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Birnbaum importance measure for reliability
systems with dependent components

Patryk Miziuła and Jorge Navarro

Abstract—Component importance measures are relevant to
improve the system design and to develop optimal replace-
ment policies. Birnbaum’s importance measure is one of the
most relevant measures. If the components are (stochastically)
independent, this measure can be defined using several equiv-
alent expressions. However, in many practical situations,the
independence assumption is unrealistic. It also turns out that
in the case of dependent components different Birnbaum’s
measure definitions lead to different concepts. In this paper
we extend Birnbaum’s importance measure to the case of
dependent components in a way allowing us to obtain relevant
properties including connections and comparisons with other
measures proposed and studied recently. The dependence is
modeled through copulas and the new measure is based on
the contribution of the component to the system reliability.
Index terms—Coherent system; Birnbaum importance mea-
sure; Barlow-Proschan importance measure; copula; likelihood
ratio order.

NOTATION

n number of components
p = (p1, . . . , pn) an element of[0, 1]n

0n = (0, . . . , 0) n-dimensional vector of zeros
1n = (1, . . . , 1) n-dimensional vector of ones
T system lifetime
T1, . . . , Tn component lifetimes
FT (t) reliability function ofT
F i(t) reliability function ofTi

C copula of(T1, . . . , Tn)

Ĉ survival copula of(T1, . . . , Tn)
ID identically distributed
IBP (i) Barlow-Proschan importance measure
IB(i;p) Birnbaum importance measure
t.d.l. time-dependent lifetimes
t.i.l. time-independent lifetimes
i.m. importance measure

I. I NTRODUCTION

A number of component importance measures have been
proposed and studied in the literature in the case of in-
dependent components. Some of these have prevailed and
some others have disappeared. A good survey can be seen
in Kuo and Zhu (2012a) (see also Kuo and Zhu, 2012b).
The Birnbaum’s measure for independent components was
proposed in 1969 (see Birnbaum, 1969) and it is still one of
the most popular component importance measures. It is closely
related with the impact of the components in the system

reliability. It can be defined by using different expressions
(see, (1.10a)-(1.10c) in Barlow and Proschan (1975), p. 26,
and Chapter 4 in Kuo and Zhu (2012b)). If the components
are independent, these expressions are equivalent (i.e., they
coincide). If they are dependent, then these options may lead
to different concepts. Extensions of Birnbaum’s measure to
non-coherent systems and risk models were studied in Aliee
et al. (2017); Andrews and Beeson (2003) and Vaurio (2016).

In many practical situations, the assumption of indepen-
dence is unrealistic (consider, for example, the wheels in a
car or the engines in a plane). The dependence is usually a
consequence of the common environment for the components.
However, as far as we know, only two importance measures
have been recently studied in the case of dependent compo-
nents.

Iyer (1992) extended the Barlow-Proschan importance mea-
sure through

IBP (i) = Pr(T = Ti), (1)

whereT is the lifetime of the system andTi is the lifetime
of the ith component. This measure has a clear meaning and
depends on the joint distribution of the component lifetimes.
However, it is not easy to compute it in the case of dependent
components (both in practice and in theoretical cases). Some
properties of this measure and connections with signatures
were given in Marichal and Mathonet (2013).

More lately, Zhang and Wilson (2017) studied the following
alternative measure, proposed in Barlow and Proschan (1975),
p. 27, for systems with dependent components

Ih(i) = E(φ(1i,X)− φ(0i,X)),

whereφ is the structure function of the system,Xj represents
the state of thejth component at timet, for j = 1, . . . , n,
(1i,X) = (X1, . . . , Xi−1, 1, Xi+1, . . . , Xn) and (0i,X) =
(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn). They studied this measure
in the case of coherent systems with discrete marginals when
the component states are dependent and positively associated.
They characterize the influence of dependence structure on
system reliability and component importance. They used a
copula approach to represent the dependence between the
components. For more details and reviews on importance
measures of independent and dependent components we refer
the reader to Kuo and Zhu (2012b). Recent properties can be
seen in Eryilmaz (2016); Lin et al. (2016); Zhu et al. (2016).

The dependence between the component lifetimes can be
represented by the copula of the random vector(T1, . . . , Tn).
This is a very good way to represent the dependence rela-
tionships between the components due to the common envi-
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ronment. The copula representation allows us to separate the
structure dependence which is usually fixed (by a given cop-
ula) or that just depends on a dependence parameter (included
in the copula) from the different marginal distributions which
represent the different units available for a given system.A
short introduction on copula theory is given in Subsection
II.A. Additional results can be seen in the books Durante and
Sempi (2016) and Nelsen (2006). Then, it is well known that
the system reliability at a given timet can be written as

FT (t) := Pr(T > t) = R(F 1(t), . . . , Fn(t)) (2)

(see the details given in Subsection II.B) whereF i(t) =
Pr(Ti > t) is the reliability of the ith component and
R : [0, 1]n → [0, 1] is a continuous aggregation function
which only depends on the structure of the system and on
the copula (see, e.g., Samaniego and Navarro, 2016; Miziuła
and Navarro, 2017). The functionR is increasing (in each
variable) and satisfiesR(0, . . . , 0) = 0 andR(1, . . . , 1) = 1.
This representation holds for any kind of joint distributions
(continuous, discrete, etc.) and can be used to compute the sys-
tem reliability and to compare different systems (see Navarro,
2018; Navarro et al., 2016; Navarro and del Águila, 2017;
Navarro and Durante, 2017) and to obtain bounds for the
system performance (see Miziuła and Navarro, 2017, 2018).
If the components are independent, then the functionR is
a multinomial called thereliability function of the system
structure(see Barlow and Proschan, 1975, p. 21).

In this paper, we use the copula-representation (2) to pro-
pose and study an extension of classic Birnbaum component
importance measure to the case of dependent components. The
considered measure is defined by

IB(i; p1, . . . , pn) = ∂iR(p1, . . . , pn), (3)

where∂iR represents the partial derivative ofR with respect
to its ith variable (we assume that this derivative exists).
This measure has also a clear meaning based on (2) since
it represents how an increment in the reliability of theith
component, increments the system reliability. Note that it
does not depend on the component reliability functions. If
the components are independent, then this measure coincides
with that studied in Zhang and Wilson (2017) but if they are
dependent, then they are different (see Example 1). Moreover,
we show that the importance measure given in (1) can be
obtained from that in (3) as

IBP (i) =

∫ ∞

0

IB(i;F 1(t), . . . , Fn(t))dFi(t),

where Fi(t) = 1 − F i(t) for i = 1, . . . , n, extending a
similar well known property for systems with independent
components.

The rest of the paper is organized as follows. In the
following section we introduce the preliminary results needed
in the present paper which include (Subsection 2.1) the
copula representation for coherent systems with dependent
components and some ordering properties and (Subsection
2.2) the importance measures used in the article with their
basic properties in the case of independent components. The
main results are given in Section 3 where we study the basic

properties of the importance measure defined in (3) when
the components are dependent. Some illustrative examples are
included in Section 4 and the conclusions can be found in
Section 5. The technical proofs are placed in the Appendix.

Throughout the paper we say that a functiong is increasing
(decreasing) ifg(x1, . . . , xn) ≤ g(y1, . . . , yn) (≥) for all xi ≤
yi, i = 1, . . . , n.

II. PRELIMINARIES

A. Introduction to Copula Theory.

The component lifetimes can be represented by a (nonneg-
ative) random vector(T1, . . . , Tn). The different models are
represented by the joint distribution function

F (t1, . . . , tn) = Pr(T1 ≤ t1, . . . , Tn ≤ tn).

The function F contains both the information about the
dependence structure and the marginals distributions which
can be obtained as

Fi(t) = Pr(Ti ≤ t) = F (∞, . . . ,∞, t,∞, . . . ,∞)

wheret is placed at theith position, fori = 1, . . . , n.
The copula theory (Sklar’s Theorem) allows us to represent

the joint distribution functionF as

F (t1, . . . , tn) = C(F1(t), . . . , Fn(t)), (4)

for a copula functionC. A copula is a continuous multivariate
distribution function having uniform marginals over the inter-
val (0, 1). The main advantage of expression (4) is that we can
separate the structure dependence (contained inC) from the
marginal distributions. By changingC (or the parameter values
included inC) or the marginals we obtain new models. This
is especially useful when we represent the joint distribution of
the component lifetimes in a system.

Analogously, the joint reliability (or survival) functionF of
(T1, . . . , Tn) can be written as

F (t1, . . . , tn) = Pr(T1 > t1, . . . , Tn > tn)

= Ĉ(F 1(t), . . . , Fn(t)), (5)

whereF i(t) = Pr(Ti > t) = 1 − fi(t) are the marginal
reliability functions andĈ is another copula calledsurvival
copula. Notice that Ĉ is not the reliability functionC as-
sociated toC. Actually, Ĉ is a distribution function (it is
increasing) whileC is a reliability function (it is decreasing).
Note thatĈ can be obtained fromC (and vice versa).

The case of independent components can also be modelled
by copulas. This case is obtained when

C(p1, . . . , pn) = Ĉ(p1, . . . , pn) = p1 . . . pn

for p1, . . . , pn ∈ [0, 1]. This copula is called theproduct
copula.

For more properties of copulas and applications we refer
the readers to Nelsen (2006) and Durante and Sempi (2016).
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B. Copula representation of system reliability

An n-component system is a Boolean function

φ : {0, 1}n → {0, 1}

wherexi ∈ {0, 1} represents the state of theith component
(xi = 1 means that it works) andφ(x1, . . . , xn) the state of
the system which is completely determined by the states of the
components. The system iscoherent if its structure function
φ is increasing and each component is relevant for the system.
The ith component isrelevant for the system ifφ is not
constant inxi. The system issemicoherentif φ is increasing,
φ(0n) = 0 andφ(1n) = 1, where0n = (0, . . . , 0) ∈ {0, 1}n

and 1n = (1, . . . , 1) ∈ {0, 1}n. The basic properties of
systems can be seen in, for example, the classic book Barlow
and Proschan (1975).

If the component states (at a given time) are random, then
they are represented by the random vectorX = (X1, . . . , Xn),
φ(X) represents the state of the system andpi = Pr(Xi = 1)
is the survival probability of theith component.

If the time is known, than the random vectorX(t) =
(X1(t), . . . , Xn(t)) represents the state of the components
at time t. Thenφ(X(t)) represents the state of the system.
If, as in the preceding subsection, the random vectorT =
(T1, . . . , Tn) represents the component lifetimes, thenXi = 1
if and only if Ti > t and thenPr(Xi(t) = 1) = Pr(Ti > t) =
F i(t) is theith component reliability at timet. If T represents
the lifetime of the system,φ(X(t)) = 1 if and only if T > t
and thenPr(φ(X) = 1) = Pr(T > t) = FT (t) is the system
reliability at time t. From now on we omitt in X(t) and
Xi(t) to simplify the notation.

It is well known (see, e.g., Barlow and Proschan,
1975, p. 12) thatφ(X) can be written asφ(X) =
maxi=1,...,r minj∈Pi

Xj , whereP1, . . . , Pr stand for all the
minimal path sets of the system. A setP ⊆ {1, . . . , n} is
called apath set of a coherent system if the system operates
when all the components inP do so. Aminimal path set is
a path set which does not contain other path sets. Throughout
the paper we use the notationXP = minj∈P Xj , i.e., XP is
the state of the series system with components inP . Hence

{φ(X) = 1} =
r
⋃

i=1

{XPi
= 1}, (6)

that is, the system works if and only if any of its minimal path
sets does so. Note that, if̂C is the survival copula ofT , then

Pr(XP = 1) = ĈP (p1, . . . , pn), (7)

whereĈP (p1, . . . , pn) = Ĉ(xP
1 , . . . , x

P
n ), x

P
i = pi if i ∈ P

and xP
i = 1 if i /∈ P (that is, ĈP is the marginal survival

copula of the random vector with the component lifetimes
included in P ). Then, by applying the inclusion-exclusion
formula to the union in (6), we get

Pr
(

φ(X) = 1
)

=

r
∑

i=1

ĈPi
(p)−

∑

1≤i<j≤r

ĈPi∪Pj
(p) + . . .

+ (−1)r+1ĈP1∪...∪Pn
(p)

=: R(p) (8)

for p = (p1, . . . , pn) ∈ [0, 1]n, whereR is an increasing
continuous function such thatR(0n) = 0 and R(1n) = 1.
Function R depends on the structure of the system (the
minimal path sets) and on the dependence structure between
the components (the survival copula). When the components
are independent this function is called thereliability function
of the structureφ in Barlow and Proschan (1975), p. 21. The
function R in expression (8) can be seen as an extension of
this function to the case of dependent components.

Analogously, for the respective lifetimes we have

Pr
(

T > t
)

=

r
∑

i=1

Pr(TPi
> t)−

∑

1≤i<j≤r

Pr(TPi∪Pj
> t)

(9)

+ . . .+ (−1)r+1Pr(TP1∪···∪Pj
> t)

= R(F 1(t), . . . , Fn(t)), (10)

whereTP = minj∈P Tj. Note thatF̄T (t) := Pr
(

T > t
)

is
the reliability function associated to the system lifetimeT . It
is also called theavailability at time t of the system (see,
e.g., Kuo and Zhu, 2012b, p. 31). The respective distribution
functions satisfy

Pr
(

T ≤ t
)

= Q(F1(t), . . . , Fn(t)), (11)

whereQ(q1, . . . , qn) = 1−R(1− q1, . . . , 1− qn). Represen-
tations (9) and (11) are equivalent. FunctionQ can also be
obtained from the minimal cut sets of the system (see, e.g.,
Lemma 1 in Navarro and del Águila, 2017). Also note that
these representations hold for any kind of coherent systems
(we do not need additional assumptions). Similar representa-
tions hold for semicoherent systems and mixed systems.

The distributions that can be written in this way are
called generalized distorted distributions (see Navarro et
al., 2016). The functionsR andQ are calleddual distortion
anddistortion functions, respectively. Ordering properties and
bounds for this kind of distributions can be seen in Navarro
et al. (2016); Miziuła and Navarro (2017, 2018); Navarro and
del Águila (2017); Navarro and Durante (2017). Theorem 1
in Zhang and Wilson (2017) is extended in the following
theorem. We use there the stochastic (st) order defined as
follows: if X andY are two random variables, thenX ≤st Y
if and only if Pr(X > t) ≤ Pr(Y > t) for all t. Its proof is
immediate by (9) and (11). More ordering properties can be
found in Navarro et al. (2016).

Theorem 1. Let T1 and T2 be the lifetimes of two coher-
ent systems withn components having distribution functions
F1, . . . , Fn. Let R1, R2 and Q1, Q2 be the respective distor-
tion functions in representations(9) and (11). Then:
1. T1 ≥st T2 for all F1, . . . , Fn if and only ifR1 ≥ R2.
2. T1 ≥st T2 for all F1, . . . , Fn if and only ifQ1 ≤ Q2.

For a parallel system, we haveT = max(T1, . . . , Tn) and

Pr(T ≤ t) = Pr(T1 ≤ t, . . . , Tn ≤ t) = C(F1(t), . . . , Fn(t)),

that is,Q = C. A copula (distribution function)C1 is said
to be more positive lower orthant dependent (PLOD) than
anotherC2 if C1 ≥ C2 (see, e.g. Zhang and Wilson, 2017). So,
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for parallel systems, the condition in item 2 of the preceding
theorem can also be written asC2 is more PLOD thanC1,
obtaining item 2 of Theorem 1 in Zhang and Wilson (2017).

For a series system, we haveT = min(T1, . . . , Tn) and

Pr(T > t) = Pr(T1 > t, . . . , Tn > t) = Ĉ(F 1(t), . . . , Fn(t)),

that is,R = Ĉ. Hence the condition in item 1 of the preceding
theorem can also be written as:̂C1 ≥ Ĉ2 or as Ĉ1 is more
PLOD thanĈ2. A copula (distribution function)C1 is said
to be more positive upper orthant dependent (PUOD) than
anotherC2 if the respective reliability functions satisfyC1 ≥
C2 (see, e.g., Zhang and Wilson, 2017). Hence, the condition
Ĉ1 ≥ Ĉ2 is equivalent toC1 is more PUOD thanC2, obtaining
item 1 of Theorem 1 in Zhang and Wilson (2017).

C. Component importance measures

In this paper we adapt the classification of component im-
portance measures given in Kuo and Zhu (2012a,b). Measures
based on only system structureφ and survival copulaĈ
are calledstructure importance measuresand denoted by
I(i;φ, Ĉ). If we additionally consider components’ reliabili-
ties pj = Pr(Xj = 1), j = 1, . . . , n, at a fixed unspecified
time point, we say that we work withreliability importance
measures, denoted byI(i;p), wherep = (p1, . . . , pn). If
the actual value oft matters, we putF j(t) instead ofpj for
j = 1, . . . , n and talk abouttime-dependent lifetime (t.d.l.)
importance measures, denoted byI(i;F 1(t), . . . , Fn(t)) or
I(i; t) for short. Finally, measures based on components’
reliability functions F j , j = 1, . . . , n for all the positive
t are calledtime-independent lifetime (t.i.l.) importance
measuresand denoted byI(i).

Birnbaum (1969) originally defined the reliability impor-
tance measure of theith component for systems with inde-
pendent component as follows

IB(i;p) = Pr
(

φ(X) = 1|Xi = 1
)

−Pr
(

φ(X) = 1|Xi = 0
)

.
(12)

By using the notation introduced in the preceding section, it
can also be written as:

IB(i;p) = R(1i,p)−R(0i,p),

where(1i,p) = (p1, . . . , pi−1, 1, pi+1, . . . , pn) and (0i,p) =
(p1, . . . , pi−1, 0, pi+1, . . . , pn), or as

IB(i;p) = E
(

φ(1i, φ(X)) − φ(0i, φ(X))
)

.

This last expression was used in Barlow and Proschan (1975),
p. 27, to extend this measure to the case of dependent
components (the three preceding expressions lead to the same
measure). Zhang and Wilson (2017) studied properties of this
extension in the case of discrete marginals.

Another equivalent expression for independent components
is

IB(i;p) = ∂iR(p). (13)

However, (12) and (13) are not longer equivalent when the
components are dependent (see Example 1). In all these cases,
we can assume that the component lifetimes are identically
distributed (ID), that is,p1 = · · · = pn = p. Then we just

write IB(i; p) := IB(i; p, . . . , p). This allow us to compare
the importance of the components without including the com-
ponent reliability functions. Birnbaum constructed a structural
measure by puttingp = 1/2, that is, IB(i) := IB(i; 1/2).
The Birnbaum time-dependent importance measure is obtained
by replacingp with (F 1(t), . . . , Fn(t)) in (12), cf. Lambert
(1975) and Natvig (1979).

The Barlow-Proschan t.i.l. importance measure for systems
with independent components can be defined (cf. Boland and
El-Neweihi, 1995) as

IBP (i) = Pr(T = Ti). (14)

It is the probability that the system lifetime coincides with the
lifetime of componenti. If the components are independent
with absolutely continuous distributions, then

IBP (i) =

∫ ∞

0

IB
(

i;F 1(t), . . . , Fn(t)
)

dFi(t). (15)

Again, to compare the components we can assume that they
are ID, that is,F 1 = . . . Fn = F . In this case,IBP does not
depend onF and we get (see Marichal and Mathonet, 2013)

IBP (i) =

∫ 1

0

IB(i; p)dp. (16)

Iyer (1992) used expression (14) to extend Barlow-Proschan
measure to the case of dependent components. In this case
IBP (i) depends on the structure of the system, the dependence
between the components (copula) and on the component
reliability functions.

III. M AIN RESULTS

We propose the following extension of Birnbaum impor-
tance measure for systems with dependent components based
on formula (13). In this section and in the following ones
we use the notation and representations introduced in the
preceding section.

Definition 1. The Birnbaum reliability importance measure of
the ith component in a coherent system with dual distortion
functionR is defined by

IB(i;p) = ∂iR(p) (17)

(where∂iR represents the partial derivative ofR with respect
to its ith variable) whenever this partial derivative exists for
p = (p1, . . . , pn) ∈ [0, 1]n.

For p = (p, . . . , p) we just write IB(i; p). Analogously
the time-dependent lifetime importance measure is defined
by IB(i; t) := IB(i;F 1(t), . . . , Fn(t)) for t ≥ 0. The
preceding definitions can also be applied to semicoherent
or mixed systems (i.e., mixtures of coherent systems). If
the ith component is irrelevant, thenIB(i;p) = 0 (since
R is constant inpi). By (9), IB(i;p) measures how the
system reliability increases whenpi increases and the other
component reliabilities are fixed. SinceR(p) is increasing in
each variable, measureIB(i;p) is nonnegative. Note that the
importance of a component may depend on the dependence
structure (copula), which is an expectable property. So it could
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also be written asIB(i;p, Ĉ). Moreover, Example 1 proves
that this measure is different to that studied in Zhang and
Wilson (2017) denoted here (for dependent components) as

I∗B(i;p) = E
(

φ(1i, φ(X))
)

− E
(

φ(0i, φ(X))
)

.

It can also be written asI∗B(i;p) = R(1i,p)−R(0i,p).
From now on we assume that the random vector with the

component lifetimes(T1, . . . , Tn) has an absolutely contin-
uous joint distribution. In the first theorem we show that
measureIB

(

i;p
)

defined in (17) is naturally related to the
measureIBP (i) proposed by Iyer.

Theorem 2. For any i ∈ {1, . . . , n} we have

IB
(

i;F 1(t), . . . , Fn(t)
)

= Pr(T = Ti|Ti = t).

The technical proof of Theorem 2 is placed in the Appendix.
As we see, the time-dependent importance measure that we
propose has a natural interpretation: it is the probabilitythat
the failure of theith component at momentt causes the failure
of the entire system. As a consequence, we also infer that
IB

(

i;p
)

∈ [0, 1]. Also, the following result is immediate from
Theorem 2 and equality

Pr(T = Ti) =

∫ ∞

0

Pr(T = Ti|Ti = t)dFi(t).

Theorem 3. For any i ∈ {1, . . . , n} we have

IBP (i) =

∫ ∞

0

IB
(

i;F 1(t), . . . , Fn(t)
)

dFi(t). (18)

Theorem 3 is one of the main results of the paper since
it proves that the measureIBP (i) proposed by Iyer can be
obtained from measureIB

(

i;p
)

defined in (17) (as in (15)
for the case of independent components). Also, expression (18)
could be used to compute the importance measureIBP (i). The
measureI∗B(i;p) does not satisfy this property.

Expressions (16) and (18) can be used to define the Barlow-
Proschan structure importance measure as

IBP (i;φ, Ĉ) =

∫ 1

0

IB(i; p)dp (19)

which depends on the system structureφ and on the survival
copulaĈ, but not on the marginal distributions. The following
corollary proves that, for identical marginals, measuresIBP (i)
and IBP (i;φ, Ĉ) coincide (as in the case of independent
components).

Corollary 1. If F 1 = . . . = Fn = F , thenIBP (i) does not
depend onF and IBP (i) = IBP (i;φ, Ĉ).

Proof. Substitutionp = F (t) in (18) gives us

IBP (i) =

∫ ∞

0

IB
(

i;F (t)
)

dF (t)

=

∫ 1

0

IB(i; p)dp = IBP (i;φ, Ĉ).

As an immediate consequence we obtain the following
property.

Corollary 2. For any copula Ĉ,
∑n

i=1 IBP (i;φ, Ĉ) = 1
holds.

Remark 1. Theorem 3 can be also stated in the following
form:

Pr(T = Ti) =

∫ ∞

0

∂iR
(

F 1(t), . . . , Fn(t)
)

dFi(t).

For given φ, Ĉ and F 1(t), . . . , Fn(t), the function
R
(

F 1(t), . . . , Fn(t)
)

is explicit. Hence the above integral
can be calculated. Thus, we receive a formula to compute
Pr(T = Ti). By Theorem 1, this formula can be simplified
whenF 1 = . . . = Fn = F , obtaining

Pr(T = Ti) =

∫ 1

0

∂iR
(

p, . . . , p
)

dp.

Then, in this case,Pr(T = Ti) does not depend onF .

Definitions and relations between discussed measures are
gathered in Table 1. Note that all of them are valid in both
independent and dependent cases.

TABLE I
DEFINITIONS AND RELATIONS BETWEEN DISCUSSED MEASURES.

Birnbaum reliability i.m. IB(i;p) = ∂iR(p)
Birnbaum t.d.l. i.m. IB

(

i; t) = IB
(

i;F 1(t), . . . , Fn(t)
)

Barlow-Proschan t.i.l. i.m. IBP (i) = Pr(T = Ti)

Barlow-Proschan structure i.m. IBP (i;φ, Ĉ) =
∫

1

0
IB(i; p)dp

Relation IBP (i) =
∫

∞

0
IB

(

i; t)dFi(t)

Relation in the ID case IBP (i) = IBP (i;φ, Ĉ)

The following property shows thatIB can also be used
to compute the probability density function of the system
lifetime.

Proposition 1. Let fT and f1, . . . , fn be probability density
functions ofT andT1, . . . , Tn, respectively. Then for allt ≥ 0
we have

fT (t) =

n
∑

i=1

fi(t)IB
(

i;F 1(t), . . . , Fn(t)
)

. (20)

Proof. By (9), we have

fT (t) = −
d

dt
R
(

F 1(t), . . . , Fn(t)
)

=

n
∑

i=1

fi(t)∂iR
(

F 1(t), . . . , Fn(t)
)

and (20) holds since

IB
(

i;F 1(t), . . . , Fn(t)
)

= ∂iR
(

F 1(t), . . . , Fn(t)
)

.

The above formula becomes even more interesting if the
components are ID.

Corollary 3. If f1 = . . . = fn = f , then for all t ≥ 0 we
have

fT (t) = f(t)

n
∑

i=1

IB
(

i;F (t)
)

.

This allows us to study the likelihood ratio (lr) order
between the ID components and the system. This order is
defined as follows: LetX and Y be two random variables
with probability density functionsf andg, respectively, then
X ≤lr Y if g(t)/f(t) is increasing in the union of their
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supports. This ordering is the strongest order among the usual
reliability orders since it implies the hazard rate, mean residual
life, stochastic and reversed hazard rate orders (see Shaked and
Shantikumar, 2007). Now we can state the following result.

Theorem 4. If f1 = . . . = fn = f , thenT ≤lr T1 (T1 ≤lr T )
holds for anyf if and only if

∑n
i=1 IB

(

i; p
)

is increasing
(decreasing) inp in (0, 1).

A similar technique can be used to compare the same
system with two different copulas or two different systems.
The result can be stated as follows. Note thatIB contains all
the information needed to perform such comparisons.

Theorem 5. Let TA andTB be lifetimes of two systems with
n components having a common probability density function
f . Let IAB

(

i; p
)

and IBB
(

i; p
)

be the respective information
measures. ThenTA ≤lr T

B holds for anyf if and only if
∑n

i=1 I
B
B

(

i; p
)

∑n
i=1 I

A
B

(

i; p
)

is decreasing inp in (0, 1).

Finally, note that the joint reliability importance measure
of componentsi and j introduced in Hong and Lie (1993)
and Armstrong (1995) for independent components can be
extended to the case of dependent components as

IB(i, j; p1, . . . , pn) = ∂i∂jR(p1, . . . , pn)

whenever these partial derivatives exist.

IV. EXAMPLES

The first simple example shows that importance measures
IB and I∗B are different when the components are dependent
and thatIB can be used to computeIBP .

Example 1. Let us consider a series system with two de-
pendent components having an absolutely continuous joint
distribution with a survival copulâC. Then

FT (t) = Pr(T > t) = Pr(T1 > t, T2 > t) = Ĉ(F 1(t), F 2(t)),

that is, R = Ĉ. Hence IB(1; p1, p2) = ∂1Ĉ(p1, p2) and
I∗B(1; p1, p2) = Ĉ(1, p2) − Ĉ(0, p2) = p2. If the components
are independent, then̂C(p1, p2) = p1p2 and IB(1; p1, p2) =
p2 = I∗B(1; p1, p2). However, if they are dependent, then these
measures can be different. For example, for the following
Clayton-Oakes copula

Ĉ(p1, p2) =
p1p2

p1 + p2 − p1p2

we have

IB(1; p1, p2) =
p22

(p1 + p2 − p1p2)2
6= p2 = I∗B(1; p1, p2).

If the components are ID, that is,p1 = p2 = p, then

IB(i; p) =
1

(2− p)2
6= p = I∗B(1; p).

The Barlow-Prochan information measure of the first com-
ponent is

IBP (1) = Pr(T = T1) = Pr(T1 < T2)

=

∫ ∞

0

∫ ∞

x

f(x, y)dydx,

wheref is the joint probability density function of(T1, T2)
which, by (5), can be written as

f(x, y) = f1(x)f2(y)∂2∂1Ĉ(F 1(x), F 2(y)).

Thus

IBP (1) =

∫ ∞

0

∫ ∞

x

f1(x)f2(y)∂2∂1Ĉ(F 1(x), F 2(y))dydx

=

∫ ∞

0

f1(x)∂1Ĉ(F 1(x), F 2(x))dx

=

∫ ∞

0

IB(1;F 1(x), F 2(x))dF1(x).

Note that

IBP (1) 6=

∫ ∞

0

I∗B(1;F 1(x), F 2(x))dF1(x)

=

∫ ∞

0

F 2(x)dF1(x)

since the last expression does not depend onĈ. If the
components are ID, then

IBP (1) =

∫ ∞

0

IB(1;F 1(x), F 1(x))dF1(x) =

∫ 1

0

IB(1; p)dp.

In particular, for the C-O copula used above we obtain

IBP (1) =

∫ 1

0

IB(1; p)dp =

∫ 1

0

1

(2− p)2
dp =

1

2

as expected since this copula is exchangeable.
If we want to use Theorem 5 to compare the series system

with the C-O copulaTB with that with the product copula
(independent components)TA, we should study the function

IBB
(

1; p
)

+ IBB
(

2; p
)

IAB
(

1; p
)

+ IAB
(

1; p
) =

1

p(2− p)2
.

As it is not monotonic in(0, 1), TA andTB are not lr-ordered
for all f . So, in this case, the dependence does not improve
the series system (in the lr order).

In the following example we study a system with a different
structure.

Example 2. Consider a3-component coherent system with
the structure function given byφ(x1, x2, x3) = x1 + x2x3 −
x1x2x3. Its structure can be presented as

'&%$ !"#1 ◗◗◗❥❥❥❚❚ '&%$ !"#2 '&%$ !"#3

Its minimal path sets are{1} and{2, 3}. Hence, by (8),

R(p1, p2, p3) = p1 + Ĉ(1, p2, p3)− Ĉ(p1, p2, p3).
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Therefore

IB(1; p1, p2, p3) = ∂1R(p1, p2, p3) = 1− ∂1Ĉ(p1, p2, p3),

IB(2; p1, p2, p3) = ∂2R(p1, p2, p3)

= ∂2Ĉ(1, p2, p3)− ∂2Ĉ(p1, p2, p3),

IB(3; p1, p2, p3) = ∂3R(p1, p2, p3)

= ∂3Ĉ(1, p2, p3)− ∂3Ĉ(p1, p2, p3).

For example, consider the Farlie-Gumbel-Morgenstern copula
given by

Ĉ(p1, p2, p3) = p1p2p3[1 + α(1 − p1)(1− p2)],

whereα ∈ [−1, 1]. For that copula,T3 is independent from
T1, T2 and the strength of dependence (either positive or
negative) betweenT1 andT2 is controlled by the parameterα.
In particular, forα = 0 all the components are independent.
For this copula we have

IB(1; p1, p2, p3) = 1− p2p3[1 + α(1 − 2p1)(1 − p2)],

IB(2; p1, p2, p3) = p3 − p1p3[1 + α(1 − p1)(1 − 2p2)],

IB(3; p1, p2, p3) = p2 − p1p2[1 + α(1 − p1)(1 − p2)].

In particular, if p1 = p2 = p3 = p, then

IB(1; p) = 1− p2[1 + α(1− 2p)(1− p)],

IB(2; p) = p− p2[1 + α(1 − 2p)(1− p)],

IB(3; p) = p− p2[1 + α(1 − p)2].

One can check thatIB(1; p, Ĉ) ≥ IB(2; p, Ĉ) and
IB(1; p, Ĉ) ≥ IB(3; p, Ĉ) for all α ∈ [−1, 1], p ∈ [0, 1]
and IB(2; p, Ĉ) ≥ IB(3; p, Ĉ) for all p ∈ [0, 1] if and only
if α ≥ 0. The same order is preserved by Barlow-Proschan
structure importance measure defined in (19):

IBP (1;φ, Ĉ) =

∫ 1

0

IB(1; p)dp = (2/3) + (1/60)α,

IBP (2;φ, Ĉ) =

∫ 1

0

IB(2; p)dp = (1/6) + (1/60)α,

IBP (3;φ, Ĉ) =

∫ 1

0

IB(3; p)dp = (1/6)− (1/30)α.

We haveIBP (1;φ, Ĉ) + IBP (2;φ, Ĉ) + IBP (3;φ, Ĉ) = 1, as
stated.

If the components are ID with a common probability density
function f , then the function

3
∑

i=1

IB
(

i; p
)

= 1 + 2p− p2[3 + α(1 − p)(3− 5p)]

is not monotonic inp for any α ∈ [−1, 1]. So, by Theorem
4, we conclude thatT and T1 are not lr-ordered under this
copula for allf . In a similar way we can compare the systems
obtained for different values ofα. Thus as the function
∑n

i=1 IB
(

i; p, Ĉβ

)

∑n
i=1 IB

(

i; p, Ĉα

) =
1 + 2p− p2[3 + β(1 − p)(3− 5p)]

1 + 2p− p2[3 + α(1 − p)(3− 5p)]

is not monotonic whenα 6= β, the system does not improve
(in the lr order) when the dependence increases (decreases).

We have seen that for ID components, the first one has the
greatest information measure. The situation may change when
we place the ‘weakest’ component in the ‘strongest’ place.
For example, ifF 1(t) = e−2t, F 2(t) = F 3(t) = e−t and
I(i; t) := IB

(

i;F 1(t), F 2(t), F 3(t)
)

for i = 1, 2, 3, then

I(1; t) = 1− e−2t[1 + α(1− 2e−2t)(1− e−t)],

I(2; t) = e−t − e−3t[1 + α(1 − e−2t)(1 − 2e−t)],

I(3; t) = e−t − e−3t[1 + α(1 − e−2t)(1 − e−t)].

In the independent case (forα = 0), we have

I(1; t) = 1− e−2t > e−t(1 − e−2t) = I(i; t)

for i = 2, 3 and allt > 0. However, forα = 1 we getI(2; t) >
I(1; t) for smallt’s and forα = −1 we obtainI(3; t) > I(1; t)
for small t’s. The plots can be seen in Figure 1.

Fig. 1. Importance measures for component 1 (red), 2 (blue) and 3 (green) for
the system considered in Example 2 with a FGM survival copulafor α = 1
(top) andα = −1 (bottom).

The dependence provided by the Farlie-Gumbel-
Morgenstern copula used in the preceding example is
too weak to significantly change components importance
measures in relation to the independent case when the
components are identically distributed. In the following
example we use copulas bringing much stronger dependence.
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Example 3. Consider a5-component coherent system with
the structure function given byφ(x1, x2, x3, x4, x5) = x1x2+
x3x4x5 − x1x2x3x4x5. Its structure can be drawn as

'&%$ !"#1 '&%$ !"#2 ◗◗◗❥❥❥❚❚ '&%$ !"#3 '&%$ !"#4 '&%$ !"#5

Moreover, assume thatT1, T2 are independent fromT3, T4, T5.
In other words, we assume that the survival copulaĈ can be
expressed as

Ĉ(p1, p2, p3, p4, p5) = KA(p1, p2)KB(p3, p4, p5)

for some copulasKA, KB. Since{1, 2} and{3, 4, 5} are the
minimal path sets, we have

R(p) = KA(p1, p2)+KB(p3, p4, p5)−KA(p1, p2)KB(p3, p4, p5)

and

IB(i;p) =

{

∂iKA(p1, p2)[1−KB(p3, p4, p5)], i = 1, 2
∂iKB(p3, p4, p5)[1−KA(p1, p2)], i = 3, 4, 5.

(21)
In the independent case, i.e., forKA(p1, p2) = p1p2 and
KB(p3, p4, p5) = p3p4p5, we have

IB(i; p) = p− p4 > p2 − p4 = IB(j; p)

for i = 1, 2 and j = 3, 4, 5 and all p ∈ (0, 1). This result
is intuitive: components on the shorter path set are ‘more
important’ than these on the longer path set. However, it is no
longer true when we chooseKA andKB in such a way that
T1 and T2 are strongly negatively dependent andT3, T4, T5

are strongly positively dependent.
The ‘border’ copulas (Fréchet-Hoeffding bounds), which

provide the maximum possible dependence, are the counter-
monotonic and comonotonic ones, given byKc(p1, p2) =
0 ∨ (p1 + p2 − 1) and Km(p3, p4, p5) = p3 ∧ p4 ∧ p5,
respectively, where ‘∨’ and ‘∧’ stand for the maximum
and the minimum, respectively. Unfortunately, we cannot use
them directly because∂1Kc(1/2, 1/2) and∂3Km(p, p, p) do
not exist. Therefore we approximate them by the following
Clayton-Oakes and Gumbel copulas

KA(p1, p2; ε) = [0 ∨ (p1−ε
1 + p1−ε

2 − 1)]1/(1−ε),

KB(p3, p4, p5; ε) = exp
[

−
(

(− log p3)
1/ε + (− log p4)

1/ε

+ (− log p5)
1/ε

)ε]

for a small parameterε > 0. Then one can see that

lim
ε→0

KA(p1, p2; ε) = Kc(p1, p2)

and
lim
ε→0

KB(p3, p4, p5; ε) = Km(p3, p4, p5).

Furthermore, we have

KA(p, p; ε) =

{

0, p ≤ (1/2)
1

1−ε

(2p1−ε − 1)
1

1−ε ≃ 2p− 1, p ≥ (1/2)
1

1−ε

and

∂iKA(p, p; ε) =

{

0, p < (1/2)
1

1−ε

(2p1−ε − 1)
ε

1−ε p−ε ≃ 1, p > (1/2)
1

1−ε

for i = 1, 2 when ε → 0. Also KB(p, p, p; ε) = p3
ε

≃ p
and∂iKB(p, p, p; ε) = 3ε−1p3

ε−1 ≃ 1/3 for i = 3, 4, 5 when
ε → 0. Hence

IB(i; p) ≃

{

0, p < (1/2)1/(1−ε)

1− p, p > (1/2)1/(1−ε) (22)

for i = 1, 2 and

IB(i; p) ≃

{

1/3, p ≤ (1/2)1/(1−ε)

(2/3)(1− p), p ≥ (1/2)1/(1−ε) (23)

for i = 3, 4, 5. In particular,

IB(i; p) ≃ 0 < 1/3 ≃ IB(j; p)

for i = 1, 2, j = 3, 4, 5 and p < (1/2)1/(1−ε) ≃ 1/2.
Moreover,

IBP (i;φ, Ĉ) =

∫ 1

0

IB(i; p)dp ≃

{

1/8, i = 1, 2
1/4, i = 3, 4, 5.

Thus, if T1, . . . , T5 are identically distributed then

Pr(T = Ti) ≃
1

8
<

1

4
≃ Pr(T = Tj)

for i = 1, 2 andj = 3, 4, 5 and, i.e., components1, 2 are ‘less
important’ in the BP sense than components3, 4, 5. However,

IB(i) := IB(i; 1/2) ≃

{

1/2, i = 1, 2
1/3, i = 3, 4, 5.

So the Birnbaum importance order between them is the same
as in the independent case.

Remark 2. In order to construct an example for which the
orders of the Birnbaum structural component measures in the
independent and dependent case are not the same, it suffices
to slightly modify Example 3. In fact, by (21), (22) and (23),
we have

IB(1) = ∂1KA(1/2, 1/2; ε)[1−KB(1/2, 1/2, 1/2; ε)]

≃ 1 · [1− 1/2]

> (1/3) · [1− 0]

≃ ∂3KB(1/2, 1/2, 1/2; ε)[1−KA(1/2, 1/2; ε)]

= IB(3).

The value ∂3KB(1/2, 1/2, 1/2; ε) ≃ 1/3 is too small
to reverse the inequality. But if we choseK∗

B such that
K∗

B(1/2, 1/2, 1/2; ε) ≃ 1/2 and ∂3K
∗
B(1/2, 1/2, 1/2; ε) >

1/2 instead, we would obtain the desired relationIB(1) <
IB(3).

Example 4. A very relevant system structure is the bridge
system given by

'&%$ !"#1 '&%$ !"#2 ❄❄✇✇●● '&%$ !"#5
'&%$ !"#3 '&%$ !"#4

⑧⑧

Its structure function is

φ(x) = max[min(x1, x2),min(x3, x4),

min(x1, x4, x5),min(x2, x3, x5)]

for x = (x1, x2, x3, x4, x5) ∈ {0, 1}n. Let us assume that
only the components{1, 4} and{2, 3} are dependent with the
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same dependence structure, that is, the survival copula canbe
written as

Ĉ(p) = p5K(p1, p4)K(p2, p3)

for p = (p1, p2, p3, p4, p5) ∈ [0, 1]n and a bidimensional
copulaK. Then by (8),

R(p) = p1p2 + p3p4 + p5K(p1, p4) + p5K(p2, p3)

−K(p1, p4)K(p2, p3)− p2p5K(p1, p4)− p1p5K(p2, p3)

− p3p5K(p1, p4)− p4p5K(p2, p3) + 2p5K(p1, p4)K(p2, p3).

Therefore, the importance index of the first component is

IB(1;p) = p2 − p5K(p2, p3)

+ [p5(1− p2 − p3) + (2p5 − 1)K(p2, p3)]∂1K(p1, p4).

The indices of components 2, 3 and 4 are similar by the
symmetry. The importance index for component 5 is

IB(5;p) = (1− p2 − p3)K(p1, p4) + (1− p1 − p4)K(p2, p3)

+ 2K(p1, p4)K(p2, p3).

Indices 1 and 5 are not ordered in general. If we assume that
the components are identically distributed andp = pi for i =
1, 2, 3, 4, 5, then

IB(1; p) = p− pK(p, p) + (1 − 2p)[p−K(p, p)]∂1K(p, p)

and

IB(5; p) = 2(1− 2p)K(p, p) + 2
(

K(p, p)
)2
.

In the independent case, we haveK(p, p) = p2, ∂1K(p, p) = p
and

IB(1; p) = p+ p2 − 4p3+2p4 ≥ 2p2− 4p3+2p4 = IB(5; p).

So components 1, 2, 3, 4 are more important than component
5. However, when components 1, 4 are strongly positively
correlated and so they are components 2, 3, the order tends to
flip. For example, take the Gumbel copulaKB(p, p; ε) defined
in Example 3. Then, forε → 0, we haveKB(p, p; ε) = p2

ε

≃
p, ∂1KB(p, p; ε) = 2ε−1p2

ε−1 ≃ 1/2 and

IB(1; p) ≃ p(1− p) ≤ 2p(1− p) ≃ IB(5; p).

Besides, one may check that

IB(1) = IB(1; 1/2) < IB(5; 1/2) = IB(5)

for ε < 0.44.

V. CONCLUSIONS

The copula approach is a convenient way to express the
system reliability as a function of component (marginal)
reliability functions and the dependence structure between
them. This representation allows us to generalize the Birnbaum
component importance measure to the case of dependent
components. Our generalization is consistent with the results
already existing in the literature. It shares properties with its
original version defined for independent components. Further-
more, the extended Birnbaum component measure is related
to the version of the Barlow-Proschan measure for dependent

components in the same way as their respective counterparts
are in the independent components case.

Ordering the system components with respect to their
importance measures is a natural way to seek the ‘fragile’
places of the system structure. It turns out that the order of
components significantly depends on the dependence between
components. Hence, one can boost the system performance
by a reasonable location of dependent components in a given
system structure when the dependence (copula) is known (or
can be estimated).

Also, using the Birnbaum component importance measure
one can easily examine the likelihood ratio order between the
entire system and single component lifetimes or lifetimes of
two systems with the same components, but different structures
or dependences. Since the likelihood ratio order implies many
other well known stochastic orders, in this way, we are able
to effortlessly check if all the popular orderings occur before
the further analysis.

This paper is just a first step in this direction showing which
importance measures should be used in the case of dependent
components. There are several open problems. Thus some
specific (relevant) dependence models in reliability should be
examined in detail following the key ideas given here. Also,
particular (more realistic) system structures should be studied
including modular systems. Furthermore, the properties ofthe
joint reliability importance measure proposed here shouldbe
studied as well as the connections of component information
measures with replacement policies.

APPENDIX: Proof of Theorem 2.

To prove Theorem 2 we need the following technical
lemmas and corollaries.

Lemma 1. For any system structureφ and anyi ∈ {1, . . . , n}
we have

Pr
(

φ(X) = 1
)

=
∑

y : φ(0i,y)=1

Pr(Xj = yj for all j 6= i)

+
∑

y : φ(1i,y)−φ(0i,y)=1

Pr(Xi = 1, Xj = yj for all j 6= i).

Proof. Since

A = {x : φ(x) = 1}

= {(1i,y) : φ(1i,y) = 1} ∪ {(0i,y) : φ(0i,y) = 1}

= {(1i,y) : φ(1i,y) = 1, φ(0i,y) = 0}

∪ {(1i,y) : φ(1i,y) = 1, φ(0i,y) = 1}

∪ {(0i,y) : φ(0i,y) = 1}

= {(1i,y) : φ(1i,y)− φ(0i,y) = 1}

∪ {(1i,y) : φ(0i,y) = 1}

∪ {(0i,y) : φ(0i,y) = 1},
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we have

Pr
(

φ(X) = 1
)

=
∑

x : φ(x)=1

Pr(Xi = xi, i = 1, . . . , n)

=
∑

y : φ(1i,y)−φ(0i,y)=1

Pr(Xi = 1, Xj = yj for all j 6= i)

+
∑

y : φ(0i,y)=1

Pr(Xi = 1, Xj = yj for all j 6= i)

+
∑

y : φ(0i,y)=1

Pr(Xi = 0, Xj = yj for all j 6= i)

=
∑

y : φ(1i,y)−φ(0i,y)=1

Pr(Xi = 1, Xj = yj for all j 6= i)

+
∑

y : φ(0i,y)=1

Pr(Xj = yj for all j 6= i).

This concludes the proof.

If Pr(Xi = 1) = pi for i = 1, . . . , n then, for anyy, the
probability Pr(Xi = 1, Xj = yj for all j 6= i) is a function
of Ĉ. In particular, fory = (1, . . . , 1), by (5), we have

Pr(Xi = 1, Xj = yj for all j 6= i) = Pr(X1 = 1, . . . , Xn = 1)

= Ĉ(p).

For i < n andy = (1, . . . , 1, 0), by (5) and (7) we get

Pr(Xi = 1,Xj = yj for all j 6= i)

= Pr(X1 = 1, . . . , Xn−1 = 1, Xn = 0)

= Pr(X1 = 1, . . . , Xn−1 = 1)

− Pr(X1 = 1, . . . , Xn = 1)

= Ĉ
(

(1n,p)
)

− Ĉ(p).

The analogous formulas for anyi and y can be obtained
explicitly in a similar way. They are sums of̂C at points
with the coordinatespi and 1 in some configurations. More
precisely, they are thêC-volume of a hyperrectangle defined
by i andy in the following way: theith interval is[0, pi] and
for j 6= i, if yj = 1, then choose interval[0, pj], else choose
interval [pj , 1]. However, we do not need the exact formulas.
We only note that there exists a function̂Ki such that

Pr(Xi = 1, Xj = yj for all j 6= i) = K̂i(p,y)

for all p andy. If ∂iĈ(p) exists, then the partial derivative of
K̂i(p,y) with respect topi, denoted by∂iK̂i(p,y), exists as
well. We can considerPr(Xj = yj for all j 6= i) in the same
way and conclude that

Pr(Xj = yj for all j 6= i) = K̂i

(

(1i,p),y
)

, (24)

i.e, it does not depend onpi. Hence, Lemma 1 and (8) imply
the following corollary.

Corollary 4. For any i ∈ {1, . . . , n} we have

∂iR(p) =
∑

y : φ(1i,y)−φ(0i,y)=1

∂iK̂i(p,y),

providing these partial derivatives exist.

Now assume thatV1, . . . , Vn are random variables with
uniform distributions in(0, 1) and with a copulaĈ, i.e.,

Pr(V1 < p1, . . . , Vn < pn) = Ĉ(p) (25)

for anyp = (p1, . . . , pn) ∈ [0, 1]n. Then one can see that for
any i andy we have

Pr(Vi < pi,Vj < pj ∀j : yj = 1, Vj > pj ∀j : yj = 0)

= K̂i(p,y). (26)

Also the following lemma holds.

Lemma 2. For any i andy we have

Pr(Vj < pj ∀j : yj = 1, Vj > pj ∀j : yj = 0|Vi = pi)

= ∂iK̂i(p,y),

providing this partial derivative exists.

Proof. To simplify the notation, we present the proof
for i = 1. It is analogous for every otheri. Let
f2,...,n|1(u2, . . . , un|u1), f1,...,n(u1, . . . , un) andf1(u1) stand
for the conditional density of(V2, . . . , Vn) under the condition
V1 = u1, the joint density of(V1, . . . , Vn) and the density of
V1, respectively. By the formula of conditional density we have

f2,...,n|1(u2, . . . , un|u1) =
f1,...,n(u1, . . . , un)

f1(u1)

= f1,...,n(u1, . . . , un)

sincef1(u1) = 1 for all u1 ∈ (0, 1). Let Ap,y = I2× . . .× In
where Ij = [0, pj) if yj = 1 and Ij = (pj , 1] if yj = 0,
j = 2, . . . , n. Then, by (26), for0 < p1 < 1, we get

Pr
(

(V2, . . . , Vn) ∈ Ap,y

∣

∣V1 = p1
)

=

∫

. . .

∫

Ap,y

f1,...,n(p1, u2, . . . , un)du2 . . . dun

= ∂1

∫

. . .

∫

Ap,y

∫ p1

0

f1,...,n(u1, u2, . . . , un)du1du2 . . . dun

= ∂1K̂1(p,y).

Corollary 4 and Lemma 2 imply the following result.

Corollary 5. For any i ∈ {1, . . . , n} we have

∂iR(p,K) =
∑

y∈S

Pr(Vj < pj for all j : yj = 1,
Vj > pj for all j : yj = 0|Vi = pi),

providing this partial derivative exists, where

S = {y : φ(1i,y)− φ(0i,y) = 1}.

Let us consider now the component lifetimes(T1, . . . , Tn)
with reliability functionsF 1, . . . , Fn. Then by puttingVi =
F i(Ti) and pi = F i(t) for i = 1, . . . , n, we obtain the
uniformly distributed random variablesV1, . . . , Vn fulfilling
(25). Moreover,

Pr
(

max
j : yj=0

Tj < t < min
j : yj=1

Tj

∣

∣

∣
Ti = t

)

= Pr(Vj < pj for all j : yj = 1,

Vj > pj for all j : yj = 0|Vi = pi)
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holds for anyi andy. Therefore we can rewrite Corollary 5
as follows.

Corollary 6. For any i ∈ {1, . . . , n} we have

∂iR
(

F 1(t), . . . , Fn(t)
)

=
∑

y∈S

Pr(Ay |Ti = t)

whereAy = {maxj : yj=0 Tj < t < minj : yj=1 Tj}, providing
this partial derivative exists.

We need one more lemma.

Lemma 3. For any i ∈ {1, . . . , n} we have

Pr(T = Ti|Ti = t) =
∑

y∈S

Pr(Ay |Ti = t).

Proof.

Pr(T = Ti|Ti = t) = Pr(T = t|Ti = t)

=
∑

y

Pr(T = t, Ay|Ti = t)

=
∑

y∈S

Pr(Ay|Ti = t).

This concludes the proof.

Proof of Theorem 2. It is obtained from Corollary 6 and
Lemma 3.

We conclude with two remarks.

Remark 3. It is worth noting that Lemma 3, Theorem 2 and
Corollary 3 imply that

IBP (i;F 1(t), . . . , Fn(t)) =
∑

y∈S

∫ ∞

0

Pr
(

Ay

∣

∣

∣
Ti = t

)

dFi(t)

=
∑

y∈S

∫ ∞

0

Pr
(

Ay

∣

∣

∣
Ti = t

)

dFi(t)

=
∑

y∈S

Pr
(

Ay

)

.

This formula was obtained in Theorem 3 of Marichal and
Mathonet (2013).

Remark 4. For the alternative measure defined asI∗B(i;p) =
E[φ(1i,X)−φ(0i,X)], using the same method as in Lemma
1, by (24), we get

E[φ(1i,X)−φ(0i,X)]

= Pr
(

φ(1i,X) = 1
)

− Pr
(

φ(0i,X) = 1
)

=
∑

y : φ(1i,y)−φ(0i,y)=1

Pr(Xj = yj for all j 6= i)

=
∑

y : φ(1i,y)−φ(0i,y)=1

K̂i

(

(1i,p),y
)

.

Meanwhile, by Corollary 4,

IB(i;p) =
∑

y : φ(1i,y)−φ(0i,y)=1

∂iK̂i(p,y).

Hence, one can see thatI∗B(i;p) = IB(i;p) for all p ∈ [0, 1]n

only if

Ĉ(p1, . . . , pn) = piK(p1, . . . , pi−1, pi+1, . . . , pn)

for an (n − 1)-dimensional copulaK, i.e., when Xi is
independent from allXj , j 6= i.
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