the manuscript are the following:

• We have highlighted the role of copulas in our paper as the way to model
the dependency between components and modules. We also remark
that this dependency structure (copulas) interferes in the determination
of the optimal allocation policies (by the way of distortions).

• Following the advice of reviewer #2 we have included two remarks
explaining the meaning of conditions (4.2) and (4.10).

• The introduction and bibliography sections have been updated and
some new references have been added as Associated Editor has recom-
mended.

• We have divided section 4 into three subsections instead of two, to
improve the readability of the manuscript.

I enclose below point-to-point answers to the comments received from the
reviewers. The comments are written in bold case and our answers in normal
case.

Yours sincerely,

Nuria Torrado
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Associate editor:

1. Two reviewers suggest revision of the manuscript, which is
expected to be performed. In addition, we see somehow poor
review of current state, where some recent good papers from
RESS could be added.

Thank you very much for your assessment. We have updated the state
of the art with new comments and references.

In particular we have added the following new references:

• Hashemi M, Asadi M, Zarezadeh S (2020). Optimal maintenance
policies for coherent systems with multi-type components, Relia-
bility Engineering and System Safety 195, 106674.

• Hsieh TJ (2021). Component mixing with a cold standby strategy
for the redundancy allocation problem. Reliability Engineering
and System Safety 206, 107290.

• Li XY, Li YF, Huang HZ (2020). Redundancy allocation problem
of phased-mission system with non-exponential components and
mixed redundancy strategy. Reliability Engineering and System
Safety 199, 106903.

• WangW, Lin M, Fu Y, Luo X, Chen H (2020). Multi-objective op-
timization of reliability-redundancy allocation problem for multi-
type production systems considering redundancy strategies. Reli-
ability Engineering and System Safety 193, 106681.

• Wang C, Wang X, Xing L, Guan Q, Yang C, Yu M (2021). A fast
and accurate reliability approximation method for heterogeneous
cold standby sparing systems. Reliability Engineering and System
Safety 212, 107596.

• Xu J, Liang Z, Li Y-F, Wang K (2021) Generalized condition-
based maintenance optimization for multi-component systems con-
sidering stochastic dependency and imperfect maintenance. Reli-
ability Engineering and System Safety 211, 107592.
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Reviewer #1:

The authors studied about multi-level redundancy allocation
in coherent systems. This paper gave some suggestions, proofs
and numerical examples. I think this is a high level paper in
redundancy allocation problems. However, I have two com-
ments for this paper. Therefore, if the authors answered fol-
lowing comments, it would be accepted for publication.

Thank you very much for your positive comments. We have revised
the manuscript accordingly to your constructive suggestions, and all
the changes have been highlighted in blue in this revised version.

(i) This paper gives some propositions and examples using Cop-
ula. Copula is recently widely used and its research is a fea-
tured theme. However, this paper does not emphasize using
Copula. I recommend to emphasize using Copula in abstract,
keywords and Introduction.

You are right! Done.

(ii) In example 4.5, regions of u, v is [0, 1]. However, when u and
v equals 0, denominator of C(u, v) = uv/(u + v − uv) becomes
0. Similarly, in Remark 4.6, u(1− log(u))eu−1 becomes 0× (1−
infinity) × e−1. I think it is better that regions of u, v is (0, 1]
in such cases.

Regarding the first one, note that C is a very well know copula (Clayton
copula C1 in Nelsen (2006), p. 117, expression (4.2.1)). You are right
in the sense that, with this formula, it cannot be computed in (0, 0).
It can be completed by adding C(0, 0) := 0.

Regarding the second, you are again right in the sense that the distor-
tion function q̄(u) = u(1 − log(u))eu−1 is not defined for u = 0. As in
the preceding case, we can just define it as q̄(0) = 0 or to note that, by
convention, 0 log 0 := 0. In both cases it is a proper distortion function
defined for u ∈ [0, 1].

The paper has been modified accordingly.
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Reviewer #2

1. The paper considers reliability comparison of systems com-
posed of modules with non-overlapping components with com-
ponent and module-type redundancy. The classic result in the
literature is that in the independent case the component-wise
redundancy is better in the sense of the usual stochastic or-
dering (reliability-wise). The paper develops new methods for
comparisons based on considering the corresponding distor-
tion functions for modeling dependency between the modules
and copulas for modeling dependencies within modules. The
results are new and impressive and can form the basis for fur-
ther research in this direction. The contribution of the paper
is definitely theoretical but numerous examples also show pos-
sible practical applications. I have the following comments.

Thank you very much for your positive comments. We have revised
the manuscript accordingly to your constructive suggestions, and all
the changes have been highlighted in blue in this revised version.

2. I do not think that realization of minimal repair is via the colds
standby (although historically it was mentioned like that), as
it totally unrealistic. One cannot have the spare of the same
age in practice. On the other hand, the hot standby of i.i.d.
items gives an exact opportunity for that when the failed item
is replaced by the spare that is in the hot standby and did not
fail. However, this needs a lot of resources, usually. Therefore,
in practice minimal repair usually attributes to large systems
with the failures and perfect repairs of the small parts. . .

We agree. Note that both options can be analysed with our general
model. However, we do not perform a cost-study. This is left for
future research projects. In the revised version we have included some
comments in the conclusion section.

3. It would be nice to have some intuitive description of the
results based on (4.2) (new better than used concept): why
in this case the comparison is in favor of the component’s
redundancy?
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Done.

Condition (4.2) is related to the usual stochastic order between series
systems with two independent component. Please see Remark 4.2.

4. Also does (4.10) and further majorization assumption have
some intuitive interpretation for the obtained result?

The meaning of (4.10) is similar to that of (4.2) but replacing the usual
stochastic order with the (stronger) hazard rate order. It is included
at the beginning of Remark 4.11.

5. In view of the proposed approach, maybe some general con-
siderations can be clarified. Allocation of spares, redundancy
is, in fact, about the resources (components) that are left and
operable when the system has failed. The better allocation
makes these unused resources smaller in some appropriate
stochastic sense (which is, the usual stochastic ordering for
the systems in the considered case). So generally, when the
module fails and is replaces as such, more unused components
will be at system’s failure. Dependency can interfere in this
logic. Can it be explained in some way?

It is difficult to propose a general method that holds in any case. We
recognize that in some cases, our model can be unrealistic. In these
cases it can be seen just an approximation.

However, we think that to assume that the dependence structure does
not change after repairs is a reasonable assumption. Of course, as we
show in the paper, this dependence structure interferes in the final
reliability (in the distortions) and so the optimal policies will depend
on it.

On the other hand, it is true that when a module is replaced, some
of its resources could be useful. As mentioned above, we have not
considered cost-studies in this paper but it is of course an important
fact in practice. This task is left for future research projects.

In the revised version we have added comments about these facts (see
conclusions).
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Highlights

• Reliability analysis of hierarchical system structures.

• A new model proposed to study redundancy mechanisms at multiple
levels.

• Investigate the effects of redundancies in systems at components’ level
versus modules’ level.

• Applied to coherent systems with heterogeneity and dependency.
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Abstract: The present work studies the effect of redundancies on the reliability of coherent
systems formed by modules. Different redundancies at components’ level versus redundancies
at modules’ level are investigated, including active and standby redundancies. For that, a new
model is presented. This model takes into account the dependence among the components,
as well as, the dependence among the modules of the system. In both cases, the dependence
structure is modelled by copula functions. Several results are provided to compare systems
consisting of heterogeneous components. The comparisons are distribution-free with respect to
the components. In particular, we consider the cases when the components in the modules are
independent and connected (or not) in series, and when the components are dependent within
the modules. In both cases, it is assumed that the modules can be dependent. Furthermore,
the case in which the components in each module are identically distributed (dependent or
independent) is also considered. We illustrate the theoretical results with several examples.

Keywords: Reliability · Hierarchical system structure · System/modular/component re-
dundancy · Stochastic comparisons · Distribution-free comparisons · Optimal component allo-
cation · Copulas
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1 Introduction

Mainly, there exist two methods to improve the reliability of a coherent system. Firstly, design-
ing and making higher quality and more reliable components and, secondly, including redundan-
cies by adding spares, with similar or different reliability functions, to the original components.
Frequently, the latter option is an efficient way to enhance the reliability of a system. However,
redundancy allocation is not a trivial problem and it depends on the structure of the system,
the dependence among the components, the reliability functions of the components and spares,
economic restrictions, etc.

In order to deal with redundancy allocation problems, different approaches have been pro-
posed in the literature. On the one hand, some authors study which components of the system
should be assigned to be redundant. There are several ways to implement these redundant
components. Some of the most used in the engineering field, among others, are the active
(or hot) redundancy, which consists in adding to the original component one or more spares
forming a parallel system (see Boland et al. (1988), Singh and Misra (1994), Belzunce et al.
(2013), Zhao et al. (2017) and Hadipour et al. (2019) among others), and the standby (or cold)
redundancy where a component is replaced, when it fails, by a spare which starts to work at the
replacement moment. There exist many options of replacement for failed components. For ex-
ample, in the case of perfect repairs, a new and identical unit is used as spare (see, for example,
Misra et al. (2011), You and Li (2014) and Eryilmaz (2017)). In the case of minimal repairs,
the first model, proposed by Barlow and Hunter (1960), states that a failed component is re-
placed by a spare whose reliability is the same as that of the original component just before the
failure. Since then, many generalizations have been proposed in the literature (see for example
Block et al. (1985), Shaked and Shanthikumar (1986), Aven (1987), Aven and Jensen (2000)
and Finkelstein (2004)). In some occasions the action of replacement is unsuccessful and the
spare unit posses a worse reliability than the original component, in this case the replacement
is known as imperfect repair (see Shaked and Shanthikumar (1986), Zequeira and Berenguer
(2006) and Hollander et al. (2007)). Some authors focus on obtaining optimal maintenance
policies, which deal with cost functions associated to repairs or preventive maintenances of the
system’s components, see Hashemi et al. (2020), Wang et al. (2021) and Xu et al. (2021). Re-
cent works which study the redundancy allocation problem are for instance Kim (2017), Peiravi
et al. (2019), Li et al. (2020), Wang et al. (2020), Hsieh (2021), Torrado (2021), and Navarro
and Fernández-Mart́ınez (2021), among others.

On the other hand, some authors study the convenience of carrying out a redundancy al-
location at different levels of a system. Frequently, redundancies at components’ level require
more resources. Thus, it is interesting to find more efficient alternatives where allocate these
redundancies. It is common in engineering areas, to find coherent systems which can be de-
scribed by multiple layers. In this kind of systems, there exists a hierarchical structure where
the whole system is located at the top and the components are set at the bottom. In the
middle we find different subsystems or modules formed by some components of the system. A
module is considered as a semi-coherent system (we provide the formal definition below) and
two different modules do not share any common component. In this framework, redundancies
can be allocated to any level (system, modules or components). Multilevel redundant designs
have been widely used in different engineering areas such as communication systems, mechani-
cal systems, computing systems, electrical systems and control systems among others (see, for
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example, Kuo and Prasad (2000), Wang et al. (2004) and Kuo and Wang (2007)). As a par-
ticular case of multilevel redundancies, Barlow and Proschan (1975) presented a result which
states that active redundancies at components’ level produce more reliable systems, in terms of
the usual stochastic order, than active redundancies at system level in the case of independent
components. This result is known in the literature as BP-principle and it has been extended
in several ways. A detailed review about the successive generalizations of the BP-principe can
be found in Yan and Wang (2020).

In this work, we propose a new model to study redundancy mechanisms at multiple levels.
We incorporate the possible dependency among the components or modules by using the Sklar’s
copula representation, which allows us to express the reliability function associated to a coherent
system as a function of the corresponding reliability functions of the components or modules.
This new approach allows us to prove that the BP-principle might hold for coherent systems
with independent components, with heterogeneous or identically distributed components and
with matching or non-matching spares. Indeed, comparing the reliability of the systems, we
prove that active redundancies at components’ level are better than active redundancies at
modules’ level for possibly dependent modules. The last comparison is also studied for any
redundancy and some sufficient conditions are given to get distribution-free comparisons. The
case of minimal repairs is also considered. Aven and Jensen (2000) proposed a generalized
model of minimal repair at systems level, which takes into account different levels of the system
information. In a first level, all components are observed and we know in each moment which
component is still working. When that information is available the minimal repair is called
physical minimal repair. In a second level, we only know the age of the system at the moment
of failing. In this case, the minimal repair is known as black box minimal repair. This latter
option will be the one used in this article when we consider minimal repairs at module or
system level. Finally, we study under which conditions the reliability of two systems, with the
same number of components and modules, can be stochastically compared providing an optimal
component allocation under some assumptions.

The present article is organized as follows. In Section 2 we provide some basic definitions
and notations. Section 3 introduces the formulation of the proposed model and the expres-
sions obtained for the reliability functions of the systems with redundancies at components’
and modules’ levels, respectively. These expressions are used in Section 4 and 5 to compare
the resulting systems under different assumptions. In Section 4 we deal with systems having
heterogeneous components and we provide some results for independent components connected
(or not) in series and dependent components within the modules. In both cases, we assume that
the modules can be dependent. In Section 5 we consider the case of systems with identically
distributed components within modules. The conclusions of the paper are presented in Section
6.

2 Definitions and preliminary results

In this section, we recall some well-known definitions. Throughout, we use increasing and
decreasing to denote monotone nondecreasing and monotone nonincreasing, respectively. We
denote by Rn the n-dimensional real vectorial space and Rn

+ the nonnegative orthant of Rn.
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The notations used in this manuscript are presented in Table 1.

Table 1: Definitions of the used notations.

n Total number of components in the system.
k Total number of modules in the system.
Mj The jth module, for j = 1, . . . , k.
nj Number of components in the jth module.
s s = (n1, . . . , nk) components’ allocation vector in the k modules.
T System lifetime without any redundancy.
Xi Lifetime of component i.
XMj

Lifetime of module j.
Ts Lifetime of a system with redundancy at modules’ level and components’ allocation vector s.
F̄i Reliability function of component i.
F̄Mj

Reliability function of module j without any redundancy.
F̄T Reliability function of T .
Ḡj Reliability function of module j with redundancy at modules’ level.
H̄j Reliability function of module j with redundancy at components’ level.
R1 Reliability function of a system when the redundancy is at components’ level.
R2 Reliability function of a system when the redundancy is at modules’ level.

R
(s)
2 Reliability function of Ts.

Q̄∗ Distortion function defining the structure among the modules.
Q̄Mj

Distortion function defining the structure among the components within the module j.
q̄ Redundancy distortion function.

Definition 2.1 Given two vectors x,y ∈ Rn, we say that the vector x majorizes the vector y,

denoted by x
m

≥ y, if

j∑
i=1

xi:n ≤
j∑
i=1

yi:n, for j = 1, . . . , n− 1 and
n∑
i=1

xi:n =
n∑
i=1

yi:n

or if
n∑
i=j

xi:n ≥
n∑
i=j

yi:n, for j = 2, . . . , n and
n∑
i=1

xi:n =
n∑
i=1

yi:n.

The vector x weakly supermajorizes the vector y, denoted by x
w

≥ y, if

j∑
i=1

xi:n ≤
j∑
i=1

yi:n, for j = 1, . . . , n,

where x1:n, . . . , xn:n denote the components of the vector (x1, . . . , xn) rearranged in increasing
order. Thus, x1:n and xn:n represents the minimum and maximum of (x1, . . . , xn), respectively.
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Bon and Păltănea (1999) introduced the p-larger order, which is considered a preorder on
Rn

+. Here, we recall its definition.

Definition 2.2 Given two non-negative vectors x,y ∈ Rn
+, we say that x is p-larger than the

vector y, denoted by x
p

≥ y, if

j∏
i=1

xi:n ≤
j∏
i=1

yi:n, for j = 1, . . . , n.

It is known that x
m

≥ y ⇒ x
w

≥ y and x
m

≥ y ⇒ x
p

≥ y. The converses are, however, not
always true.

Next, we introduce the notion of Schur functions related to the majorization order and also
a result which can be found in Marshall et al. (2011).

Definition 2.3 A function ψ : A ⊆ Rn → R is said to be Schur-concave (Schur-convex) on A
if, and only if, for all x,y ∈ A such that x

m

≥ y, one has ψ(x) ≤ (≥)ψ(y).

The following result is well-known.

Lemma 2.4 A real-valued function φ defined on a set A ⊂ Rn satisfies

x
w

≥ y on A ⇒ φ(x) ≥ (≤)φ(y)

if and only if φ is decreasing (increasing) and Schur-convex (Schur-concave) on A.

The following result is Lemma 2.1 in Khaledi and Kochar (2002).

Lemma 2.5 The function φ : Rn
+ → R satisfies

x
p

≥ y ⇒ φ(x) ≥ (≤)φ(y)

if and only if φ(ea1 , . . . , ean) is Schur-convex (Schur-concave) in (a1, . . . , an) and decreasing
(increasing) in ai, where ai = log xi for i = 1, . . . , n.

We will also need the following basic concepts of Reliability Theory. A (binary) system is
a Boolean (structure) function ψ : {0, 1}n → {0, 1}. Here xi = 0 means that the ith component
does not work and xi = 1 that it works. Then the system state ψ(x1, . . . , xn) ∈ {0, 1} is
completely determined by the structure function ψ and the component states x1, . . . , xn ∈
{0, 1}. A system ψ is semi-coherent if it is increasing, ψ(0, . . . , 0) = 0 and ψ(1, . . . , 1) = 1.
A system ψ is coherent if it is semi-coherent and all the components are relevant. We say
that the ith component is relevant if ψ is strictly increasing in at least a point in the ith
variable. In general, a semi-coherent system is not a coherent system. For example, the system
ψ(x1, x2) = x2 is semi-coherent but not coherent. The basic properties of systems can be seen
in the classic book Barlow and Proschan (1975).
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Let T be the lifetime of a system with n components and let X1, . . . , Xn be the lifetimes of
the corresponding components. Let F̄T (t) = Pr(T > t) be the system reliability (or survival)
function and let F̄i(t) = Pr(Xi > t) for i = 1, . . . , n be the components’ reliability functions.
If the system is semi-coherent, then it is well known, see, e.g., Navarro and Spizzichino (2020),
that

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)) (2.1)

for all t > 0, where Q̄ : [0, 1]n → [0, 1] is a generalized distortion function, that is, it is con-
tinuous, increasing and satisfies Q̄(0, . . . , 0) = 0 and Q̄(1, . . . , 1) = 1. Note that the respective
distribution functions satisfy

FT (t) = Q(F1(t), . . . , Fn(t)),

where
Q(u1, . . . , un) = 1− Q̄(1− u1, . . . , 1− un)

is another generalized distortion function. These functions depend on both the structure of
the system and the dependency among the components. This possible dependency can be
represented by the copula C in the representation of the joint distribution function of the
components’ lifetimes

Pr(X1 ≤ x1, . . . , Xn ≤ xn) = C(F1(x1), . . . , Fn(xn))

or by the survival copula Ĉ in the representation of their joint reliability function

Pr(X1 > x1, . . . , Xn > xn) = Ĉ(F̄1(x1), . . . , F̄n(xn)).

For example, for the series system X1:n = min(X1, . . . , Xn), we have

F̄1:n(t) = Pr(min(X1, . . . , Xn) > t) = Ĉ(F̄1(t), . . . , F̄n(t)),

that is, Q̄1:n = Ĉ, and for the parallel system Xn:n = max(X1, . . . , Xn), we have

F̄n:n(t) = 1− Pr(max(X1, . . . , Xn) ≤ t) = 1− C(1− F̄1(t), . . . , 1− F̄n(t)),

that is, Q̄n:n(u1, . . . , un) = 1− C(1− u1, . . . , 1− un).
In particular, if the components are identically distributed (i.d.), that is, F̄i = F̄ for i =

1, . . . , n, then F̄T (t) = q̄T (F̄ (t)) with q̄T (u) = Q̄(u, . . . , u) and FT (t) = qT (F (t)) with qT (u) =
1− q̄T (1− u) for u ∈ [0, 1].

3 Module reliability modeling

We assume that the coherent system with n components that we want to study can be de-
composed in k modules M1, . . . ,Mk of n1, . . . , nk components with n1 + · · · + nk = n (i.e.,
the modules do not contain common components). Without loss of generality, we can assume
that the first n1 components belong to module M1, the components n1 + 1 to n1 + n2 belong
to module M2, and so on. Each module has a semi-coherent structure and so the reliability
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function of the first module M1 can be written as F̄M1(t) = Q̄M1(F̄1(t), . . . , F̄n1(t)), meanwhile,
the reliability function of the module Mj for j = 2, . . . , k, can be written as

F̄Mj
(t) = Q̄Mj

(F̄n1+···+nj−1+1(t), . . . , F̄n1+···+nj
(t)),

where F̄1, . . . , F̄n are the reliability functions of the components and Q̄M1 , . . . , Q̄Mk
are general-

ized distortion functions Q̄Mj
: [0, 1]nj → [0, 1]. Note that, for a given module, the components

in the other modules are irrelevant components and so we can extend these functions to [0, 1]n.
We also assume that the state of the system is determined by the states of the modules

through a coherent structure. Hence the reliability function of the system lifetime T can be
written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t))

for all t > 0, where Q̄ = Q̄∗(Q̄M1 , . . . , Q̄Mk
) and Q̄ : [0, 1]n → [0, 1] and Q̄∗ : [0, 1]k → [0, 1]

are two generalized distortion functions. Note that Q̄∗ defines the modular structure, i.e, it
contains all the information about the way in which the modules are connected to each other
and the dependence among them. The dependence among the components in each module and
the dependence among the modules will be modeled by copula functions. Several examples will
be provided later.

Thus we can consider two options: the redundancy at the components’ level or the redun-
dancy at the modules’ level. In both cases we assume that the redundancy is represented by
a univariate distortion q̄ : [0, 1] → [0, 1] satisfying q̄(u) ≥ u for all u ∈ [0, 1]. This approach
was introduces recently in Navarro and Fernández-Mart́ınez (2021) and allows us to represent
different redundancy options in a unified way. For example, if a redundancy is applied to the
first component, then this component is replaced with a “system” with reliability q̄(F̄1). If this
component is reinforced by adding an independent component with a parallel structure having
the same reliability, then

Pr(max(X1, Y1) > t)) = Pr(X1 > t) + Pr(Y1 > t)− Pr(X1 > t) Pr(Y1 > t) = q̄2:2(F̄ (t)),

where Y1 is the lifetime of the spare added to the first component, F̄ is the common reliability
function of X1 and Y1 (matching spares), and q̄2:2(u) = 2u − u2 for u ∈ [0, 1]. Later on we
will consider other options, for example, when X1 and Y1 are dependent or when they are
not identically distributed (not matching spares). The same procedure is applied to the other
components and modules.

Hence, in the case of a redundancy q̄ at the components’ level, if n spares are added to the
n components, then the reliability function of the improved system is

R1(t) = Q̄1(F̄1(t), . . . , F̄n(t)),

where Q̄1(u1, . . . , un) = Q̄(q̄(u1), . . . , q̄(un)) is another generalized distortion function. Clearly,
R1 ≥ F̄T since Q̄1 ≥ Q̄.

On the other hand, if we consider redundancies at the modules’ level, the reliability of
the jth module is replaced with q̄(F̄Mj

(t)) (see, e.g., Fig. 2 in Yun et al. (2007)) and so the
reliability of the resulting system is

R2(t) = Q̄∗(q̄(F̄M1(t)), . . . , q̄(F̄Mk
(t))) = Q̄2(F̄1(t), . . . , F̄n(t)), (3.1)
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where Q̄2(u1, . . . , un) = Q̄∗(q̄(Q̄M1(u1, . . . , un)), . . . , q̄(Q̄Mk
(u1, . . . , un))). Again we get R2 ≥ F̄T

since Q̄2 ≥ Q̄.
The purpose is to compare these two redundancy options by comparing Q̄1 and Q̄2. Note

that the redundancy at the system level is included in the second option when we just consider
a module with all the components (i.e. k = 1). In this case we get

R2(t) = q̄(F̄T (t)) = Q̄2(F̄1(t), . . . , F̄n(t)),

where Q̄2(u1, . . . , un) = q̄(Q̄(u1, . . . , un)). Also note that if the system has different module
decompositions, then they can also be compared by using the corresponding Q̄2 distortion
functions obtained in each decomposition.

4 Systems with heterogeneous components

In this section, we compare the reliability functions of systems formed by possibly dependent
modules consisting of heterogeneous components with redundancies at components’s or mod-
ules’ levels. Specifically, we consider two scenarios. Firstly, we investigate the case in which
the components within the modules are independent. Secondly, we study the case in which the
components within the modules are dependent. It is worth mentioning that, in both cases, the
modular structure can be any type.

4.1 Independent components connected in series and dependent
modules

Let us start studying comparisons between systems with modules having heterogeneous inde-
pendent components connected in series. The modules can be dependent. In this case, the
reliability function of the first module is

F̄M1(t) =

n1∏
i=1

F̄i(t),

and that of the jth module is

F̄Mj
(t) =

nj∏
i=1

F̄n1+···+nj−1+i(t)

for j = 2, . . . , k. Therefore, if we apply the redundancy q̄ at the module level, the resulting
module reliability functions are given by

Ḡ1(t) = q̄(F̄M1(t)) = q̄

(
n1∏
i=1

F̄i(t)

)

and

Ḡj(t) = q̄(F̄Mj
(t)) = q̄

(
nj∏
i=1

F̄n1+···+nj−1+i(t)

)
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for j = 2, . . . , k. Hence, the reliability function of the system with redundancy at the modules’
level is

R2(t) = Q̄∗(Ḡ1(t), . . . , Ḡk(t)). (4.1)

In the following proposition we study comparisons between modular redundancy and re-
dundancy at components’ level.

Proposition 4.1 If the components in each module are independent and are connected in series
and the distortion q̄ satisfies

q̄(u)q̄(v) ≥ (≤)q̄(uv) (4.2)

for all u, v ∈ [0, 1], then R1 ≥ (≤)R2 for any modular structure Q̄∗.

Proof. The reliability function of the system with redundancy at the modules’ level is given
in (4.1). On the other hand, we first note that, in this case, Q̄ can be written as

Q̄(u1, . . . , un) = Q̄∗

(
n1∏
i=1

ui,

n2∏
i=1

un1+i, . . . ,

nk∏
i=1

un1+···+nk−1+i

)
.

Hence, the reliability function of the system with redundancy at the components’ level is

R1(t) = Q̄∗(H̄1(t), . . . , H̄k(t)),

where

H̄1(t) :=

n1∏
i=1

q̄
(
F̄i(t)

)
and H̄j(t) :=

nj∏
i=1

q̄
(
F̄n1+···+nj−1+i(t)

)
for j = 2, . . . , k. Note that if

q̄(u1) · · · q̄(ui) ≥ q̄(u1 · · ·ui) (4.3)

for all u1, . . . , ui ∈ [0, 1] and i = 2, 3, . . . , n, then H̄j ≥ Ḡj and so R1 ≥ R2. From (4.2), we
know that q̄(u1u2) ≤ q̄(u1)q̄(u2). Now, by induction, let us assume that (4.3) holds for i − 1.
Then

q̄(u1 . . . ui) ≤ q̄(u1 . . . ui−1)q̄(ui) ≤ q̄(u1) . . . q̄(ui)

and therefore (4.3) holds. The proof for the reverse inequality in (4.2) is analogous.

Remark 4.2 It is worth mentioning that if (4.2) holds, we can use Proposition 4.1 to any
modular structure Q̄∗. For instance, if we consider three modules forming a system with struc-
ture T = min(XM1 ,max(XM2 , XM3)), where XMi

is the lifetime of the ith module for i = 1, 2, 3,
then the modular structure is

Q̄∗(u1, u2, u3) = Ĉ(u1, u2, 1) + Ĉ(u1, 1, u3)− Ĉ(u1, u2, u3), with u1, u2, u3 ∈ [0, 1],

where Ĉ is the survival copula which determines the dependence between the three modules. In
particular if the modules are independent, then

Q̄∗(u1, u2, u3) = u1u2 + u1u3 − u1u2u3.
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Condition (4.2) can be interpreted as follows. Consider a series system with two independent
components (with arbitrary reliability functions F̄1 and F̄2) and redundancy function q̄. Then,
(4.2) means that in this system the redundancy at the components’ level is better (in the usual
stochastic order) than the redundancy at the system level, that is,

q̄(F̄1(t))q̄(F̄2(t)) ≥ q̄(F̄1(t)F̄2(t)) for all t ≥ 0.

Proposition 4.1 shows that this condition can be extended to systems with any modular struc-
ture and components connected in series in each module. Property (4.2) holds for any hot
standby independent redundancy (systems) and for perfect repairs (convolutions), see Barlow
and Proschan (1975), page 187 (see also the following remark). As a consequence, the reverse
property in (4.2) (with the reverse meaning) is not so common.

Remark 4.3 The condition (4.2) is equivalent to require that the distortion q̄ preserves the
new better than used (NBU) aging notion, see Navarro et al. (2014). We recall that the lifetime
X of a device is NBU if F̄ (t1 + t2) ≤ F̄ (t1)F̄ (t2) for all t1, t2 ≥ 0, where F̄ is the reliability
function of X. Thus, if q̄ satisfies condition (4.2) and X is NBU, then

q̄(F̄ (t1 + t2)) ≤ q̄(F̄ (t1)F̄ (t2)) ≤ q̄(F̄ (t1))q̄(F̄ (t2))

for all t1, t2 ≥ 0. This means that the reliability function q̄(F̄ (t)) is NBU and therefore q̄
preserves this notion. On the other side, if q̄ preserves the NBU notion, then

q̄(F̄ (t1 + t2)) ≤ q̄(F̄ (t1))q̄(F̄ (t2))

for every NBU reliability function F̄ . In particular, the reliability function F̄ (t) = e−t for t ≥ 0,
associated to a standard exponential distribution is NBU. Then, q̄(e−t1−t2) ≤ q̄(e−t1)q̄(e−t2) for
all t1, t2 ≥ 0. Taking u = e−t1 and v = e−t2, we obtain condition (4.2) for all u, v ∈ [0, 1].
Specifically, it can be proved that the NBU is preserved when the increasing failure rate (IFR)
class is preserved. From Navarro et al. (2014), the IFR class is preserved if uq̄′(u)/q̄(u) is
decreasing. This last condition is sometimes easier to check than (4.2).

Remark 4.4 It is well known that the generalized distortion function Q̄ of any coherent system
with m independent components satisfies

Q̄(u1v1, . . . , umvm) ≤ Q̄(u1, . . . , um)Q̄(v1, . . . , vm)

for all ui, vi ∈ [0, 1] and i = 1, . . . ,m, that is, these systems preserve the NBU property, see
Barlow and Proschan (1975), pages 183 and 188 (Exercise 10) or (18) in Navarro (2018).
Hence, if we add m − 1 independent and identically distributed (i.i.d.) spares to a component
with any coherent structure, then q̄(u) = Q̄(u, . . . , u) and (4.2) holds. The same happen if the
components are independent and have proportional hazard rates. In this case

q̄(u) = Q̄(u, uα2 , . . . , uαm)

and so (4.2) holds for any Q̄ (any structure) and any α2, . . . , αm > 0. So we can say that (4.2)
is a weak condition. However, (4.2) is not alway true (see Example 4.5 for redundancies with
dependent i.d. spares or Remark 4.6 for redundancies not based on coherent system structures).
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In the following example we consider dependent spares that satisfy condition (4.2) for some
values of the dependence parameter.

Example 4.5 Let us assume that the spares are added in parallel and that the original compo-
nent and spares are i.d. (matching spares) and dependent. Then the redundancy mechanism is
defined by the following distortion

q̄(u) = 1− C(1− u, 1− u), u ∈ [0, 1], (4.4)

where C is the distributional copula which defines the dependence structure. Let us assume that
C is an Archimedean copula with generator ψ(t) = (θt + 1)−1/θ for θ > 0, which leads to a
Clayton copula (see Nelsen (2006), page 117, expression (4.2.1)). Then

C(u, v) =
(
u−θ + v−θ − 1

)−1/θ
, u, v ∈ [0, 1]. (4.5)

Note that the previous expression is defined as zero for the vectors (0, v), (u, 0) and (0, 0), i.e.,
C(0, v) = C(u, 0) = C(0, 0) := 0. If θ = 1, then the above copula can be rewritten as

C(u, v) =
uv

u+ v − uv , u, v ∈ [0, 1].

In this case, from (4.4), the redundancy distortion is

q̄(u) = 1− 1− u
1 + u

=
2u

1 + u
, u ∈ [0, 1]

and

q̄(u)q̄(v)− q̄(uv) =
2uv (2 (1 + uv)− (1 + u) (1 + v))

(1 + u) (1 + v) (1 + uv)
=

2uv(1− u)(1− v)

(1 + u) (1 + v) (1 + uv)
≥ 0,

i.e, for θ = 1, (4.2) holds. Then, from Proposition 4.1, we know that R1 ≥ R2 holds for any
Q̄∗ and any F̄1, . . . , F̄n. On the other hand, taking θ = 4 we have that (4.2) does not hold, see
Figure 1 (right). So, in this case, we cannot use Proposition 4.1 to compare R1 and R2.

Figure 1: Plot of q̄(u)q̄(v) − q̄(uv) for the systems in Example 4.5 when the components and
spares are dependent with θ = 1 (left) and θ = 4 (right).
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Remark 4.6 As we have seen, there exist redundancies that do not satisfy neither condition
(4.2) nor its reverse. Another example (not associated with a coherent structure) is the dis-
tortion q̄(u) = u(1 − log u)eu−1 for u ∈ (0, 1] and q̄(0) := 0. It can be considered as a redun-
dancy because q̄(u) ≥ u for all u ∈ [0, 1]. However, q̄(0.02) q̄(0.01) − q̄(0.02 · 0.01) > 0 and
q̄(0.5) q̄(0.2)− q̄(0.5 · 0.2) < 0. Therefore neither condition (4.2) nor its reverse holds.

One method to enhance the reliability of a system is improving the quality of some compo-
nents by reducing their failure rates by a factor α with 0 < α < 1. In that case, we can define
the reliability function of the ith spare as F̄α

i (not matching spares) for all i = 1, 2, . . . , n. If we
assume active redundancy and an independent spare in parallel, then the distortion function is

q̄α(u) = 1− (1− u)(1− uα) = u+ uα − uα+1. (4.6)

It is easy to check that this distortion satisfies condition (4.2) for any α > 0 (as stated in
Remark 4.4).

Observe that if α = 1, then the redundancy method defined in (4.6) is the active redundancy
q̄2:2(u) = 2u−u2, i.e., only one spare is added in a parallel structure, independent and identically
distributed as the original unit (matching spare). If α > 1, then the spare is worse than the
original component in the sense that the failure rate of the spare is greater than that of the
original component (which is a reasonable assumption in practice). In addition, if α ∈ N, then
the redundancy defined in (4.6) is equivalent to add in parallel α i.i.d. spares forming a series
system. If 0 < α < 1, then the spare is better than the original component and the result
also holds. Next, let us show an example on how to apply Proposition 4.1 to the redundancy
mechanism defined in (4.6).

Example 4.7 We consider systems with two modules connected in parallel and we assume
that each module has two independent components connected in series. The components in
the first module have exponential distributions with hazard rates equal to 1 and in the second
module, they have exponential distributions with hazard rates equal to 2. Next, we assume the
redundancy defined in (4.6), that is, the spare is independent and it is added in parallel, for
α = 0.5, 1 and 2 (see Figure 2 for theirs block diagrams). We consider two different cases, when
the modules are independent, i.e., Q̄∗(u, v) = u+ v − uv, and when the modules are dependent
with a distributional copula C, i.e.,

Q̄∗(u, v) = 1− C(1− u, 1− v), for u, v ∈ [0, 1].

We assume that C is a Clayton copula as defined in (4.5) for θ = 5. In Figure 3, we plot the
reliability functions for the systems with redundancy at component level (R1) and at module
level (R2) for independent modules (left) and dependent modules (right). As (4.2) holds in
both cases, we always have R1 ≥ R2. Also note that R1 and R2 decrease when α increases (as
expected since the spares get worse).
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Figure 2: Block diagrams of the parallel-series systems considered in Example 4.7 without any
redundancy mechanism (left), when the redundancy is allocated at components’ level (center)
and at modules’ level (right).
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Figure 3: Reliability functions for the parallel-series system in Example 4.7 when the modules
are independent (left) or dependent (right) with a Clayton copula when θ = 5.

Another redundancy, widely used in reliability theory, is the minimal repair. It is considered
as a particular case of cold redundancy. A unit, with lifetime X and survival function F̄ , is
replaced in case of failure by a used unit with the same reliability as X and the same age as
the unit had when it failed. This is equivalent to assume that the unit is minimally repaired
to be just as it was before its failure. Let X∗ be the lifetime of a component with a minimal
repair, then its reliability function is given by

F̄X∗(t) = q̄mr(F̄ (t)),

where F̄ is the reliability function of X and q̄mr(u) = u(1 − log u) is a distortion function,
see, for example, formula (3.1) in Krakowski (1973) or Navarro et al. (2019). The distortion
function q̄mr satisfies condition (4.2). Observe that this condition is equivalent to

u v[1− log(u v)] ≤ u[1− log(u)] v[1− log(v)] for all u, v ∈ [0, 1]. (4.7)

If u = 0 or v = 0, then condition (4.2) is satisfied. Suppose now that u, v ∈ (0, 1]. Then,
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condition (4.7) can be rewritten as

1− log(u v) ≤ [1− log(u)] [1− log(v)],

1− log(u)− log(v) ≤ [1− log(u)] [1− log(v)],

1− log(u)− log(v) ≤ 1− log(u)− log(v) + log(u) log(v),

0 ≤ log(u) log(v),

where the last inequality holds for all u, v ∈ (0, 1]. Note that from Remark 4.3, this means that
the distortion q̄mr preserves the NBU notion.

Now, we need to establish what we understand by a minimal repair at module (system)
level. Based on the definition of black box minimal repair, given by Aven and Jensen (2000),
we consider that a module (system) is minimally repaired when it is replaced by another used
module (system) with the same distribution and the same age as the module (system) had
when it failed. Let M∗

j be the resulting module after applying a minimal repair to the module
Mj. Then, the reliability function associated to the lifetime of M∗

j can be expressed as

F̄M∗
j
(t) = F̄Mj

(t)[1− log F̄Mj
(t)] = q̄mr(F̄Mj

(t)). (4.8)

In the particular case of a module with m components connected in series, we obtain that

F̄M∗
j
(t) = q̄mr(F̄1:m(t)),

with F̄1:m(t) = Ĉ(F̄1(t), . . . , F̄m(t)), where F̄1, . . . , F̄m are the reliability functions of the com-
ponents in that module and the survival copula Ĉ models the dependence among them. If we
also assume independence among the components of the jth module, we obtain that

F̄M∗
j
(t) = q̄mr

( m∏
i=1

F̄i(t)
)
.

Let us see an example.

Example 4.8 Let XM1 , XM2 and XM3 be the lifetimes of three modules M1, M2, and M3 with
2, 2 and 3 independent components, respectively, connected in series. Let us assume that these
modules define a system with lifetime T = max(min(XM1 , XM2), XM3), then

Q̄∗(u1, u2, u3) = Ĉ(1, 1, u3) + Ĉ(u1, u2, 1)− Ĉ(u1, u2, u3) for (u1, u2, u3) ∈ [0, 1]3.

where Ĉ is a survival copula, which models the dependence among M1,M2 and M3, given by
the following Gumbel-Hougaard copula:

Ĉ(u1, u2, u3) = exp(−((− log u1)
θ + (− log u2)

θ + (− log u3)
θ)1/θ) (4.9)

with θ ≥ 1 and u1, u2, u3 ∈ [0, 1]. This copula belongs to the well known family of Archimedean
copulas, see Nelsen (2006), p. 118. The components 1 and 2, in the first module, have expo-
nential distributions with hazard rates 1 and 2, respectively, i.e., F̄i(t) = exp(−i t) for i = 1, 2.
The components 3 and 4 in the second module have Weibull distributions with shape parameter
1 and 2, respectively, and scale parameter 1 for both components, that is, F̄i(t) = exp(−t(i−2))
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for i = 3, 4. Finally, the components 5, 6 and 7 in the last module have log-normal distri-
butions with log-deviation 1, 2 and 3, respectively, all of them with log-mean 0, in this case,
F̄i(t) = 1−Φ(log t/(i− 4)) for i = 5, 6, 7 with Φ the distribution function associated to a stan-
dard normal distribution. Next, we apply minimal repairs at modules’ level and at components’
level. Figure 4 shows the plots of the reliability functions for the system without redundancy
(blue), for the system with redundancy at module level (red) and for the system with redun-
dancy at components’ level (black), when the modules are independent (left) and when they are
dependent (right) with copula parameter θ = 5. From (4.7) and Proposition 4.1, we know that
R1 ≥ R2 holds for all F̄1, . . . , F̄7 (as can be seen in these particular plots).
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Figure 4: Reliability functions for the systems in Example 4.8 without redundancy (blue), with
redundancy at modules’ level (red) and with redundancy at components’ level (black), when
the modules are independent (left) or dependent (right).

Let Ts be the lifetime of a coherent system with redundancy at modules’ level and let R
(s)
2 be

its reliability function, where the vector s = (n1, . . . , nk) represents the number of components
in each module. Next, we investigate comparisons for two types of modular redundancies
between systems with dependent modules connected in series and whose dependency structure
is defined by the family of Archimedean copulas. Then,

Q̄∗(u1, . . . , uk) = Ĉψ(u1, . . . , uk) = ψ(φ(u1) + · · ·+ φ(uk)), with u1, . . . , uk ∈ [0, 1],

where Ĉψ is an Archimedean copula with generator ψ and φ = ψ−1. In addition, we consider
that the components in each module are independent, connected in series and that theirs lifetime
distributions are ordered. Thus we obtain the following result.

Proposition 4.9 Let Ts and Tr be the lifetimes of two systems under modular redundancy
with the same modular structure given by Q̄∗ = Ĉψ an Archimedean copula with generator ψ,
and with independent components connected in series in each module, where s = (n1, . . . , nk)
and r = (m1, . . . ,mk) are their respective component allocation vectors. Also assume that
F̄1 ≥ · · · ≥ F̄n, n1 ≤ · · · ≤ nk and m1 ≤ · · · ≤ mk. If ψ is log-convex and

η(u) =
u q̄′(u)

q̄(u)
is decreasing in u ∈ (0, 1] , (4.10)
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then s
m

≥ r implies R
(s)
2 ≤ R

(r)
2 .

Proof. Let us denote βj = F̄Mj
(t) for any fix t > 0 and j = 1, . . . , k, then β1 ≥ · · · ≥ βk by

the assumptions F̄1 ≥ · · · ≥ F̄n and n1 ≤ · · · ≤ nk. Analogously, we define γj = F̄M̃j
(t) for

j = 1, . . . , k, where

F̄M̃j
(t) =

mj∏
i=1

F̄m1+···+mj−1+i(t),

and therefore γ1 ≥ · · · ≥ γk. Then, the reliability functions of Ts and Tr at time t, defined
in (4.1), can be rewritten as R

(s)
2 (t) = Q̄∗ (q̄(β1), . . . , q̄(βk)) and R

(r)
2 (t) = Q̄∗ (q̄(γ1), . . . , q̄(γk)),

respectively.

Now, observe that βk ≤ γk when nk ≥ mk which holds by the assumption (n1, . . . , nk)
m

≥
(m1, . . . ,mk). Analogously, it is easy to check that

k∏
i=j

βi ≤
k∏
i=j

γi when
k∑
i=j

ni ≥
k∑
i=j

mi,

for j = 2, . . . , k − 1, and
k∏
i=1

βi =
n∏
i=1

F̄i(t) =
k∏
i=1

γi since
∑k

i=1 ni =
∑k

i=1mi. Therefore,

(n1, . . . , nk)
m

≥ (m1, . . . ,mk) implies (β1, . . . , βk)
p

≥ (γ1, . . . , γk). Thus, R
(s)
2 ≤ R

(r)
2 holds if

Q̄∗ (q̄(β1), . . . , q̄(βk)) ≤ Q̄∗ (q̄(γ1), . . . , q̄(γk))

whenever (β1, . . . , βk)
p

≥ (γ1, . . . , γk). To prove this, from Lemma 2.5, we need to show that the
function

g(b1, . . . , bk) := Q̄∗
(
q̄(eb1), . . . , q̄(ebk)

)
is increasing in bi for i = 1, . . . , k and Schur-concave in b = (b1, . . . , bk) where bi ∈ (−∞, 0] for
i = 1, . . . , k. Firstly, it is evident that g is increasing in bi since it is the composition of three
positive-valued and increasing functions. Secondly, to prove that

g(b1, . . . , bk) = ψ
(
φ(q̄(eb1)) + · · ·+ φ(q̄(ebk))

)
is Schur-concave in b, we obtain its first partial derivative with respect to bi such as

∂g(b)

∂bi
= ψ′

(
φ(q̄(eb1)) + · · ·+ φ(q̄(ebk))

)
φ′(q̄(ebi))q̄′(ebi)ebi

= ψ′
(
φ(q̄(eb1)) + · · ·+ φ(q̄(ebk))

) q̄′(ebi)ebi

ψ′(φ(q̄(ebi)))

= ψ′
(
φ(q̄(eb1)) + · · ·+ φ(q̄(ebk))

) ψ(φ(q̄(ebi)))

ψ′(φ(q̄(ebi)))
· q̄
′(ebi)ebi

q̄(ebi)

= ψ′
(
φ(q̄(eb1)) + · · ·+ φ(q̄(ebk))

)
s(bi),

where s(x) = s1(x)s2(x) with

s1(x) =
ψ(φ(q̄(ex)))

ψ′(φ(q̄(ex)))
and s2(x) =

ex q̄′(ex)

q̄(ex)
.
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Observe that s1 is a negative and increasing function since logψ is convex. Moreover, s2 is a
positive and decreasing function since (4.10) holds. Therefore, s is an increasing function and
so s(b1) ≥ s(b2) ≥ · · · ≥ s(bk) for b1 ≥ · · · ≥ bk. Consequently

∂g(b)

∂b1
≤ ∂g(b)

∂b2
≤ · · · ≤ ∂g(b)

∂bk
,

since ψ′ ≤ 0. Then, from Theorem 3.A.3 in Marshall et al. (2011), we have that g(b) is Schur-
concave in b for b1 ≥ · · · ≥ bk. As these inequalities hold for log(βi) and log(γi), this completes
the proof.

Note that if the modules are independent and connected in series then ψ(x) = e−x, and
therefore we can apply Proposition 4.9 to systems with independent modules. Next, we show
how to apply Proposition 4.9 to systems with dependent modules assembled by an Archimedean
copula.

Example 4.10 We consider three systems with two modules each one connected in series, that
is, Q̄∗(u, v) = Ĉ(u, u), where Ĉ is the survival copula that represents the possible dependence
between these modules. The first module has n1 independent components connected in series
which have exponential distributions with hazard rates equal to 1. The second one has n2

components of the same type (independent and connected in series) exponentially distributed
with hazard rates equal to 2. Let us assume n1 = 1, 2, 3 and n2 = 5, 4, 3 for the three systems,

respectively. It is easy to check that (1, 5)
m

≥ (2, 4)
m

≥ (3, 3). On the other hand, let q̄2:2(u) =
2u−u2 be the distortion of the redundancy mechanism which satisfies (4.10). We show in Figure
5 the reliability functions of the three systems for independent modules (left) and dependent
modules (right). For the case of dependent modules, we suppose that the dependence structure
is defined by the Clayton copula in (4.5) for θ = 5 which satisfies that ψ is log-convex. Therefore,
all the conditions in Proposition 4.9 hold. As expected from that proposition, R2 decreases when
(n1, n2) increases in the majorization order. This property will hold for any ordered reliability
functions F̄1 ≥ · · · ≥ F̄6.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0 (1,5)

(2,4)

(3,3)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0 (1,5)

(2,4)

(3,3)

Figure 5: Reliability functions R2 for the series system in Example 4.10 when the modules are
independent (left) or dependent (right) with a Clayton copula with θ = 5.
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Remark 4.11 The meaning of (4.10) is similar to that of (4.2) but replacing the usual stochas-
tic order with the hazard rate order. Thus, if we consider a series system with two indepen-
dent components X1 and X2 with arbitrary reliability functions F̄1 and F̄2, then the lifetime
of the system when we apply the redundancy, represented by q̄, at the components’ level is
T1 = min(Y1, Y2) and its corresponding reliability function is

R1(t) = q̄(F̄1(t))q̄(F̄2(t)) for all t ≥ 0,

where Yi represents the lifetime of the ith unit with redundancy for i = 1, 2. Then, its hazard
rate function is

hT1(t) = hY1(t) + hY2(t) = η(F̄1(t))h1(t) + η(F̄2(t))h2(t),

where η(u) = uq̄′(u)/q̄(u) for u ∈ (0, 1] and hi is the hazard rate function of Xi for i = 1, 2.
Analogously, if we consider the lifetime T2 of the system with redundancy at the system level,
then its reliability is

R2(t) = q̄(F̄1(t)F̄2(t)) for all t ≥ 0,

and its hazard rate function is

hT2(t) = η(F̄1(t)F̄2(t))h1(t) + η(F̄1(t)F̄2(t))h2(t).

Hence, (4.10) implies that hT1 ≤ hT2, that is, the series system with redundancy at the compo-
nents’ level is better (in terms of the hazard rate order) than the one with redundancy at the
system level.

From Navarro et al. (2014) we know that condition (4.10) is equivalent to the preservation of
the increasing failure rate (IFR) class. Moreover, we also know from Esary and Proschan (1963)
that the IFR class is preserved in all k-out-of-n systems with i.i.d. components. Therefore,
(4.10) holds for all these redundancy mechanisms which include parallel systems. Thus, if we
consider active redundancy with m − 1 spares, then q̄m:m (u) = 1 − (1 − u)m satisfies (4.10).
Therefore, we can apply Proposition 4.9 to series systems with active redundancy. However, it is
easy to check that the redundancy distortion q̄α in (4.6) does not satisfy (4.10) when 0 < α < 1
since [

u q̄′(u)

q̄(u)

]′
sign
= (α− 1)2 − u(α2 + uα−1)

and it takes positive and negative values in the interval [0, 1]. On the other hand, Proposition
4.9 cannot be generalized to any copula as we show in the following example.

Example 4.12 We consider two systems with three dependent modules connected in series
assembled by a Farlie-Gumbel-Morgenstern (FGM) copula, then

Q̄∗(u1, u2, u3) = Ĉ(u1, u2, u3) = u1u2u3(1 + θ(1− u1)(1− u2)(1− u3)),

for (u1, u2, u3) ∈ [0, 1]3 and θ ∈ [−1, 1]. Each module has heterogeneous, independent com-
ponents connected in series. Let us assume that s = (1, 3, 3) and r = (2, 2, 3) are the alloca-
tion vectors of components by modules for both systems, respectively. It is easy to check that

s
m

≥ r. We suppose that the component lifetimes have exponential distributions with hazard
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rate λ ∈ {0.1, 2, 6, 7, 8, 9, 10}, then F̄1 ≥ · · · ≥ F̄7. Finally, we consider that the redundancy
mechanism is q̄2:2(u) = 2u− u2 and we take θ = −0.9 in the FGM copula. In Figure 6 we plot

the function R
(s)
2 − R(r)

2 and it is evident that it takes positive and negative values. Therefore,
these systems are not ordered.

0.5 0.6 0.7 0.8

-6.×10-10

-4.×10-10

-2.×10-10

Figure 6: Function R
(s)
2 −R(r)

2 for the series system in Example 4.12 with different redundancy
allocation vectors when the components are heterogeneous, independent and connected in series.

If, for example, we consider a system with seven components and we are interesting in split-
ting the components in three modules, according to Proposition 4.9 (and under the assumptions
made in that proposition), it is better to put two components in the first two modules and three

components in the last one, since (1, 1, 5)
m

≥ (1, 2, 4)
m

≥ (1, 3, 3)
m

≥ (2, 2, 3). In the following
result, we provide the optimal component allocation vector for systems with redundancy at
module level satisfying these assumptions.

Corollary 4.13 Under the assumption of Proposition 4.9, the best system with k modules and
redundancy at modules’ level is that formed by modules with components distributed according
to the vector

s? = (
k−r︷ ︸︸ ︷

s, s, . . . , s,

r︷ ︸︸ ︷
s+ 1, s+ 1, . . . , s+ 1),

where s and r ∈ Z+ are the unique integers such that n = s k + r and 0 ≤ r < k.

Proof. We need to prove that

s
m

≥ s? (4.11)

for all vectors s = (n1, . . . , nk) with n1 ≤ . . . ≤ nk and
∑k

i=1 ni = n.
Given a vector s, then there exists a number υ ∈ N and a finite sequence of vectors

{si}i∈{1,...,υ} with si = (n
(i)
1 , . . . , n

(i)
k ), n

(i)
1 ≤ . . . ≤ n

(i)
k and

∑k
j=1 n

(i)
j = n for all i ∈ {1, . . . , υ},

such that s1 = s, sυ = s?, and for any pair of consecutive vectors si and si+1 there exist j0 and
j1 ∈ N (which depend on i) with 1 ≤ j0 < j1 ≤ k such that

n
(i+1)
j0

= n
(i)
j0

+ 1,

n
(i+1)
j1

= n
(i)
j1
− 1,

n
(i+1)
j = n

(i)
j , for all j ∈ {1, 2, . . . , k}\{j0, j1}.
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Note that si+1 is obtained from si by moving one component from the module Mj1 to the
module Mj0 with j0 < j1. Furthermore, it is cleat that

m∑
j=1

n
(i)
j =

m∑
j=1

n
(i+1)
j for all m = 1, 2, . . . , j0 − 1;

m∑
j=1

n
(i)
j <

m∑
j=1

n
(i+1)
j for all m = j0, j0 + 1, . . . , j1 − 1;

m∑
j=1

n
(i)
j =

m∑
j=1

n
(i+1)
j for all m = j1, j1 + 1, . . . , k.

Therefore, the condition si
m

≥ si+1 holds for all i = 1, 2, . . . , υ − 1 and we have that

s = s1
m

≥ s2
m

≥ . . .
m

≥ sυ−1
m

≥ sυ = s?.

Finally, from (4.11) and Proposition 4.9, we obtain that R
(s)
2 ≤ R

(s?)
2 , where R

(s?)
2 represents the

reliability function of the system with redundancy at module level and components distributed
in the modules according to the vector s?.

4.2 Independent components and dependent modules

In this subsection, we present a result for the active redundancy with m − 1 independent
spares, q̄m:m(u) = 1− (1− u)m, applied to systems with heterogeneous and independent com-
ponents not necessarily connected in series in each module. This result generalizes Theorem 1
in Yan and Wang (2020) for active redundancies, even more, it proves that the BP-principle,
mentioned in the introduction section, holds for a more general case.

Proposition 4.14 If we consider an active redundancy with m−1 independent spares, q̄m:m(u) =
1− (1− u)m, and the components in each module are independent, then R1 ≥ R2.

Proof. We provide here the proof for active redundancy with m = 2, that is, q̄(u) = q̄2:2(u) =
2u − u2 for u ∈ [0, 1] (as mentioned above, this is equivalent to add an independent spare in
parallel to each component/module). A similar reasoning can be followed for proving the general
case (m ≥ 3). The reliability function of the system with redundancy at the components’ level
is

R1(t) = Q̄∗
(
Q̄M1

(
q̄(F̄1(t)), . . . , q̄(F̄n1(t))

)
, . . . , Q̄Mk

(
q̄(F̄n1+···+nk−1+1(t)), . . . , q̄(F̄n(t))

))
.

On the other hand, the reliability function of the system with redundancy at the modules’
level is

R2(t) = Q̄∗
(
q̄
(
Q̄M1(F̄1(t), . . . , F̄n1(t))

)
, . . . , q̄

(
Q̄Mk

(F̄n1+···+nk−1+1(t), . . . , F̄n(t))
))
.
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To prove R1(t) ≥ R2(t), we only need to show that

q̄
(
Q̄M1(F̄1(t), . . . , F̄n1(t))

)
≤ Q̄M1

(
q̄(F̄1(t)), . . . , q̄(F̄n1(t))

)
. (4.12)

A similar reasoning can be done for the rest of modules. Let us assume that the module M1 has
got r1 minimal path sets {P1, P2, . . . , Pr1}, and Pi has got mi components for i = 1, . . . , r1. Note
that these minimal path sets can share some components. If we apply the active redundancy
at the module M1, the resulting system (with lifetime T

(2)
M1

) has got 2 r1 minimal path sets
{P ′1, P ′2, . . . , P ′2r1}. It is not difficult to see that P ′i = Pi for all i = 1, 2, . . . , r1 and P ′r1+i = Li
for all i = 1, 2, . . . , r1, where Li coincides with the minimal path set Pi but using the spares
instead of the original components.

On the other hand, if we apply the active redundancy to M1 at the components’ level, then
the resulting system (with lifetime T

(1)
M1

) has got s1 =
∑r1

i=1 2mi minimal path sets {P ′′1 , P ′′2 , . . . , P ′′s1}.
It is straightforward to show that the minimal path sets {P1, P2, . . . , Pr1} and {L1, L2, . . . , Lr1}
are included in {P ′′1 , P ′′2 , . . . , P ′′s1}. Therefore, we have proved that

T
(1)
M1

= max(T
(2)
M1
,W ),

with W = max
P⊆P

(
min
Xi∈P

(Xi)

)
, where P = {P ′′1 , . . . , P ′′s1}\{P1, . . . , Pr1 , L1, . . . , Lr1}. Note that

the components in each minimal path set are independent. Then, the corresponding reliability
functions of T

(1)
M1

and T
(2)
M1

are ordered and the inequality (4.12) holds.

This result means that the active redundancy at the components’ level is always better than
that at the module level for any F̄1, . . . , F̄n, any Q̄M1 , . . . , Q̄Mk

and Q̄∗ (i.e. any structure and
any dependence among modules). The following example illustrates the theoretical result of
Proposition 4.14.

Example 4.15 Let us consider that the spares are independent and they are added in a parallel
configuration, then q̄2:2(u) = 2u−u2 for u ∈ [0, 1]. We consider three dependent modules forming
a 2-out-of-3 system with lifetime T . The three modules have the same structure and they are
formed by three independent but not identically distributed components. The modules’ lifetimes
are given by XMj

= min(Xj,max(Yj, Zj)) for j = 1, 2, 3 (see Figure 7). Then, the structure
among the modules and the structure among the components within the modules are

Q̄∗(u1, u2, u3) = Ĉ(u1, u2, 1) + Ĉ(u1, 1, u3) + Ĉ(1, u2, u3)− 2Ĉ(u1, u2, u3)

and
Q̄M(u1, u2, u3) = u1u2 + u1u3 − u1u2u3,

respectively, where u1, u2, u3 ∈ [0, 1] and Ĉ is a survival copula which models the dependence
among modules.
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1 2

1 3

2 3

(a) Modules 1, 2 and 3 forming a 2-out-of-3
system

i ⌘ Xi

Yi

Zi

(b) Modular structure for i = 1, 2, 3

Figure 7: Block diagram of three modules forming a 2-out-of-3 system without redundancy (a).
Structure in each module (b).

We assume that Xi, Yi, Zi have exponential distributions with hazard rate i, Weibull distri-
butions with scale parameter 1 and shape parameter i/10 and Weibull distributions with scale
parameter 2 and shape parameter i/2, for i = 1, 2, 3, respectively. Then, the reliability function
of the system T is

F̄T (t) = Q̄∗
(
Q̄M

(
e−t, e−t

0.1

, e−2t
0.5
)
, Q̄M

(
e−2t, e−t

0.2

, e−2t
)
, Q̄M

(
e−3t, e−t

0.3

, e−2t
1.5
))

, t > 0.

Hence the reliability function of the system with redundancy at the components’ level (see
Figure 8) is

R1(t) = Q̄∗
(
H̄1(t), H̄2(t), H̄3(t)

)
where

H̄j(t) = Q̄M

(
q̄(e−jt), q̄(e−t

j/10

), q̄(e−2t
j/2

)
)
,

for j = 1, 2, 3.

1⇤ 2⇤

1⇤ 3⇤

2⇤ 3⇤

(a) Modules 1,2 and 3 with redundancy at
components’ level forming a 2-out-of-3 sys-
tem.

i⇤ ⌘
Xi

X0
i

Yi

Y 0
i

Zi

Z0
i

(b) Modular structure with redundancy at
components’ level for i = 1, 2, 3

Figure 8: Block diagram of three modules with redundancy at component level forming a
2-out-of-3 system (a). Modular structure with redundancy at component level (b).

Finally, the reliability function of the system with modular redundancy (see Figure 9) is

R2(t) = Q̄∗
(
Ḡ1(t), Ḡ2(t), Ḡ3(t)

)
,
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where Ḡj(t) = q̄
(
Q̄M(e−jt, e−t

j/10
, e−2t

j/2
)
)

for j = 1, 2, 3.

1

1’

2

2’

1

1’

3

3’

2

2’

3

3’

Figure 9: Block diagram of three modules forming a 2-out-of-3 system with redundancy at
module level.

We study two cases, when modules are independent, i.e.,

Ĉ(u1, u2, u3) = u1u2u3

for all u1, u2, u3 ∈ [0, 1], and when modules are dependent assembled by the following Clayton
copula

Ĉ(u1, u2, u3) =
(
u−θ1 + u−θ2 + u−θ3 − 2

)−1/θ
u1, u2, u3 ∈ [0, 1] (4.13)

and θ > 0. Note that Ĉ(u1, u2, 0) = Ĉ(u1, 0, u3) = Ĉ(0, u2, u3) = Ĉ(0, 0, 0) := 0. Figure 10
shows the respective reliability functions F̄T (blue), R1 (black) and R2 (red) for the case of
independent modules (left) or when they are dependent (right), with a Clayton survival copula,
defined as in (4.13), with θ = 16. As it can be seen, R1 ≥ R2 which is according to Proposition
4.14.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
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0.6

0.8

1.0

Figure 10: Reliability functions F̄T (blue), R1 (black) and R2 (red) for the system considered
in Example 4.15, when the modules are independent (left) or dependent (right) with a Clayton
copula.

23



4.3 Dependent components within the modules and dependent mod-
ules

Presently, let us consider that the components within each module are dependent, then the
reliability function of the jth module is

F̄Mj
(t) = Q̄Mj

(F̄n1+···+nj−1+1(t), . . . , F̄n1+···+nj
(t)),

where Q̄Mj
defines the structure within the jth module, i.e., it indicates the way in which the

components are connected to each other and the dependence among them. If we apply the
redundancy q̄ to the jth module, the reliability of the resulting module is defined as in (4.1)
where

Ḡj(t) = q̄(F̄Mj
(t)) = q̄

(
Q̄Mj

(
F̄n1+···+nj−1+1(t), . . . , F̄n1+···+nj

(t)
))
. (4.14)

In the following result we obtain sufficient conditions in order to compare both redundancy
methods (components versus modules) in the case of dependent components within each mod-
ule.

Proposition 4.16 If the components in each module are dependent and the distortion q̄ satis-
fies

Q̄Mj
(q̄(v1), . . . , q̄(vnj

)) ≥ (≤)q̄(Q̄Mj
(v1, . . . , vnj

)) (4.15)

for all v1, . . . , vnj
∈ [0, 1] and j = 1, . . . , k, then R1 ≥ (≤)R2 for any modular structure Q̄∗.

Proof. Observe that the reliability function of the system with redundancy at the components’
level is

R1(t) = Q̄∗(H̄1(t), . . . , H̄k(t))

where
H̄j(t) = Q̄Mj

(q̄(F̄n1+···+nj−1+1(t)), . . . , q̄(F̄n1+···+nj
(t))),

for j = 1, . . . , k. On the other hand, the reliability function of the system with modular
redundancy is given in (4.1) and Ḡj is defined in (4.14). Then, from (4.15), we have that
H̄j ≥ (≤)Ḡj for j = 1, . . . , k and hence R1 ≥ (≤)R2.

The next example shows how to apply Proposition 4.16.

Example 4.17 Let us consider that the components are connected in series in each module,
then Q̄Mj

= Ĉj, where Ĉj is the survival copula which models the dependence between the
components in the jth module, for j = 1, . . . , k. Specifically, we assume that all the modules
have two dependent components and that Ĉj is the following FGM copula

Ĉj(u, v) = uv(1 + θ(1− u)(1− v)), u, v ∈ [0, 1],

where θ ∈ [−1, 1], for j = 1, . . . , k. On the other hand, we suppose that the redundancy method is
q̄α as defined in (4.6). Then we plot Ĉ(q̄α(u), q̄α(v))− q̄α(Ĉ(u, v), Ĉ(u, v)) for α ∈ {0.3, 0.6, 1, 2}
and θ = 0.5 in Figure 11 and it can be seen that condition (4.15) holds. Then, from Proposition
4.16, we know that R1 ≥ R2 for any Q̄∗ and any F̄1, . . . , F̄n.
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Figure 11: Plots of Ĉ(q̄α(u), q̄α(v))− q̄α(Ĉ(u, v), Ĉ(u, v)) in Example 4.17 for α ∈ {0.3, 0.6, 1, 2}
(top left, top right, bottom left, bottom right).

In the following example, we show that, in some cases, R1 and R2 are not ordered and
therefore, the systems cannot be compared.

Example 4.18 We consider two modules with two dependent components connected in series
in each one. Suppose that the components in the first module have exponential distributions
with hazard rates 1 and 3, and those in the second module have exponential distributions with
hazard rates 2 and 4. Thus,

Ḡ1(t) = q̄(Ĉ(e−t, e−3t)), Ḡ2(t) = q̄(Ĉ(e−2t, e−4t))

and
H̄1(t) = Ĉ(q̄(e−t), q̄(e−3t)), H̄2(t) = Ĉ(q̄(e−2t), q̄(e−4t)),

where Ĉ defines the dependence structure between the components in each module. We consider
the redundancy q̄α, defined as in (4.6), with α = 0.3 and Ĉ, defined as in (4.5), with θ = 1.
We assume that the modules are connected in series under two different cases, when modules
are independent and when they are dependent. For the case of independent modules, we get
R2(0.1) = 0.9067 ≤ 0.9291 = R1(0.1) and R2(1) = 0.1286 ≥ 0.1051 = R1(1), so the reliability
functions cross each other. For the case of dependent modules connected by a Clayton copula,
as defined in (4.5), for θ = 5, we have R2(0.1) = 0.9146 ≤ 0.9339 = R1(0.1) and R2(1) =
0.2929 ≥ 0.2558 = R1(1), so the reliability functions are not ordered.
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5 Identically distributed components within modules

In this section, we consider that modules and components can be dependent and that the
components of the jth module are identically distributed (i.d.), i.e,

Fn1+···+nj−1+1 = . . . = Fn1+···+nj
= F ∗j ,

for j = 1, . . . , k. In this case, the reliability function of the jth module can be written as

F̄Mj
(t) = q̄Mj

(F̄ ∗j (t)),

where q̄Mj
(u) = Q̄Mj

(u, . . . , u) for u ∈ [0, 1], is a univariate distortion function determined by
the modular structure and the dependence between its components. For instance, if we assume
that the jth module has nj dependent components connected in series where its dependence
structure is defined by a FGM copula, then

q̄Mj
(u) = unj(1 + θ(1− u)nj), u ∈ [0, 1], (5.1)

with θ ∈ [−1, 1]. Another example is to consider that the jth module is a 2-out-of-3 system
with independent components, then

q̄Mj
(u) = 3u2 − 2u3, u ∈ [0, 1],

(see Table 1 in Navarro and del Águila, 2017). Other structures can be found in Table 2 in
Navarro et al. (2018).

In the following result we compare systems with redundancy at component and modular
levels.

Proposition 5.1 If the components in each module are i.d. and

q̄Mj
(q̄(u)) ≥ (≤) q̄(q̄Mj

(u)) (5.2)

for all u ∈ [0, 1] and j = 1, . . . , k, then R1 ≥ (≤)R2 for any F̄ ∗1 . . . , F̄
∗
k and for any modular

and dependence structure Q̄∗.

Proof. From (4.1), the reliability function of the system with redundancy at module level is

R2(t) = Q̄∗
(
q̄(q̄M1(F̄

∗
1 (t))), . . . , q̄(q̄Mk

(F̄ ∗k (t)))
)
,

meanwhile, the reliability function of the system with redundancy at component level is

R1(t) = Q̄∗
(
q̄M1(q̄(F̄

∗
1 (t))), . . . , q̄Mk

(q̄(F̄ ∗k (t)))
)
.

Then, from (5.2), we get q̄Mj
(q̄(F̄ ∗j (t))) ≥ (≤) q̄(q̄Mj

(F̄ ∗j (t))) and therefore R1 ≥ (≤)R2.

Of course, if q̄ = q̄Mj
for all j, then R1 = R2. In the following example, we show how

Proposition 5.1 can be applied to compare the reliability functions between coherent systems
with modules where theirs components are d.i.d. and are connected in series.
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Example 5.2 Let us consider that the first module has two i.d. components connected in series
with a FGM survival copula as defined in (5.1) for θ ∈ [−1, 1], then

q̄M1(u) = Ĉ(u, u) = u2(1 + θ(1− u)2), u ∈ [0, 1].

The other modules have the same structure. On the other hand, we assume that the redundancy
method is minimal repair, i.e., q̄(u) = q̄mr(u) = u(1− log u) for u ∈ [0, 1]. Note that

q̄mr(q̄Mj
(u)) = u2(1 + θ(1− u)2)(1− 2 log u− log(1 + θ(1− u)2))

and
q̄Mj

(q̄mr(u)) = u2(1− log u)2(1 + θ(1− u+ u log u)2).

In Figure 12, we plot q̄Mj
(q̄mr(u)) − q̄mr(q̄Mj

(u)) for u ∈ [0, 1] and θ ∈ {−1,−0.5, 0, 0.5, 1}. It
can be seen that (5.2) holds and, therefore, we can apply Proposition 5.1 obtaining R1 ≥ R2 for
any F̄ ∗1 , . . . , F̄

∗
k and any Q̄∗.
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Figure 12: Plots of q̄Mj
(q̄mr(u)) − q̄mr(q̄Mj

(u)) for u ∈ [0, 1] and θ ∈ {−1,−0.5, 0, 0.5, 1} in
Example 5.2 (left) and plot of q̄Mj

(q̄(u))− q̄(q̄Mj
(u)) for u ∈ [0, 1] in Example 5.3 (right).

Of course Proposition 5.1 can be used for systems with modules whose structure is different
from components connected in series. Let us see an example.

Example 5.3 Now, we consider that the first module has lifetime XM1 = min(X1,max(X2, X3)),
where X1, X2, X3 are i.i.d. and that the other k − 1 modules have the same structure. Then
q̄Mj

(u) = 2u2−u3 for u ∈ [0, 1]. Next, we assume that the original component and its spare are
dependent and that the redundancy distortion is defined as in (4.4) with a Clayton copula with
θ = 1, i.e., q̄(u) = 2u/(1 + u). Hence,

q̄(q̄Mj
(u)) =

2 (2u2 − u3)
1 + (2u2 − u3) =

2u2(2− u)

1 + 2u2 − u3

and

q̄Mj
(q̄(u)) = 2

(
2u

1 + u

)2

−
(

2u

1 + u

)3

=
8u2

(1 + u)3
.
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Then,

q̄Mj
(q̄(u))− q̄(q̄Mj

(u)) =
2u2 (1− u)2

(1 + u)3 (1 + 2u2 − u3)
(
2 + u2 − u

)
≥ 0,

and therefore (5.2) holds. Then, from Proposition 5.1, we obtain R1 ≥ R2 for any F̄ ∗1 , . . . , F̄
∗
k

and any Q̄∗.

Remark 5.4 Proposition 5.1 can be easily generalized for two different distortions q̄i for i =
1, 2, where the first one is applied to the components and the second one to the modules. Hence,
condition (5.2) can be rewritten as

q̄Mj
(q̄1(u)) ≥ (≤) q̄2(q̄Mj

(u)), (5.3)

for all u ∈ [0, 1] and j = 1, . . . , k. If (5.3) holds then R1 ≥ (≤)R2. Let us see an example.
We assume, as in Example 5.3, that the lifetime of each module is XMj

min(X1,max(X2, X3)),
where X1, X2, X3 are i.i.d. Now, we suppose that q̄1(u) = 2u − u2 and q̄2(u) = u + uα − uα+1

for u ∈ [0, 1] and 0 < α < 1. Observe that if α = 1 then q̄1 = q̄2 and, for 0 < α < 1, we
have q̄2 ≥ q̄1 since q̄2(u) = 1 − (1 − u)(1 − uα) is decreasing in α. However, depending on
the parameter α, the modular redundancy could be better than the redundancy at component
level, as it can be seen in Figure 13. In particular, from Figure 13, we get that R1 ≤ R2 for
α = 0.3, 0.4, 0.5, 0.6 and R1 ≥ R2 for α = 1. For α = 0.7, 0.8, 0.9 (red, green and orange lines),
the reliability functions are not ordered.

0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.1 α = 1

α = 0.9

α = 0.8

α = 0.7

α = 0.6

α = 0.5

α = 0.4

α = 0.3

Figure 13: Plots of q̄Mj
(q̄1(u))−q̄2(q̄Mj

(u)) for u ∈ [0, 1] and α ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}
in Remark 5.4.

Table 2 contains comparisons between R1 and R2 when active redundancy q̄1(u) = 2u− u2
is applied at components’ level (R1), and when redundancy q̄2 defined by (4.6) is applied at
modules’ level (R2) for coherent systems with three i.i.d. components within the k modules.
Therefore, we need to study if (5.3) holds. The value 1 indicates that R1 ≥ R2 holds, the value
2 means that R1 ≤ R2 holds and the value 0 indicates that R1 and R2 are not ordered. Note
that, for parallel modules and α = 1, q̄Mj

(q̄1(u)) = q̄2(q̄Mj
(u)) for u ∈ [0, 1].
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Table 2: Comparisons for coherent systems with three components within modules with the
same module structure under component and module level redundancies. The value 1 indicates
that R1 ≥ R2, the value 2 means that R1 ≤ R2 and the value 0 indicates that R1 and R2 are
not ordered.

α values for q2

module qMj
(u) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 series u3 2 0 0 0 0 0 0 1
2 min (X1,max (X2, X3)) 2u2 − u3 2 2 2 2 0 0 0 1
3 2-out-of-3 3u2 − 2u3 2 2 2 0 0 0 0 1
4 max (X1,min (X2, X3)) u+ u2 − u3 2 2 2 0 0 0 0 1
5 parallel 3u− 3u2 + u3 2 2 2 2 2 2 2 1&2

The last column (α = 1) in Table 2 is according to Proposition 4.14. As it is clear from
Table 2, one redundancy type is not superior to the other for all values of α and all types of
module distortions. In particular, if α = 0.3, then the module level redundancy becomes better
for any structure at the modules and any lifetime distribution at the components.

Table 3 displays comparisons between R1 and R2 when the redundancy method is the same
but the module structure is different. Thus, we need to study if (5.2) holds. We consider
three different redundancy methods: active redundancy (one i.i.d. spare is added in parallel),
minimal repair and a spare added in parallel assembled to the original one by a Clayton copula
as defined in (4.5) for θ = 5. We consider the same module structures than in Table 2.

Table 3: Comparisons for coherent systems with three components within modules with differ-
ent module structure under component and module level redundancies. The value 1 indicates
that R1 ≥ R2 holds, the value 2 means that R1 ≤ R2 holds and the value 0 indicates that R1

and R2 are not ordered. The values 1-5 represents the structures given in Table 2.

q2:2(u) = 2u− u2 qmr(u) = u(1− log u) q(u) = 1−
(
2 (1− u)5 − 1

)−1/5
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 1 2 2 2 2 1 2 2 2 2 0 2 2 2 2
2 1 1 0 2 2 1 1 0 2 2 1 0 0 2 2
3 1 1 1 0 2 1 1 1 0 2 1 1 1 2 2
4 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2
5 1 1 1 1 1&2 1 1 1 1 1 1 1 1 1 1

The first main diagonals of the left and center tables in Table 3 are according to Proposition
4.14. Observe that there is no difference between the results obtained for the active redundancy
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and minimal repair (except in the case 5-5 where we get R1 = R2 in the left table). The
redundancy at component level is more effective when the components within the modules are
connected in parallel in the system with components’ redundancy (last rows in Table 3) and
also when the components form a series module in the system with modular redundancy (first
column in Table 3). However, the redundancy at module level is better when the components
form a parallel module in the system with modular redundancy (last columns in Table 3).

The following result is similar to Proposition 4.9 but for modules with i.i.d. components
connected in parallel.

Proposition 5.5 Let Ts and Tr be the lifetimes of two systems under modular redundancy with
the same modular structure, given by Q̄∗, and possibly dependent modules with i.i.d. components
connected in parallel and common reliability function F̄ for all components. Let s = (n1, . . . , nk)
and r = (m1, . . . ,mk) be the allocation vectors of components by modules for both systems Ts
and Tr, respectively. Assume that n1 ≤ · · · ≤ nk, m1 ≤ · · · ≤ mk, that the distortion Q̄∗ is
Schur-concave and that q̄ is concave.

If s
m

≥ r, then R
(s)
2 ≤ R

(r)
2 .

Proof. Let us consider a fixed value t ≥ 0, and denote βj = F̄Mj
(t) = 1 − (1 − F̄ (t))nj

for all j = 1, . . . , k, then β1 ≤ · · · ≤ βk, because n1 ≤ · · · ≤ nk. Analogously, we define
γj = F̄M̃j

(t) = 1 − (1 − F̄ (t))mj for all j = 1, . . . , k, and therefore, γ1 ≤ · · · ≤ γk. Thus, the

reliability functions of Ts and Tr at time t can be rewritten as R
(s)
2 (t) = Q̄∗ (q̄(β1), . . . , q̄(βk))

and R
(r)
2 (t) = Q̄∗ (q̄(γ1), . . . , q̄(γk)), respectively. Firstly, we observe that 1 − (1 − F̄ (t))d is

concave in d for each t. Then, from Theorem 5.A.1 in Marshall et al. (2011), we know that

s
m

≥ r implies (β1, . . . , βk)
w

≥ (γ1, . . . , γk). Therefore, we need to prove that

ϕ (β1, . . . , βk) = Q̄∗ (q̄(β1), . . . , q̄(βk)) ≤ Q̄∗ (q̄(γ1), . . . , q̄(γk)) = ϕ (γ1, . . . , γk)

whenever (β1, . . . , βk)
w

≥ (γ1, . . . , γk). To do this, from Lemma 2.4, we need to show that the
function ϕ is increasing and Schur-concave in (β1, . . . , βk). It is clearly that ϕ is increasing in
βi since both functions, Q̄∗ and q̄, are positive-valued and increasing. Now, from Table 2 in
Marshall et al. (2011) and from the assumptions Q̄∗ Schur-concave and q̄ concave, we have that
ϕ is Schur-concave.

Observe that if the modules are independent and connected in series then Q̄∗(u1, . . . , uk) =∏k
i=1 ui and this distortion is Schur-concave. In the case of dependent modules connected in

series Q̄∗ = Ĉ where Ĉ is a survival copula. From Nelsen (2006), pages 104 and 134, we
know that the most common copulas, like for instance the family of Archimedean copulas, are
Schur-concave. Then, we can apply Proposition 5.5 to this type of systems.

If we consider active redundancies with m− 1 spares, i.e., we allocate m− 1 i.i.d. spares in
parallel, then q̄m:m (u) = 1 − (1 − u)m and it is easy to check that this function is concave for
all m ≥ 2. Therefore, we can use Proposition 5.5 for this type of redundancy.

Another redundancy method is determined by the distortion q̄α(u) = u+ uα− uα+1 defined
in (4.6). Its second derivative is

q̄′′α(u) = αuα−2 (α− 1− u− αu) ≤ 0,
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if 0 < α ≤ 1. So we can also apply Proposition 5.5 for this redundancy. Note that for α > 1,
the function q̄α is neither concave nor convex.

Finally, it is straightforward to prove that the distortion associated to minimal repairs,
q̄mr(u) = u(1− log u), is also concave, and therefore, it can be used in examples where Propo-
sition 5.5 applies. Next, we provide an illustrative example on how to apply this proposition.

Example 5.6 Let us consider two systems with three modules, each of them connected in se-
ries. Each module has independent components connected in parallel which have exponential
distributions with hazard rates equal to 1. Let us assume that s = (2, 2, 5) and r = (2, 3, 4) are
the allocation vectors of components by modules for both systems. In Figure 14, we plot the
block diagrams of the two series-parallel systems without any redundancy mechanism. It is easy

to check that (2, 2, 5)
m

≥ (2, 3, 4). On the other hand, let q̄2:2(u) = 2u−u2, q̄α(u) = u+uα−uα+1

and q̄mr(u) = u(1 − log u) be the distortions of the redundancy mechanisms available. Figure

15 shows the reliability functions R
(s)
2 and R

(r)
2 of both systems, under the three redundancies

q̄2:2, q̄α with α = 0.3 and q̄mr, for independent modules (left) and dependent modules (right).
For the case of dependent modules, we suppose that the dependence structure is defined by a
Gumbel-Hougaard copula as in (4.9) for θ = 2. As expected from Proposition 5.5, R

(s)
2 ≤ R

(r)
2

holds for all the concave redundancies q̄.

C1

C2
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C4

C5

C6

C7

C8

C9

C1

C2

C3

C4

C5

C6

C7

C8

C9

Figure 14: Block diagrams of the two series-parallel systems without any redundancy mech-
anism considered in Example 5.6 with components allocation vector s = (2, 2, 5) (left) and
r = (2, 3, 4) (right).
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Figure 15: Reliability functions R
(s)
2 (dashed line) and R

(r)
2 (solid line) for the redundancy

mechanisms q̄2:2 (blue), q̄mr (red) and q̄α for α = 0.3 (green) when the modules are independent
(left) or dependent (right) with a Gumbel-Hougaard copula.

6 Conclusions

The main novelty of this paper is to bring a new model to study redundancy mechanisms in
systems composed of modules. Both the modules and the components in the modules can
be dependent. These possible dependencies are represented by copulas and then the different
systems’ reliabilities are represented by distortions. The different redundancy mechanisms are
also represented by distortions. This approach includes the classical ones, an independent spare
in parallel (hot redundancy) and minimal repair (cold or standby redundancy) but it can also
be used to study other redundancy mechanisms (as e.g. dependent spares).

This approach allows us to obtain several general results under different assumptions. First
we consider the cases of independent or dependent components within the modules with dif-
ferent distributions. Then we also study the cases in which the components in each module
are identically distributed (dependent or independent). In this way we are able to determine
the best redundancy options. In many cases, these results do not depend on the components
distributions, and even on the modules structures.

This paper is just a first step. We have studied results for general families of copulas (Schur-
concave or Archimedean) and for particular ones (Clayton, FGM, Gumbel-Hougaard, etc).
More results could be obtained for other families of copulas or for more specific systems/modules
structures. Furthermore, we left as a future research project to address a cost-allocation problem
under the proposed approach.
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Navarro J, del Águila Y, Sordo MA, Suárez-Llorens A (2014). Preservation of reliability classes
under the formation of coherent systems. Applied Stochastic Models in Business and Industry
30, 444–454.
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