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Aggregation and signature based comparisons of
multi-state systems via decompositions of fuzzy measures

Jorge Navarro,∗,† and Fabio Spizzichino‡

April 12, 2019

Abstract

In the reliability literature, several results have been presented to compare binary (two
states) systems. Often, such results are based on copula-based extensions of fuzzy measures,
where a fuzzy measure describes the structure of a system and a copula describes the stochas-
tic dependence among the lifetimes of its components. Other similar results have been ob-
tained in terms of the concept of signature. Here, we extend all those results to multi-state
systems made up from binary components by suitably constructing corresponding mixed bi-
nary systems. For such a construction, we show how any fuzzy measure can be decomposed as
a convex combination of {0, 1}-valued fuzzy measures and how such a decomposition extends
to the corresponding aggregation function. For a mixed system we can furthermore consider
its signature and so we can also define a signature for the multi-state system. For mixed
systems associated to different multi-state systems, we can thus obtain different comparison
results, which can be translated into the corresponding comparisons for the parent multi-
state systems. Stochastic comparisons are obtained for the discrete random variables which
represent the states of two systems at time t, as well. The arguments in the paper will be
illustrated by means of examples and related remarks.
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ANSWERS TO REVIEWER 3

First of all, we want to thank you for your positive report. We have
incorporated all your suggestions.

We write below your comments (in blue) and our answers (in black) ex-
plaining how they have been incorporated into the paper.

The main changes in the paper are written in blue.

You took all the comments into account and took this opportunity to
improve your (already) nice paper. In my opinion, the paper is now suitable
for publication.

I have two minor comments :

1) On page 9/l26 Replace ”T1 is not apt” by ”Random variable T1 is not
apt”, in order not to start a sentence with a mathematical symbol.

Changed.

2) I mentioned what is now in Remark 3.13 and Remark 3.14 in order
to simplify the computations. For instance, in Example 5.2, the Boolean
function max(y1, ..., yn) can be written 1 − (1 − y1)...(1 − yn). It is not
difficult to expand this product as

∑
A⊂[n],A 6=∅(−1)|A|+1

∏
i∈A yi). Introducing

random states and taking expectation, we obtain the formula that appears
on page 21/l46. Of course this formula is known. But this computation
can be done in the same way for Boolean functions and also produces in the
same way the formula on page 22/l4. This computation seemed easier to me,
but I understand now that simplicity depends on the reader/author and his
favorite way of handling problems. Mine is clearly on the side of Boolean
functions. So you can leave it as it is now.

We have decided to include both options in Example 5.2 (see page 21).
Thus every reader can choose the preferred method.

Thank you for your useful suggestions!
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Aggregation and signature based comparisons of
multi-state systems via decompositions of fuzzy measures

Jorge Navarro,∗,† and Fabio Spizzichino‡

October 25, 2019

Abstract

In the reliability literature, several results have been presented to compare binary (two
states) systems. Often, such results are based on copula-based extensions of fuzzy measures,
where a fuzzy measure describes the structure of a system and a copula describes the stochas-
tic dependence among the lifetimes of its components. Other similar results have been ob-
tained in terms of the concept of signature. Here, we extend all those results to multi-state
systems made up from binary components by suitably constructing corresponding mixed bi-
nary systems. For such a construction, we show how any fuzzy measure can be decomposed as
a convex combination of {0, 1}-valued fuzzy measures and how such a decomposition extends
to the corresponding aggregation function. For a mixed system we can furthermore consider
its signature and so we can also define a signature for the multi-state system. For mixed
systems associated to different multi-state systems, we can thus obtain different comparison
results, which can be translated into the corresponding comparisons for the parent multi-
state systems. Stochastic comparisons are obtained for the discrete random variables which
represent the states of two systems at time t, as well. The arguments in the paper will be
illustrated by means of examples and related remarks.

Keywords: Aggregation functions · Fuzzy measures · Mixed systems · Decompositions
of fuzzy measures · Copula.

1 Introduction
The notion of aggregation function is important in Mathematics and in several other disciplines.
It can have a unifying role in connecting studies of different types. Some recent papers have
studied the connections between aggregation functions, coherent (engineering) systems and fuzzy
measures, see [9, 13, 14, 28], the references therein and the basic monograph in [24]. These
relationships are very interesting and can be used to simplify and improve expressions and proofs
in these different research areas. In particular, it was proved in [9, 20] that the reliability function
∗Universidad de Murcia, Murcia, Spain.
†Correspondence to: Jorge Navarro, Facultad de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain.

E-mail: jorgenav@um.es. Telephone number: 34 868883509. Fax number: 34 868884182.
‡Universita’ degli studi di Roma, La Sapienza, Italy.
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R(t) of a coherent binary system can be obtained as an aggregation function applied to the
respective reliability functions of the single components. This aggregation function is determined
by the survival copula of the components’ lifetimes and the structure function ϕ of the system.

Furthermore, it has been shown in [28] that also the expected value E (H(t)) of H(t), the state
at time t > 0 of a multi-state coherent system, can be given in the form of an aggregation function
applied to the respective reliability functions of the single components, as well. The difference
between the two cases of multi-state and binary systems consists in the obvious circumstance
that, in the latter case, the possible values for ϕ can only be 0 and 1, and that the function
E (H(t)) reduces to the system’s reliability function R(t). Specifically, the aggregations represent-
ing E (H(t)) have in any case the form (3.5) below. By using a language used in the theory of
monotone measures, we can say that the aggregation functions appearing in such a formula are
copula-based extensions of the structure function ϕ, and they are the objects of main interest in
our paper. The general formula (3.5) in particular encompasses the case when ϕ is binary and
when, correspondingly, E (H(t)) reduces to R(t).

Generally, the function ϕ appearing in the expression (3.5), can also take other remarkable
interpretations beside the field of reliability. Thus it can be convenient to look at a coherent
structure function ϕ from a more general viewpoint, just as a normalized fuzzy measure over the
set S = {0, 1/m, 2/m, . . . , 1}, for a fixed natural number m. Actually we will maintain here, for
the function ϕ, the meaning of structure function of a coherent reliability system. This is not,
however, a really restrictive choice. In fact we shall see that, in any case, aggregations of the form
(3.5), even if emerging from different applied contexts, can be given corresponding interpretations
in the field of reliability; see in particular Theorem 3.12 below, where the role of mixed binary
systems is emphasized. Thus our results, inspired by the reliability context, can assume a rather
general interest.

One of the main topics in reliability theory is the stochastic comparison of binary coherent
systems. Many results have been obtained both for systems with independent and dependent
components. Recently, some results have been obtained for systems with dependent components
by using the theory of copulas to represent the dependence structure. A recent survey can be seen
in [15].

In the treatment of these problems the representation (3.4), based on the concept of aggrega-
tion, reveals to be a useful tool. It can be used in fact to obtain distribution-free comparisons of
systems just by comparing their aggregation functions (see [16, 17] and the references therein).
Specific results can be obtained for homogeneous (identically distributed) components (see, e.g.,
[15]).

In the special cases when the components’ lifetimes are independent and identically distributed
(IID) or exchangeable an alternative, still very useful, representation can be obtained in terms
of the concept of signature. The latter representation also emerges as a convenient one in the
problem of comparing different binary systems, see e.g. [11, 18, 19].

The main purpose of the present paper is to extend the comparison results obtained for binary
systems to multi-state systems composed with binary components. Comparing the performance of
two different binary systems amounts to establishing some stochastic order between their respective
lifetimes. In the case of a binary system with binary components, its lifetime is a non-negative
random variable directly defined as a deterministic function of the components’ lifetimes (see in
particular [8] for details about the specific analytic form). Also for multi-state systems (still with
binary components) one can consider a similar concept of system’s lifetime, but the latter is not
actually an appropriate object for the purpose of establishing significant stochastic comparisons.
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To a multi-state system we will rather associate a lifetime defined by a probabilistic relation
with the lifetimes of components. More precisely, we associate to a multi-state system a suitably
defined mixed system (i.e. a mixture of a given set of binary systems). The lifetime of the mixed
system corresponds to the lifetime of a system, chosen at random out of the given set of binary
systems. For a fixed survival copula of components’ lifetimes, such a mixed system shares the
same aggregation function with the “parent” multi-state system and can be used to represent the
performance of it. This representation, in particular, will be used to also define a specific concept
of signature associated to the multi-state system. Both aggregation function and signature can
be used to compute the reliability function of the corresponding mixed system and thus to get
comparison results for different multi-state systems. Stochastic comparisons are also obtained
for the discrete random variables which represent the states of the systems at time t. In order
to suitably define the afore-mentioned mixed system, we will preliminarily point out that any
arbitrary multi-state system admits a natural decomposition in terms of binary systems. We will
then obtain different types of comparison results, which can also be translated into conditions for
the respective copula-based aggregation functions.

The rest of the paper is organized as follows. The notation, basic definitions and preliminary
results are introduced in Section 2. This section is actually divided into two different parts. The
first one is devoted to the basic properties of binary systems, including the formal definitions of
binary coherent systems, mixed systems and signatures. The second part presents a brief review
of existing results concerning stochastic comparisons of binary systems. In Section 3 we obtain,
for multi-state systems, different representation results based on the concepts of signature and
of aggregation function. Such results will be employed in Section 4 to obtain comparison results
for multi-state systems. Some illustrative examples are presented in Section 5. Section 6 will be
devoted to a brief discussion and some final remarks.

2 Notation and preliminary results

2.1 A brief review about binary systems

The structure of a binary system with n components can be represented as a Boolean function

ϕ : {0, 1}n → {0, 1}

where yj represents the state of the j-th component and ϕ(y1, . . . , yn) the state of the system
which only depends on the components’ states. Here yj = 1 means that the j-th component is
working and yj = 0 means that it has failed. Then the binary system only has two possible states
ϕ(y1, . . . , yn) = 1 (it is working) and ϕ(y1, . . . , yn) = 0 (it has failed). The multi-state systems
defined in the next section will extend this definition allowing other possible intermediate states
for the system.

According to the classic reliability theory (see, e.g., [1]), a binary system is semi-coherent if its
structure function ϕ is increasing and satisfies ϕ(0, . . . , 0) = 0 and ϕ(1, . . . , 1) = 1. It is coherent
if ϕ is increasing and it is strictly increasing in each variable in at least a point, that is, for each
j ∈ [n] := {1, . . . , n}, there exist values y1, . . . , yn ∈ {0, 1} such that

0 = ϕ(y1, . . . , yj−1, 0, yj+1, . . . , yn) < ϕ(y1, . . . , yj−1, 1, yj+1, . . . , yn) = 1.

This last property means that all the components are relevant for the system. In particular, it
implies that ϕ(0, . . . , 0) = 0 and ϕ(1, . . . , 1) = 1 (since ϕ is increasing), that is, all the coherent

3



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

systems are in particular semi-coherent. The reverse is not true since a semi-coherent system may
have irrelevant components. For example, ϕ(y1, . . . , yn) = min(y1, y2) is a semi-coherent system
of order n (representing the series system formed with the two first components) but it is not
coherent when n > 2 since then it has n− 2 irrelevant components.

In reliability theory one typically assumes that, for j ∈ [n], the state of component j at time
t ≥ 0 is a (binary) random variable that we denote by Yj(t). Obviously, we assume Yj(0) = 1 for
j = 1, . . . , n. The lifetime of component j is then defined as

Xj = sup{t : Yj(t) = 1}.

We denote by T the corresponding random lifetime of the system. Then it is well known that T
can be obtained from X1, . . . , Xn (see [1], p. 12; see also [8]). The components’ lifetimes can be
dependent or independent. This possible dependence can be modelled by the joint reliability (or
survival) function of the random vector (X1, . . . , Xn) defined as

F̄(x1, . . . , xn) = Pr(X1 > x1, . . . , Xn > xn). (2.1)

We denote by F̄j(xj) = Pr(Xj > xj) the marginal reliability function of Xj for j = 1, . . . , n and
by Ĉ the survival copula of (X1, . . . , Xn). As well-known, a copula is a multivariate distribution
function with uniform marginals over the interval (0, 1). The basic properties of copulas can be
seen e.g. in [7, 22]. The survival copula Ĉ contains all the information about the dependence
structure between the component’s lifetimes and it is defined as the copula such that the joint
reliability function in (2.1) can be written as

F̄(x1, . . . , xn) = Ĉ(F̄1(x1), . . . , F̄n(xn)).

From Sklar’s theorem, the survival copula is unique when F̄1, . . . , F̄n are continuous.
Analogously, the reliability function R(t) = Pr(T > t) of the lifetime of a semi-coherent binary

system can be written (see, e.g., [15, 20]) as

R(t) = Q̄(F̄1(t), . . . , F̄n(t)) (2.2)

for all t > 0, where Q̄ is a continuous aggregation function (or distortion function), that is, Q̄ :
[0, 1]n → [0, 1] is a continuous increasing function such that Q̄(0, . . . , 0) = 0 and Q̄(1, . . . , 1) = 1.

The function Q̄ depends both on the structure of the system ϕ and on the survival copula Ĉ
of the component lifetimes (dependence structure). However, it does not depend on F̄1, . . . , F̄n.
Hence (2.2) is a very useful representation since Q̄ contains all the information about the system
structure and the dependence and the different components can be represented by just different
reliability functions (univariate probability models). More precisely, the dependence on the func-
tion ϕ and on the copula Ĉ of the function Q̄ will be detailed in the next section, where can be
obtained as a special case of the formula (3.4) below.

We also remind that the mixed (binary) systems were defined as finite mixtures of (binary)
systems in [5]. Thus, givenm semi-coherent systems with structures ϕ1, . . . , ϕm with n components
and m positive numbers w1, . . . , wm such that w1 + · · ·+wm = 1, the associated (random) mixed
system structure ϕ is defined as ϕi with probability wi, for i = 1, . . . ,m. Note that ϕ(0, . . . , 0) = 0
and ϕ(1, . . . , 1) = 1. However, we cannot assure that ϕ is increasing (since it is random). What
we get is that

E(ϕ(u1, . . . , un)) =
m∑
i=1

wiϕi(u1, . . . , un) ≤
m∑
i=1

wiϕi(v1, . . . , vn) = E(ϕ(v1, . . . , vn))

4
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for all ui ≤ vi, i = 1, . . . , n. Mixed systems can be used in practice to represent systems that
should fulfil different requirements at different times. For example, an online shop with n servers
may work with just k < n servers from Monday to Friday but it may need the n servers during
the weekend. In other situations, some components in a system may be turned off during some
hours (to save money) by changing in this way the structure of the system. In all these cases, the
structure of the system can be modelled as a random structure.

2.2 Preliminaries about stochastic comparisons of binary systems

In order to compare the lifetimes of two different binary systems we shall consider the following
well known stochastic orders. Their main properties can be seen in [27]. Given two random
variables X and Y with reliability functions F̄ and Ḡ and probability density (or probability
mass) functions f and g, we say that X is less than Y :
• in the usual stochastic order (shortly written as X ≤st Y ) if F̄ ≤ Ḡ.
• in the hazard order (shortly written as X ≤hr Y ) if Ḡ/F̄ is increasing.
• in the likelihood ratio order (shortly written as X ≤lr Y ) if g/f is increasing (in the union

of their supports).
It is well known that

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ E(X) ≤ E(Y ) (2.3)

whenever these expectations exist.
Distribution-free comparison results for binary systems based on (2.2) were obtained in [16,

17, 20]. For completeness, we include some of them in the following proposition.

Proposition 2.1. Let T1 and T2 be the lifetimes of two semi-coherent binary systems with aggre-
gation functions Q̄1 and Q̄2 and common component reliability functions F̄1, . . . , F̄n. Then:

(i) T1 ≤st T2 for all F̄1, . . . , F̄n if and only if Q̄1 ≤ Q̄2.

(ii) T1 ≤hr T2 for all F̄1, . . . , F̄n if and only if Q̄2/Q̄1 is decreasing in (0, 1)n.

Additional comparisons results can be obtained if we assume that the component lifetimes are
independent and identically distributed (IID) or exchangeable (EXC), that is, F̄ is permutation
invariant. In these cases, the system reliability function can be written (see, e.g., [15, 19, 26]) as

R(t) = s1F̄1:n(t) + · · ·+ snF̄n:n(t), (2.4)

where F̄1:n, . . . , F̄n:n are the reliability functions of the ordered component lifetimes X1:n ≤ · · · ≤
Xn:n obtained from X1, . . . , Xn.

The vector with the coefficients s = (s1, . . . , sn) in (2.4) is called the signature of order n of the
system. If the joint reliability F̄ is absolutely continuous, then sk = Pr(T = Xk:n) for k = 1, . . . , n.
The signature can also be computed from the structure function as

sk =
1(
n
k−1

) ∑
∑n

j=1 xj=n−k+1

ϕ(y1, . . . yn) − 1(
n
k

) ∑
∑n

j=1 xj=n−k

ϕ(y1, . . . yn), k = 1, . . . , n, (2.5)

see Boland [4] (or [25]).

5
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If the component lifetimes are IID or EXC, then representations similar to (2.4) can be obtained
in terms of series or parallel systems (see, e.g., [15]). For example, for the series systems we have

R(t) = a1F̄1:1(t) + · · ·+ anF̄1:n(t), (2.6)

where F̄1:j(t) = Pr(X1:j > t) and X1:j = min(X1, . . . , Xj) for j = 1, . . . , n. The vector a =
(a1, . . . , an) with the coefficients in (2.6) is called the minimal signature of order n of the system.
Some of these coefficients can be negative (so they cannot be looked at as probabilities).

Note that s1 + · · · + sn = 1. Thus the signature can be seen as a discrete distribution over
1, . . . , n. Hence, from (2.4) we can obtain the following comparison results extracted from [11]
and [19], respectively.

Proposition 2.2. Let T1 and T2 be the lifetimes of two semi-coherent binary systems based on n
IID components with a common reliability function F̄ . Let s1 and s2 be the respective signatures
of order n.

(i) If s1 ≤st s2, then T1 ≤st T2 for all F̄ .

(ii) If s1 ≤hr s2, then T1 ≤hr T2 for all F̄ .

(iii) If s1 ≤lr s2, then T1 ≤lr T2 for all absolutely continuous F̄ .

Proposition 2.3. Let T1 and T2 be the lifetimes of two semi-coherent binary systems based on
n EXC components with a common joint reliability function F̄. Let s1 and s2 be the respective
signatures of order n.

(i) If s1 ≤st s2, then T1 ≤st T2 for all F̄.

(ii) If s1 ≤hr s2, then T1 ≤hr T2 for all F̄ such that

X1:n ≤hr · · · ≤hr Xn:n.

(iii) If s1 ≤lr s2, then T1 ≤lr T2 for all absolutely continuous F̄ such that

X1:n ≤lr · · · ≤lr Xn:n.

Note that in the two preceding propositions we just have sufficient conditions, based on signa-
tures, for some stochastic orders to hold. Actually, these orders might hold even if the signatures
are not ordered (see [15, 25]).

3 Representation of multi-state systems and related aggre-
gation functions

As mentioned above, one main purpose of the present paper is to extend to multi-state systems
the comparisons results reviewed in the preceding Subsection 2.2 for the case of binary systems.
On this purpose we will devote the present section to point out relations existing between multi-
state and binary systems. On such a basis we will suitably associate an aggregation function and a
signature vector to any given multi-state system. For simplicity’s sake and for readers’ convenience

6
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we will first concentrate our attention to the special case of multi-level systems, defined by the
condition that, for a fixed m ∈ N, the set of possible states is given by S :=

{
0, 1

m
, 2
m
, . . . , m−1

m
, 1
}
.

The general case when the structure function of the system is an arbitrary, regular, fuzzy measure
will be separately analysed in Subsection 3.2.

In any case, we consider systems made up with n binary components. Recalling the notation
introduced in the previous section, for j = 1, . . . , n, the binary random variable Yj(t) is the random
state of component j at time t > 0 and Xj = sup{t : Yj(t) = 1} denotes the component’s lifetime.
Ĉ denotes the survival copula of (X1, . . . , Xn) and F̄1 (t) , . . . , F̄n (t) are the marginal reliability
functions.

3.1 The case of multi-level systems

Here we assume that, for a fixed m ∈ N, the set of possible states of a system is

S :=

{
0,

1

m
,

2

m
, . . . ,

m− 1

m
, 1

}
where, as above, 1 represents the perfect functioning state and 0 the state of failure. In the middle,
we have m − 1 intermediate states. The evolution in time of the performance of the system can
then be seen as a stochastic process starting from 1 (perfect functioning) and eventually going to
0 (failure) as t→∞. This representation is clearly equivalent to the classical representation using
the levels {0, 1, . . . ,m} for a given integer number m. We could of course consider systems with
more general levels `0 = 0 < `1 < · · · < `m by using the set

S :=

{
h0 = 0, h1 =

`1
`m
, h2 =

`2
`m
, . . . , hm−1 =

`m−1
`m

, hm = 1

}
.

This general case is studied in the next Subsection 3.2.
We assume that the state of the system at time t ≥ 0 is completely determined by the respective

states at time t of the system’s components. Thus we define the structure of a multi-level system
with binary components as follows.

Definition 3.1. The structure function of a multi-level system with binary components is a
(component-wise) increasing function

ϕ : {0, 1}n → S

such that ϕ (0, . . . , 0) = 0 and ϕ (1, . . . , 1) = 1.

Then we notice that ϕ has the properties of a normalized (or regular) fuzzy measure. It is
convenient, in this respect, to keep in mind that ϕ can be considered both as a function defined on
the space {0, 1}n and as a set function defined over the family 2[n] of all the subsets of [n] where
for J ⊆ [n],

ϕ(J) := ϕ(1J)

and 1J := (y1, . . . , yn) with yj = 1 for j ∈ J and yj = 0 for i /∈ J .
In this sense (see, e.g., [10]), the Möbius transform ϕ̂ of ϕ is

ϕ̂(I) :=
∑
J⊆I

(−1)|I|−|J |ϕ(J)

7
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and it is such that the inverse relation

ϕ(J) =
∑
I⊆J

ϕ̂(I) (3.1)

holds. It is also useful for our purposes below to rewrite the previous equation (3.1) in a slightly
different form. For y ∈ {0, 1}n and I ⊆ [n] such that y = 1I , we can write

ϕ(y) =
∑
J⊆I

ϕ̂(J) =
∑
J⊆[n]

ϕ̂(J)
∏
j∈J

yj. (3.2)

Remind from the previous section that, for j ∈ [n], we denote by Yj(t) the (binary) random
state of component j at time t ≥ 0 and, obviously, we assume Yj(0) = 1 for j = 1, . . . , n. Then
we can also consider that the random state of the system at time t is given by

H (t) := ϕ (Y1(t) . . . , Yn(t)) .

For a single instant t > 0, H (t) is a discrete random variable, taking values in the set S, with
probability distribution given by

pi(t) := Pr

(
H (t) =

i

m

)
= Pr

(
ϕ (Y1(t) . . . , Yn(t)) =

i

m

)
, i = 0, . . . ,m (3.3)

and with the expected value

E (H (t)) =
1

m

m∑
i=1

i · Pr

(
ϕ (Y1(t) . . . , Yn(t)) =

i

m

)
.

Note that {H (t)}t≥0 is a stochastic process with H (0) = 1 and H (∞) = 0.
By applying the above relation (3.2), one can write

H(t) =
∑
J⊆[n]

ϕ̂(J)
∏
j∈J

Yj(t)

and the expected value E (H (t)) can be given in an alternative expression as follows. First we
write

E (H(t)) =
∑
J⊆[n]

ϕ̂(J)E

(∏
j∈J

Yj(t)

)
.

Furthermore,

E

(∏
j∈J

Yj(t)

)
= Pr

(⋂
j∈J

{Yj = 1}

)
= Pr

(⋂
j∈J

{Tj > t}

)
.

Thus we obtain the alternative form

E (H (t)) = Mϕ

(
F̄1 (t) , . . . , F̄n (t)

)
, (3.4)

where, for u = (u1, . . . , un) ∈ [0, 1]n,

Mϕ (u) :=
∑
J⊆[n]

ϕ̂(J)Ĉ (uJ ,1) , (3.5)

8
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with ϕ̂ denoting the Möbius transform of ϕ, Ĉ the survival copula and (uJ ,1) := (x1, . . . , xn) with
xj = uj for j ∈ J and xj = 1 for j /∈ J (for more details see [28]).

The functionMϕ in (3.4) and (3.5) is a continuous aggregation (distortion) function, that is, it
is increasing and satisfiesMϕ(0, . . . , 0) = 0 andMϕ(1, . . . , 1) = 1. Moreover, for u = (u1, . . . , un) ∈
{0, 1}n, one has

Mϕ (u) = ϕ (u)

and Mϕ is told to be a copula-based extension of ϕ (see [12, 28]).
Of course, the binary semi-coherent systems considered in the preceding section are just multi-

level systems with m = 1 (i.e., with two levels) and in this case we have

E (H (t)) = 0 · Pr(H (t) = 0) + 1 · Pr(H (t) = 1) = Pr(H (t) = 1) = Mϕ

(
F̄1 (t) , . . . , F̄n (t)

)
,

where, if T = sup{t : H (t) = 1} is the system lifetime, then

Pr(H (t) = 1) = Pr(T > t) = Mϕ

(
F̄1 (t) , . . . , F̄n (t)

)
, (3.6)

that is, we obtain the representation (2.2) with Q̄ = Mϕ. When we study the multi-level case, the
lifetime of the system might be defined as

T1 := inf{t : H(t) = 0} = sup{t : H(t) > 0}. (3.7)

The random variable T1 is not apt, however, to describe the performance of the system adequately
for our purposes. For this reason, given a multi-level structure ϕ, we consider the associated
binary systems with the following structures

ϕi (y1, . . . , yn) =

{
1, if ϕ (y1, . . . , yn) ≥ i

m

0, if ϕ (y1, . . . , yn) < i
m

(3.8)

for i = 1, . . . ,m. The binary structures ϕ1, . . . , ϕm are semi-coherent and satisfy ϕ1 ≥ · · · ≥ ϕm.
Moreover, we have

ϕ(y1, . . . , yn) =
1

m

m∑
i=1

ϕi(y1, . . . , yn). (3.9)

This representation is equivalent to that obtained in (30) of [13] and it can be traced back to [3].
Hence the state of the system at time t can also be written as

H (t) = ϕ(Y1(t), . . . , Yn(t)) =
1

m

m∑
i=1

ϕi(Y1(t), . . . , Yn(t)) =
1

m

m∑
i=1

Hi (t) , (3.10)

where Hi (t) is the state at time t of the binary system with structure ϕi for i = 1, . . . ,m, that is,
H (t) is the average of the states of the binary systems. We denote by

T1, . . . , Tm

the respective lifetimes of the systems with structure ϕi for i = 1, . . . ,m. Note that T1 coincides
with the lifetime defined in (3.7). As a consequence of (3.9) and (3.10), we have the following
property.

9
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Proposition 3.2. Let ϕ be a multi-level structure. Let ϕ1, . . . , ϕm be the structures of the asso-
ciated binary systems and let T1, . . . , Tm be their respective system lifetimes that have the survival
copula Ĉ. Then

E (H (t)) =
1

m

m∑
i=1

Ri(t), (3.11)

where Ri(t) = Pr(Ti > t) is the reliability function of Ti for i = 1, . . . ,m,

Ri(t) = Mi

(
F̄1 (t) , . . . , F̄n (t)

)
=
∑
I⊆[n]

ϕ̂i(I)Ĉ (uI ,1) (3.12)

and ϕ̂i(I) =
∑

J⊆I(−1)|I|−|J |ϕi(J) is the Möbius transform of ϕi.

Proof. From (3.5) and (3.6), the reliability function of Ti can be written as

Ri(t) = Pr(Ti > t) = Pr(Hi (t) = 1) = Mi

(
F̄1 (t) , . . . , F̄n (t)

)
for i = 1, . . . ,m. Then, from (3.10), we get

E (H (t)) = E

(
1

m

m∑
i=1

Hi (t)

)
=

1

m

m∑
i=1

E(Hi (t)),

where E(Hi (t)) = Pr(Hi (t) = 1) = Ri(t). This proves (3.11). Expression (3.12) is then obtained
by applying (3.4) to ϕi.

Remark 3.3. Note that, from (3.4), we also get

E (H (t)) = Mϕ

(
F̄1 (t) , . . . , F̄n (t)

)
,

where
Mϕ(u) =

∑
J⊆[n]

ϕ̂(J)Ĉ (uJ ,1)

and
ϕ̂(J) =

∑
I⊆J

(−1)|J |−|I|ϕ(I).

By combining equations (3.4) and (3.5) with (3.9), we obtain

ϕ̂(J) =
1

m

∑
J⊆J

(−1)|J |−|I|
m∑
i=1

ϕi(I) =
1

m

m∑
i=1

∑
J⊆I

(−1)|J |−|I|ϕi(I) =
1

m

m∑
i=1

ϕ̂i(J) (3.13)

and

Mϕ(u) =
∑
J⊆[n]

ϕ̂(J)Ĉ (uJ ,1) =
1

m

m∑
i=1

∑
J⊆[n]

ϕ̂i(J)Ĉ (uJ ,1) =
1

m

m∑
i=1

Mi(u) (3.14)

for all J ⊆ [n] and all u ∈ [0, 1]n. Therefore,

E (H (t)) = Mϕ

(
F̄1 (t) , . . . , F̄n (t)

)
=

1

m

m∑
i=1

Mi(F̄1 (t) , . . . , F̄n(t)) =
1

m

m∑
i=1

Ri(t)

as stated in the preceding proposition. Thus, in (3.13) and (3.14), we have directly proven that
the Möbius transform ϕ̂ and the aggregation function Mϕ of the multi-level system ϕ are just the
average of the respective functions associated to the binary systems ϕ1, . . . , ϕm.

10
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Remark 3.4. Another alternative (and simpler) proof for the preceding proposition can be obtained
as follows. We remind that, for any fixed t, H (t) is a discrete random variable which can take the
values 0, 1/m, . . . ,m/m. Hence

E (H (t)) =
m∑
i=1

i

m
pi(t)

with pi(t) defined by (3.3). Moreover,

pi(t) = Pr

(
H (t) ≥ i

m

)
− Pr

(
H (t) ≥ i+ 1

m

)
= Pr(Ti > t)− Pr(Ti+1 > t) = Ri(t)−Ri+1(t)

for i = 1, . . . ,m− 1 and

pm(t) = Pr
(
H (t) ≥ m

m

)
= Pr(Tm > t) = Rm(t).

Therefore,

E (H (t)) = Rm(t) +
m−1∑
i=1

i

m
(Ri(t)−Ri+1(t)) =

1

m

m∑
i=1

Ri(t).

The expression (3.11) proves that the function E (H (t)) is equal to the reliability function of a
uniform mixture of the binary systems. Thus any multi-level system can be associated to a mixed
system (see the definition in the preceding section) as follows.

Definition 3.5. The mixed system associated to a multi-level system with structure function ϕ is
that which is equal to the binary system ϕi with probability 1/m, for i = 1, . . . ,m.

If T is the lifetime of the mixed system associated to ϕ, then the expression (3.11) can be
rewritten as

Pr(T > t) = E (H (t)) =
1

m

m∑
i=0

Ri(t).

In particular, we have proved that E (H (t)) can be seen as a reliability function. Thus, for our
purposes, the lifetime T can be used to represent the performance of the multi-state system.
Hence, the expression (3.4) can also be written as

Pr(T > t) = E (H (t)) = Q̄
(
F̄1 (t) , . . . , F̄n (t)

)
, (3.15)

where

Q̄ =
Q̄1 + · · ·+ Q̄m

m

and Q̄i is the aggregation function of the i-th binary system obtained from (2.2) (or from (3.12)).
Note that Q̄ = Mϕ where Mϕ can also be computed from (3.5). The preceding expression (3.15)
will be used in the next section to compare stochastically two different multi-level systems.

We can go further if we assume that the components are exchangeable (or IID). In this case
we can define the signature of a multi-level system as follows.

Definition 3.6. The signature vector r of a multi-level system is defined as

r =
s1 + · · ·+ sm

m

where si is the signature vector of the i-th binary system Ti for i = 1, . . . ,m.

11
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Note that r is the signature of the mixed system associated to ϕ. The minimal and maximal
signatures can be defined in a similar way (as the average of the respective signatures of the
binary systems). If the components are exchangeable (or IID), then we can obtain the following
representation.

Proposition 3.7. If r = (r1, . . . , rn) is the signature vector of a multi-level system with exchange-
able components, then

E (H (t)) = r1F̄1:n(t) + · · ·+ rnF̄n:n(t), (3.16)

where F̄i:n is the reliability function of the i-th ordered lifetime obtained from (X1, . . . , Xn).

The proof is immediate from (2.4) and (3.11).
Note that the signature vector r = (r1, . . . , rn) of a multi-level system can also be defined as

in (2.5) by

rk =
1(
n
k−1

) ∑
∑n

j=1 yj=n−k+1

ϕ(y1, . . . yn) − 1(
n
k

) ∑
∑n

j=1 yj=n−k

ϕ(y1, . . . yn), k = 1, . . . , n.

From (3.9) the two definitions are equivalent. In Section 5 we show that the first definition is
better in order to compute the signature of a multi-state system.

It is important to note here that to get (3.16), we need to assume that the components are
exchangeable. If they are not, this definition of signature might be not useful (since (3.16) does
not hold). The same happens for binary systems (see [19]).

3.2 The general case of multi-state systems

In the present subsection we extend and, up to some extent, we formalize the arguments presented
in the previous subsection. Actually, all the properties studied therein can be extended to general
multi-state systems with binary components having increasing structure functions

ϕ : {0, 1}n → [0, 1]

such that ϕ (0, . . . , 0) = 0 and ϕ (1, . . . , 1) = 1 (i.e. regular fuzzy measures).
Since the space {0, 1}n is finite, the set Sϕ of the states of such a system is also finite and can

be written as
Sϕ = {0 = h0 < h1 < · · · < hq−1 < hq = 1}

for an integer number q. Therefore, the structure function can be written as

ϕ : {0, 1}n → Sϕ

which is the definition given in [28].

Remark 3.8. Note that the level set Sϕ depends on the system ϕ. If we want to compare two
systems ϕ1 and ϕ2 with different level sets Sϕ1 and Sϕ2, we just consider them as systems over the
(finite) set S := Sϕ1 ∪ Sϕ2. So, without loss of generality, we can assume that they have the same
level set S.

12
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The space Φn of all such structure functions is convex. Also, in these more general cases, we
can consider, for any t > 0, the discrete random variable

H(t) = ϕ (Y1(t), . . . , Yn(t)) ,

indicating the state of the system at time t. By taking again into account (3.2) (see also [28]), we
can easily extend the arguments in the previous subsection and we can still write

E (H(t)) = Mϕ

(
F̄1 (t) , . . . , F̄n (t)

)
,

where Mϕ is the aggregation function defined by

Mϕ (u) :=
∑
I⊆[n]

ϕ̂(I)Ĉ (uI ,1) . (3.17)

Let now ψ1, . . . , ψm ∈ Φn, be given coherent structure functions and set, for i = 1, . . . ,m,

Hi(t) := ψi (Y1(t), . . . , Yn(t)) .

Then we can obtain the following result.

Proposition 3.9. Suppose that m non-negative coefficients α1, . . . , αm exist such that α1 + · · ·+
αm = 1 and

ϕ (y) =
m∑
i=1

αiψi (y)

for all y ∈ {0, 1}n. Then

ϕ̂ (I) =
m∑
i=1

αiψ̂i (I)

for all I ⊆ [n] and

Mϕ (u) =
m∑
i=1

αiMψi
(u)

for all u ∈ [0, 1]n.

As the following result shows, any multi-state structure function ϕ ∈ Φn can be written as a
convex combination of binary structure functions, namely the binary structures are the extreme
points of the convex space Φn.

Fix a coherent structure function ϕ : {0, 1}n → Sϕ and consider the q binary systems with
structures ϕ1, . . . , ϕq defined as

ϕi (y1, . . . , yn) =

{
1, if ϕ (y) ≥ hi
0, if ϕ (y) < hi

. (3.18)

Notice that such binary structures are obviously ordered. Consider also the functionsR0(t), . . . , Rq(t)
defined by

Ri(t) := Pr (H (t) ≥ hi) ,

for i = 0, . . . , q, so that

Pr (H (t) = hi) = Pr (H (t) ≥ hi)− Pr (H (t) ≥ hi+1) = Ri(t)−Ri+1(t).

13
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for i = 0, . . . , q − 1. Set

pi(t) := Pr (H (t) = hi) = Ri(t)−Ri+1(t).

for i = 0, . . . , q − 1 and

pq(t) := Pr (H (t) = hq) = Pr (H (t) = 1) = Rq(t).

Notice that, by definition, pi(t) ≥ 0 and

q∑
i=0

pi(t) = R0(t) = 1.

As a consequence, we get the following result, which was also proven by Radojevic in different
contexts (see, e.g., [23]).

Proposition 3.10. If ϕ is a system and ϕ1, . . . , ϕq are the associated binary systems defined by
(3.18), then we can write

ϕ (y) =

q∑
i=1

ρiϕi (y) ,

for all y ∈ {0, 1}n, where ρi = hi − hi−1 ≥ 0 for i = 1, . . . , q and ρ1 + · · ·+ ρq = 1.

Proof. Suppose y ∈ {0, 1}n to be such that ϕ (y) = hi, for some i = 1, . . . , q. Then

ϕ1 (y) = · · · = ϕi−1 (y) = ϕi (y) = 1

and if i < q,
ϕi+1 (y) = · · · = ϕq (y) = 0.

Thus
q∑
j=1

ρjϕj (y) =
i∑

j=1

ρj =
i∑

j=1

(hj − hj−1) = hi = ϕ(y).

If ϕ (y) = h0 = 0, then
ϕ1 (y) = · · · = ϕq (y) = 0

and
q∑
j=1

ρjϕj (y) = 0 = ϕ(y).

Note that ϕ is a linear convex combination of the ordered binary structures ϕ1 ≥ · · · ≥ ϕq. Let
us denote by T1, . . . , Tq the respective lifetimes of the binary semi-coherent systems with structure
ϕi for i = 1, . . . , q, that is,

Ti := sup{t : ϕi (Y1 (t) , . . . , Yn (t)) = 1} = sup{t : H(t) ≥ hi}.

Then the functions R1, . . . , Rq defined above satisfy Ri(t) = Pr(Ti > t), that is, they are the
reliability functions of Ti for i = 1, . . . , q. Analogously to the above Proposition 3.2 and as a
direct consequence of above arguments we can state the following proposition.
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Proposition 3.11. For any t > 0, one has

E (H (t)) =

q∑
i=1

ρiRi(t),

where ρi = hi − hi−1 ≥ 0 for i = 1, . . . , q and ρ1 + · · ·+ ρq = 1.

Furthermore, we can also write

E (H (t)) =

q∑
i=1

hi Pr (H (t) = hi) =

q∑
i=1

hipi(t) =

q∑
i=1

hi [Ri(t)−Ri+1(t)] .

Also in this case, E (H (t)) is equal to the reliability function of a mixed system, namely the
one obtained by taking the associated binary system ϕi with probabilities ρi, for i = 1, . . . , q.

The converse property is not true, that is, we cannot define a multi-state system for any mixed
system. This property holds just for mixed systems based on ordered binary systems. Thus
if we consider the mixed system based on ordered semi-coherent systems ϕ1 ≥ · · · ≥ ϕq with
probabilities ρ1, . . . , ρq, then we can define a multi-state system with states

S = {0 = h0 < h1 := ρ1 < h2 := ρ1 + ρ2 < · · · < hq := ρ1 + · · ·+ ρq = 1}

whose associated mixed system coincides with the parent one.
As already noticed the binary systems defined in (3.8) are ordered, that is, they satisfy the

relation ϕ1 ≥ · · · ≥ ϕq. Hence the associated reliability functions satisfy R1(t) ≥ · · · ≥ Rq(t) for
all t, that is, T1 ≥st · · · ≥st Tq. Hence, the family of multi-state systems can be seen as a relevant
subset of the family of general mixed systems (that based on ordered coherent systems).

We can, at this point, conclude with the following result concerning with aggregation functions
of the form Mϕ,Ĉ (u) :=

∑
I⊆[n] ϕ̂(I)Ĉ (uI ,1).

Theorem 3.12. Let ϕ ∈ Φn and let Ĉ be an arbitrarily fixed n-dimensional copula. Then, for
any choice of one-dimensional reliability functions F̄1, . . . , F̄n, there exists a mixed binary system
whose reliability function R(t) is given by

R(t) = Mϕ,Ĉ

(
F̄1(t), . . . , F̄n(t)

)
,

for any t > 0.

Remark 3.13. Let Ĉ be a fixed n-dimensional copula and consider the transformations

ϕ→ ϕ̂ and ϕ→Mϕ,

where ϕ̂ represents the Möbius transform and Mϕ is the aggregation function defined in (3.5)
as a copula-based extension of ϕ. Both of these transformations preserve convex combinations as
pointed out in Proposition 3.9. Of course we cannot, stricto sensu, claim that such transformations
are linear since the space Φn of all the multi-state systems is not a vector space. One can obtain
a linear space by extending to R the target space of the functions ϕ. Thus the above considered
transformations are indeed linear. In this case ϕ : {0, 1}n → R admits a unique expression as a
multilinear polynomial

ϕ(x1, . . . , xn) =
∑
J⊆[n]

aJ
∏
j∈J

xj.

The coefficients aJ in the canonical base are nothing but the values of the Möbius transform, that
is. aJ = ϕ̂(J).
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Remark 3.14. As an immediate consequence of the relation (3.2), also the random variable H(t)
can be expressed as a multilinear polynomial

H(t) = ϕ(Y1(t), . . . , Yn(t)) =
∑
J⊆[n]

ϕ̂(J)
∏
j∈J

Yj(t) (3.19)

in the binary variables Y1(t), . . . , Yn(t). This expression plays a key role for our results in view
of linearity of expectations. In particular it point outs a more direct way to obtain the represen-
tation shown in the preceding theorem. Notice that

∏
i∈I Yi(t) represents the series system with

components in I and that the values of the Möbius transform of the multi-state structure ϕ can
be null, positive or negative. The polynomial form (3.2) for ϕ and the preceding one for H(t) are
sometimes simple to obtain, remembering that the min (series structure) corresponds to a product
and the max (parallel structure) to a coproduct, and that for Boolean variables x2i = xi (see, e.g.,
p. 12 in [1]). Some examples are given in the following remark and in Section 5.

Remark 3.15. A very special and “extreme” class of fuzzy measures is obtained by imposing the
condition of additivity:

ϕ (y1, . . . , yn) =
n∑
i=1

αiyi,

for given non-negative quantities α1, . . . , αn such that
∑n

i=1 αi = 1. In such a case the Möbius
transform is given by

ϕ̂ (I) =

{
0 for |I| > 1,
αi for I = {i},

see, e.g., [10], p. 52. As an immediate consequence of (3.17), the aggregation functionMϕ becomes

Mϕ (u) =
n∑
i=1

αiui

and thus it does not depend on the survival copula Ĉ. This circumstance finds an immediate
heuristic interpretation in the fact that additivity describes a lack of interaction, among the dif-
ferent components, for what concerns the level of the multi-state system. When the condition of
additivity is combined with symmetry among the components, one obtains the very special case
where the system level just coincides with the proportion of the working components in the system.
This case is discussed in Example 5.1 below.

In the above remark we have considered the extreme case of lack of interaction among the
different components in contributing to the level of the system. An opposite extreme case is
represented, in a sense, by the binary series system where ϕ : {0, 1}n → {0, 1} is the supermodular
function

ϕ (y1, . . . , yn) = min(y1, . . . , yn). (3.20)

Recalling the notation used in (2.2) for the case of binary systems, we write this time Mϕ = Q.
The condition (3.20) gives rise to the case of maximum interaction among components (unanimity
game) and the aggregation function Q does even coincide with the survival copula Ĉ. This can
be seen as an immediate consequence of (3.17) (see also [20]). Moreover we can state a simple
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but remarkable characterization result. Remind that a function g : Rn → R is supermodular if the
following inequality

g(min(x1, y1), . . . ,min(xn, yn)) + g(max(x1, y1), . . . ,max(xn, yn)) ≥ g(x1, . . . , xn) + g(y1, . . . , yn)

holds for all xi, yi ∈ R. Then the following properties are equivalent:

(i) Q = Qϕ,Ĉ is supermodular.

(ii) ϕ has the form (3.20).

(iii) Qϕ,Ĉ = Ĉ.

(iv) Q is a copula.

In view of the implication (ii) ⇒ (iii), the above equivalences can be easily proven by taking
into account the following facts:

• Since the fuzzy measure ϕ coincides with the restriction of the function Q over {0, 1}n, (i)
implies that ϕ is supermodular.

• If a binary fuzzy measure ϕ is supermodular then it necessarily has the form (3.20) (see [2]).
Hence (i) ⇒ (ii).

• Any copula is supermodular and so (iv) ⇒ (i).

4 Stochastic comparisons of multi-state systems
Different types of stochastic comparisons between two binary systems have been considered in the
reliability literature, including those which have been reviewed in Section 2. Some of such results
compare two systems with a common vector of marginal reliability functions and possibly different
structure functions and/or survival copulas among component lifetimes. Other results compare
two systems with different vectors of marginal distributions, but with same survival copula for
them and same systems’ structures. Results based on the concept of signature give finally rise, in
the case of exchangeable lifetimes, to compare binary systems with same joint distribution for the
component lifetimes (i.e., the same exchangeable copula and the same common marginal reliability
function) and different structures.

The representations obtained in the preceding section can be used to extend those results to
multi-state systems. The following two approaches emerge in a natural way and can be combined
for this purpose:

a) Comparing the lifetimes of the associated (binary) mixed systems.
b) Comparing the discrete random variables H(t) and H∗(t) representing the states of the two

systems at any time t > 0.
In this respect we have proven above (see Proposition 3.11) that the expected value E (H(t))

coincides with a convex combination of the reliability functions of the binary system lifetimes
T1, . . . , Tq at time t, and similarly for H∗(t). So the comparisons in both options are connected.
Note that these convex combinations can be replaced by the reliability functions of the associated
mixed systems. Thus the first result can be stated as follows.
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Proposition 4.1. Let T and T ∗ be the lifetimes of the mixed systems associated to two multi-
state systems based on n components with reliability functions F̄1, . . . , F̄n. Let Q̄ and Q̄∗ be the
respective aggregation functions obtained from (3.15). Then:

(i) T ≤st T ∗ for all F̄1, . . . , F̄n if and only if Q̄ ≤ Q̄∗.

(ii) T ∗ ≤hr T ∗ for all F̄1, . . . , F̄n if and only if Q̄∗/Q̄ is decreasing in (0, 1)n.

The proof is immediate from (3.15) and Proposition 2.1. Some examples in the following section
show how to use the preceding proposition to compare multi-state systems. More comparison
properties can be obtained if we assume that the components are ordered or identically distributed
by using the results given in [16] or [15], respectively.

Analogously, for multi-state systems with IID or EXC components, respectively, we have the
following ordering properties.

Proposition 4.2. Let T and T ∗ be the lifetimes of the mixed systems associated to two multi-state
systems based on n IID components with a common reliability function F̄ . Let s and s∗ be the
respective signature vectors.

(i) If s ≤st s∗, then T ≤st T ∗ for all F̄ .

(ii) If s ≤hr s∗, then T ≤hr T ∗ for all F̄ .

(iii) If s ≤lr s∗, then T ≤lr T ∗ for all absolutely continuous F̄ .

The proof is immediate from Proposition 2.2, (3.15) and (3.16).

Proposition 4.3. Let T and T ∗ be the lifetimes of the mixed systems associated to two multi-state
systems based on n EXC components with lifetimes X1, . . . , Xn having common joint reliability
function F̄. Let s and s∗ be the respective signatures and X1:n, . . . , Xn:n the ordered component
lifetimes.

(i) If s ≤st s∗, then T ≤st T ∗ for all F̄.

(ii) If s ≤hr s∗, then T ≤hr T ∗ for all F̄ such that X1:n ≤hr · · · ≤hr Xn:n.

(iii) If s ≤lr s∗, then T ≤lr T ∗ for all absolutely continuous F̄ such that X1:n ≤lr · · · ≤lr Xn:n.

The proof is immediate from Proposition 2.3, (3.15) and (3.16).

Notice that the results obtained so far refer to comparisons between two systems having differ-
ent structures and the same components. Thus, in Propositions 4.2 and 4.3, we compare the mixed
systems associated to two multi-state systems with different structures and same joint probability
law for the components’ lifetimes. However, in Proposition 4.1, we allow the lifetimes to also have
different survival copulas, that is, only the vector of marginal reliability functions is required to be
the same in the two systems. In fact we directly compare the corresponding aggregation functions.

In the following proposition we compare the discrete random variables which represent the
states of two different system. Here we do not need to assume neither a common copula nor a
common vector of marginals. Note that the ordering T ≤st T ∗ obtained above is equivalent to
E (H (t)) ≤ E (H∗ (t)) for all t > 0. We can obtain stronger orderings properties for the systems’
states at time t > 0, H (t) and H∗ (t), as follows. Note that from Remark 3.8 we can assume a
common level set.
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Proposition 4.4. Let H(t) and H∗(t) be the state functions (processes) of two multi-state systems
with the same level set S = {0 = h0 < h1 < · · · < hq = 1} and based on n components. Let Ri

and R∗i be the reliability functions of the respective associated binary systems for i = 1, . . . , q. Let
fix a t > 0. Then:

(i) H(t) ≤st H∗(t) if and only if Ri(t) ≤ R∗i (t) for all i = 1, . . . , q.

(ii) H(t) ≤hr H∗(t) if and only if R∗i (t)/Ri(t) is increasing in i for all i = 1, . . . , q.

(iii) H(t) ≤lr H∗(t) if and only if (R∗i (t) − R∗i+1(t))/(Ri(t) − Ri+1(t)) is increasing in i, for all
i = 0, . . . , q where, by convention R0(t) := 1 and Rm+1(t) := 0.

Note that the conditions of the preceding proposition can also be applied for all t > 0. Thus,
for example, H(t) ≤st H∗(t) for all t > 0 if and only if Ri(t) ≤ R∗i (t) for all i = 1, . . . , q and
all t > 0. Then both conditions imply E (H (t)) ≤ E (H∗ (t)) for all t > 0. Recall that this last
property can also be written as T ≤st T ∗ where T and T ∗ represent the lifetimes of the respective
associated mixed systems. To summarize, from (2.3), we have

H(t) ≤lr H∗(t) ∀t > 0⇒ H(t) ≤hr H∗(t) ∀t > 0⇒ H(t) ≤st H∗(t) ∀t > 0⇒ T ≤st T ∗.

Also note that the condition Ri(t) ≤ R∗i (t) for all i = 1, . . . ,m and all t > 0 is equivalent to get
Ti ≤st T ∗i for all i = 1, . . . ,m, that is, the associated binary systems are st-ordered. This property
does not necessarily hold for the other orders. A counterexample is given in Example 5.3 where
Ti ≤hr T ∗i holds for i = 1, . . . ,m but H(t) ≤hr H∗(t) does not hold.

The results given in [20] to compare systems with homogeneous (ID) components and heteroge-
neous components can also be extended to multi-state systems. The extensions are straightforward
from representation (3.15). First we need the following definition.

Definition 4.5. Let g : Rn → R be a real-valued function. We say that g is weakly Schur-concave
(weakly Schur-convex) if

g(u1, . . . , un) ≤ g(ū, . . . , ū) (≥)

for all (u1, . . . , un), where ū = (u1 + · · ·+ un)/n.

Now we can state the following result for multi-state systems which extends Theorem 5.4 in
[20]. The other results in [20] can be extended in a similar way. Again we compare two multi-
state systems just by comparing their associated mixed systems. Remember again that we have
proven that the reliability functions of the mixed system lifetimes at time t ≥ 0 coincide with the
expectations of the respective states at time t.

Proposition 4.6. Let T and T ∗ be the lifetimes of the mixed systems associated to two multi-
state systems based on the same structure function ϕ and on n components with a common survival
copula Ĉ and reliability functions F̄j and F̄ ∗j = (F̄1 + · · · + F̄n)/n for j = 1, . . . , n. Let Mϕ be
the common aggregation function of both systems in representation (3.15). If Mϕ is weakly-Schur
concave (weakly-Schur convex) then T ≤st T ∗ (≥st).

The proof is immediate from (3.15). Note that the preceding result can be used to compare
multi-state systems with heterogeneous components with systems with homogeneous systems (or
with randomly chosen components). It proves that ifMϕ is weakly-Schur concave, then the system
with the randomly chosen components is st better than that with heterogeneous components. This
is called the Parrondo’s paradox in the reliability theory (see [6]).
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5 Examples
Let us see now how to apply the preceding theoretical results to some multi-state systems. In the
first example, we study the most natural multi-state system.

Example 5.1. Let us consider the multi-state structure defined by

ϕ(y1, . . . , yn) =
y1 + · · ·+ yn

n

that is, the system level is just the proportion of working components in the system. Then m = n
and S = {0 < 1/n < 2/n < · · · < 1}. Hence the binary systems defined by (3.8) coincide with the
k-out-of-n systems. For example, ϕ1(y1, . . . , yn) = 1 if and only if

ϕ(y1, . . . , yn) =
y1 + · · ·+ yn

n
≥ 1

n
,

that is, y1 + · · ·+ yn ≥ 1 (at least a component works). Hence

T1 = max(X1, . . . , Xn) = Xn:n

is the lifetime of the parallel system. Analogously, we get Tj = Xn−j+1:n for j = 1, . . . , n. Note
that T1 ≥ · · · ≥ Tn. Therefore, from Proposition 3.2, we have

E (H (t)) =
1

n
F̄1:n(t) + · · ·+ 1

n
F̄n:n(t),

that is, the associated mixed system just amounts to choosing randomly a k-out-of-n system. Hence,
the signature of the multi-state system is r = (1/n, . . . , 1/n). It is well known that

1

n
F̄1:n(t) + · · ·+ 1

n
F̄n:n(t) =

1

n
F̄1(t) + · · ·+ 1

n
F̄n(t)

since choosing randomly a component is equivalent to choosing randomly an ordered component.
Hence,

E (H (t)) =
1

n
F̄1(t) + · · ·+ 1

n
F̄n(t),

that is, the associated mixed system just amounts to choosing randomly a component. Hence, the
aggregation function Q̄ in (3.15), is

Q̄(u1, . . . , un) =
1

n
u1 + · · ·+ 1

n
un

for 0 ≤ uj ≤ 1 and j = 1, . . . , n. Note that, in this example, Q̄ does not depend on the survival
copula.

If we want to compare two multi-state systems with this structure and different components we
have T ≤st T ∗ for the respective mixed systems if and only if the respective component reliability
functions satisfy

F̄1(t) + · · ·+ F̄n(t) ≤ Ḡ1(t) + · · ·+ Ḡn(t)

for all t.

20



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

In the second example we study a multi-state system which can represent the computer system
used in an online store website.

Example 5.2. Let us consider the multi-state system ϕ∗ : {0, 1}n → S defined by

ϕ∗(y1, . . . , yn) =
y1 + max(y2, . . . , yn)

2
.

Then m = 2 and S = {0 < 1/2 < 1}. Here, the first component represents the computer
server which redirects the customers to the online system placed in the computers represented
by X2, . . . , Xn (depending on the queue in each computer). This is the usual system scheme
represented by state 1. In the emergency mode, represented by level 1/2, any computer can be at
the same time the server and the store system, and the system works in this state if at least a
computer works (but more slowly).

Hence the first binary system defined by (3.8) is given by

ϕ∗1(y1, . . . , yn) = 1 if and only if max(y1, . . . , yn) = 1,

that is, T1 = max(X1, . . . , Xn) = Xn:n is the lifetime of the parallel system (as in the preceding
example). Its reliability function can be obtained as

R∗1(t) = F̄n:n(t) =
n∑
i=1

F̄i(t)−
∑
i<j

Pr(Xi > t,Xj > t)+· · ·+(−1)n+1 Pr(X1 > t, . . . , Xn > t). (5.1)

Alternatively, this expression can be obtained from (3.15) and (3.19) as follows. First, note that
the Boolean function ϕ∗1 can also be written as

ϕ∗1(y1, . . . , yn) = max(y1, . . . , yn) = 1− (1− y1) . . . (1− yn) =
∑
∅6=A⊆[n]

(−1)|A|+1
∏
i∈A

yi

for y1, . . . , yn ∈ {0, 1}. Therefore, from (3.15), its reliability function at time t is

R∗1(t) = Pr(T1 > t) = E (ϕ∗1(Y1(t), . . . , Yn(t))) ,

where Y1(t), . . . , Yn(t) represent the component states at time t. Hence

R∗1(t) = E

 ∑
∅6=A⊆[n]

(−1)|A|+1
∏
i∈A

Yi(t)

 =
∑
∅6=A⊆[n]

(−1)|A|+1E

(∏
i∈A

Yi(t)

)
,

where E
(∏

i∈A Yi(t)
)

= Pr (∩i∈AXi). Thus we obtain (5.1).
Analogously, the second binary system is defined by

ϕ∗2(y1, . . . , yn) = 1 if and only if y1 = 1 and max(y2, . . . , yn) = 1,

that is,
ϕ∗2(y1, . . . , yn) = min(y1,max(y2, . . . , yn)).

The minimal path sets of this system are Pi = {1, i} for i = 2, . . . , n and so its reliability function
is

R∗2(t) =
n∑
i=2

Pr(X1 > t,Xi > t)−
∑
1<i<j

Pr(X1 > t,Xi > t,Xj > t)+· · ·+(−1)n Pr(X1 > t, . . . , Xn > t)
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(see, e.g., [15]). Proceeding as above, this expression can also be obtained from (3.15) and (3.19)
by writing the Boolean function ϕ∗2 as

ϕ∗2(y1, . . . , yn) = min(y1,max(y2, . . . , yn)) = y1(1− (1− y2) . . . (1− yn)).

Hence,

E (H∗ (t)) =
1

2
R∗1(t) +

1

2
R∗2(t),

that is,

E (H∗ (t)) =
1

2

n∑
i=1

F̄i(t)−
1

2

∑
1<i<j

Pr(Xi > t,Xj > t) + · · ·+ 1

2
(−1)n Pr(X2 > t, . . . , Xn > t).

Note that if Ĉ is the survival copula and J ⊆ [n], then

Pr(Xj > t for all j ∈ J) = ĈJ(F̄1(t), . . . , F̄n(t)),

where ĈJ(u) := Ĉ(uJ , 1) is the marginal survival copula of the vector of random variables Xj for
j ∈ J . Therefore

E (H∗ (t)) = Q̂∗(Ḡ1(t), . . . , Ḡn(t))

with

Q̂∗(u) =
1

2

n∑
i=1

ui −
1

2

∑
1<i<j

Ĉ{i,j}(u) + · · ·+ (−1)n
1

2
Ĉ{2,...,n}(u).

If we assume that the component lifetimes are exchangeable (or IID), then the signatures of the
binary systems are (0, . . . , 0, 1) and (1/n, . . . , 1/n, 2/n, 0), respectively. Therefore, the signature
of the multi-state system is

r∗ =
1

2
(0, . . . , 0, 1) +

1

2

(
1

n
, . . . ,

1

n
,

2

n
, 0

)
=

(
1

2n
, . . . ,

1

2n
,

1

n
,
1

2

)
.

Hence, if we want to compare this system with the system studied in the preceding example with
signature r = (1/n, . . . , 1/n), we obtain

1/(2n)

1/n
=

1

2
= · · · = 1/(2n)

1/n
=

1

2
<

1/n

1/n
= 1 ≤ 1/2

1/n
=
n

2

which is true for n ≥ 2. In this case, from Proposition 4.2, the mixed system associated to the
multi-state system of the present example is lr-greater than that of the preceding example for all
absolutely continuous EXC joint reliability functions F̄ such that X1:n ≤lr · · · ≤lr Xn:n holds.
Analogously, it can be proved from Proposition 4.2 that they are st ordered for any EXC F̄ and
that they are hr ordered for any EXC F̄ such that X1:n ≤hr · · · ≤hr Xn:n holds.

For n = 2, the signatures are (1/2, 1/2) and (1/2, 1/2) and so the mixed systems are equal in
law when the components are EXC. This last property is true for general components (since when
n = 2, T ∗2 is the series system).

However, for general components these two systems are not st-ordered. For example, if n = 3,
then the respective aggregation functions are

Q̄(u1, u2, u3) =
u1 + u2 + u3

3
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(for the system in the preceding example) and

Q̄∗(u1, u2, u3) =
u1 + u2 + u3

2
− 1

2
Ĉ(1, u2, u3)

(for the system in the present example). These two functions are not ordered because

Q̄(0, 0, 1) =
1

3
<

1

2
= Q̄∗(0, 0, 1)

and
Q̄(0, 1, 1) =

2

3
>

1

2
=

2

2
− 1

2
= Q̄∗(0, 1, 1).

So, from Proposition 4.1, the st order does not hold for general components. This example proves
that the signature representation (3.16) does not hold for general components (if it would hold, then
these systems will be st-ordered since their signatures are st-ordered). Note that if the components
are independent (i.e. Ĉ(u1, u2, u3) = u1u2u3) then the first system is less than the second in the
st order if and only if (F̄1(t), F̄3(t), F̄3(t)) belongs to the set

D = {(u1, u2, u3) ∈ [0, 1]3 : u1 + u2 + u3 − 3u2u3 ≥ 0}

for all t. This set contains the diagonal since, for (u, u, u), we obtain 3u−3u2 ≥ 0 for all u ∈ [0, 1].
So they are st-ordered in the case of IID components (actually, they are lr-ordered as proved above
by using signatures).

In Figure 1 we plot E (H (t)) for both systems when n = 3 and the components are IID with a
common exponential distribution with mean 1 (left) or they are just independent with exponential
distributions with means 1, 5, 5, respectively (right). In the first case the reliability curves are
ordered but in the second they cross.

In the last example we compare stochastically the lifetimes T and T ∗ and the random variables
H (t) and H∗ (t) with the states at time t of two multi-state systems.

Example 5.3. Let us consider the multi-state system ϕ∗ : {0, 1}n → S defined by

ϕ∗(y1, . . . , yn) = j/n if y1 = · · · = yj = 1 and yj+1 = 0.

Then m = n and S = {0 < 1/n < 2/n < · · · < 1}. In this system the first component is
the most important (if it does not work, the system does not work). Then level 1/n is attained
when just the first component is working. To get level 2/n we need the first and the second
components and so on. To get the perfect functioning (level 1) we need all the components to be
working. Hence the binary systems defined by (3.8) coincide with the series systems with lifetimes
T ∗j = X1:j = min(X1, . . . , Xj) for j = 1, . . . , n. Their reliability functions are

R∗j (t) = F̄1:j(t) = Pr(X1 > t, . . . , Xj > t) = Ĉ(F̄1(t), . . . , F̄j(t), 1, . . . , 1)

for j = 1, . . . , n where Ĉ represents the survival copula. In particular, R1 = F̄1:1 = F̄1. Hence,
from (3.11), we have

E (H∗ (t)) =
1

n

n∑
j=1

F̄1:j(t) =
1

n

n∑
i=j

Ĉ(F̄1(t), . . . , F̄j(t), 1, . . . , 1) = Q̄(F̄1(t), . . . , F̄n(t)),
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Figure 1: Plots of E (H (t)) for the systems in Examples 5.1 and 5.2 when n = 3 and the com-
ponents are IID with a common exponential distribution with mean 1 (left) or they are just
independent with exponential distributions with means 1, 5, 5 (right).

where

Q̄∗(u1, . . . , un) =
1

n

n∑
j=1

Ĉ(u1, . . . , uj, 1, . . . , 1).

Hence, if the components are EXC, its minimal signature is a = (1/n, . . . , 1/n). If the components
are independent, then

Q̄∗(u1, . . . , un) =
1

n

n∑
j=1

u1 . . . uj.

If we want to compare this system with the system defined in the first example, from Proposition
4.1, (i), we obtain

E (H∗ (t)) ≤ E (H (t))

for all F̄1, . . . , F̄n and all Ĉ since

Q̄∗(u) =
1

n

n∑
j=1

Ĉ(u1, . . . , uj, 1, . . . , 1) ≤ 1

n

n∑
j=1

Ĉ(1, . . . , 1, uj, 1, . . . , 1) =
1

n

n∑
j=1

uj = Q̄(u).

Equivalently, if T and T ∗ represent the lifetimes of the associated mixed systems, we have proved
that T ∗ ≤st T . Note that the binary systems are also st ordered, that is, T ∗j = X1:j ≤st Xn−j+1:n =
Tj for j = 1, . . . , n. However, T and T ∗ are not always hr-ordered. For example, if n = 3 and the
components are independent then, from Proposition 4.1, (ii), T ∗ ≤hr T holds if and only if

Q̄(u1, u2, u3)

Q̄∗(u1, u2, u3)
=

u1 + u2 + u3
u1 + u1u2 + u1u2u3
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is decreasing in (0, 1)3. It is easy to see that it is decreasing in u1 but that it is not always decreasing
in u2, u3. For example, we have

Q̄(0.1, 0, 0.1)

Q̄∗(0.1, 0, 0.1)
= 2 < 2.702703 =

Q̄(0.1, 0.1, 0.1)

Q̄∗(0.1, 0.1, 0.1)
.

We can prove that they are hr-ordered in the case of IID components by using the results
obtained for distorted distributions (see, e.g., Theorem 4 in [15]). In this case, the system reliability
functions can be written as F̄T (t) = q̄(F̄ (t)) and F̄T ∗(t) = q̄∗(F̄ (t)) where F̄ represents the common
reliability, q̄(u) = Q̄(u, . . . , u) = u and q̄∗(u) = Q̄∗(u, . . . , u) = (u+ · · ·+ un)/n. Hence T ∗ ≤hr T
holds for all F̄ since

q̄(u)

q̄∗(u)
=

n

1 + u+ · · ·+ un−1

is decreasing in (0, 1). Even more, from Theorem 4, (iv), in [15], T ∗ ≤lr T holds for all F̄ since

q̄′(u)

(q̄∗)′(u)
=

n

1 + 2u+ · · ·+ nun−1

is decreasing in (0, 1).
The same results can be proved by using signatures but the calculations are more complex. As

we have seen in Example 5.1, the signature of T is r = (1/n, . . . , 1/n). To get the signature of
the present system we need the signatures of order n of the series systems. It is well known (see,
e.g. [19]) that the signature of order n of T1 = X1:1 is (1/n, . . . , 1/n). Of course, the signature
of Tn = X1:n is (1, 0, . . . , 0). A straightforward calculation shows that the signature of order n of
Tk = X1:k for k = 2, . . . , n is (s

(k)
1 , . . . , s

(k)
n ) with

s
(k)
i =

k(n− i)(n− i− 1) . . . (n− i+ 2− k)

n(n− 1) . . . (n− k + 1)

for i = 1, . . . , n (see (2.7) in [19]). Note in passing that there is a typo in expression (2.5) in
[19] (i should be replaced with j at some positions). Hence, the signature of the present system is
r∗ = (r∗1, . . . , r

∗
1) with

r∗i =
1

n

n∑
k=1

s
(k)
i =

1

n

(
1 +

n∑
k=2

k(n− i)(n− i− 1) . . . (n− i+ 2− k)

n(n− 1) . . . (n− k + 1)

)

for i = 1, . . . , n. For example, for n = 4, the signatures of order 4 of the binary systems T1 = X1,
T2 = X1:2, T3 = X1:3, and T4 = X1:4 are (1/4, 1/4, 1/4, 1/4), (1/2, 1/3, 1/6, 0), (3/4, 1/4, 0, 0) and
(1, 0, 0, 0), respectively. Therefore r∗ = (30/48, 10/48, 5/48, 3/48). Hence r∗ ≤lr r since

1/4

30/48
=

2

5
<

1/4

10/48
=

6

5
<

1/4

5/48
=

12

5
<

1/4

32/48
= 4.

Therefore, if the components are IID∼F̄ , from Proposition 4.2, (iii), we have T ∗ ≤lr T holds
for all absolutely continuous F̄ . Analogously, from Proposition 4.2, (ii), we obtain T ∗ ≤hr T for
all F̄ . Even more, if the components are EXC with a common joint reliability function F̄, then
T ≤lr T ∗ for all absolutely continuous F̄ such that X1:n ≤lr · · · ≤lr Xn:n, T ≤hr T ∗ for all F̄ such

25



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

that X1:n ≤hr · · · ≤hr Xn:n and T ≤st T ∗ for all F̄. Note that the last property (the st order) can
be extended to all kind of components as proved above by using aggregations.

Let us use now Proposition 4.4 to compare the random variables representing the states of
both systems at time t. First, we note that T ∗j = X1:j ≤ Xn−j+1 = Tj for j = 1, . . . , n. Hence
R∗j (t) ≤ Rj(t) for all t and all j = 1, . . . , n and so H∗(t) ≤st H(t) for all t. In particular, by taking
expectations, we obtain again T ≤st T ∗ for all F̄. However, the hazard rate order H∗(t) ≤hr H(t)
does not necessarily hold. For example, if n = 2, from Proposition 4.4, (ii) it holds if and only if

R0(t)

R∗0(t)
= 1 ≤ R1(t)

R∗1(t)
≤ R2(t)

R∗2(t)
.

If we assume that the components are IID∼ F̄ , then this expression reduces to

1 ≤ 2F̄ (t)− F̄ 2(t)

F̄ (t)
≤ 1

which leads to F̄ (t) = 0, 1. However, it does not hold when 0 < F̄ (t) < 1. Hence H∗(t) ≤hr H(t)
does not hold for all t and all non-atom reliability functions F̄ . For general components we get

1 ≤ F̄1(t) + F̄2(t)− Ĉ(F̄1(t), F̄2(t))

F̄1(t)
≤ 1

which leads to F̄2(t) = Ĉ(F̄1(t), F̄2(t)). This property holds for all t when the components are
ID and Ĉ(u, v) = min(u, v). This copula represents the extreme positive dependence and implies
Pr(X1 = X2) = 1 and X1 =st X2:2.

However, if the components are IID, then the mixed systems are hr-ordered since

T ∗1 = X1 ≤hr X2:2 = T1

and
T ∗2 = X1:2 =hr X1:2 = T2.

Hence T ∗i ≤hr Ti for i = 1, 2 does not imply H∗(t) ≤hr H(t) for all t.
Obviously, the second condition above (T ∗2 = X1:2 =hr X1:2 = T2) holds for general components.

However, if the components are ID, from Theorem 4.1 in [21], the first condition X1 ≤hr X2:2 holds
if and only if Ĉ(u, u)/u is increasing in (0, 1). This last property is not always true as proved by
Examples 4.1 and 4.2 in [21]. From Proposition 2.1, (ii), X1 ≤hr X2:2 holds for all F̄1, F̄2 if and
only if (̂v−C(u, v))/u is decreasing in (0, 1)2. This last property is not always true. For example,
it is not true when the components are just independent (see Figure 1 in [21]). However, note
that, in this example, H∗(t) ≤hr H(t) for all t, implies X1 =st X2:2 and so T ∗i ≤hr Ti holds for all
i = 1, 2. It is easy to prove that this property is not true in general. For example, if m = 1 (binary
systems), then H∗(t) ≤hr H(t) for all t is equivalent to T ∗ ≤st T which does not imply T ∗ ≤hr T
(see, e.g., the examples given in [15]).

6 Discussion and concluding remarks
We have provided several tools to stochastically compare the performance of multi-state systems
with binary components. First, we have noted that their structure functions can be seen as
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fuzzy measures and we have defined the associated binary systems. The main property is that
the multi-state system can be represented by convex combinations of these binary systems. As
a consequence of this property we have obtained the representations based on signatures and
aggregation functions for multi-state systems. The aggregation function can be also obtained
from the Möbius transform. These representations are used to compare multi-state systems under
different stochastic criteria. Specifically, we have obtained conditions for the usual stochastic
order (reliability), the hazard rate order and the likelihood ratio order. Some examples and
counterexamples show how to apply these theoretical results to specific multi-state systems.

The topic of performance of multi-state systems is then strictly related with aggregation func-
tions of the form

Mϕ,C (u) :=
∑
I⊆[n]

ϕ̂(I) C (uI ,1) ,

where ϕ : {0, 1}n → [0, 1] is a regular fuzzy measure and C : [0, 1]n → [0, 1] is a copula. As
well-known, such functions are of general interest also beyond the topic of the present paper. In
the special case when C is the comonotonicity or maximal copula

C (u1, ..., un) = min(u1, . . . , un)

for instance, Mϕ,C (u) coincides with the discrete Choquet integral.
General properties of analytical type for such functions are directly obtained from results

presented in [12]. Actually, that paper analyses the larger class of aggregation functions of the
form

Mϕ,A (u) :=
∑
I⊆[n]

ϕ̂(I)A (uI ,1)

where the copula C is replaced by a more general aggregation function A. In particular one obtains
that the function Mϕ,C (u) can be seen as an extension to [0, 1]n of the fuzzy measure ϕ defined
over {0, 1}n.

Some further aspects, concerning the structure of the aggregation functions Mϕ,C , can be
derived from the arguments presented in the above Section 3. By combining propositions 3.9
and 3.10, in particular, we see that any such aggregation function can be obtained as a linear
combination of aggregation functions extending binary fuzzy measures. Such a property might
also be extended to aggregation functions of the form Mϕ,A.
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