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Abstract. Balanced pairs appear naturally in the realm of Relative Homological Algebra as-

sociated to the balance of right derived functors of the Hom functor. A natural source to get

such pairs is by means of cotorsion triplets. In this paper we study the connection between

balanced pairs and cotorsion triplets by using recent quiver representation techniques. In doing

so, we find a new characterization of abelian categories having enough projectives and injectives

in terms of the existence of complete hereditary cotorsion triplets. We also give a short proof

of the lack of balance for derived functors of Hom computed by using flat resolutions which

extends the one showed by Enochs in the commutative case.

1. Introduction

Let C be an abelian category and F be a precovering class. This means that for each object

M ∈ C there exists a (not necessarily exact) complex

· · · → F1 → F0 →M → 0,

usually called an F-resolution of M , where Fi ∈ F for every i ≥ 0, which is exact after applying

the functor HomC(F,−) for each F ∈ F . The corresponding deleted complex is unique up

to homotopy, so we can compute right derived functors of Hom, denoted by F-Extn, associated

with such F-resolutions 1. In many cases there is “balance” in the computation of such functors,

meaning that there exists a preenveloping class L such that F-Extn(M,N) can be also obtained

from the right derived functors L-Extn computed from of a coresolution of N ,

0→ N → L0 → L1 → · · · ,

where Li ∈ L for every i ≥ 0. This phenomenon can be summarized by saying that the pair

(F ,L) is a balanced pair (in the sense of Chen [3]) or equivalently that the functor Hom is right

balanced by F × L (see Enochs and Jenda [8, Section 8.2]).

Thus balanced pairs have gained attention in the last years in the context of Relative Homo-

logical Algebra (see for instance [3, 5, 8, 10, 11]). Our goal in this paper is to deepen in the

relation between balanced and cotorsion pairs or, to be more precise, between balanced pairs

and complete and hereditary cotorsion triplets. Recall that a triplet (F ,G,L) is called a cotor-

sion triplet provided that (F ,G) and (G,L) are cotorsion pairs. The reader can have in mind

the trival cotorsion triplet (Proj(R),Mod(R), Inj(R)) in the category Mod(R) of left R-modules

(where Proj(R) and Inj(R) denote the classes of projective and injective left R-modules respec-

tively) as the canonical example of a complete and hereditary cotorsion triplet. But there are

many other instances of such triplets occuring in practice (see Example 4.5).
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Complete hereditary cotorsion triplets are defined in Definition 4.1. They are a natural source

to providing with balanced pairs. This is so, by a result of Enochs, Jenda, Torrecillas and Xu

[10, Theorem 4.1] (see also Chen [3, Proposition 2.6]).

Theorem. (Enochs, Jenda, Torrecillas and Xu’98 - Chen’10) Let C be an abelian category with

enough injectives and projectives. If (F ,G,L) is a complete hereditary cotorsion triplet in C,
then (F ,L) is and admissible balanced pair.

Thus, it seems natural to wonder about the converse of this result. This appears explicitly as

an open problem in [10, Open Problems].

Question: Find conditions for a balanced pair (F ,L) to induce a complete hereditary cotorsion

triplet (F ,G,L).

One of our motivations in this paper is to shed any light on this question. We give in

Proposition 4.6 sufficient conditions to prove the converse of the previous result.

Proposition. Let C be an abelian category with enough projectives and injectives. Let F and

L be two classes of objects in C closed under direct summands such that:

(1) The class F is resolving and special precovering, and the class L is coresolving and

special preenveloping.

(2) F ∩ F⊥ ⊆ ⊥L and ⊥L ∩ L ⊆ F⊥.

(3) The pair (F ,L) is balanced.

Then, there is a complete hereditary complete cotorsion triplet (F ,G,L) in C. In this case, we

have F ∩ F⊥ = Proj(C) and ⊥L ∩ L = Inj(C).2

Let us point out that we cannot expect to get such triplet from any balanced pair. For instance,

given any ring R with identity, the pair (Mod(R),Mod(R)) is trivially a balanced pair, but the

triplet (Mod(R),G,Mod(R)) is complete if and only if R is quasi-Frobenius.

However, in case C = Mod(R), the category of left R-modules over an associative ring R with

identity, we can find a 1-1 correspondence between complete cotorsion triplets in Mod(R) and

certain balanced pairs in the abelian category Rep(Q,Mod(R)) of Mod(R)-valued representations

over a quiver Q with at least one arrow. The precise formulation of our result is the following.

The proof is in Corollary 6.5.

Theorem. If (F ,H) and (G,L) are complete hereditary cotorsion pairs in Mod(R), then the

following are equivalent:

(a) H = G (that is, (F ,G,L) is a complete and hereditary cotorsion triplet in Mod(R)).

(c) (Φ(F),Ψ(L)) is a balanced pair in Rep(Q,Mod(R)) for some left and right rooted quiver

Q with at least one arrow.

The classes Φ(F) and Ψ(L) are defined by Holm and Jørgensen in [21]. We recall in Section 6

their definition.

Notice that one easy example of left and right rooted quiver is the 1-arrow quiver Q : • → •,
and so in this case Rep(Q,Mod(R)) is nothing but the category Mor(R) of morphisms of R-

modules. But there are many other (possibly infinite) quivers satisfying this condition3. In short,

2Notations F⊥ and ⊥L are specified in the definition of hereditary cotorsion pairs in Section 2.
3An example of an infinite quiver with this condition is displayed in the paragraph before Corollary 6.5.
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the previous Theorem assures that in order to look for conditions to get an equivalence between

balanced pairs and cotorsion triplets, we need to move to a “bigger” category. This result allows

to characterize quasi-Frobeinus rings (Corollary 6.6) in terms of the so-called monomorphism

category and epimorphism category as considered by Li, Luo and Zhang in [24, 25]. And also

we recover and extend the recent characterization of virtually Gorenstein rings given by Zareh-

Khoshchehreh, Asgharzadeh and Divaani-Aazar in [30, Theorem 3.10].

While studying cotorsion triplets, we found the following interesting result of independent

interest (see Theorem 4.4).

Theorem. An abelian category C has enough projectives and injectives if, and only if, there

exists a hereditary and complete cotorsion triplet in C.

This theorem allows us to present a slightly stronger version of the aforementioned result by

Enochs, Jenda, Torrecillas and Xu. Namely, we do not require the existence of enough projectives

and injectives to prove the statement (see Proposition 4.2).

Proposition. Let C be an abelian category. If (F ,G,L) is a complete hereditary cotorsion

triplet in C, then (F ,L) is an admissible balanced pair in C.

Finally, we give in Theorem 5.2 a short and categorical proof about the lack of balance with

respect to the class of flat modules over a left Noetherian non-perfect ring. Our method is

different from the one used by Enochs in [5, Theorem 4.1] for the commutative case. As a

consequence we give a negative answer in Corollary 5.3 to the question 6 posted in [5, Section

6]. Namely, we show in Corollary 5.3 that there is no balance for the class of flat quasi-coherent

modules on a Noetherian and semi-separated scheme.

2. Preliminaries

Throughout, C will denote an abelian category. A class of objects in C will be always assumed

to be closed under isomorphisms and under finite direct sums.

Cotorsion pairs in abelian categories. Two classes of objects X and Y in C form a cotorsion

pair (Y,X ) if the following two equalities hold:

Y = ⊥1X := {C ∈ C : Ext1C(C,X) = 0 for every X ∈ X},

X = Y⊥1 := {D ∈ C : Ext1C(Y,D) = 0 for every Y ∈ Y}.

Since C does not necessarily have enough projectives and/or injectives, the extension groups

ExtiC(A,B) are defined via its Yoneda description as certain equivalent classes of i-fold extensions.

A cotorsion pair (Y,X ) in C is called:

(1) Complete if for every object C ∈ C there exist short exact sequences

0→ X → Y → C → 0 and 0→ C → X ′ → Y ′ → 0

with Y, Y ′ ∈ Y and X,X ′ ∈ X .

(2) Hereditary if ExtiC(Y,X) = 0 for every Y ∈ Y and X ∈ X , and i > 0.

Recall that a class Y of objects in C is resolving if Y is closed under extensions and under

kernels of epimorphisms with domain and codomain in Y, and if Y contains the class of projective

objects in C. Dually, one has the notion of coresolving class. We say that a cotorsion pair (Y,X )

in C is quasi-hereditary if Y is resolving and X is coresolving. In some references, quasi-hereditary
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cotorsion pairs are called hereditary, but the two notions are not the same in general. Indeed,

the condition defining hereditary cotorsion pairs in (2) above is stronger than asking Y and X
to be resolving and coresolving, respectively. This can be appreciated in the following result,

whose proof is well-known.

Proposition 2.1. Every hereditary cotorsion pair in C is quasi-hereditary. If in addition, C has

enough projectives and injectives, then every quasi-hereditary cotorsion pair in C is hereditary.

If (Y,X ) is a hereditary cotorsion pair in C, we actually have that:

Y = ⊥X := {C ∈ C : ExtiC(C,X) = 0 for every X ∈ X and i > 0},

X = Y⊥ := {D ∈ C : ExtjC(Y,D) = 0 for every Y ∈ Y and j > 0}.

Precovering and preenveloping classess. Let F be a class of objects in C. A morphism

φ : F →M in C is called an F-precover of M if F ∈ F and

HomC(F
′, F )→ HomC(F

′,M)→ 0

is a right exact sequence of abelian groups for every object F ′ ∈ F . Further, if φ : F → M is

an F-precover and ker(φ) ∈ F⊥1 then φ is called a special F-precover. If every object in C has

a (special) F-precover, then the class F is called (special) precovering.

The dual notions are (special) preenvelope and (special) preenveloping classes. It is easy to

observe that, if (Y,X ) is a complete cotorsion pair in C, then Y is special precovering and X is

special preenveloping.

By using a standard argument (known as Salce’s trick) we get the following lemma.

Lemma 2.2. Suppose that C has enough projectives and injectives. Then, the following hold:

(1) Let F be a special precovering class in C which is also resolving and closed under direct

summands. Then, (F ,F⊥) is a complete hereditary cotorsion pair in C.

(2) Let L be a special preenveloping class in C which is also coresolving and closed under

direct summands. Then, (⊥L,L) is a complete hereditary cotorsion pair in C.

Resolutions and coresolutions. Let X be a class of objects in C and M an object in C. An

X -resolution X• →M of M is a (not necessarily exact) complex

· · · → X1 → X0 →M → 0,

with each Xi ∈ X , which is exact when applying the functor HomC(X,−), for every X ∈ X . In

this case, we will say that the complex X• → M is HomC(X ,−)-acyclic. Dually, we have the

notion of X -coresolution M → X• of M .

If X is precovering (respectively, X is preenveloping) it is easy to see that every M in C
has an X -resolution (respectively, an X -coresolution). See, for instance, Enochs and Jenda [8,

Proposition 8.1.3].

Balanced pairs. A pair (F ,L) of classes in C is called a balanced pair if the following conditions

are satisfied:

(BP0) F is precovering and L is preenveloping.

(BP1) For each object M ∈ C, there is an F-resolution F• →M which is HomC(−,L)-acyclic.

(BP2) For each object M ∈ C, there is a L-coresolution M → L• which is HomC(F ,−)-acyclic.
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A balanced pair (F ,L) is called admissible provided that each F-precover is an epimorphism

and each L-preenvelope is a monomorphism.

3. Relation between balanced pairs and cotorsion pairs

Let us begin this section with the following useful characterization of balanced pairs:

Lemma 3.1. Let F and L be a precovering and a preenveloping class in C, respectively. Then,

the following conditions are equivalent.

(a) The pair (F ,L) is balanced.

(b) Each HomC(F ,−)-acyclic and left exact sequence in C is also HomC(−,L)-acyclic, and

each HomC(−,L)-acyclic and right exact sequence in C is also HomC(F ,−)-acyclic.

(c) For each object M ∈ C, there is a left exact sequence

0→ K → F →M → 0

and a right exact sequence

0→M → L→ C → 0,

which are both HomC(F ,−)-acyclic and HomC(−,L)-acyclic, where F ∈ F and L ∈ L.

Proof. The implication (a) ⇒ (b) follows from Chen’s [3, Proposition 2.2], while (b) ⇒ (c) is

clear. Let us finish the proof showing (c) ⇒ (a). By the assumption (c), for each object M ∈ C
there is a left exact sequence

0→ K0 → F0 →M → 0

in C with F0 ∈ F which is HomC(F ,−)-acyclic and HomC(−,L)-acyclic. Now, by applying (c)

again to the object K0 we get a left exact sequence

0→ K1 → F1 → K0 → 0

with F1 ∈ F which is HomC(F ,−)-acyclic and HomC(−,L)-acyclic. Continuing this process, we

obtain an F-resolution F• →M which is HomC(−,L)-acyclic. The construction of a HomC(F ,−)-

acyclic L-coresolution of M is dual. Hence, (a) follows. �

Balanced pairs vs. cotorsion pairs. As a first consequence of the previous result, we can

infer the following relation between cotorsion pairs and balanced pairs. From now on, we will

denote by Proj(C) and Inj(C) the classes of projective and injective objects of C, respectively.

Proposition 3.2. Let (F ,H) and (G,L) be cotorsion pairs in C such that the pair (F ,L) is

balanced. Then, F ∩ G = Proj(C) and H ∩ L = Inj(C).

Proof. Let us only prove the equality F ∩ G = Proj(C). The corresponding statement with

injectives follows in a dual manner. Since (F ,H) and (G,L) are cotorsion pairs, the containment

Proj(C) ⊆ F ∩G always holds. Conversely, let P ∈ F ∩G and C ∈ C be an arbitrary object. Let

us consider an element in Ext1C(P,C) represented by an exact sequence

0→ C → D → P → 0. (i)

Since P ∈ G, the sequence (i) is HomC(−,L)-acyclic. But then by Lemma 3.1, we have that this

sequence is also HomC(F ,−)-acyclic. This in turn implies that (i) splits, since P ∈ F . Finally,

being C arbitrary, we conclude that P is projective. �
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Uniqueness of balanced pairs. Given a preenveloping class L in C, there might be two

different classes F1 and F2 such that (F1,L) and (F2,L) are balanced pairs. For instance, take

the category C = Mod(R) of left R-modules and L the class of all injective left R-modules.

Then, we have two balanced pairs (F1,L) and (F2,L), where F1 is the class of all free left

R-modules and F2 consists of all projective left R-modules. In this example we notice that

Smd(F1) = Smd(F2) (where the notation Smd(F) stands for the class of direct summands of

objects in F). The second consequence of Lemma 3.1 shows that this sort of uniqueness property

holds for any admissible balanced pair.

Proposition 3.3. If (F1,L) and (F2,L) are two admissible balanced pairs in C, then the equality

Smd(F1) = Smd(F2) holds. Dually, if (F ,L1) and (F ,L2) are two admissible balanced pairs in

C, then Smd(L1) = Smd(L2).

Proof. Let us see that Smd(F1) ⊆ Smd(F2). The other inclusion follows by the same argument.

It is easy to observe that it suffices to show F1 ⊆ Smd(F2). First, note that since F2 is a

precovering class in C, for any F1 ∈ F1 we have a HomC(F2,−)-acyclic left exact sequence

0→ K → F2 → F1 → 0. (ii)

in C with F2 ∈ F2. In fact, since (F2,L) is admissible, the sequence (ii) is exact. By Lemma 3.1

along with the fact that (F2,L) is balanced, the sequence (ii) is also HomC(−,L)-acyclic. But

then, using now that (F1,L) is balanced, (ii) is also HomC(F1,−)-acyclic. This implies that (ii)

splits, since F1 ∈ F1. Hence, F1 ∈ Smd(F2), which completes the proof. �

4. Relation between balanced pairs and cotorsion triplets

It is not in general an easy task to check whether or not a pair of classes (F ,L) form a

balanced pair in an abelian category. A common source to provide with such pairs is by means

of cotorsion triplets. This section is thus devoted to define such triplets and to explore their

relation with balanced pairs. In summary, every complete and hereditary cotorsion triplet gives

rise to a balanced pair. Cotorsion triplets were introduced by A. Beligiannis and I. Reiten in [2,

Section 3 of Chapter VI.], where they study necessary and sufficient conditions for the existence

of such triplets. The concept is also studied by Enochs and Jenda in [9, Section 4.2] in the

context of chain complexes of modules over an associative ring with identity.

Definition 4.1. Three classes F , G and L of objects in C form a cotorsion triplet (F ,G,L)

if (F ,G) and (G,L) are cotorsion pairs in C. Moreover, a cotorsion triplet (F ,G,L) in C is:

(1) Complete if (F ,G) and (G,L) are complete cotorsion pairs.

(2) Hereditary if (F ,G) and (G,L) are hereditary cotorsion pairs.

From cotorsion triplets to balanced pairs. The relation between cotorsion triplets and

balanced pairs is summarized in the next proposition. It was originally outlined by Enochs,

Jenda and Torrecillas in [10, Theorem 4.1], but the precise formulation we state below is due to

Chen [3, Proposition 2.6].

Proposition 4.2. If (F ,G,L) is a complete hereditary cotorsion triplet in C, then (F ,L) is an

admissible balanced pair in C.
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Remark 4.3. Chen’s original statement and proof in [3, Proposition 2.6] requires that C has

enough projectives and injectives. However, these hypotheses are actually not necessary. This

fact has to do with an interesting characterization of abelian categories with enough projectives

and injectives in terms of complete hereditary cotorsion triplets, presented in Theorem 4.4 below.

In particular, this result shows that it is hopeless to look for complete hereditary cotorsion

triplets in Grothendieck categories without enough projectives, such as some interesting cate-

gories studied in Algebraic Geometry. For example, if T is a non-trivial topological space and O
is a sheaf of commutative rings with 1 on T , then Sh(O), the category of sheaves of O-modules,

does not have enough projective O-modules. This is also the case of the category Qcoh(X) of

quasi-coherent sheaves on a non-affine scheme X, considered in Section 5. Thus, it will follow

that neither Sh(O) nor Qcoh(X) have complete and hereditary cotorsion triplets.

Theorem 4.4. The following conditions are equivalent.

(a) C has enough projectives and injectives.

(b) There exists a complete hereditary cotorsion triplet (F ,G,L) in C.

Proof. For the implication (a) ⇒ (b) it suffices to consider the complete hereditary cotorsion

triplet (Proj(C), C, Inj(C)).
Let us now prove (b) ⇒ (a). So suppose we are given a complete hereditary cotorsion triplet

(F ,G,L) in C. We show that C has enough projectives. For any object C ∈ C, we have a short

exact sequence

0→ L→ G→ C → 0

in C with G ∈ G and L ∈ L, since (G,L) is a complete cotorsion pair. Now using the completeness

of (F ,G), we have a short exact sequence

0→ G′ → F → G→ 0

with F ∈ F and G′ ∈ G. Note that F actually belongs to F∩G since G is closed under extensions.

Now taking the pullback of L→ G← F , we obtain two short exact sequences of the form:

0→ G′ → K → L→ 0 (iii)

0→ K → F → C → 0 (iv)

Note that G′, L ∈ (F ∩G)⊥ in (iii), and so K ∈ (F ∩G)⊥. The proof will conclude after we show

that F ∩ G = Proj(C). The containment (⊇) is clear. Now let W ∈ F ∩ G. From (iv) we have

the long homology exact sequence

· · · → ExtiC(W,F )→ ExtiC(W,C)→ Exti+1
C (W,K)→ · · · .

On the one hand, ExtiC(W,F ) = 0 for every i > 0 since W ∈ F and F ∈ G, and (F ,G) is a

hereditary cotorsion pair. On the other hand, Exti+1
C (W,K) = 0 for every i > 0 since W ∈ F ∩G

and K ∈ (F ∩ G)⊥. It follows that ExtiC(W,C) = 0 for every positive integer i > 0. Since the

object C ∈ C is arbitrary, we have that W ∈ Proj(C).
A dual argument shows that C has also enough injectives. �

From now on, unless otherwise specified, R will be an associative ring with identity, and all

modules are left R-modules.
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Example 4.5. We collect from the literature the following examples of complete hereditary

cotorsion triplets (and hence of admissible balanced pairs):

(1) Let C be an abelian category. We already know from the proof of Theorem 4.4 that

(Proj(C), C, Inj(C)) is a complete cotorsion triplet if, and only if, C has enough projectives

and injectives. If any of these two conditions holds, we have the well-known balanced

pair (Proj(C), Inj(C)). Not all of the complete hereditary cotorsion triplets in C have to

be of the form (Proj(C), C, Inj(C)), as shown in the rest of the examples.

(2) Consider the category Mod(R) of modules. In this case, let us set Proj(Mod(R)) =

Proj(R) and Inj(Mod(R)) = Inj(R), for simplicity. Recall that a ring R is quasi-Frobenius

if Proj(R) = Inj(R). We can note that R is quasi-Frobenius if, and only if, the triplet

(Mod(R),Proj(R),Mod(R)) is a complete cotorsion triplet.

(3) Beligiannis and Reiten [2, Section 3 of Chapter VI.]: Let Λ be an Artin algebra and

mod(Λ) denote the abelian category of finitely generated left Λ-modules. Let add(Λ)

denote the class of objects in mod(Λ) that are direct summands of finite direct sums of

copies of Λ. The class CM(Λ) of maximal Cohen-Macaulay modules over Λ is defined as

those M ∈ mod(Λ) such that there exists an exact sequence

0→M →W 0 f0

−→W 1 f1

−→W 2 → · · ·

with W k ∈ add(Λ) and Ker(fk) ∈ ⊥(add(Λ)) for every k ≥ 0. The class CoCM(Λ) is

defined dually. On the other hand, let proj∞(Λ) (respectively inj∞(Λ)) denote the class

of finitely generated Λ-modules with finite projective (respectively injective) dimension.

If Λ is Gorenstein, then (CM(Λ), proj∞(Λ),CoCM(D(Λ))) is a complete hereditary co-

torsion triplet in mod(Λ), where D(Λ) is the minimal injective cogenerator of mod(Λ).

In this case, one has proj∞(Λ) = inj∞(Λ).

(4) Enochs and Jenda [9, Proposition 4.4.5]: Let Ch(R) denote the category of chain com-

plexes of modules. Recall from [9, Definition 4.2.2] that a chain complex P = (Pm, ∂
P
m)m∈Z

is perfect if Pm = 0 except for a finite number of integers m ∈ Z and if each Pm is a

finitely generated projective module. If S is a set of perfect complexes and U is the set

of all complexes Σk(P ) where P ∈ S and k ∈ Z, then there exists a unique complete

hereditary cotorsion triplet (Y,X ,Z) in Ch(R) where X = U⊥. Here, Σk(P ) denotes the

k-th suspension of P , that is, Σk(P )m := Pm−k for every integer m ∈ Z, with boundaries

given by (−1)k∂Pm−k.

(5) [9, Section 4.3 of Chapter IV.]: Let E denote the class of exact chain complexes in

Ch(R). Then, (⊥1E , E , E⊥1) is a complete hereditary cotorsion triplet in Ch(R), known

as the Dold triplet. Here, ⊥1E coincides with the class dg(Proj(R)) of differential graded

projective complexes in Ch(R), defined as those complexes P in Ch(R) such that Pm is

a projective module for every integer m ∈ Z, and every chain map P → E is homotopic

to zero whenever E ∈ E . Dually, E⊥1 coincides with the class dg(Inj(R)) of differential

graded injective complexes. Here, we have the balanced pair (dg(Proj(R)), dg(Inj(R))).

(6) Hovey [22, Section 8]: Let GProj(R) and GInj(R) denote the classes of Gorenstein pro-

jective and Gorenstein injective modules. Let Proj∞(R) (respectively Inj∞(R)) denote

the class of modules with finite projective (respectively injective) dimension. If R is

an Iwanaga-Gorenstein ring, then (GProj(R),Proj∞(R),GInj(R)) is a complete heredi-

tary cotorsion triplet in Mod(R), where Proj∞(R) = Inj∞(R) by [8, Proposition 9.1.7].
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Here, we have the balanced pair (GProj(R),GInj(R)) comprising several properties in

Gorenstein homological algebra.

(7) Gillespie [15]: Similar to (6) above, let DProj(R) and DInj(R) denote the classes of

Ding-projective and Ding-injective modules, respectively. Let Flat∞(R) (respectively

FP-Inj∞(R)) denote the class of modules with finite flat (respectively FP-injective) di-

mension. If R is a Ding-Chen ring, then (DProj(R),Flat∞(R),DInj(R)) is a complete

hereditary cotorsion triplet in Mod(R), where Flat∞(R) = FP-Inj∞(R) by [4, Proposi-

tion 3.16]. In this case, we have the balanced pair (DProj(R),DInj(R)) for Ding-Chen

homological algebra.

From balanced pairs to cotorsion triplets. In [10, Open Problems] is asked under what

conditions a converse of Proposition 4.2 holds. Namely, giving a special precovering class F and

a special preenveloping class L in C such that the pair (F ,L) is balanced, under what conditions

is it true that we have a complete cotorsion triplet (F ,G,L)?. In the next proposition, we

give sufficient conditions on such F and L to ensure that they are the extremes of a complete

hereditary cotorsion triplet.

Proposition 4.6. Let C be an abelian category with enough projectives and injectives. Let F
and L be two classes of objects in C closed under direct summands such that:

(1) The class F is resolving and special precovering, and the class L is coresolving and special

preenveloping.

(2) F ∩ F⊥ ⊆ ⊥L and ⊥L ∩ L ⊆ F⊥.

(3) The pair (F ,L) is balanced.

Then, there is a complete hereditary complete cotorsion triplet (F ,G,L) in C. In this case, we

have F ∩ F⊥ = Proj(C) and ⊥L ∩ L = Inj(C).

Proof. Let us call H = F⊥ and G = ⊥L. With the hypothesis on F and L we get from Lemma

2.2 that (F ,H) and (G,L) are complete hereditary cotorsion pairs in C. Let us see that H = G.

For any H ∈ H, we have a HomC(F ,−) exact sequence

0→ H0 → F → H → 0,

with F ∈ F and H0 ∈ H. It follows that F ∈ F ∩ H ⊆ G by hypothesis. By Lemma 3.1, the

above sequence is also HomC(−,L) exact, so we get H ∈ G. So H ⊆ G. Dually, we also have

that G ⊆ H. �

Remark 4.7. As mentioned in the introduction, one cannot expect to obtain a complete hered-

itary cotorsion triplet from any balanced pair. After checking the statement of Proposition 4.6,

it seems difficult to obtain such triplets from a balanced pair (F ,L) without assuming condition

(2). For example, for any ring R we have the trivial balanced pair (Mod(R),Mod(R)) by setting

F = L = Mod(R). However, we know from Example 4.5 (2) that the triplet (Mod(R),G,Mod(R))

is complete if, and only if, R is quasi-Frobenius. Note that in this case, we have F ∩F⊥ = Inj(R)

and ⊥L∩L = Proj(R), and thus condition (2) in Proposition 4.6 holds if, and only if, R is quasi-

Frobenius.

As an immediate consequence of propositions 4.2 and 4.6 we get the following.
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Corollary 4.8. Let C be an abelian category with enough projectives and injectives. If (F ,H)

and (G,L) are complete hereditary cotorsion pairs in C with F ∩ H ⊆ G and G ∩ L ⊆ H, then

H = G if and only if (F ,L) is an admissible balanced pair in C.

Virtually Gorensteins rings, balanced pairs and cotorsion triplets. We close this sec-

tion presenting a first application of the relation between balanced pairs and cotorsion triplets

described in Propositions 4.2 and 4.6, in the context of virtually Gorenstein rings (a notion orig-

inally due to Beligiannis and Reiten in [2] for Artin algebras). More applications will be given

later on for the categories of quasi-coherent sheaves and C-valued representations of quivers.

These two settings will be studied in more detail in Sections 5 and 6, respectively.

The balanced pair (GProj(R),GInj(R)) from Example 4.5 (6) can be obtained under different

assumptions on R. As a matter of fact, the existence of (GProj(R),GInj(R)) as a balanced pair

in Mod(R) is a necessary and sufficient condition for certain rings R to be virtually Gorenstein.

Recall that a (non-necessarily commutative) ring R is called virtually Gorenstein provided that

GProj(R)⊥ = ⊥GInj(R). Ding-Chen rings are examples of non-Gorenstein virtually Gorenstein

rings (see Gillespie [16, Theorem 1.1] and [15, Theorem 4.7]).

In the case where R is a Noetherian ring of finite Krull dimension, it is proved by Zareh-

Khoshchehreh, Asgharzadeh and Divaani-Aazar in [30, Theorem 3.10] that R is virtually Goren-

stein if, and only if, (GProj(R),GInj(R)) is a balanced pair in Mod(R). This is an important

recent result for which we will present two extensions in Corollaries 4.9 and 6.8. The for-

mer adds an extra condition in this equivalence, namely the existence of a cotorsion triplet

(GProj(R),G,GInj(R)) in Mod(R). For the latter extension, on the other hand, we will require

some concepts and techniques from Representation Theory of Quivers, covered in Section 6.

Corollary 4.9. Let R be a commutative Noetherian ring with finite Krull dimension. Then,

the following conditions are equivalent.

(a) R is a virtually Gorenstein ring.

(b) (GProj(R),GInj(R)) is an admissible balanced pair in Mod(R).

(c) There is a complete hereditary cotorsion triplet (GProj(R),G,GInj(R)) in Mod(R).

Proof. The equivalence (a)⇔ (b) is [30, Theorem 3.10], which also holds in the non commutative

case. The implication (c) ⇒ (b) is an immediate consequence of Proposition 4.2. So the proof

will conclude after showing (b) ⇒ (c).

Suppose that the classes GProj(R) and GInj(R) form a balanced pair (GProj(R),GInj(R)).

Firstly, it is well-known for any arbitrary ring R that the classes GProj(R) and GInj(R) are

resolving and coresolving, respectively, and that GProj(R) ∩ GProj(R)⊥ = Proj(R)4 ⊆ ⊥GInj(R)

and ⊥GInj(R) ∩ GInj(R) = Inj(R)5 ⊆ GProj(R)⊥. Moreover, since R is Noetherian we have by

Krause [23, Theorem 7.12] that GInj(R) is special preenveloping. On the other hand, since also

R is commutative with finite Krull dimension, we have that GProj(R) is special precovering

4Let us prove this equality. It is clear that Proj(R) ⊆ GProj(R) ∩ GProj(R)⊥. Conversely, let M be a module

in GProj(R) ∩ GProj(R)⊥. Then, by the definition of Gorenstein projective module, there exists a short exact

sequence

0→M → P →M ′ → 0,

with P projective and M ′ Gorenstein projective. Since M ∈ GProj(R)⊥, the sequence splits, and so M is a direct

summand of a projective module, hence projective.
5The proof is analogous to the projective case before.
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(see for example [12, Proposition 6]). Thus, we are under the hypotheses of Proposition 4.6,

which says that there must exist a complete hereditary cotorsion triplet (GProj(R),G,GInj(R))

in Mod(R). �

5. Balance with flat objects

In this section, we first give a different proof to that of Enochs in [5, Theorem 4.1] about the

lack of balance with respect to the class of flat modules, in case the ring R is left Noetherian

and non-perfect.

Balance and closure under direct sums and products. We start with the following con-

sequence of balance in abelian categories. We recall that an abelian category satisfies AB4 if it

is cocomplete and any direct sum of monomorphisms is a monomorphism. The axiom AB4* of

an abelian category is dual.

Lemma 5.1. Let F and L be two classes of objects in C such that (F ,L) is a balanced pair.

Then, the following statements hold:

(1) If C satisfies AB4, has enough injectives and any direct sum of injective objects belongs

to F⊥1, then F⊥1 is closed under direct sums.

(2) If C satisfies AB4*, has enough projectives and any direct product of projective objects

belongs to ⊥1L, then ⊥1L is closed under direct products.

Proof. Let us prove (1). So let {Ci} be a family of objects in F⊥1 and

0→ Ci → Ei → Di → 0

be a family of exact sequences with each Ei injective. Since each Ci ∈ F⊥1 , each of these

sequences is HomC(F ,−)-exact. Hence by Lemma 3.1, they will be HomC(−,L)-exact. So, for

each i and each L ∈ L, we have the exact sequence of abelian groups

0→ HomC(Di, L)→ HomC(Ei, L)→ HomC(Ci, L)→ 0.

We can take the direct product of the previous family of short exact sequences to get the exact

sequence

0→
∏
i

HomC(Di, L)→
∏
i

HomC(Ei, L)→
∏
i

HomC(Ci, L)→ 0.

Now, we have the following commutative diagram

0 //
∏
i

HomC(Di, L)

'

��

//
∏
i

HomC(Ei, L)

'

��

//
∏
i

HomC(Ci, L)

'

��

// 0

0 // HomC
(⊕

i

Di, L
)

// HomC
(⊕

i

Ei, L
)

// HomC
(⊕

i

Ci, L
)

// 0

where the columns are natural isomorphisms. The bottom row tells us that the exact sequence

0→
⊕
i

Ci →
⊕
i

Ei →
⊕
i

Di → 0
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is HomC(−,L)-exact. Since (F ,L) is balanced, by applying Lemma 3.1 again, it follows that the

sequence is HomC(F ,−)-exact. Since ⊕iEi ∈ F⊥1 by hypothesis, it follows from the usual long

exact sequence of cohomology that Ext1C(F,⊕iCi) = 0 for each F ∈ F , that is, ⊕iCi ∈ F⊥1 .

The proof of (2) is dual. �

Lack of balance with respect to flat modules. We are now in position to give a short proof

of the aforementioned result of [5, Theorem 4.1]. In what follows, we will denote by Flat(R) the

class of flat left R-modules.

Theorem 5.2. Let R be a left Noetherian ring. The class of flat left R-modules is the left part

of a balanced pair if, and only if, the ring R is left perfect.

Proof. Let us first prove the implication (⇐). If R is left perfect, then the class of flat modules

coincides with the class of projective modules (Bass’ [1, Theorem P]). Hence we get the standard

balanced pair (Proj(R), Inj(R)) in Mod(R).

In order to show the converse implication (⇒), suppose there is a balanced pair (Flat(R),L)

for some class of modules L. Since R is left Noetherian, any direct sum of injective modules

is injective. Therefore, we are in the assumptions of part (1) of Lemma 5.1, that says that the

class (Flat(R))⊥1 of cotorsion modules is closed under direct sums. But then by Guil Asensio

and Herzog’s [18, Theorem 19], the ring R must be left perfect. �

Following the philosophy of [5, Section 5], we want to mention other cases for which Theo-

rem 5.2 is also valid. First, one can state a chain complex version of Theorem 5.2 by noticing

some facts. Firstly, recall that a chain complex is flat if it is exact with flat cycles. Also,

projective and injective complexes have similar descriptions. So if Flat(R) denotes the class of

flat complexes, we can note that if (Flat(R))⊥1 is closed under direct sums, then so will be the

class (Flat(R))⊥1 of cotorsion modules. For it suffices to note that for every cotorsion module

C, the complex C = · · · → 0 → C → 0 → · · · belongs to (Flat(R))⊥1 . This follows applying a

well-known natural isomorphism appearing in [14, Lemma 4.2].

The other context we are interested in is the category of quasi-coherent sheaves on a scheme

X, presented in the following section.

Lack of balance with respect to flat quasi-coherent modules on a scheme. From now

until the end of this section all rings are commutative.

Let Qcoh(X) denote the category of quasi-coherent sheaves on a schemeX. The corresponding

version of Theorem 5.2 for Qcoh(X) is formulated below in Corollary 5.3. This result answers

the question (6) posted in [5, Section 6] in the negative.

For a better understanding of Corollary 5.3, we need to recall a few well-known facts about

Qcoh(X). First, a scheme X is called semi-separated if it has a semi-separating open affine

covering U = {Ui : i ∈ I}, that is, for each i, k ∈ I the intersection Ui ∩ Uk is also an open

affine. For each i ∈ I, the canonical inclusion ιi : Ui → X gives an adjoint pair (ι∗i , ι
i
∗), where

ι∗i : Qcoh(X)→ Qcoh(Ui) and ιi∗ : Qcoh(Ui)→ Qcoh(X)

are the inverse and direct image functors, respectively. In general, the direct image functor ιi∗
does not preserve quasi-coherence, but it does for semi-separated schemes X. So, for each Ui,
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we have an isomorphism

HomQcoh(Ui)(ι
∗
iH ,T ) ∼= HomQcoh(X)(H , ιi∗T ).

Since, for each open affine Ui, the categories Mod(OX(Ui)) and Qcoh(Ui) are equivalent by a

well-known result of Grothendieck (see for instance Hartshorne’s [20, Chapter II, Corollary 5.5]),

we can write the previous isomorphism as

HomOX(Ui)(H (Ui), T ) ∼= HomQcoh(X)(H , ιi∗(T )),

for anyOX(Ui)-module T and any quasi-coherent sheaf H . We recall that a scheme is Noetherian

if it is quasi-compact and it possesses an open affine covering U = {U1, . . . , Un} such that, for

each i = 1, . . . , n, OX(Ui) is a Noetherian ring.

Let Flat(X) denote the class of flat quasi-coherent sheaves over X in the following result.

Corollary 5.3. Let X be a Noetherian and semi-separated scheme, with semi-separating open

affine covering U = {U1, . . . , Un}. Assume that OX(Ui) is a Noetherian but not Artinian ring,

for some i ∈ {1, . . . , n}. Then, Flat(X) is not the left part of a balanced pair in Qcoh(X).

Proof. Suppose that there is such balanced pair (Flat(X),L) in Qcoh(X), for some class L.

The category Qcoh(X) is well-known to be a Grothendieck category (see Grothendieck and

Dieudonné’s [17, Chapitre 1, §6, Corollarie 6.9.12] for the existence of a family of generators)

and so it is cocomplete, satisfies AB4 and has enough injectives. Indeed, since X is Noetherian,

the category Qcoh(X) is locally Noetherian ([19, Chapter II, §7]), hence the direct sum of

injective objects in Qcoh(X) is again injective (Stenström’s [29, Chapter V, Proposition 4.3]).

Therefore, part (1) of Lemma 5.1 tells us that the class (Flat(X))⊥1 of cotorsion quasi-coherent

sheaves, is closed under direct sums. Now let {Ck} be a family of cotorsion OX(Ui)-modules. By

Gillespie [13, Lemma 6.5] the functor ιi∗ : Mod(OX(Ui))→ Qcoh(X) preserves cotorsion objects.

Hence, the family {ιi∗(Ck)} is a family of cotorsion quasi-coherent sheaves and thus, by the

previous, ⊕kιi∗(Ck) ∈ (Flat(X))⊥1 . We will finish the proof by showing that this implies that

⊕kCk is a cotorsion OX(Ui)-module. So, by Guil Asensio and Herzog [18, Theorem 19], the ring

OX(Ui) must be Artinian. A contradiction.

To show what we claimed, let F be a flat OX(Ui)-module. We want to show that the equality

Ext1OX(Ui)
(F,⊕kCk) = 0 holds. Firstly, notice that F = ι∗i ι

i
∗(F ). Then, the isomorphism shown

in the proof of [13, Lemma 6.5] gives

Ext1OX(Ui)
(F,⊕kCk) ∼= Ext1Qcoh(X)(ι

i
∗(F ), ιi∗(⊕kCk)).

The last Ext functor vanishes, because ιi∗(F ) is a flat quasi-cohent sheaf (so it belongs to Flat(X))

and ιi∗(⊕kCk) ' ⊕kιi∗(Ck) ∈ (Flat(X))⊥1 , because the functor ιi∗ commutes with direct sums. �

6. Balance in quiver representations and cotorsion triplets

Throughout this section C will be an abelian category with enough projectives and injectives

that satisfies AB4 and AB4*.

In [27, Theorem 4.1.3] Odabaşı has recently proved that, under some conditions on a quiver

Q, a complete cotorsion pair in C induces two complete cotorsion pairs in the abelian category

Rep(Q, C) of C-valued representations of Q. Taking into account the relation between balanced

pairs and cotorsion triplets, it seems natural to expect that balanced pairs in C and Rep(Q, C)
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should be also related. Thus we will devote this section to study the relation between balanced

pairs in C and balanced pairs in Rep(Q, C). One of the consequences of our results is that they

will lead us to finding new conditions over two complete hereditary cotorsion pairs to form a

cotorsion triplet.

Adjoint Functors between C and Rep(Q, C). A quiver Q = (Q0, Q1, s, t) is a directed graph

with vertex set Q0, arrow set Q1 and two maps s, t from Q1 to Q0 which associate to each arrow

α ∈ Q1 its source s(α) ∈ Q0 and its target t(α) ∈ Q0, respectively. The quiver Q is said to be

finite if Q0 and Q1 are finite.

A representation X = (Xi,Xα) of Q over C, or a C-valued representation, is defined by the

following data:

(1) To each vertex i in Q0 is associated an object Xi ∈ C.
(2) To each arrow α : i→ j in Q1 is associated a morphism Xα : Xi → Xj in C.

A morphism f from X to Y is a family of morphisms {fi : Xi → Yi}i∈Q0
such that Yαfi = fjXα

for any arrow α : i → j ∈ Q1. We will denote by Rep(Q, C) the category of all C-valued

representations of a quiver Q.

Define the functor eiλ : C → Rep(Q, C) as

eiλ(M)j :=
⊕
Q(i,j)

M

for every vertex j ∈ Q0 (see Mitchell’s [26, Section 28]) with Q(i, j) the set of paths p in Q such

that s(p) = i and t(p) = j. Moreover, for an arrow α : j → k, the morphism eiλ(M)α is the

canonical injection. Dually, the functor eρi : C → Rep(Q, C) is defined by Enochs and Herzog in

[6, 7] as

eρi (M)j :=
∏
Q(j,i)

M

for every vertex j ∈ Q0.

Lemma 6.1. [6, 21] Let i ∈ Q0 and ( )i : Rep(Q, C) −→ C be the restriction functor given by

(X)i = Xi for any representation X of Rep(Q, C). Then, the following conditions hold:

(1) ( )i is a right adjoint of eiλ and a left adjoint of eρi .

(2) ExtmRep(Q,C)(e
i
λ(Y ),X) ∼= ExtmC (Y, (X)i) for every m ≥ 0.

(3) ExtmRep(Q,C)(X, e
ρ
i (Y )) ∼= ExtmC ((X)i, Y ) for every m ≥ 0.

For any representation (Xi,Xα) of Rep(Q, C), there are induced morphisms

ϕXi :
⊕

t(α)=i

Xs(α) → Xi and ψXi : Xi →
∏

s(α)=i

Xt(α).

We will denote by ci(X) the cokernel of ϕXi and by ki(X) the kernel of ψXi . The assignments

ci(−) and ki(−) from Rep(Q, C) to C are functorial.

Lemma 6.2. [21, Section 4 and Proposition 5.4] Let i ∈ Q0 and si : C → Rep(Q, C) be the stalk

functor given by si(Y )j = δijY , where δiiY = Y and δijY = 0 whenever j 6= i. Then, we have:

(1) si is a right adjoint of ci and a left adjoint of ki;

(2) Ext1Rep(Q,C)(X, si(Y )) ∼= Ext1C(ci(X), Y ), provided that ϕXi is monic.

(3) Ext1Rep(Q,C)(si(Y ),X) ∼= Ext1C(Y,ki(X)), provided that ψXi is epic.
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Corollary 6.3. Let Q be a quiver without oriented cycles, and let us fix a vertex k ∈ Q0. Given

a class L of objects of C, for any G ∈ ⊥1L there is an exact sequence

0→ K→ ekλ(G)
ĩd−→ sk(G)→ 0

in Rep(Q, C) with ĩd = δkiidG. Moreover, for any X ∈ Rep(C, Q), if kk(X) ∈ L and ψXk is epic,

then the above sequence is HomRep(Q,C)(−,X) exact.

Proof. Clearly, ĩd is surjective: For any arrow α : i → j, if j = k, then ekλ(G)i = 0 since the

quiver has no oriented cycles. And so we have the diagram

0 //

��

0

��
G

idG

// G

Otherwise, the diagrams

i = k, j 6= k G
idG //

Gα

��

G

��⊕
Q(k,j)

G // 0

i 6= k, j 6= k
⊕
Q(k,i)

G //

Gα

��

0

��⊕
Q(k,j)

G // 0

are also commutative. That is, ĩd is an epimorphism in Rep(Q, C).
Moreover, Ext1Rep(Q,C)(sk(G),X) ∼= Ext1C(G,kk(X)) = 0 by Lemma 6.2 and the hypothesis on

G. Therefore the sequence

0→ K→ ekλ(G)
ĩd−→ sk(G)→ 0

is HomRep(Q,C)(−,X) exact. �

Induced classes in Rep(Q, C). Let L be a class of objects of C. Following [21] we denote by

Rep(Q,L) := {X ∈ Rep(Q, C) | Xi ∈ L for all i ∈ Q0},

Φ(L) := {X ∈ Rep(Q,L) | ϕXi is monic and ci(X) ∈ L for all i ∈ Q0},

Ψ(L) := {X ∈ Rep(Q,L) | ψXi is epic and ki(X) ∈ L for all i ∈ Q0}.

Proposition 6.4. Let Q be a quiver with at least one arrow and without oriented cycles. With

the notation above, assume that (Φ(F),Ψ(L)) is a balanced pair in Rep(Q, C) for certain classes

F and L in C. Then, the following statements holds:

(1) (F ,L) is a balanced pair in C.

(2) If F is resolving, then ⊥1L ⊆ F⊥1.

(3) If L is coresolving, then F⊥1 ⊆ ⊥1L.

Proof. Let us prove (1) and (2). Part (3) is dual to (2).

(1) For any object M ∈ C, there is a Φ(F)-precover σ : F→ si(M). Let K = ker(si). Thus

we have an induced morphism σ̃i : Fi → si(M)i = M in C, and a left exact sequence

0→ Ki → Fi
σ̃i−→M → 0. (v)
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We claim that σ̃i : Fi → si(M)i = M is an F-precover of M , where σ̃i is induced by σ.

In fact, for any F ∈ F , one can note that the representation eiλ(F ) belongs to Φ(F).

Then, we have an epimorphism

HomRep(Q,C)(e
i
λ(F ),F)→ HomRep(Q,C)(e

i
λ(F ), si(M))

which implies by Lemma 6.1 an epimorphism HomC(F,Fi)→ HomC(F,M), as desired.

Since (Φ(F),Ψ(L)) is a balanced pair in Rep(Q, C) and eρi (L) ∈ Ψ(L) for any L ∈ L,

we have by Lemma 3.1 an exact sequence

0→ HomRep(Q,C)(si(M), eρi (L))→ HomRep(Q,C)(F, eρi (L))→ HomRep(Q,C)(K, eρi (L))→ 0

with K = ker(σ). Now by part (1) of Lemma 6.1, we have an exact sequence

0→ HomC(M,L)→ HomC(Fi, L)→ HomC(Ki, L)→ 0.

Thus the left exact sequence (v) is HomC(−,L) and HomC(F ,−) exact. Similarly, we

have that L is preenveloping and that there is a right exact sequence

0→M → L→ C → 0

in C, which is HomC(F ,−)-acyclic and HomC(−,L)-acyclic. Therefore, by Lemma 3.1

the pair (F ,L) is balanced.

(2) Before proving the statement, we need to make some observations.

• By the hypothesis on Q, we can fix a non-sink vertex k ∈ Q0. This means that

there exists at least an arrow k → i in Q.

• Let F ∈ F and σ : P → F be an epimorphism with P projective and let us denote

by P and F the induced representations ekλ(P ) and sk(F ), respectively. Then, we

have an induced epimorphism σ̃ : P→ F in Rep(Q, C) with σ̃i = δkiσ, for any vertex

i ∈ Q0. Let K = ker(σ̃). We will show that K ∈ Φ(F).

For each vertex i ∈ Q0, we have the following exact commutative diagram in C:

0
⊕

t(α)=i

Ks(α)

⊕
t(α)=i

Ps(α)
⊕

t(α)=i

Fs(α) 0

0 Ki Pi Fi 0

ϕKi ϕPi ϕFi

Since F is resolving it contains all the projective objects, so P ∈ F . Therefore, by

the definition of the functor ekλ(−), we follow that P = ekλ(P ) belongs to Φ(F). So,

in particular, the morphism ϕPi is monic for any vertex i ∈ Q0. It follows that ϕKi

is monic since ϕPi is monic. By the snake lemma, we get the exact sequence

0 // ker(ϕFi) // ci(K) // ci(P) // ci(F) // 0.

Note that ker(ϕFi), ci(P), ci(F) ∈ F and F is resolving. It follows that ci(K) ∈ F .

Thus K ∈ Φ(F).
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• Moreover, for any arrow α : k → i with i 6= k, we have the commutative diagram

0 // Kk = ker(σ)

��

l // Pk = P

Pα
��

Ki Pi =
⊕
Q(k,i)

P

and

Pk = P

Pα
��

σ // Fk = F

��

// 0

Pi =
⊕
Q(k,i)

P // 0

where l and Pα are canonical injections.

Let us prove now the claim (2). So let G ∈ ⊥1L. We want to show that G ∈ F⊥1 .

Given F ∈ F , we have the previous exact sequence

0→ ker(σ)
l→ P

σ→ F → 0,

with P projective. Then to get what we claim, it suffices to show that any f : ker(σ)→ G

can be lifted to a map P → G, that is, the previous sequence is HomC(−, G) exact. So,

let f : ker(σ) → G be any morphism and let f̃ : K → sk(G) be the induced morphism

in Rep(Q, C) with f̃ki = δijf. Note that G ∈ ⊥1L, we get that

ĩd : ekλ(G)→ sk(G)→ 0

is HomC(−,Ψ(L)) exact from Corollary 6.3. It follows that ĩd is HomC(Φ(F),−) exact

by the hypothesis on the balance. And we have previously proved that K ∈ Φ(F).

Therefore, for the map f̃ : K → sk(G), there is g̃ : K → ekλ(G) such that f̃ = ĩdg̃. In

particular, for the arrow α : k → i, we have the following commutative diagram

ker(σ)

Pαl

��

f

""

g̃k

yy
G

ekλ(G)
α

��

G

��

Ki

  

g̃i

{{
G

⊕
Q(k,i)

G //
πα

oo 0

It follows that g̃iPαl = ekλ(G)αg̃k. Let πα be the canonical projection corresponding to

the canonical injection ekλ(G)α, and so

f = g̃k = παe
k
λ(G)αg̃k = (παg̃i) ◦ (Pαl) = (παg̃iPα) ◦ l.

That is, the sequence

0→ ker(σ)→ P → F → 0
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is HomC(−, G) exact, and so G ∈ F⊥1 .

�

For the following results, recall (see for example [21]) that a quiver Q is said to be left rooted

if it contains no paths of the form · · · → • → • → •. Dually, Q is called right rooted if it contains

no paths of the form • → • → • → · · · .
Let us focus now in the case C = Mod(R). If the quiver Q is left and right rooted (for instance

the quiver · · · → • ← • → • ← • → • ← • → · · · ) we can combine [21, Theorems A and

B] and Eshraghi, Hafezi, Hosseini and Salarian [11, Theorem A] (or [27, Theorem 4.1.3]) to

infer that, in case we start with two complete hereditary cotorsion pairs (F ,H) and (G,L) in

Mod(R), then we get two induced complete hereditary cotorsion pairs (Φ(F),Rep(Q,H)) and

(Rep(Q,G),Ψ(L)) in Rep(Q,Mod(R)). Therefore, we get the following result.

Corollary 6.5. If (F ,H) and (G,L) are complete hereditary cotorsion pairs in Mod(R), then

the following are equivalent:

(a) H = G
(b) (Φ(F),Ψ(L)) is an admissible balanced pair for any left and right rooted quiver Q with

at least one arrow.

(c) (Φ(F),Ψ(L)) is an admissible balanced pair for some left and right rooted quiver Q with

at least one arrow.

Proof.

• (a)⇒ (b). Let Q be any left and right rooted quiver with at least one arrow. By the pre-

vious comments, we have the two complete hereditary cotorsion pairs (Φ(F),Rep(Q,H))

and (Rep(Q,G),Ψ(L)) in Rep(Q,Mod(R)). By hypothesis we have that H = G, and so

Rep(Q,H)) = Rep(Q,G). Hence Proposition 4.2 gives the claim (b).

• (b) ⇒ (c). It is trivial.

• (c) ⇒ (b). By Proposition 6.4(1), the pair (F ,L) is a balanced pair. By the assump-

tion in the corollary, the classes F and L are, in particular, resolving and coresolving,

respectively (see Section 2). Hence Proposition 6.4(2) gives that

G = ⊥1L ⊆ F⊥1 = H,

and Proposition 6.4 (3) gives that H = F⊥1 ⊆ ⊥1L = G. So (a) follows.

�

As a consequence of Corollary 6.5, we have the following characterization of quasi-Frobenius

rings.

Corollary 6.6. A ring R is quasi-Frobenius if and only if (Φ(Mod(R)),Ψ(Mod(R))) is an

admissible balanced pair for a left and right rooted quiver Q with at least one arrow. In this case,

we have the complete hereditary cotorsion triplet (Φ(Mod(R)),Rep(Q,Proj(R)),Ψ(Mod(R))) in

Rep(Q,Mod(R)).

Proof. Let us first recall that, for any ring R, we have the trivial complete hereditary cotorsion

pairs (Mod(R), Inj(R)) and (Proj(R),Mod(R)). By the comments before Corollary 6.5, for a
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given left and right rooted quiver Q, we have the induced complete hereditary cotorsion pairs

(Φ(Mod(R)),Rep(Q, Inj(R))) and (Rep(Q,Proj(R)),Ψ(Mod(R))) in Rep(Q,Mod(R)). (vi)

Now, suppose that R is quasi-Frobenius. Then Inj(R) = Proj(R), and so Corollary 6.5 ((a) ⇒
(c)) gives that (Φ(Mod(R)),Ψ(Mod(R))) is a balanced pair for some left and right rooted quiver

Q with at least one arrow.

Conversely, if we assume that (Φ(Mod(R)),Ψ(Mod(R))) is a balanced pair for some left and

right rooted quiver Q with at least one arrow, we get from Corollary 6.5 ((c) ⇒ (a)) that

Inj(R) = Proj(R), that is the ring R is quasi-Frobenius.

Finally, if any of the equivalent conditions holds, we follow that the categories Rep(Q, Inj(R)))

and Rep(Q,Proj(R)) coincide, and so the pairs in (vi) give rise to the complete hereditary

cotorsion triplet

(Φ(Mod(R)),Rep(Q,Proj(R)),Ψ(Mod(R)))

in Rep(Q,Mod(R)). �

Remark 6.7. The category Φ(Mod(R)) is known in the literature as monomorphism category.

It has been extensively studied by Li, Luo and Zhang in [24, 25]. Dually, Ψ(Mod(R)) is called

epimorphism category.

Our last result allows to give another extension of the characterization of virtually Goren-

stein Noetherian rings of finite Krull dimension given by Zareh-Khoshchehreh, Asgharzadeh and

Divaani-Aazar in [30, Theorem 3.10]. We recall that a ring R is called left n-perfect if every flat

left R-module has finite projective dimension ≤ n.

Corollary 6.8. Let R be a left n-perfect and right coherent ring. Then, the following conditions

are equivalent:

(a) R is virtually Gorenstein.

(b) (Φ(GProj(R)),Ψ(GInj(R))) is an admissible balanced pair in Rep(Q,Mod(R)) for some

left and right rooted quiver Q with at least one arrow.

(c) (GProj(R),GInj(R)) is an admissible balanced pair in Mod(R).

Proof. Firstly we point out that under the assumptions on R, the pair (GProj(R),GProj(R)⊥)

is known to be a complete hereditary cotorsion pair (see Estrada, Iacob, Odabaşı [12, Propo-

sition 6]). On the other hand, Šaroch and Šťov́ıček ([28]) have recently proved that the pair

(⊥GInj(R),GInj(R)) is a perfect (so, in particular, complete) and hereditary cotorsion pair for

any ring.

Now, (a) ⇔ (c) immediately follows from Corollary 4.8 by the above and by noticing that

GProj(R) ∩ GProj(R)⊥ = Proj(R) and ⊥GInj(R) ∩ GInj(R) = Inj(R).

Finally (a) ⇔ (b) follows from Corollary 6.5. �
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[27] S. Odabaşı. Completeness of the induced cotorsion pairs in categories of quiver representations. J. Pure Appl.

Algebra, To appear.
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