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ABSTRACT. For an abelian category A we investigate when the stable categories GProj(A)

and GInj(A) are triangulated equivalent. To this end, we realize these stable categories as
homotopy categories of certain (non-trivial) model categories and give conditions on A
that ensure the existence of a Quillen equivalence between the model categories in ques-
tion. We also study when such a Quillen equivalence transfers from A to the category of
chain complexes in A.

1. INTRODUCTION

Over an Iwanaga–Gorenstein ring A, that is, a ring which is noetherian and has finite in-
jective dimension from both sides, the category MCM(A) of (finitely generated) maximal
Cohen–Macaulay A-modules1 is a Frobenius category in which the projective-injective ob-
jects are precisely the finitely generated projective A-modules. The associated stable cate-
gory MCM(A) is therefore triangulated, and a classic result of Buchweitz [8, Thm. 4.4.1]
shows that MCM(A) is triangulated equivalent to the singularity category2 Dsg(A), which
is an important matematical object that has been studied by many authors; see [5, 6, 27, 33].

If A is not Iwanaga–Gorenstein, then the category MCM(A) is, in general, not Frobe-
nius. However, over any ring A one can always consider the category GProj(A) of so-called
Gorenstein projective modules (which are not assumed to be finitely generated); this cat-
egory is always Frobenius and the associated stable category GProj(A) is triangulated. In
the case where A is Iwanaga–Gorenstein, an A-module is maximal Cohen–Macaulay if
and only if it is finitely generated and Gorenstein projective, and hence MCM(A) can be
identified with the finitely generated modules in GProj(A). This explains the interest in the
category GProj(A) for general ring A. Its injective counterpart GInj(A), the stable category
of Gorenstein injective A-modules, is equally important and has been studied in e.g [7, 26].

Our work is motivated by a recent result of Zheng and Huang [37] which asserts that
for many rings A, the categories GProj(A) and GInj(A) are equivalent as triangulated cate-
gories. As it makes sense to consider the stable categories GProj(A) and GInj(A) for any
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1 In the important special case where A is a quasi-Frobenius ring, for example, if A = kG is the group algebra
of a finite group G with coefficients in a field k, the category MCM(A) is just the category mod(A) of all finitely
generated A-modules.

2 The singularity category Dsg(A) is defined to be the Verdier quotient Db(A)/Db
perf(A) of the bounded de-

rived category Db(A), whose objets are complexes of A-modules with bounded and finitely generated homology,
by the subcategory Db

perf(A), whose objects are isomorphic (in Db(A)) to a perfect complex, that is, to a bounded
complex of finitely generated projective A-modules. The name singularity category and the symbol Dsg(A) seem
to be the popular choices nowadays, however, in the work of Buchweitz [8, Def. 1.2.2], this category is called
the stabilized derived category and denoted by Db(A), and in the work of Orlov [29], it is called the triangulated
category of singularities and denoted by Dsg(A).
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bicomplete abelian category A with enough projectives and injectives (see Section 2 for
details), the following question naturally arises:

Question. For which abelian categories A (assumed to be bicomplete with enough pro-
jectives and injectives) are GProj(A) and GInj(A) equivalent as triangulated categories?

Every Frobenius category E , in particular, GProj(A) and GInj(A), can be equipped with
a canonical model structure which has the property that the associated homotopy category
Ho(E) is equivalent to the stable category E ; see e.g. [18, Prop. 4.1]. Thus, if the Frobenius
categories GProj(A) and GInj(A), equipped with these canonical model structures, happen
to be Quillen equivalent, then we get an affirmative answer to the question above. However,
the model categories GProj(A) and GInj(A), and even the underlying ordinary categories,
will rarely be (Quillen) equivalent. In this paper, we consider instead the categories

U π = {M ∈ A | GpdA(M) < ∞} and U ι = {N ∈ A | GidA(N) < ∞}
and show in Theorems 3.7 and 3.9 that U π and U ι can be equipped with model structures
for which the associated homotopy categories Ho(U π) and Ho(U ι) are the stable categories
GProj(A) and GInj(A). The advantage of having these realizations of the stable categories
is that in several cases the model categories U π and U ι will be Quillen equivalent—even
though GProj(A) and GInj(A) are not—and in such cases we therefore get an affirmative
answer (for a strong reason) to the question above3. To investigate when U π and U ι will be
Quillen equivalent, we introduce the notion of a Sharp–Foxby adjunction (Definition 3.4).
We prove in Theorem 3.11 and Corollary 3.12 that if A admits such an adjuntion, then U π
and U ι will be Quillen equivalent:

Theorem A. A Sharp–Foxby adjunction (S ,T ) on A induces a Quillen equivalence be-
tween the model categories U π and U ι. Thus the total (left/right) derived functors of S and
T yield an adjoint equivalence of the corresponding homotopy categories,

GProj(A)' Ho(U π)
LS

// Ho(U ι)' GInj(A)
RT

oo .

In fact, this is an equivalence of triangulated categories.

The choice to work with the categories U π and U ι is historically motivated by classic
results in commutative algebra by Sharp [31] and Foxby [14] . In the language of this pa-
per, the results can be phrased as follows: If A is a Cohen–Macaulay ring with a dualizing
module D, then the functors S = D⊗A− and T = HomA(D,−) constitute a Sharp–Foxby
adjunction on A= Mod(A); see Example 3.6 for details. Thus, for such rings Theorem A
improves the previously mentioned result of Zheng and Huang [37] to a triangulated equiv-
alence between GProj(A) and GInj(A) induced by a Quillen equivalence.

In Section 4 we investigate to what extend a Sharp–Foxby adjunction on a category A
(and hence also a Quillen equivalence between the model categories U π and U ι, see Theo-
rem A) transfers to the category of chain complexes in A. In 4.5 we obtain the following.

Theorem B. Assume that (S ,T ) is a Sharp–Foxby adjunction onA; in particular, GProj(A)
and GInj(A) are equivalent as triangulated categories by Theorem A. Assume furthermore
that the finitistic projective and the finitistic injective dimensions of A are finite.

If B= Ch(A), then degreewise application of S and T yields a Sharp–Foxby adjunction
on B; in particular, GProj(B) and GInj(B) are equivalent as triangulated categories.

3 In general, we do not expect every (triangulated) equivalence between GProj(A) and GInj(A), if such an
equivalence even exist, to be induced from a Quillen equivalence between model categories. Indeed, it is well-
known that there are examples of non Quillen equivalent model categories with equivalent homotopy categories.
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2. PRELIMINARIES

Throughout this paper,A denotes any bicomplete abelian category with enough projec-
tives and enough injectives.

Gorenstein projective and Gorenstein injective modules (over any ring) were defined by
Enochs and Jenda [10, §2], but the definition works for objects in any abelian category:

Definition 2.1. An acyclic (= exact) complex P = · · · → P1→ P0→ P−1→ ··· of projec-
tive objects in A is called totally acyclic if for any projective object Q in A the complex

HomA(P,Q) = · · · −→ HomA(P−1,Q)−→ HomA(P0,Q)−→ HomA(P1,Q)−→ ·· ·
is acyclic. An object G in A is called Gorenstein projective if it is a cycle of such a totally
acyclic complex of projectives, that is, if G =Z j(P) for some integer j. We write GProj(A)
for the full subcategory of A consisting of all Gorenstein projective objects.

Dually, an acyclic complex I = · · · → I1→ I0→ I−1→ ··· of injective objects in A is
called totally acyclic if for any injective object E in A the complex

HomA(E, I) = · · · −→ HomA(E, I1)−→ HomA(E, I0)−→ HomA(E, I−1)−→ ·· ·
is acyclic. An object H in A is called Gorenstein projective if it is a cycle of such a totally
acyclic complex of injectives, that is, if H = Z j(I) for some integer j. We write GInj(A)
for the full subcategory of A consisting of all Gorenstein injective objects.

The Gorenstein projective dimension, GpdA(M), of an object M in A is defined by de-
claring that one has GpdA(M)6 n (for n∈N0) if and only if there exists an exact sequence
0→Gn→Gn−1→ ··· →G0→ M→ 0 inA with G0, . . . ,Gn ∈GProj(A). The Gorenstein
injective dimension, GidA(M), of M is defined analogously.

Recall that a Frobenius category is an exact category E with enough (relative) projec-
tives and enough (relative) injectives and where the classes of projectives and injectives
coincide; such objects are called projective-injective (or just pro-injective) objects. The
stable category E is the quotient category E/∼ where the relation “∼” is defined by f ∼ g
(here f and g are parallel morphisms in E) if f − g factors through a projective-injective
object. The category E is triangulated as described in Happel [21, Chap. I§2] (see also 2.5).

The following result is well-known, but for completeness we include a short proof.

Proposition 2.2. The category GProj(A) is Frobenius and the projective-injective objects
herein are the projective objects in A. Thus, the stable category GProj(A) is triangulated.

The category GInj(A) is Frobenius and the projective-injective objects herein are the
injective objects in A. Thus, the stable category GInj(A) is triangulated.

Proof. We only show the claims about the category GProj(A), as the claims about GInj(A)
are proved similarly. The proof only uses basic properties of Gorenstein projective objects.
In the case of modules, that is, if A = Mod(A) for a ring A, these properties are recorded
in [23], however, the reader easily verifies that the same properties hold for Gorenstein
projective objects in any abelian category A with enough projectives.

First of all, by [23, Thm. 2.5] the class GProj(A) is an additive extension-closed sub-
category of the abelian category A, and thus GProj(A) is an exact category. Clearly, every
(categorical) projective object P in A is a (relative) projective object in GProj(A), but it is
also (relative) injective since every short exact sequence 0→ P→G→G′→ 0 in A with
G,G′ ∈GProj(A) splits; indeed by [23, Prop. 2.3] one has Ext1A(G

′,P) = 0. By the defini-
tion of Gorenstein projective objects, every G ∈ GProj(A) fits into short exact sequences
0→ H→ P→G→ 0 and 0→G→ P′→ H′→ 0 in A where P,P′ are (categorical) pro-
jective and H,H′ are Gorenstein projective. It follows that if G is (relative) projective or
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(relative) injective, then G is a direct summand of a (categorical) projective object, P or P′,
and hence G is (categorical) projective. It also follows that GProj(A) has enough (relative)
projectives and enough (relative) injectives. �

In Theorems 3.7 and 3.9 we construct certain model categories U π and U ι for which the
associated homotopy categories Ho(U π) and Ho(U ι) are GProj(A) and GInj(A).

The standard references for the theory of cotorsion pairs are Enochs and Jenda [11] and
Göbel and Trlifaj [20]. Below we recall a few notions that we need.

2.3. A pair (X ,Y) of classes of objects in A is a cotorsion pair if X⊥ = Y and X = ⊥Y .
Here, given a class C of objects inA, the right orthogonal C⊥ is defined to be the class of all
Y ∈ A such that Ext1A(C,Y) = 0 for all C ∈ C. The left orthogonal ⊥C is defined similarly.
A cotorsion pair (X ,Y) is hereditary if ExtiA(X,Y) = 0 for all X ∈ X , Y ∈ Y , and i> 1. A
cotorsion pair (X ,Y) is complete if it has enough projectives and enough injectives, i.e. for
each A ∈ A there exist short exact sequences 0 −→ Y −→ X −→ A −→ 0 (enough projectives)
and 0−→ A−→ Y ′ −→ X′ −→ 0 (enough injectives) with X,X′ ∈ X and Y,Y ′ ∈ Y .

In order for the above to make sense, the category A only needs to be exact (not neces-
sarily abelian), so that one has a notion of “short exact sequences” (often called conflations)
and hence also of (Yoneda) ExtA.

Cotorsion pairs are related to relative homological algebra, see [11], and due to work of
Hovey [25] they are also related to abelian (or exact) model category structures.

2.4. An abelian model structure on A, that is, a model structure on A which is compat-
ible with the abelian structure in the sense of [25, Def. 2.1], corresponds by Thm. 2.2 in
loc. cit. to a triple (C,W ,F) of classes of objects inA for whichW is thick4 and (C∩W ,F)
and (C,W∩F) are complete cotorsion pairs inA. Such a triple (C,W ,F) is called a Hovey
triple in A. In the model structure on A determined by such a Hovey triple, C is precisely
the class of cofibrant objects, F is precisely the class of fibrant objects, and W is pre-
cisely the class of trivial objects (that is, objects weakly equivalent to zero). A hereditary
Hovey triple is a Hovey triple (C,W ,F) for which the associated complete cotorsion pairs
(C ∩W ,F) and (C,W∩F) are both hereditary (as defined in 2.3).

Gillespie extends in [17, Thm. 3.3] Hovey’s correspondance, mentioned above, from the
realm of abelian categories to the realm of weakly idempotent complete exact categories.
More precisely, ifA is just an exact category (not necessarily abelian), then an exact model
structure onA is a model structure onAwhich is compatible with the exact structure in the
sense of [17, Def. 3.1]. If, in addition, A is weakly idempotent complete ([17, Def. 2.2]),
then exact model structures on A correspond precisely to Hovey triples (C,W ,F) in A.

Recall from [24, Cor. 1.2.7 and Thm. 1.2.10(i)] that if C is any model category, then the
inclusion Ccf→C induces an equivalence Ccf/∼→ Ho(C). Here Ccf is the full subcategory
of C whose objects are both cofibrant and fibrant, “∼” is the (abstract) homotopy relation
from [24, Def. 1.2.4], and Ho(C) is the homotopy category of the model category C (that
is, the localization of C with respect to the collection of weak equivalences).

2.5. LetA be a weakly idempotent complete exact category equipped with an exact model
structure coming from a hereditary Hovery triple (C,W ,F) inA. As explained in 2.4, one
has Acf = C ∩F , which by [17, Prop. 5.2(4)] / [32, Thm. 6.21(1)] is a Frobenius category
with C∩W∩F as the class of projective-injective objects. By [17, Prop. 4.4(5)] / [32, Lem.

4 Recall that a class W in an abelian (or, more generally, in an exact) category A is thick if it is closed under
retracts and satisfies that whenever two out of three terms in a short exact sequence are in W , then so is the third.
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6.16(3)] two parallel morphisms inAcf = C∩F are homotopic, in the (abstract) model cat-
egorical sense, if and only their difference factors through an object in C ∩W ∩F . Thus,
Acf/∼ is nothing but the stable categoryAcf of the Frobenius categoryAcf (see the remarks
preceding Proposition 2.2), so the category Acf/∼ carries a natural triangulated structure.
As mentioned above, one has an equivalence of categories Ho(A)'Acf/∼, and via this
equivalence the homotopy category Ho(A) inherits a triangulated structure from Acf/∼.
More precisely, the distinguished triangles in Ho(A) are, up to isomorphism, the images in
Ho(A) of distinguished triangles in Acf =Acf/∼ under the equivalence Acf/∼→Ho(A).
It is evident that when Ho(A) is equipped with this triangulated structure, then the equiv-
alence Ho(A)'Acf/∼ (of ordinary categories a priori) becomes an equivalence of trian-
gulated categories, that is, the functors Ho(A)�Acf/∼ are triangulated.

3. SHARP–FOXBY ADJUNCTIONS

Recall from the beginning of Section 2 that A always denotes any bicomplete abelian
category with enough projectives and enough injectives. In this section, we give conditions
on A which ensure that GProj(A) and GInj(A) are equivalent as triangulated categories.

Definition 3.1. Let U π be the full subcategory of A whose objects are given by

U π = {M ∈ A | GpdA(M) < ∞} .
Let and Cπ,Wπ, and F π be the following subclasses of U π:

Cπ = GProj(A) , Wπ = {M ∈ A | pdA(M) < ∞} , and F π = U π .
The classes U π, Cπ,Wπ, and F π depend on A, and if necessay we use the more detailed
notation U πA, CπA,Wπ

A, and F π
A instead. (The superscript “π” is supposed to give the reader

associations to the word “projective”.)

Definition 3.2. Let U ι be the full subcategory of A whose objects are given by

U ι = {N ∈ A | GidA(N) < ∞} .
Let and C ι,W ι, and F ι be the following subclasses of U ι:

C ι = U ι , W ι = {N ∈ A | idA(N) < ∞} , and F ι = GInj(A) .
The classes U ι, C ι, W ι, and F ι depend on A, and if necessay we use the more detailed
notation U ιA, C ιA,W ι

A, and F ι
A instead. (The superscript “ι” is supposed to give the reader

associations to the word “injective”.)

Lemma 3.3. The categories U π and U ι are additive and extension-closed subcategories
of the abelian category A; hence they are exact categories. Furthermore, U π and U ι are
closed under direct summands in A; hence they are idempotent complete.

Proof. In the case where A = Mod(A) for a ring A, the assertions follow from [23, Prop.
2.19 and Thm. 2.24] (and the dual statements about Gorenstein injective modules). By in-
spection, one verifies that the same proofs work in any bicomplete abelian categoryA with
enough projectives and enough injectives. �

We show in Theorems 3.7 and 3.9 that (Cπ,Wπ,F π) and (C ι,W ι,F ι) are Hovey triples
(see 2.4) in the idempotent complete exact categories U π and U ι.

Definition 3.4. A Sharp–Foxby adjunction on A is an adjunction (S ,T ) of endofunctors
on A for which the following properties hold:

(SF1) S maps U π to U ι and it mapsWπ toW ι.



6 GEORGIOS DALEZIOS, SERGIO ESTRADA, AND HENRIK HOLM

(SF2) The restriction of S to U π is exact: if 0→ X′→ X→ X′′→ 0 is an exact sequence
in A with X′,X,X′′ ∈ U π, then the sequence 0→ S X′→ S X→ S X′′→ 0 is exact.

(SF3) T maps U ι to U π and it mapsW ι toWπ.
(SF4) The restriction of T to U ι is exact: if 0→ Y ′→ Y→ Y ′′→ 0 is an exact sequence

in A with Y ′,Y,Y ′′ ∈ U ι, then the sequence 0→ TY ′→ TY→ TY ′′→ 0 is exact.
(SF5) The unit of adjunction ηX : X→ TS X is an isomorphism for every X ∈ U π.
(SF6) The counit of adjunction εY : S TY→ Y is an isomorphism for every Y ∈ U ι.

Remark 3.5. By (SF1), (SF3), (SF5), and (SF6) a Sharp–Foxby adjunction S :A�A : T
restricts to adjoint equivalences of categories U π� U ι andWπ�W ι. By Lemma 3.3 the
categories U π and U ι have natural exact structures. Conditions (SF2) and (SF4) imply that
the induced adjoint equivalence U π� U ι preserves the exact structure, i.e. the functors are
exact; thus it is an adjoint equivalence of exact categories.5

The following example explains the terminology in Definition 3.4.

Example 3.6. Let A be a commutative noetherian local Cohen–Macaulay ring with a dual-
izing module D. Foxby considered in [14, §1] two classes A(A) and B(A) of A-modules6:

A module M is in A(A) if and only if TorA
i (D,M) = 0 and ExtiA(D,D⊗A M) = 0 for all

i > 0 and the natural homomorphism ηM : M→ HomA(D,D⊗A M) is an isomorphism.
A module N is in B(A) if and only if ExtiA(D,N) = 0 and TorA

i (D,HomA(D,N)) = 0 for
all i > 0 and the natural homomorphism εN : D⊗A HomA(D,N)→ N is an isomorphism.

Foxby [14] proved that the adjunction (D⊗A− ,HomA(D,−)) on Mod(A) restricts to an
adjoint equivalence A(A)�B(A) and further to an adjoint equivalenceWπ

Mod(A)�W
ι
Mod(A)

(see Definitions 3.1 and 3.2). The latter is an extension of a result [31, Thm. (2.9)] by Sharp,
which asserts that D⊗A− and HomA(D,−) restrict to an adjoint equivalence between the
categories of finitely generated A-modules with finite projective dimension and finitely ge-
nerated A-modules with finite injective dimension. Note that it is evident from the defini-
tions that the restriction of D⊗A− to A(A) and of HomA(D,−) to B(A) are exact functors.

By Enochs, Jenda, and Xu [12, Cor. 2.4 and 2.6] an A-module belongs to A(A), respec-
tively, B(A), if and only if it has finite Gorenstein projective dimension, respectively, finite
Gorenstein injective dimension. Thus, in the notation from 3.1 and 3.2 we have:

A(A) = U πMod(A) and B(A) = U ιMod(A).

Consequently, (S ,T ) = (D⊗A− ,HomA(D,−)) is a Sharp–Foxby adjunction on Mod(A).
In view of [9, Thms. 4.1 and 4.4] this remains to be true if A is any two-sided noetherian
ring with a dualizing module D, that is, a dualizing complex concentrated in degree zero.

Theorem 3.7. Consider the idempotent complete exact category U π from Lemma 3.3. The
triple (Cπ,Wπ,F π) from Definition 3.1 is a hereditary Hovey triple in U π (see 2.4). In par-
ticular, U π has an exact model structure for which:

5 If E and E ′ are exact categories and F : E � E ′ : G is an adjoint equivalence of the underlying (ordinary)
categories, then it does not automatically follow that the functors F and G are exact. Indeed, if E and E ′ have the
same underlying category and the exact structure on E is coarser than that on E ′ (that is, every sequence which is
exact in E is also exact in E ′ — for example, E could have the trivial exact structure, in which the only “exact”
sequences are the split exact ones, whereas E ′ could have any exact structure), then the identity functors E � E ′
constitute an adjoint equivalence of the underlying categories where only E → E ′ is exact (but E ← E ′ is not).

6 In the literature, the classes A(A) and B(A) are referred to as Foxby classes. Sometimes, A(A) is called the
Auslander class and B(A) is called the Bass class. Foxby himself [14] used the symbols ΦD and ΨD for these
classes, but in the paper [12] by Enochs, Jenda, and Xu they are denoted by G0 and J0. We have adopted the
symbols A(A) and B(A) from the joint work of Avramov and Foxby; see for example [1, §3].
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– The cofibrant objects in U π are the Gorenstein projective objects in A.
– The trivial objects in U π are the objects in A with finite projective dimension.
– All objects in U π are fibrant.

The homotopy category of this model category is equivalent, as a triangulated category, to
the stable category of Gorenstein projective objects in A; in symbols:

Ho(U π) ' GProj(A) .

Remark 3.8. A number of fundamental properties of Gorenstein projective modules, i.e.
Gorenstein projective objects in the category A= Mod(A) where A is a ring, are recorded
in e.g. [9, 23]. The results we need about Gorenstein projective objects in a general abelian
category (still bicomplete with enough projectives and enough injectives) can be proved as
it is done for modules. We leave it to the reader to inspect the relevant proofs.

Proof of Theorem 3.7. It is well-known that Wπ is a thick subcategory of A (and hence
also of U π). By [23, Prop. 2.27] the intersection Cπ ∩Wπ equals the class ProjA of pro-
jective objects in A. Thus the pair (Cπ∩Wπ,F π) is equal to (ProjA, U π), which we now
argue is a complete hereditary cotorsion pair in U π. As Ext>1

A (P,A) = 0 for all P ∈ ProjA
and all A ∈ U π (even all A ∈A), we get that (ProjA)⊥ = U π (as the “⊥” is only calculated
inside of U π) and that ProjA⊆ ⊥U π. To show that ProjA⊇ ⊥U π let M ∈ ⊥U π (⊆U π). By
assumption, A has enough projectives, and hence there exists a short exact sequence in A,

(]1) 0−→ A−→ P−→ M −→ 0 ,

where P is projective. As M belongs to U π, so does A by [23, Thm. 2.24]. By assumption,
Ext1A(M,A) = 0, so (]1) splits and hence M ∈ ProjA. This shows that (ProjA, U π) is a
hereditary cotorsion pair. For completeness of this cotorsion pair, the sequence (]1) shows
that the pair has enough projectives. The trivial exact sequence 0→ M→ M→ 0→ 0 (for
any M in U π) shows that the pair has enough injectives.

Next we show that (Cπ,Wπ∩F π) = (GProjA,Wπ) is a complete hereditary cotorsion
pair in U π. By [23, Thm. 2.20] we have Ext>1

A (G,A) = 0 for all G ∈GProjA and A ∈Wπ,
and hence we get GProjA⊆ ⊥Wπ and (GProjA)⊥ ⊇Wπ. To show that GProjA⊇ ⊥Wπ,
let M ∈ ⊥Wπ (⊆ U π). By [23, Thm 2.10] there exists a short exact sequence

(]2) 0−→ A−→G −→ M −→ 0

with G∈GProjA and A∈Wπ. By assumption, Ext1A(M,A)= 0, so (]2) splits and hence M
is a direct summand in G. By [23, Thm 2.5] (see also Prop. 1.4 in loc. cit.) the class GProjA
is closed under direct summands (here we use our assumption that A is cocomplete, or at
least that A has countable coproducts), and it follows that M itself belongs to GProjA. To
show (GProjA)⊥ ⊆Wπ, assume that M ∈ (GProjA)⊥ (⊆ U π). By [9, Lem. 2.17] there is
a short exact sequence

(]3) 0−→ M −→ A′ −→G′ −→ 0

where G′ ∈ GProjA and pdA(A
′) = GpdA(M) < ∞, that is, A′ is inWπ. By assumption,

Ext1A(G
′,M) = 0, so (]3) splits and hence M also belongs to Wπ (which is thick). Thus

(GProjA,Wπ) is a hereditary cotorsion pair in U π, and the existence of the sequences (]2)
and (]3) shows that this cotorsion pair is complete.

These arguments prove that (Cπ,Wπ,F π) is a hereditary Hovey triple in U π. In view of
the equalities Cπ∩F π = GProjA and Cπ∩Wπ∩F π = ProjA, where the latter is by [23,
Prop 2.27], the rest of the theorem now follows from 2.4 and 2.5 (and Proposition 2.2). �
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Theorem 3.9. Consider the idempotent complete exact category U ι from Lemma 3.3. The
triple (C ι,W ι,F ι) from Definition 3.2 is a hereditary Hovey triple in U ι (see 2.4). In par-
ticular, U ι has an exact model structure for which:

– All objects in U ι are cofibrant.
– The trivial objects in U ι are the objects in A with finite injective dimension.
– The fibrant objects in U ι are the Gorenstein injective objects in A.

The homotopy category of this model category is equivalent, as a triangulated category, to
the stable category of Gorenstein injective objects in A; in symbols:

Ho(U ι) ' GInj(A) .

Proof. Dual to the proof of Theorem 3.1. �

Our next goal is to show that a Sharp–Foxby adjunction on A induces a Quillen equiv-
alence between the model categories U π and U ι. To this end, the next result will be useful.

Proposition 3.10. LetM andM′ be two weakly idempotent complete exact model cate-
gories with associated Hovey triples (C,W ,F) and (C′,W ′,F ′); see 2.4. Assume that (F,G)
is a Quillen adjunction M �M′ where the functors F and G are exact and satisfy
F(W) ⊆ W ′ and G(W ′) ⊆ W . Then (F,G) is a Quillen equivalence if and only if the
unit ηX : X→GFX is a weak equivalence for every X ∈ C and the counit εY : FGY→ Y is
a weak equivalence for every Y ∈ F ′.

Proof. Write Q for the cofibrant replacement functor inM and qX : QX→ X for the natural
trivial fibration (X ∈M). Similarly, write R for the fibrant replacement functor inM′ and
rY : Y→ RY for the natural trivial cofibration (Y ∈M′). By [24, Prop. 1.3.13] we have that
(F,G) is a Quillen equivalence if and only if the composite

X
ηX
// GFX

GrFX
// GRFX

is a weak equivalence for all X ∈ C and the composite

FQGY
FqGY

// FGY
εY
// Y

is a weak equivalence for all Y ∈ F ′. We claim that the morphisms GrFX and FqGY are al-
ways weak equivalences for every X ∈M and Y ∈M′ (which proves the assertion by the 2-
out-of-3 property for weak equivalences). We only show that GrFX is a weak equivalence.
The fact that rFX : FX→ RFX is a trivial cofibration means, by definition [17, Def. 3.1] of
an exact model structure, that rFX is an admissible monomorphism with a trivially cofibrant
cokernel, that is, one has a conflation (a short exact sequence)

FX // '
rFX
// RFX π

// // C

inM′ where C is trivially cofibrant, that is, C ∈ C′ ∩W ′ (and RFX is of course fibrant).
By applying the exact functor G to the sequence above, we get a conflation inM, which is
the bottom row of the following pullback diagram:

GFX // ι

'
// T

%
// //

ϕ'
����

QGC

' qGC
����

GFX //
GrFX

// GRFX Gπ
// // GC .

Note that this pullback diagram really exists; indeed, by definition of an exact category,
any pullback of an admissible epimorphism exists and admissible epimorphisms are stable
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under pullbacks. In particular, % is an admissible epimorphism (and % has the same kernel
as Gπ; cf. Freyd [15, Thm. 2.52]). Since C ∈W ′ we have GC ∈W by assumption. Since
one always has Q(W)⊆W , it follows that QGC ∈W , and hence QGC ∈ C∩W (as QY is
always cofibrant). This means that ι is a trivial cofibration. In any model category, the class
of trivial fibrations is stable under pullbacks by [25, Cor. 1.1.11]; thus the fact that qGC is
a trivial fibration forces ϕ to be the same. As ι and ϕ are, in particular, weak equivalences,
so is their composite GrFX = ϕ◦ ι, as desired. �

Theorem 3.11. A Sharp–Foxby adjunction (S ,T ) on A induces a Quillen equivalence be-
tween the model categories U π and U ι constructed in Theorems 3.7 and 3.9. Thus the total
(left/right) derived functors of S and T yield an adjoint equivalence of the corresponding
homotopy categories,

(]4) Ho(U π)
LS

// Ho(U ι)
RT

oo .

In fact, this is an equivalence of triangulated categories.

Proof. As mentioned Remark 3.5, a Sharp–Foxby adjunction (S ,T ) onA induces an exact
adjoint equivalence between U π and U ι with S (Wπ)⊆W ι and T (W ι)⊆Wπ. Hence the
unit ηX : X→ TS X is an isomorphism, and hence also a weak equivalence, for all X ∈ U π
(in particular for X ∈Cπ); and the counit εY : S TY→ Y is an isomorphism, and hence also a
weak equivalence, for all Y ∈U ι (in particular for Y ∈F ι). Thus, if we can show that (S ,T )
is a Quillen adjunction U π� U ι, then Proposition 3.10 will imply that it is in fact a Quillen
equivalence (as claimed). To show this, it must be argued that S : U π→U ι is a left Quillen
functor (see [24, Def. 1.3.1]), that is, we must argue that S maps (trivial) cofibrations in U π
to (trivial) cofibrations in U ι. Let f be a (trivial) cofibration in U π, that is, f is an admissible
monomorphism with a (trivially) cofibrant cokernel C (see [17, Def. 3.1]). Since S is exact,
it follows that S f is an admissible monomorphism in U ι with cokernel SC. Hence, we only
need to prove that S maps (trivially) cofibrant objects in U π to (trivially) cofibrant objects
in U ι. However, this is clear as every object in U ι is cofibrant, see Theorem 3.9, and since
we have S (Wπ)⊆W ι.

Having established that (S ,T ) yields a Quillen equivalence U π� U ι, the adjoint equiv-
alence of homotopy categories displayed in (]4) follows from [24, Prop. 1.3.13].

It remains to see that the functors LS and RT are triangulated. By [28, Lem. 5.3.6] it
suffices to prove that LS is triangulated, because then its right adjoint RT will automat-
ically be triangulated as well. Recall from 2.5 that the distinguished triangles in Ho(U π)
are, up to isomorphism, the images in Ho(U π) of distinguished triangles in GProj(A) under
the equivalence GProj(A)→ Ho(U π) (see also Theorem 3.7).

At this point we need to recall from [21, Chap. I§2.5] how the triangulated structure on
the stable category GProj(A) is defined. For every morphism u : G→G′ in the Frobenius
category GProj(A) choose a short exact sequence (a conflation) G i� P p� G̃ in GProj(A)
where P is a projective-injective object, that is, P∈ Proj(A). The object G̃ is the suspension
of G; in symbols, G̃ = ΣG (the assignment G 7→ G̃ = ΣG is not functorial on GProj(A),
but it is functorial on GProj(A)). Then consider the pushout diagram in GProj(A),

(]5)

G

u
��

//
i
// P

t
��

p
// // G̃

G′

pushout

//
v
// G′′ w

// // G̃ .
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The diagram

(]6) G u
// G′ v

// G′′ w
// G̃ ,

considered as a diagram in GProj(A), is called a standard triangle. By definition, a dis-
tinguished triangle in GProj(A) is a diagram in this category which is isomorphic to some
standard triangle. The triangulated structure on GInj(A) is defined similarly.

We must show that the functor LS maps every distinguished triangle ∆ in Ho(U π) to a
distinguished triangle in Ho(U ι). By the considerations above, we may assume that ∆ is the
image in Ho(U ι) of a standard triangle (]6) in GProj(A). By definition, see [24, Def. 1.3.6],
the action of the functor LS on an object X in Ho(U π) is LS(X) = SQX where QX is a cofi-
brant replacement of X. As the objects in (]6) are already cofibrant in U π, see Theorem 3.7,
the diagram LS(∆) is nothing but

(]7) SG Su
// SG′ Sv

// SG′′ Sw
// SG̃ ,

which we must show is a distinguished triangle in Ho(U ι). Since the pair (C ι∩W ι,F ι) =
(W ι,GInjA) is a hereditary cotorsion pair in U ι, see Theorem 3.9 and Definition 3.2, it
follows from [32, Lem. 6.20] that we can find a diagram in U ι,

(]8)

SG
��

h
��

//
Si
// SP
��

e
��

Sp
// // SG̃
��

h̃
��

H

����

//
i0
// E

����

p0
// // H̃

����

J // // I // // J̃

whose rows and columns are conflations, where H,E, H̃ are Gorenstein injective, and where
J, I, J̃ have finite injective dimension. As P ∈ ProjA⊆Wπ we have SP ∈W ι, that is, SP
has finite injective dimension. It follows from the middle column in (]8) that E has finite
injective dimension, and since E is also Gorenstein injective it must be injective (this is
immediate from the definition, 2.1, of Gorenstein injective objects). Let SG′ h′� H′� J′

be a short exact sequence with H′ ∈ GInjA and J′ ∈W ι. The morphism h : SG→ H is a
(special) Gorenstein injective preenvelope of SG since it is monic and its cokernel J ∈W ι

satisfies Ext1A(J,X) = 0 for all X ∈ GInj(A); see [34, Prop. 2.1.4]. Thus, the morphism
h′Su : SG→ H′ ∈ GInj(A) lifts to a morphism u0 : H → H′ such that u0h = h′Su. This
gives commutativity of the left wall in the following diagram:

(]9)

H

u0
��

//
i0

// E

t0
��

p0
// // H̃

SG
??

h
??

Su

��

//
Si
// SP
??

e
??

St
��

Sp
// // SG̃
??

h̃
??

H′ //
v0

// H′′
w0

// // H̃

SG′
?? h′

??

//

Sv
// SG′′
?? h′′

??

Sw
// // SG̃
?? h̃

??

The top wall in (]9) is just the upper half of the commutative diagram (]8). The back wall
is the (commutative) pushout diagram of the morphisms H′ u0← H i0� E. The right wall is
evidently commutative. The front wall in (]9) is obtained by applying the exact functor S
to the diagram (]5). Since S is a left adjoint functor, it preserves colimits, so the front wall
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in (]9) is (still) a pushout diagram. As (v0h′)Su = v0u0h = t0i0h = (t0e)Si and since SG′′

is the pushout of SG′ Su←− SG Si−→ SP, there exists a (unique) morphism h′′ : SG′′ → H′′

such that h′′Sv = v0h′ and h′′St = t0e. The first of these identities show that the left square
in the bottom wall in (]9) is commutative. It follows from the universal property of the
pushout SG′′ that the right square in the bottom wall is commutative as well. By applying
the Snake Lemma to this bottom wall, we see that h′′ is monic (as h′ and h̃ are so) and
that the cokernel J′′ of h′′ sits in a short exact sequence 0→ J′ → J′′ → J̃ → 0. Since
J′, J̃ ∈W ι it follows that J′′ ∈W ι. Since h, h′, h′′, and h̃ are (admissible) monomorphisms
in U ι whose cokernels belong toW ι (which are the trivally cofibrant objects in U ι), they
are trivial cofibrations in the exact model structure on U ι; see [17, Def. 3.1]. In particular,
h, h′, h′′, and h̃ are weak equivalences in U ι and therefore isomorphisms in Ho(U ι). The
commutative diagram (]9) now shows that in the homotopy category Ho(U ι), the diagram
(]7) is isomorphic to

(]10) H
u0
// H′

v0
// H′′

w0
// H̃ .

By definition, and by commutativity of the back wall in (]9), the diagram (]10) is a standard
triangle in GInj(A), and consequently, (]7) is a distinguished triangle in Ho(U ι). �

Corollary 3.12. If there exists a Sharp–Foxby adjunction (S ,T ) on A, then there is an
equivalence of triangulated categories, GProj(A)' GInj(A).

Proof. By Theorems 3.7, 3.11, and 3.9 there are the following equivalences of triangulated
categories, GProj(A) ' Ho(U π) ' Ho(U ι) ' GInj(A). �

Remark 3.13. Before closing this section, we record a biproduct of Proposition 3.10 con-
cerning virtually Gorenstein rings, which should be well known. We recall from [3, 4] that
an Artin algebra A is called virtually Gorenstein if (GProj(A))⊥ =⊥(GInj(A)). The same
notion for commutative rings has also been studied in [36]. In what follows, assume that A
is an Artin algebra or a commutative noetherian ring with finite Krull dimension. In both
cases, it is well known [4, 19, 26] that there are Hovey triples

(GProj(A),(GProj(A))⊥,Mod(A)) and (Mod(A),⊥(GInj(A)),GInj(A)).

Applying Proposition 3.10 in the case where F = G = IMod(A), we obtain that virtually
Gorensteiness of A implies that the identity is a Quillen equivalence between the two model
structures. Therefore the homotopy categories of these two models are, in fact, isomorphic.
In case A is, in addition, commutative Gorenstein we recover the analogous statement for
Gorenstein rings (see the comments after Theorem 8.6 in [25]).

4. THE CASE OF CHAIN COMPLEXES

Recall from the beginning of Section 2 that A always denotes any bicomplete abelian
category with enough projectives and enough injectives. In this section, we consider the
abelian category Ch(A) of unbounded chain complexes inA and prove that, under suitable
conditions, a Sharp–Foxby adjunction (S ,T ) on A induces a Sharp–Foxby adjunction on
Ch(A) by degreewise application of the functors S and T . First we recall the following.

4.1. The finitistic projective dimension, FPD(A), of A is defined as

FPD(A) = sup{pdAM | M is an object in A with finite projective dimension}.
Dually, the finitistic injective dimension, FID(A), of A is

FID(A) = sup{idAM | M is an object in A with finite injective dimension}.
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The finitistic Gorenstein projective dimension, FGPD(A), and the finitistic Gorenstein in-
jective dimension, FGID(A), are defined similarly.

For most abelian categories that appear in applications, the finitistic dimensions defined
above turn out to be finite. As in [23, (proofs of) Thms. 2.28 and 2.29] one easily proves:

Lemma 4.2. There are equalities FGPD(A) = FPD(A) and FGID(A) = FID(A). Thus, if
FPD(A), respectively, FID(A), is finite, then so is FGPD(A), respectively, FGID(A). �

In A we have the subcategories U πA, CπA,Wπ
A and F π

A from Definition 3.1. Similarly, in
B = Ch(A) we have the subcategories U πB, CπB,Wπ

B and F π
B. The following result explains

the relation between all these subcategories.

Proposition 4.3. Assume that FPD(A) < ∞ and let X = · · · → Xn+1→ Xn→ Xn−1→ ·· ·
be an object in B := Ch(A). The following conclusions hold.

(i) X belongs to U πB if and only if every Xn belongs to U πA.
(ii) X belongs to CπB if and only if every Xn belongs to CπA.

(iii) X belongs toWπ
B if and only if X is exact and every cycle Zn(X) belongs toWπ

A.
(iv) X belongs to F π

B if and only if every Xn belongs to F π
A .

Proof. Part (ii) is proved in [35, Thm. 2.2] in the case A = Mod(A) where A is any ring,
but the proof works in any abelian category (with enough projectives).

In view of (ii), the “only if” part in (i) is clear. To prove the “if” part in (i), assume
that every Xn is in U πA, that is, GpdA(Xn) < ∞. By our assumption FPD(A) < ∞ and by
Lemma 4.2, it follows that s = sup{GpdA(Xn) |n ∈ Z} belongs to N0. The proof is now
by induction on s. If s = 0, then X is even in CπB ⊆ U πB by part (ii). Now assume that s > 0.
Choose any exact sequence

0−→ K −→ Ps−1 −→ ·· · −→ P1 −→ P0 −→ X −→ 0

in B = Ch(A) where P0, . . . ,Ps−1 are complexes consisting of projective objects in A. For
each n ∈ Z we have an exact sequence 0→ Kn → Ps−1

n → P1
n → P0

n → Xn → 0 in A,
and since P0

n, . . . ,P
s−1
n are projectives and GpdA(Xn) 6 s, it follows that Kn is Gorenstein

projective; cf. [23, (proof of) Prop. 2.7]. Thus, K is a complex of Gorenstein projective
objects in A, which by (ii) means that K is a Gorenstein projective object in B = Ch(A).
So the exact sequence displayed above shows that GpdB(X)6 s < ∞, that is, X ∈ U πB.

To prove (iii), let X ∈Wπ
B, which means that we have an exact sequence

(]11) 0−→ Pm −→ ·· · −→ P1 −→ P0 −→ X −→ 0

in B = Ch(A) where P0, . . . ,Pm are projective objects; i.e. each Pi is a split exact complex
of projective objects in A, and thus each cycle Zn(Pi) is also projective in A. As the
complexes P0, . . . ,Pm are, in particular, exact, so is X (and the same are all the kernel and
cokernel complexes of the chain maps that appear in (]11)). This implies that the functor
Zn(−) leaves the sequence (]11) exact, and the hereby obtained exact sequence

0−→ Zn(Pm)−→ ·· · −→ Zn(P1)−→ Zn(P0)−→ Zn(X)−→ 0

shows that Zn(X) has finite projective dimension in A, that is, Zn(X) belongs toWπ
A.

The proof of the “if” part in (iii) is based on a standard construction; see (the dual of)
[16, Thm. 3.1.3] (for this argument to work we make use the hypothesis FPD(A) < ∞).

Part (iv) is just a repetition of part (i) since F π
B = U πB and F π

A = U πA. �

InA we also have the subcategories U ιA, C ιA,W ι
A and F ι

A from Definition 3.2. Similarly,
in B = Ch(A) we have the subcategories U ιB, C ιB,W ι

B and F ι
B. By an argument dual to the

proof of Proposition 4.3, one shows the following result.
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Proposition 4.4. Assume that FID(A) <∞ and let Y = · · · → Yn+1→ Yn→ Yn−1→ ··· be
an object in B := Ch(A). The following conclusions hold.

(i) Y belongs to U ιB if and only if every Yn belongs to U ιA.
(ii) Y belongs to C ιB if and only if every Yn belongs to C ιA.

(iii) Y belongs toW ι
B if and only if Y is exact and every cycle Zn(Y) belongs toW ι

A.
(iv) Y belongs to F ι

B if and only if every Yn belongs to F ι
A. �

We can now prove the main result of this section.

Theorem 4.5. Let (S ,T ) be a Sharp–Foxby adjunction on A, in particular, GProj(A) and
GInj(A) are equivalent as triangulated categories by Corollary 3.12. If FPD(A) < ∞ and
FID(A) < ∞, then degreewise application of S and T yields a Sharp–Foxby adjunction on
B = Ch(A), and hence GProj(B) and GInj(B) are equivalent as triangulated categories.

Proof. Write S̄ and T̄ for the endofunctors on B = Ch(A) that are given by degreewise
application of S and T , and let η and ε be the unit and counit of the adjunction (S ,T ) onA.
It is straightforward to verify that (S̄ , T̄ ) is an adjunction on B with unit η̄ and counit ε̄
given by (η̄X)n = ηXn and (ε̄X)n = εXn , where X is a chain complex and n is an integer.

By assumption, S restricts to an exact functor S : U πA → U ιA which maps Wπ
A to W ι

A;
see (SF1) and (SF2) in Definition 3.4. It therefore follows from Propositions 4.3 and
4.4 that S̄ restricts to an exact functor S̄ : U πB → U ιB which maps Wπ

B to W ι
B, that is, the

adjunction (S̄ , T̄ ) also satisfies conditions (SF1) and (SF2). A similar argument shows that
this adjunction satisfies (SF3) and (SF4) as well. By (SF5) in Definition 3.4 we know that
the unit ηA : A→ TS A of (S ,T ) is an isomorphism for A ∈ U πA. From the definition of η̄
and from Proposition 4.3 it now follows that η̄X : X→ T̄ S̄ X is an isomorphism for X ∈ U πB,
that is, (S̄ , T̄ ) satisfies (SF5). Similarly, (S̄ , T̄ ) also satisfies condition (SF6). �

Corollary 4.6. Let (S ,T ) be a Sharp–Foxby adjunction on A for which FPD(A) < ∞ and
FID(A) <∞. Then degreewise application of S and T yields a Sharp–Foxby adjunction on
the category Ch2(A) of double complexes (also called bicomplexes) in A.

Proof. The category Ch2(A) of double complexes in A is naturally identified with the ca-
tegory Ch(Ch(A)). Thus, the desired conclusion follows by applying Theorem 4.5 to the
category Ch(A) (in place ofA). However, to do this we must first argue that the theorem’s
hypothesis is satisfied, i.e. that the numbers FPD(Ch(A)) and FID(Ch(A)) are finite. But
is immediate from (the proofs of) Propositions 4.3(iii) and 4.4(iii) that these numbers agree
with FPD(A) and FID(A), which are finite by assumption. �

Example 4.7. Let A be a commutative noetherian ring with a dualizing module. By Exam-
ple 3.6 there exists a Sharp–Foxby adjunction on Mod(A). The finitistic projective/injective
dimensions of Mod(A) are usually referred to as the finitistic projective/injective dimen-
sions of the ring A, and they are denoted by FPD(A) and FID(A). These numbers are finite,
indeed, one has FPD(A) = dim A> FID(A) by [30, Thm. II.(3.2.6) p. 84] and [2, Cor. 5.5],
and dim A is finite by [22, Cor. V.7.2].

Theorem 4.5 and Corollary 4.6 now imply that the category Ch(A) of chain complexes
and the category Ch2(A) of double complexes of A-modules both have Sharp–Foxby ad-
junctions. In particular, there are by Corollary 3.12 equivalences of triangulated categories,

GProj(Ch(A))' GInj(Ch(A)) and GProj(Ch2(A))' GInj(Ch2(A)) .

The key ingredient in the proof of Theorem 4.5 is that in the category B = Ch(A) the
Gorenstein projective/injective objects can be suitably described in terms of the Gorenstein
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projective/injective objects in A (as recorded in Propositions 4.3 and 4.4). This is also the
case for the category B = Rep(Q,A) of A-valued representations of a left and right rooted
quiver Q; see [13, Thm. 3.5.1]; thus by using the same methods as above one can prove:

Theorem 4.8. Let (S ,T ) be a Sharp–Foxby adjunction onA. If one has FPD(A) <∞ and
FID(A) < ∞, then vertexwise application of S and T yields a Sharp–Foxby adjunction on
B = Rep(Q,A), so GProj(B) and GInj(B) are equivalent as triangulated categories. �
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