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Abstract

The signature representation shows that the reliability of the system is a

mixture of the reliability functions of the k-out-of-n systems. The first

representation was obtained for systems with independent and identically

distributed (IID) components and after it was extended to exchangeable (EXC)

components. The purpose of the present paper is to extended it to the class

of systems with ID components which have a diagonal-dependent copula. We

prove that this class is much larger than the class with EXC components. This

extension is used to compare systems with non-EXC components.
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1. Introduction

The coherent systems are basic concepts in the reliability theory, for their main

properties we refer the reader to the classic book [1] (for completeness some of them

are presented in Section 2). The signature representation obtained by Samaniego [22]

(see also [23]) is a useful tool to study coherent systems. It proves that the reliability

function of a coherent system with IID components having a continuous reliability
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function F̄ can be written as a mixture (linear combination) of the reliability functions

of the k-out-of-n systems (i.e., systems that fail when k of their n components fail).

The vector with the coefficients in that representation is called the signature of the

system. The lifetimes of the k-out-of-n systems coincide with the ordered component

failure times and they are equivalent to the order statistics obtained from a sample of

IID-F̄ random variables. So this representation can be used to compute the system

reliability (see [23]) and to compare (under different stochastic criteria) two systems

with IID-F̄ components just by comparing their signatures (see [7]).

The signature representation was extended to the case of exchangeable component

lifetimes in [13, 16]. The coefficients are the same as that obtained in the IID case. The

component lifetimes are EXC if and only if they are ID and their copula is EXC (i.e.

invariant under permutations). Example 5.1 in [16] proved that this representation

does not necessarily hold for systems with independent non-ID components.

In the present paper, this representation is extended to coherent systems whose

component lifetimes are ID and have a dependence represented by a wide family of

copulas called diagonal-dependent copulas. This family contains all the EXC copulas

and also a lot of non-EXC copulas. This extension is used to compare systems (under

different stochastic criteria) having this kind of dependent components.

The rest of the paper is organized as follows. The notation and some preliminary

results are given in Section 2. The main results are in Section 3 where we prove the

new representation and we obtain the corresponding comparison results. There we

also prove that the class of diagonal-dependent copulas is a really big class when it

is compared (from a topological viewpoint) with the class of EXC copulas. Section

4 contains some illustrative examples. The conclusions and some open problems for

future research are placed in Section 5.

Throughout the paper, we say that a function G : Rn → R is increasing (resp.

decreasing) if G(x1, . . . , xn) ≤ G(y1, . . . , yn) (≥) when xj ≤ yj for all j.

2. Notation and preliminary results

From [1] a (two-states) system is a Boolean function ψ : {0, 1}n → {0, 1}, where

ψ(x1, . . . , xn) represents the state of the system (1 means that it works and 0 that it
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does not work) which is completely determined by the component states x1, . . . , xn ∈

{0, 1}. A system ψ is semi-coherent if it is increasing, ψ(0, . . . , 0) = 0 and ψ(1, . . . , 1) =

1. We say that the jth component is relevant for the system ψ if there exist x1, . . . , xj−1,

xj+1, . . . , xn ∈ {0, 1} such that

0 = ψ(x1, . . . , xj−1, 0, xj+1, . . . , xn) < ψ(x1, . . . , xj−1, 1, xj+1, . . . , xn) = 1.

A system ψ is coherent if it is increasing and all the components are relevant. Clearly,

if ψ is coherent, then ψ is semi-coherent. However, for example, ψ(x1, x2) = x1 is

semi-coherent but it is not coherent (since the second component is irrelevant for the

system).

Let T be the lifetime of a coherent system with component lifetimes T1, . . . , Tn. Let

T1:n, . . . , Tn:n be the associated ordered component lifetimes. Here Tk:n represents the

lifetime of the k-out-of-n system. It is well known that the system lifetime T is equal to

one of these component lifetimes. Moreover, Samaniego [22] proved that, if T1, . . . , Tn

are IID with a continuous reliability (survival) function F̄ (t) = P(Tj > t), then the

system reliability function F̄T (t) = P(T > t) can be represented as

F̄T (t) = s1F̄1:n(t) + · · ·+ snF̄n:n(t) (1)

for any time t, where F̄i:n(t) = P(Ti:n > t) and si = P(T = Ti:n) for i = 1, . . . , n.

The vector with these coefficients s = (s1, . . . , sn) only depends on the structure ψ of

the system and it is called the signature of the system (see [22, 23]). From the theory

of order statistics, F̄1:n, . . . , F̄n:n can be calculated from F̄ . So the signature-based

mixture representation (1) is a useful tool to compute the system reliability (see [23]).

It can also be used to compare stochastically systems with different structures (see

[7, 16, 21, 23]).

Representation (1) (with the same coefficients) was extended in [16] (see also [13])

to the case in which the random vector (T1, . . . , Tn) with the component lifetimes has

an EXC joint reliability function F̄(t1, . . . , tn) = P(T1 > t1, . . . , Tn > tn), that is,

F̄(t1, . . . , tn) = F̄(tσ(1), . . . , tσ(n))

holds for any permutation σ. In this case, the same property holds for the joint

distribution function and (T1, . . . , Tn) is invariant in law under permutations.
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From the copula theory (see, e.g., [6, p. 33] or [17, p. 32]), we know that F̄ can be

written as

F̄(t1, . . . , tn) = Ĉ(F̄1(t1), . . . , F̄n(tn))

for an n-dimensional copula function Ĉ (called survival copula) and for the marginal

(component) reliability functions F̄i(ti) = P(Ti > ti), i = 1, . . . , n. A copula is an

n-dimensional distribution function with uniform marginals over the interval (0, 1).

It is easy to prove that F̄ is EXC if and only if Ĉ is EXC and the component

lifetimes are ID, that is, F̄1 = · · · = F̄n. As above, in the ID case, the common

component reliability function will be represented simply as F̄ .

Example 5.1 in [16] proves that representation (1) does not necessarily hold when

the component lifetimes are independent but not ID. Therefore, the ID assumption

(included in the EXC case) cannot be relaxed if we want to get (1). However, in the

following section, we will prove that the other assumption: “Ĉ is EXC” can be relaxed.

For this purpose we need the following representation for the system reliability which

is valid in the general case, that is, for any joint reliability function F̄. From [1, p. 12],

we know that the system lifetime T can be written as

T = max
i=1,...,r

TPi
,

where TPi
= minj∈Pi

Tj is the lifetime of the series system with the components in Pi

for i = 1, . . . , r and P1, . . . , Pr are the minimal path sets of the system. A path set is a

set P ⊆ {1, . . . , n} of components such that the system works when all the components

in P work (i.e., ψ(x1, . . . , xn) = 1 when xi = 1 for all i ∈ P ). A path set is a minimal

path set if it does not contain other path sets. Then, by using the inclusion-exclusion

formula, the system reliability can be written as

F̄T (t) = P(T > t) = P
(

max
i=1,...,r

TPi
> t

)

= P

(
r⋃

i=1

{TPi
> t}

)

=

r∑

i=1

F̄Pi
(t)−

r−1∑

i=1

r∑

j=i+1

F̄Pi∪Pj
(t) + · · ·+ (−1)r+1F̄P1∪···∪Pr

(t) (2)

for all t, where we use the notation F̄P (t) = P(TP > t) for the reliability function

of the series system with components in the set P . Expression (2) proves that the

reliability function of the system F̄T is a linear combination of the reliability functions
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of series systems. However it is not a mixture representation since it may contain some

negative coefficients. The preceding expression can also be used to compute the system

reliability and to compare systems (see the review in [11]).

3. Main results

Let us start with a definition extracted from [18]. From now on we will use the

following notation. For any set I ⊆ {1, . . . , n}, uI := (u1, . . . , un) denotes the vector

with ui = u for i ∈ I and ui = 1 if i /∈ I. The cardinality of the set I is denoted by |I|.

Definition 1. An n-dimensional copula C is said to be diagonal-dependent (de-

noted by DD) if

C(uP ) = C(uQ) for all P,Q ⊆ {1, . . . , n} with |P | = |Q|. (3)

The function δ(u) = C(u, . . . , u) is called the diagonal section of the copula C.

Hence note that C is DD if and only if

C(uP ) = δm(u) for all P ⊆ {1, . . . , n} with |P | = m (4)

for m = 1, . . . , n, where

δm(u) := C( u, . . . , u
︸ ︷︷ ︸

m−times

, 1, . . . , 1
︸ ︷︷ ︸

(n−m)−times

)

is the diagonal section for the copula of the marginal distribution of the first m-

variables. Clearly, δn(u) = C(u, . . . , u) = δ(u) and δ1(u) = u for all u ∈ [0, 1] (since all

the univariate marginals have a uniform distribution over the interval (0, 1)). So we

just need to check (4) for m = 2, . . . , n− 1.

In particular, a copula C is DD when all the marginals of dimension m have the

same copula for all 1 < m < n. Of course, all the EXC copulas are, in particular, DD.

The reverse is not true (see Proposition 1 and Example 1 below).

Now we are ready to state the main result of the paper.

Theorem 1. If T is the lifetime of a coherent system and the component lifetimes are

ID and have a DD survival copula, then (1) holds for the same coefficients s1, . . . , sn

obtained in the IID continuous case.
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Proof. From (2) we know that the system reliability function F̄T can be written as

a linear combination of the reliability functions of the series systems. If the component

lifetimes are ID with a reliability function F̄ and a DD survival copula Ĉ, then

F̄P (t) = P
(

min
j∈P

Tj > t

)

= ĈP (F̄ (t), . . . , F̄ (t)) = δ̂m(F̄ (t)) (5)

holds for all t and all P ⊆ {1, . . . , n}, where ĈP (u1, . . . , un) := Ĉ(uP1 , . . . , u
P
n ) and

uPi = ui if i ∈ P and uPi = 1 if i /∈ P , m = |P | and δ̂m is defined as

δ̂m(u) := Ĉ( u, . . . , u
︸ ︷︷ ︸

m−times

, 1, . . . , 1
︸ ︷︷ ︸

(n−m)−times

)

for all u ∈ [0, 1] and m = 1, . . . , n. Hence, all the series systems with the same number

of components m do have the same reliability function given by (5). Therefore, the

general representation (2) can be reduced to

F̄T (t) = a1δ̂1(F̄ (t)) + · · ·+ anδ̂n(F̄ (t)), (6)

where a1, . . . , an are some coefficients that only depend on the system structure (i.e.,

the minimal path sets).

The preceding representation (6) holds for any system structure (with the appro-

priate coefficients a1, . . . , an). For example, the series system with n components has

just one minimal path set P1 = {1, . . . , n} and lifetime T1:n = min(T1, . . . , Tn). Hence

F̄1:n(t) = P(T1 > t, . . . , Tn > t) = Ĉ(F̄ (t), . . . , F̄ (t)) = δ̂n(F̄ (t)) (7)

for all t.

Analogously, the minimal path sets of T2:n are all the subsets with n− 1 elements.

So there are n =
(

n

n−1

)
minimal path sets and, from (2),

F̄2:n(t) = nδ̂n−1(F̄ (t)) − (n− 1)δ̂n(F̄ (t)) (8)

holds for all t. The last coefficient in the preceding expression is n − 1 because the

coefficients in (6) sum up to 1 (take t→ −∞).

In general, Ti:n has
(

n
n−i+1

)
minimal path sets and, from (2), its reliability function

can be written as

F̄i:n(t) = ai,n−i+1δ̂n−i+1(F̄ (t)) + · · ·+ ai,nδ̂n(F̄ (t)) (9)
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for some coefficients ai,n−i+1, . . . , ai,n such that ai,n−i+1+ · · ·+ai,n = 1 and ai,n−i+1 =
(

n
n−i+1

)
for i = 1, . . . , n.

Thus, if we define the column vectors r(t) = (F̄1:n(t), . . . , F̄n:n(t))
′ and d(t) =

(δ̂1(F̄ (t)), . . . , δ̂n(F̄ (t)))
′, (9) proves that r(t) = Ad(t) for a triangular real-valued

matrix A = (ai,j) such that ai,n−i+1 =
(

n
n−i+1

)
and ai,j = 0 for i = 1, . . . , n and

j = 1, . . . , n − i. Hence A is not singular and so we can write d(t) = A−1r(t), where

A−1 is the inverse matrix of A. Moreover, note that (6) can be rewritten as

F̄T (t) = (a1, . . . , an)d(t).

Then

F̄T (t) = (a1, . . . , an)A
−1r(t) = (c1, . . . , cn)r(t) = c1F̄1:n(t) + · · ·+ cnF̄n:n(t)

for all t, where (c1, . . . , cn) = (a1, . . . , an)A
−1 are some coefficients which only depend

on the structure of the system. Therefore, these coefficients should be the same as

that obtained in the IID continuous case, that is, ci = si for i = 1, . . . , n. So (1) holds

with the same coefficients for systems with ID component lifetimes and DD survival

copulas. �

Remark 1. The usual copula representation for the joint distribution function of

(T1, . . . , Tn) is

F(t1, . . . , tn) := P(T1 ≤ t1, . . . , Tn ≤ tn) = C(F1(t1), . . . , Fn(tn)),

where Fi(ti) = P(Ti ≤ ti), i = 1, . . . , n, are the univariate marginal distribution

functions and C is the distributional copula. Both copulas C and Ĉ determine the

dependence structure of (T1, . . . , Tn). So C determines Ĉ and vice versa. Moreover, it

is easy to see that Ĉ is DD if and only if C is DD. Hence, we can obtain an alternative

proof of Theorem 1 by using copula C and the representation of the system lifetime in

terms of its minimal cut sets (see [1, p. 12]).

Remark 2. If T1:j = min(T1, . . . , Tj), then F̄1:j(t) := P(T1:j > t) = δ̂j(F̄ (t)) for all t

and j = 1, . . . , n. Hence, under the assumptions of the preceding theorem, expression

(6) can also be written as

F̄T (t) = a1F̄1:1(t) + · · ·+ anF̄1:n(t).
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The vector (a1, . . . , an) with these coefficients is called the minimal signature (or the

domination coefficients) of the system (see, e.g., [15] and [23, p. 77]). Hence, the

representation based on minimal signatures obtained in [15] for systems with EXC

component lifetimes can also be extended to systems with ID component lifetimes and

DD survival copulas. From the comments given in the preceding remark, the same can

be applied to the representation based on parallel systems and the maximal signature

(see [15]).

As an immediate consequence of the main theorem we obtain several properties

that can be used to compare stochastically systems with different structures. In the

following theorem we state the results for the (usual) stochastic order (≤st), the hazard

rate order (≤hr), the mean residual life order (≤mrl), and the likelihood ratio order

(≤lr), extending the comparison results obtained in [7] (IID case) and [16] (EXC case).

Similar results can be obtained for the reversed hazard rate and mean inactivity time

orders extending that given in [14]. For the formal definitions of these orders, their

basic properties and their main applications we refer the reader to [8, 10, 24]. We just

note here that the relationships between these orders are as follows:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤mrl Y

⇓ ⇓

X ≤st Y ⇒ E(X) ≤ E(Y ).

Because the signature vector s = (s1, . . . , sn) of a system can be seen as the

probability mass function of a discrete random variable with support contained in the

set {1, . . . , n}, these stochastic orders can also be applied to compare two signature

vectors (as discrete distributions). Thus we can state the following theorem.

Theorem 2. Let T and T ∗ be the lifetimes of two coherent systems with respective

signatures s = (s1, . . . , sn) and s∗ = (s∗1, . . . , s
∗

n). Let us assume that the component

lifetimes of both systems are ID with a reliability function F̄ and a common DD survival

copula Ĉ.

(i) If s ≤st s
∗, then T ≤st T

∗ for all F̄ .

(ii) If s ≤hr s
∗ and

T1:n ≤hr · · · ≤hr Tn:n, (10)
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then T ≤hr T
∗ for all F̄ .

(iii) If s ≤hr s
∗ and

T1:n ≤mrl · · · ≤mrl Tn:n, (11)

then T ≤mrl T
∗ for all F̄ .

(iv) If s ≤lr s∗ and

T1:n ≤lr · · · ≤lr Tn:n, (12)

then T ≤lr T
∗ for all abs. cont. F̄ .

The proof is immediate from (1), Theorem 1 and Theorems 1.A.6, 1.B.14, 2.A.15

and 1.C.17 in [24], respectively. Note that in (iii) we need the hr ordering between the

signatures and the mrl ordering in (11), to get the mrl ordering between the system

lifetimes. The mrl ordering between the signatures is not enough. In the IID case, if

we just assume s ≤mrl s
∗, then we need some extra-conditions (see [9]).

Example 2 shows how to use the preceding theorem to obtain (distribution-free)

comparisons results for systems with different structures. The signature vectors and

the ordering relationships between all the systems (signatures) with 1-4 components

are given in Table 1 and Figures 1–3 of [16] (see also Figures 1–3 in [11]). These

orderings can be extended to systems satisfying the assumptions of Theorems 1 and 2.

Note that Theorem 2 can also be applied to mixed systems (i.e., mixtures of coherent

systems) and, in particular, to semi-coherent systems since they can be written as

mixed systems (from Theorem 1).

Remark 3. Expression (9) can be used jointly with the results for distorted distri-

butions obtained in [12] (see also Theorem 4 in [11]) to check if (10), (11) and (12)

hold for a given DD survival copula Ĉ. We show this procedure in Example 2. These

properties depend on the survival copula. For example, from (7) and (8), T1:n ≤hr T2:n

holds for all F̄ if and only if the function

nδ̂n−1(u)− (n− 1)δ̂n(u)

δ̂n(u)

is decreasing in (0, 1), that is, if and only if the function

δ̂n(u)

δ̂n−1(u)
=
Ĉ(u, . . . , u, u)

Ĉ(u, . . . , u, 1)

is increasing in (0, 1).
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Now we introduce a new family of copulas which are DD but not EXC.

Proposition 1. Let D be the absolutely continuous n-dimensional copula which has

the following probability density function

d(u) =







2n−1 − α, for u ∈ I0 × · · · × I0,

2n−1 − α, for u ∈ I1 × · · · × I1,

α
2n−1−1 , for u ∈ Ii1 × · · · × Iin , ij = 0, 1, but i1 = · · · = in does not hold,

where u = (u1, . . . , un), I0 = [0, 1/2), I1 = [1/2, 1] and 1/2 < α < 2n−1 − 1. Let

g1, . . . , gn : [0, 1] → [0, 1] be different absolutely continuous functions such that gi(0) =

gi(1) = 0 and −1 ≤ 2g′i(u) ≤ 1 for all i = 1, . . . , n and all u ∈ [0, 1] such that this

derivative exists. Then

C(u1, . . . , un) = D(u1, . . . , un) + g1(u1) . . . gn(un) (13)

is a non-EXC DD copula with δm(u) 6= um for all m = 2, . . . , n− 1. Moreover, if for

an i ∈ {1, . . . , n}, gi(1/2) = 0, then δn(u) 6= un.

Proof. First we note that D is an EXC n-dimensional absolutely continuous copula

since 2n−1 − α > 0 and

2
2n−1 − α

2n
+ (2n − 2)

α

2n(2n−1 − 1)
=

2n − 2α

2n
+

2α

2n
= 1.

Moreover, its diagonal section satisfies

δD(1/2) = D(1/2, . . . , 1/2) =
2n−1 − α

2n
>

1

2n
(14)

(since α < 2n−1 − 1).

Secondly, let us prove that the function C defined by (13) is a copula. Its probability

density function c is given by

c(u1, . . . , un) = d(u1, . . . , un) + g′1(u1) . . . g
′

n(un).

As 1/2 < α < 2n−1 − 1, then

2n−1 − α > 1 >
α

2n−1 − 1

and

d(u1, . . . , un) ≥
α

2n−1 − 1
>

1

2n − 2
.
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Hence, as −1 ≤ 2g′i(u) ≤ 1 for i = 1, . . . , n, then

c(u1, . . . , un) ≥
α

2n−1 − 1
−

1

2n
>

1

2n − 2
−

1

2n
> 0 (15)

for all u1, . . . , un ∈ (0, 1). Therefore

C(x1, . . . , xn) =

∫

[0,x1]×···×[0,xn]

c(u1, . . . , un)du1 . . . dun

is a copula since gi(0) = gi(1) = 0 for i = 1, . . . , n and so

C(1, . . . , 1) = D(1, . . . , 1) + g1(1) . . . gn(1) = 1

and the other border conditions hold.

Clearly, C is not EXC (since we assume that the functions g1, . . . , gn are different

continuous functions). However, it is DD because D is EXC and

CP (u, . . . , u) = DP (u, . . . , u)

for all P ⊆ {1, . . . , n} with |P | < n (since gi(1) = 0).

Moreover, for n = 3, . . . and m = 2, . . . , n− 1, δm(u) 6= um since

δm(1/2) = C( 1/2, . . . , 1/2
︸ ︷︷ ︸

m−times

, 1, . . . , 1
︸ ︷︷ ︸

(n−m)−times

)

=
2n−1 − α

2n
+

2n−m − 1

2n
α

2n−1 − 1

=
1

2
− α

2−1 − 2−m

2n−1 − 1

>
1

2m

because α < 2n−1 − 1. Even more, if for an i, gi(1/2) = 0, then

δn(1/2) = C(1/2, . . . , 1/2) = D(1/2, . . . , 1/2) =
2n−1 − α

2n
>

1

2n

from (14). This concludes the proof. �

In order to characterize the relative size of the class CEXC of EXC copulas in the

class CDD of DD copulas, we will use a topological approach similar to that suggested

in [20] working with Baire’s categories (see, e.g., [4, 5, 19]). Let us recall some basic

topological definitions. A subset N of a metric space (Ω, d) is called nowhere dense if
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its closure has an empty interior. A subset A ⊆ Ω is of first category in (Ω, d) if it can

be expressed as (or covered by) a countable union of nowhere dense sets. The subset

A is called of second category if it is not of first category. Following [2], in complete

metric spaces, first category sets are “small sets” and nowhere dense sets are “very

small sets”.

The next property shows that, from a topological viewpoint, the set CEXC is very

small (i.e. it is nowhere dense) into the set CDD. Therefore, Theorem 1 provides a

relevant extension of signature-based representations from EXC copulas to DD copulas.

It is easy to see that CDD is a closed set in the set of all the copulas C. Hence it is

compact and complete (see [3]). Then, from Baire’s theorem, it is a second category

set in itself.

Proposition 2. CEXC is nowhere dense in CDD.

Proof. As CEXC is a closed subset of C, then so is in CDD. Hence we need to prove

that CEXC does not have interior points. Let us see that for any C∗ ∈ CEXC and any

ε > 0, we have

B (C∗, ε) = {C ∈ CDD : d∞ (C,C∗) < ε} " CEXC ,

where d∞ (C,C∗) := sup
u∈[0,1]n |C(u) − C∗(u)|. If C∗∗ ∈ CDD − CEXC and we define

Cn = 1
n
C∗∗+

n−1
n
C∗, then the sequence {Cn} converges to C∗ with Cn ∈ CDD −CEXC

for all n. So, for any ε > 0, there exists n0 (depending on ε) such that Cn ∈ B (C∗, ε)

for all n ≥ n0. Therefore B (C∗, ε) " CEXC and so CEXC is nowhere dense in CDD. �

4. Examples

The first example shows how to use Theorem 1 in a coherent system with ID

component lifetimes having a fixed non-EXC DD survival copula.

Example 1. Let us consider the system with lifetime T = min(T1,max(T2, T3)). The

signature of this coherent system is (1/3, 2/3, 0) (see, e.g., [23, p. 24]). Let us assume

that the component lifetimes T1, T2, T3 are ID with a reliability function F̄ and with
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the following survival copula

Ĉ(u1, u2, u3) = u1CFN (u2, u3), (16)

where CFN (u2, u3) = min
(

u2, u3,
u2

2
+u2

3

2

)

is the Fredricks-Nelsen copula (see, e.g., [6,

p. 32]). Clearly, the first component is independent from the other components but

components 2 and 3 are dependent. So Ĉ is not EXC. Therefore the signature-based

representations obtained in [22] (IID case) and [16] (EXC case) cannot be applied to

this system. However, Ĉ is DD since δ̂2(u) := Ĉ(u, u, 1) = Ĉ(u, 1, u) = Ĉ(1, u, u) =

u2 for all u ∈ [0, 1]. Note that δ̂1(u) := Ĉ(u, 1, 1) = Ĉ(1, u, 1) = Ĉ(1, 1, u) = u

(as expected since the univariate marginal distributions of copulas are uniform) and

δ̂3(u) := Ĉ(u, u, u) = u3 for all u ∈ [0, 1].

Therefore, we can apply Theorem 1, obtaining the following representation for

the system reliability function F̄T (t) = 1
3 F̄1:3(t) +

2
3 F̄2:3(t), where, from (7) and (8),

F̄1:3(t) = δ̂3(F̄ (t)) = (F̄ (t))3 and F̄2:3(t) = 3δ̂2(F̄ (t))−2δ̂3(F̄ (t)) = 3(F̄ (t))2−2(F̄ (t))3

for all t. Hence this system (with two dependent components) has the same law

(reliability) as the system with the same structure and three IID-F̄ components.

The second example shows that Theorem 2 allows us to compare two coherent

systems with different structures (signatures).

Example 2. Let us consider the systems with lifetimes T = min(T1,max(T2, T3))

(studied in the preceding example) and T ∗ = max(T1,min(T2, T3)). We assume that

the component lifetimes are ID with a reliability function F̄ and a survival copula Ĉ.

The signatures of these coherent systems are s = (1/3, 2/3, 0) and s∗ = (0, 2/3, 1/3),

respectively (see, e.g., [23, p. 24]). Therefore, as

0

1/3
= 0 <

2/3

2/3
= 1 <

1/3

0
= ∞,

we have s ≤lr s∗. As the likelihood ratio order is the strongest one, all the signature

orderings in Theorem 2 hold. Then T ≤st T
∗ holds for any F̄ and any DD copula Ĉ.

Analogously, to get T ≤hr T
∗, we need to check if (10) holds. If we choose the

survival copula of the preceding example, given in (16), then the distributions of

T1:3, T2:3, T3:3 coincide with that obtained in the IID case. Hence, (10) holds and

we get T ≤hr T
∗ for all F̄ . Actually, (12) also holds and we have T ≤lr T

∗ for all abs.
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cont. F̄ . However, if we select the survival copula from the family (13) given by

Ĉ(u1, u2, u3) = D(u1, u2, u3) + g1(u1)g2(u2)g3(u3),

where α ∈ (1/2, 3) and 2g1(u) = 3g2(u) = 3g3(u) = u(1− u). Then

δ̂2(u) = Ĉ(u, u, 1) = D(u, u, 1) =







6−α
3 u2, for u ∈ [0, 1/2],

h(u), for u ∈ (1/2, 1],

and δ̂3(u) = D(u, u, u) + g1(u)g2(u)g3(u), where

h(u) =
6− α

12
+
α

3

(

u−
1

2

)

+
(

2−
α

3

)(

u−
1

2

)2

= 1 +
6− α

3
u2 −

6− 2α

3
u−

α

3
,

D(u, u, u) =







(4 − α)u3, for u ∈ [0, 1/2],

4−α
8 + (4 − α)

(
u− 1

2

)3
+ α

3

[

u3 − 1
8 −

(
u− 1

2

)3
]

, for u ∈ (1/2, 1],

and g1(u)g2(u)g3(u) = u3(1− u)3/18. Therefore δ̂3(u) 6= u3.

Note that the reliability functions of T1:3, T2:3, T3:3 are q̄1:3(F̄ (t)), q̄2:3(F̄ (t)), q̄3:3(F̄ (t)),

respectively, where q̄1:3(u) = δ̂3(u), q̄2:3(u) = 3δ̂2(u) − 2δ̂3(u), and q̄3:3(u) = 3u −

3δ̂2(u) + δ̂3(u) for u ∈ [0, 1].

Therefore, as per the results given in [12] (or in Theorem 4, (ii), of [11]), T1:3 ≤hr T2:3

holds for all F̄ and that survival copula, if and only if q̄2:3/q̄1:3 is decreasing in [0, 1],

that is, the ratio r = δ̂2/δ̂3 is decreasing in (0, 1). By plotting this ratio we see that

this property is not always true. For example, when α = 1, we obtain the plot given

in Figure 1, left, which is not decreasing. However, when α = 2, we obtain the plot

given in Figure 1, right, which is decreasing in (0, 1). Hence, T1:3 ≤hr T2:3 holds for all

F̄ when α = 2. It can be proved analogously that T2:3 ≤hr T3:3 holds for all F̄ when

α = 2. Therefore, (10) holds and, from Theorem 2, (ii), we get T ≤hr T
∗ for all F̄ and

that survival copula with α = 2.

5. Conclusions

The signature-based representations can be extended to systems with ID non-EXC

component lifetimes. Specifically, they are extended here for the dependence models

determined by a DD copula. This extension is relevant since we have proved that the

family of DD copulas is much larger (from a topological viewpoint) than the family of
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Figure 1: Plots of the ratio r = δ̂2/δ̂3 for the survival copula studied in Example 2 when

α = 1 (left) and α = 2 (right).

EXC copulas. Moreover, some examples show that the new representation can be used

to compare systems with these dependence models.

The main problem for future research could be to determine if these representations

can be extended for other (bigger) families of copulas. We think that this extension

is not possible by using the approach used in the present paper. However, it could be

possible if we use a different technique. Other relevant problem is to determine when

(10), (11) and (12) hold. These conditions are needed in order to get the comparison

results given in Theorem 1. The distorted distributions may help in this task (as

showed in Example 2).

Acknowledgements

We would like to thank the anonymous reviewers for several helpful suggestions that

have served to add clarity and breadth to the earlier version of this paper.

JN was supported in part by Ministerio de Economı́a, Industria y Competitividad

of Spain under grant MTM2016-79943-P (AEI/FEDER, UE) and JFS by Ministerio

de Economı́a y Competitividad under grant MTM2014-60594-P (AEI/FEDER, UE).



16 J. NAVARRO AND J. FERNÁNDEZ-SÁNCHEZ
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