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aFacultad de Matemáticas, Universidad de Murcia, Spain
bInstitute of Mathematics, Polish Academy of Sciences, Poland

cUniversita’ degli studi di Roma, La Sapienza, Italy.

Abstract

The signature of a system is a probability vector that depends only on
the system structure. Under the classic IID (independent and identically
distributed) assumption on the component lifetimes, the system lifetime
distribution is the convex combination of consecutive component failure
times, and the signature coordinates constitute the mixture coefficients.
In this case the signature representations are very useful in determining
the system lifetime distributions and for stochastic comparisons of them.
This first representation was obtained in 1985 by Samaniego. Then it
was extended to the more general case of exchangeable component life-
times. In 2011 Marichal, Mathonet and Waldhauser presented necessary
and sufficient conditions assuring the Samaniego representation. There
were expressed in terms of distributional properties of families of auxiliary
indicator random vectors parametrized by positive numbers. In the paper
we obtain other necessary and sufficient conditions represented in terms
of the marginal distributions of component lifetimes and the dependence
copula of them. Moreover, we study symmetry conditions for the equality
of structural and probabilistic signatures.

∗Corresponding author at: Facultad de Matemáticas, Universidad de Murcia, 30100 Murcia,
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1 Introduction

The general interest of the concept of signature in the field of reliability is a well-
known fact. The study of such a concept leads to analyze interesting and specific
aspects of stochastic dependence among non-negative random variables. More
precisely, such a study leads to compare different properties of partial symmetry,
which can be respectively seen as suitable generalizations of the exchangeability
condition.

The first signature representation was obtained by Samaniego [22] for coherent
systems with independent and identically (IID) distributed components having a
common continuous distribution function F . This representation proves that the
system distribution is a mixture (linear combination with non-negative weights)
of the distributions of the ordered component lifetimes. The vector formed with
the coefficients in that representation does not depend on F and was called the
signature of the system. It is composed of the probabilities that the system fails
with the consecutive component failures (for the formal definitions of probabilistic
and structural signatures see Section 2). These distributions coincide with that of
the order statistics and so this representation can be used to compute the system
reliability from its signature. It can also be used to compare two systems with
different structures just by comparing their signature vectors [7, 10, 15, 20].

This representation was extended in [14] to systems with component lifetimes
having a joint absolutely continuous exchangeable (EXC) distribution. Exchange-
able means that the distribution (law) is invariant under permutations. Then it
was extended to general EXC distributions in [15] but in this case the signature
values should be computed from the system structure and cannot be interpreted
as probabilities. A review on the properties and applications of signature repre-
sentations for systems and networks can be seen in [23]. Extensions to multi-state
systems and connections with fuzzy measures were given in [17, 30].

Example 5.1 in [15] proves that the signature representations do not hold for
systems with independent non-identically distributed components. We show here
that the ID assumption cannot be relaxed as far as one needs conditions for the
validity of the signature representation for any coherent system. Note that for
k-out-of-n no conditions are required. However, two recent results prove that the
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EXC assumption can be relaxed.
The first one was obtained in Theorem 4 of [9]. There it is proved that a

necessary and sufficient condition to get the signature representations of all the
coherent systems is that the random variables with the components’ states at
time t are EXC for any t ≥ 0.

The second one, obtained in Theorem 1 of [12], was based on the copula
representation of the joint distribution of the component lifetimes. It is well
know that this joint distribution is EXC if and only if the component (marginal)
distributions are equal (ID) and the copula is EXC. It was proved in [12] that
the EXC property for the copula can be relaxed. It is enough to merely assume
that the copula is diagonal dependent (DD) (the formal definition is given in
Section 2). Moreover, it was shown there that the set of DD copulas is much
bigger than the set of EXC copulas and that it is dense in the set of copulas while
the set of EXC copulas is not. Diagonal dependence of the copula is a sufficient
condition on the dependence structure of component lifetimes for the signature
representation of the system lifetime distribution, and this assumption is relaxed
here so to obtain the necessary and sufficient condition.

In the present paper we obtain two new necessary and sufficient conditions
for getting the signature representations for arbitrary systems. Other symmetry
conditions are studied as well to get the equality between structural and proba-
bilistic signatures. The rest of the paper is organized as follows. The main results
are included in the following section. Examples and counterexamples are placed
in Section 3. In Section 4, we analyze reliability models constructed with the
use of multivariate conditional hazard rate functions, and investigate conditions
on these functions which assure that the probabilistic and structural signatures
of all the coherent systems are identical. A summary and some conclusions are
given in Section 5.

Throughout the paper the terms ‘increasing’ and ‘decreasing’ are used in a
wide sense, that is, they mean ‘non-decreasing’ and ‘non-increasing’, respectively.
We use the notation [n] := {1, . . . , n} and uI := (u1, . . . , un), I ⊆ [n], for a vector
with coordinates ui = u when i ∈ I and ui = 1 otherwise.

2 Main results

A (binary) system is a Boolean (structure) function ψ : {0, 1}n → {0, 1}. Here
xi = 0 means that the ith component does not work and xi = 1 that it works.
Then the system state ψ(x1, . . . , xn) ∈ {0, 1} is completely determined by the
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structure function ψ and the component states x1, . . . , xn ∈ {0, 1}. A system
ψ is semi-coherent if it is increasing, ψ(0, . . . , 0) = 0 and ψ(1, . . . , 1) = 1. A
system is coherent if it is increasing and all the components are relevant. The
ith component is relevant if ψ is strictly increasing in at least a point in the ith
variable (i.e., at this point, the system works if and only if the ith component
works). In particular, if ψ is coherent, then ψ(0, . . . , 0) = 0 and ψ(1, . . . , 1) = 1
(it is also semi-coherent). The basic properties of systems can be seen in the
classic book [1].

If the state of the ith component at a time t ≥ 0 is represented by the random
variable Xi(t) for i ∈ [n], where Xi(t) = 1 (resp. 0) means that the ith component
is working (has failed) at time t, then the system state at time t is

X(t) = ψ(X1(t), . . . , Xn(t)).

We assume Xi(0) = 1 and limt→∞Xi(t) = 0 for i ∈ [n]. Hence, for semi-coherent
systems, we have X(0) = 1 and limt→∞X(t) = 0.

Analogously we can define the component lifetimes

Ti := sup{t ≥ 0 : Xi(t) = 1}, i ∈ [n]

and the system lifetime

T := sup{t ≥ 0 : X(t) = 1}.

They are non-negative random variables. Then we can consider the ordered
component lifetimes T1:n ≤ · · · ≤ Tn:n obtained from T1, . . . , Tn. Observe that
T1:n, . . . , Tn:n represent the lifetimes of k-out-of-n systems, i.e. ones that work
when at least k of their n components work.

We know that the system fails with a component failure, that is, T = Ti:n for
an i ∈ [n]. Hence we can define the probabilistic signature p = (p1, . . . , pn) of the
system as

pi := Pr(T = Ti:n), i ∈ [n]. (2.1)

The meaning of p is clear. Note that p depends on both ψ and the joint distribu-
tion of (T1, . . . , Tn). Also note that pi ≥ 0 but that p1 + · · ·+pn = 1 does not nec-
essarily hold. For example, if T1, T2 are IID and Pr(Xi = 0) = Pr(Xi = 1) = 1/2
for i = 1, 2 (Bernoulli distributions), then the probabilistic signature of the series
system ψ1(x1, x2) = min(x1, x2) is p = (1, 1/2).
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Samaniego [22] proved that if the component lifetimes T1, . . . , Tn are IID with
a common continuous distribution function F , then the system lifetime distribu-
tion function FT (t) := Pr(T ≤ t) can be written as

FT (t) = p1F1:n(t) + · · ·+ pnFn:n(t) (2.2)

for all t. Even more, he proved that in this case p1, . . . , pn do not depend on F
(i.e. they only depend on the structure ψ). So expression (2.2) is very useful to
compute the system distribution (or its reliability function F̄T = 1− FT ) and to
compare systems having different structures just by comparing their signatures,
see [7]. This representation was extended to systems with components having a
joint absolutely continuous EXC distribution in [14].

In the IID continous case, Boland [2] obtained an explicit formula to compute
the signature from the structure function. This expression can be used to define
the structural signature s = (s1, . . . , sn) of ψ as

si =
1(
n

n−i+1

) ∑
∑n
j=1 xj=n−i+1

ψ(x1, . . . xn) − 1(
n
n−i

) ∑
∑n
j=1 xj=n−i

ψ(x1, . . . xn) (2.3)

for i ∈ [n]. Note that s only depends on ψ and that it satisfies s1, . . . , sn ≥ 0 and
s1 + · · · + sn = 1. A symmetry condition for the components’ joint distribution
to get p = s was given in Proposition 7 of [9].

The structural signature was used in [15] to extend the Samaniego represen-
tation (2.2) to systems with component lifetimes having a joint EXC distribution
by using the following representation

FT (t) = s1F1:n(t) + · · ·+ snFn:n(t) (2.4)

for all t. Note that this case includes the general IID case and it proves that (2.4)
might hold when (2.2) does not hold. For example, this happens when the joint
distribution of component lifetimes has ties (i.e. Pr(Ti = Tj) > 0 for some i 6= j)
and then pi = Pr(T = Ti:n), i = 1, . . . , n, sum up to a number greater than 1.
Problems of validity of representations (2.2) and (2.4) are illustrated in Examples
3.2 and 3.3. The right-hand sides of (2.2) (when p1 + · · · + pn = 1) and (2.4)
can be used to define mixed systems as randomly chosen k-out-of-n systems with
arbitrary choice probabilities pi and si for i ∈ [n], see [18].

The extensions of representations (2.2) and (2.4) were studied in the excellent
paper by Marichal et al. [9]. In particular they proved in Theorem 4 that (2.4)
holds for all the coherent systems of a fixed dimension n > 2 if and only if the
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random vector (X1(t), . . . , Xn(t)) with the components’ states is EXC for all t ≥
0. The case n = 2 is trivial since there are only two coherent systems, the series
system ψ1(x1, x2) = min(x1, x2) and the parallel system ψ2(x1, x2) = max(x1, x2)
with structural signatures (1, 0) and (0, 1). Hence (2.4) is always true then.

Representation (2.4) was extended recently in [12] by using a condition based
on the copula representation for the joint distribution function F of (T1, . . . , Tn).
It is well known from Sklar’s theorem (see, e.g., [4, 19]) that F can be written as

F(t1, . . . , tn) = Pr(T1 ≤ t1, . . . , Tn ≤ tn) = C(F1(t1), . . . , Fn(tn)), (2.5)

where C is a copula function. Even more, if the marginal distribution functions
F1, . . . , Fn are continuous, the copula C is unique. From [15] we know that (2.4)
holds when (T1, . . . , Tn) is EXC, that is,

(T1, . . . , Tn) =st (Tσ(1), . . . , Tσ(n))

for any permutation σ, where =st means equality in law. Moreover, it is easy to
see that (T1, . . . , Tn) is EXC if and only if F1 = · · · = Fn (the components are
ID) and C is EXC (i.e. permutation invariant). The ID assumption cannot be
dropped out (see Example 5.1 in [15]). However, it was proved in [12] that the
second condition (C is EXC) can be relaxed. In order to describe the relaxation
we introduce the notion of diagonal dependent copula.

Definition 2.1. Let S be a given subset of the interval [0, 1]. We say that the
n-dimensional copula function C : [0, 1]n→[0, 1] is S-diagonal dependent (S-DD,
for short) if

C(uP ) = C(uQ) (2.6)

for every u ∈ S and all subsets P and Q of [n] with the same cardinality. We
write that a copula is diagonal dependent (DD) if it is [0, 1]-diagonal dependent.

The relaxation obtained in [12] consisted in replacing exchangeable copulas
by diagonal dependent ones. A large exemplary family of DD copulas is given in
Proposition 1 of [12]. Note that this concept is not the same as a d–copula which
have all the lower dimensional k–marginal copulas equal each other for all k ≤ n
since in the DD copulas these marginal copulas just coincide in their diagonal
sections. Of course, all d–copulas are DD copulas but the reverse is not true (see
Example 3.2 below).

In the following theorem we present three equivalent necessary and sufficient
conditions for obtaining representation (2.4). Given an event (or a set) S, we use
the notation Sc for the complementary event and |S| for the cardinality of S.
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Theorem 2.1. If n > 2, the following conditions are equivalent:

(i) Representation (2.4) holds for any coherent system with n components.

(ii) If Ai = {Ti ≤ t} and Aci = {Ti > t}, then

Pr
(
[∩i∈IAi] ∩

[
∩j∈IcAcj

])
= Pr

(
[∩i∈JAi] ∩

[
∩j∈JcAcj

])
(2.7)

for all I, J ⊆ {1, . . . , n} with |I| = |J |.

(iii) (X1(t), . . . , Xn(t)) are EXC for all t.

(iv) T1, . . . , Tn are ID with a common distribution function F and their copula
C is R(F )-DD for R(F ) = {u = F (t) : t > 0} denoting the image of the
common marginal distribution function F of all component lifetimes.

Proof. The equivalence between conditions (i) and (iii) was given in Theorem 4
of [9].

Let us show that (ii) implies (iii). To this end we note that if xi = 0 for i ∈ I
and xi = 1 for i /∈ I, then

pt(x1, . . . , xn) : = Pr(X1(t) = x1, . . . , Xn(t) = xn)

= Pr
(
[∩i∈IAi] ∩

[
∩j∈IcAcj

])
= Pr

(
[∩mi=1Ai] ∩

[
∩nj=m+1A

c
j

])
= Pr(X1(t) = 0, . . . , Xm(t) = 0, Xm+1(t) = 1, . . . , Xn(t) = 1)

= pt(0, . . . , 0︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
n−m

),

where m = |I| is the cardinality of the set I and the third equality is obtained
from (2.7). Hence the punctual probability function pt of (X1(t), . . . , Xn(t)) is
permutation invariant and so (X1(t), . . . , Xn(t)) is EXC for all t.

The reversed implication (iii)⇒ (ii) is easily obtained by changing the order
in the above sequence of equations. Indeed, under (iii), for every I ⊂ [n] of size
m, if xi = 1 for i ∈ I and xi = 0 for i /∈ I, we have

Pr
(
[∩i∈IAi] ∩

[
∩j∈IcAcj

])
= Pr(X1(t) = x1, . . . , Xn(t) = xn)

= Pr(X1(t) = 0, . . . , Xm(t) = 0, Xm+1(t) = 1, . . . , Xn(t) = 1)

= Pr
(
[∩mi=1Ai] ∩

[
∩nj=m+1A

c
j

])
.
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The same happens for any other subset J ⊂ [n] of size m, which gives the desired
conclusion.

Finally, we show equivalence of (iii) and (iv). Under assumption (iii), the
random variables X1(t), . . . , Xn(t) are identically distributed. Therefore for all
i ∈ [n], we have

Pr(Ti ≤ t) = Pr(Xi(t) = 0) = Pr(X1(t) = 0) = Pr(T1 ≤ t) = F (t),

say. Moreover, for every u ∈ R(F ), P ⊂ {1, . . . , n} with |P | = m, and some
t ≥ 0 satisfying F (t) = u, yields

C(uP ) = Pr(Ti ≤ t, i ∈ P )

= Pr(Xi(t) = 0, i ∈ P )

= Pr(Xi(t) = 0, i = 1, . . . ,m)

= Pr(Ti ≤ t, i = 1, . . . ,m)

= C(F (t), . . . , F (t)︸ ︷︷ ︸
m

, 1, . . . , 1)

= C(u, . . . , u︸ ︷︷ ︸
m

, 1, . . . , 1).

Conversely, if we assume now (iv), then identical distributions of T1, . . . , Tn im-
plies identical distributions of X1(t), . . . , Xn(t) for all t ≥ 0. If F is the common
marginal and u = F (t) for t > 0, the copula property assures exchangeability of
X1(t), . . . , Xn(t) due to the following relations

pI : = Pr(Xi(t) = 0, i ∈ I, Xi(t) = 1, i /∈ I)

= Pr(Ti ≤ t, i ∈ I, Ti > t, i /∈ I)

=
n∑

r=|I|

(−1)r−|I|
∑

B⊇I,|B|=r

C(uB)

=
n∑

r=|I|

(−1)r−|I|
(
n− |I|
r − |I|

)
C(u{1,...,r})

= Pr(Ti ≤ t, i = 1, . . . , |I|, Ti > t, i = |I|+ 1, . . . , n)

= Pr(Xi(t) = 0, i = 1, . . . , |I|, Xi(t) = 1, i = |I|+ 1, . . . , n)

valid for all I ⊂ [n].
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We must note that the equivalence between conditions (ii) and (iii) can be
traced back to de Finetti [3] (see also Chapter 1 of [28]). We include here the
proof for possible readers’ convenience.

Remark 2.1. Every copula is {0, 1}-diagonal dependent. Therefore for every
degenerate marginal component lifetime distribution function F (t) = 1[t0,∞)(t),
the Samaniego formula (2.4) trivially holds

Pr(T ≤ t) = 1[t0,∞)(t) =
n∑
i=1

si1[t0,∞)(t) =
n∑
i=1

si Pr(Ti:n ≤ t).

Another extreme case is provided by any continuous common marginal lifetime
distribution for which (2.4) is assured by a DD-copula of mutual dependence. It
follows that representation (2.4) is valid for all systems with identically distributed
component lifetimes when their dependence copula is DD. This statement was
proved recently in [12].

Remark 2.2. The first sufficient conditions for validity of formula (2.4) for all
system structures, independence and common continuous marginal distribution of
component lifetimes, were established by Samaniego [22]. It occurs that the iden-
tity of marginals is absolutely indispensable, but the independence assumption can
be significantly relaxed. Navarro et al. [15] replaced independence by exchange-
ability of component lifetimes and removed restrictions on the common marginal
distribution (the claim was proven earlier in [14] under continuity assumption).
The necessary and sufficient conditions in (iii) of Theorem 2.1 were established
by Marichal et al. [9]. The equivalent conditions (iv) seem to be more tractable
because they refer directly to the distributional properties of component lifetimes.
We show that the weakest possible dependence condition is described by a diago-
nal dependence of copula, with possible reduction to the diagonal arguments being
values of the common marginal distribution in the discontinuous case.

For better understanding of which properties of the dependence copula af-
fect the lifetime distribution of the system composed of items with identically
distributed lifetimes, we present the following theorem. We need the following
concept. We say that a set I ⊆ [n] is a cut set of a system ψ if ψ(x1, . . . , xn) = 0
when xi = 0 for all i ∈ I.

Theorem 2.2. Let T = (T1, . . . , Tn) and S = (S1, . . . , Sn) be vectors of identically
distributed random variables with a common marginal distribution function F and
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copulas CT and CS, respectively. Then for a given system structure ψ : {0, 1}n →
{0, 1} with the family of cut sets A ⊆ 2[n], the system lifetimes Tψ and Sψ obtained
from T and S, respectively, have the same distribution if and only if

CT(uI) = CS(uI) ∀ I ∈ A ∀u ∈ R(F ). (2.8)

Moreover, if

CT(uI) = CT(u{1,...,|I|}) = CS(uI) = CS(u{1,...,|I|}), ∀ I ∈ A ∀u ∈ R(F ),

then representation (2.4) holds and coincides for both systems.

Proof. We have

Pr(T ≤ t) =
∑
I∈A

Pr(Ti ≤ t, i ∈ I, Ti > t, i /∈ I),

and each particular summand has the form

Pr(Ti ≤ t, i ∈ I, Ti > t, i /∈ I) =

n−|I|∑
k=0

(−1)k
∑

B⊇I,|B|=|I|+k

Pr(Ti ≤ t, i ∈ B)

=

n−|I|∑
k=0

(−1)k
∑

B⊇I,|B|=|I|+k

CT(uB)

for u = F (t). Note that every set containing a cut set is a cut set as well. It follows
that the distribution function of T depends only on the values of the marginal
distribution function F , and the diagonal values of the subcopulas generated by
the cut sets of the system. If these are identical for T and S, then Tψ and
Sψ are identically distributed. The latter claim easily follows from the above
establishments and Theorem 2.1.

Remark 2.3. If we want to check if condition (i) of Theorem 2.1 is fulfilled for
a specific system, we need to check if the diagonal values of the subcopulas gener-
ated by the cut sets with identical sizes coincide at all arguments of the common
marginal distribution function. For instance, for the parallel system with com-
ponents having identically continuously distributed lifetimes, the system lifetime
depends only on the diagonal of copula C itself and the distribution function F .
For the system with the structure ψ(x1, . . . , xn) = max(min(x1, x2), x3, . . . xn) we
take into account merely three cuts sets {2, 3, . . . , n}, {1, 3, 4, . . . , n}, and [n]. On
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the other hand, if we admit different marginal distributions of component lifetimes
in each system, but preserve the equality among distributions in the pairs (Ti, Si),
i = 1, . . . , n, we should modify the verifying condition (2.8). Namely we replace
diagonal arguments in the formula by vectors (u1, . . . , un) ∈ {(F1(t), . . . , Fn(t)) :
t ≥ 0}.

Remark 2.4. In [12] it was also proved that the following representation based
on the minimal signature vector a = (a1, . . . , an) (see [13]) given by

FT (t) = a1F1:1(t) + · · ·+ anF1:n(t) (2.9)

holds for all t when T1, . . . , Tn are ID and C is DD. Actually, the proof of (2.4)
in [12] was based on this property. In a similar way it can be proved that (2.9)
holds for a specific common marginal F , when the conditions in (iv) of Theorem
2.1 hold. Now we know from Theorem 2.1 that (2.9) holds for all the coherent
systems with n components if and only if one of the properties in that theorem
holds. In particular, (2.4) and (2.9) are equivalent for n > 2. The same happen
for the representations based on the maximal signature b = (b1, . . . , bn) (see also
[13]) given by

FT (t) = b1F1:1(t) + · · ·+ bnFn:n(t). (2.10)

Some coefficients in representations (2.9) and (2.10) can be negative. So they are
not mixtures (they are called negative or generalized mixtures).

Remark 2.5. By using the preceding remark it is easy to see that (2.4) (or The-
orem 2.1) can be extended to semi-coherent systems. Thus, if T = ψ(T1, . . . , Tm)
is a coherent system, m < n, and (T1, . . . , Tn) satisfies one of the conditions in
Theorem 2.1, then

FT (t) = s
(n)
1 F1:n(t) + · · ·+ s

(n)
1 Fn:n(t)

holds for all t, where s(n) = (s
(n)
1 , . . . , s

(n)
1 ) is the structural signature of dimension

n obtained from (2.3) of the extension of ψ to {0, 1}n. This extension is a semi-
coherent system of order n. The formulas to compute s(n) from s were given in
[15]. Note that representations (2.9) and (2.10) of dimension n also holds. In
this case the minimal and maximal signatures of order n are trivial (we just add
some zeros at the end of the minimal and maximal signatures of order m).

However, note that if n = 2 and (T1, T2) have an arbitrary joint distribu-
tion, then (2.9) and (2.10) are not necessarily true. They hold if and only if
the components are ID. Note that all the bidimensional copulas are DD since
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C(u, 1) = C(1, u) = u for u ∈ [0, 1]. For example, the representation (2.9) for
the series system ψ1(x1, x2) = min(x1, x2) is always true since

F1:2(t) = 0F1:1(t) + 1F1:2(t).

However, the representation (2.9) for the parallel system ψ2(x1, x2) = max(x1, x2)
is

F2:2(t) = 2F1:1(t)− 1F1:2(t),

where F1:1 = F1. In the general case, F2:2 can be computed as

F2:2(t) = Pr(T2:2 ≤ t)

= 1− Pr(T2:2 > t)

= 1− Pr(T1 > t)− Pr(T2 > t) + Pr(T1:2 > t)

= F1(t) + F2(t)− F1:2(t).

Therefore, both expressions coincide if and only if F1 = F2. Note that the condi-
tions (ii)-(iv) in Theorem 2.1 are equivalent to F1 = F2 when n = 2. With one
of these conditions, representations (2.9) and (2.10) hold.

Note that (2.4) is true for all the coherent systems of dimension n = 2 (i.e,
the series and parallel ones) but it is not always true for the semi-coherent system
ψ(x1, x2) = x1. The structural signature of order 2 of ψ is (1/2, 1/2). Then (2.4)
holds if and only if

FT (t) =
1

2
F1:2(t) +

1

2
F2:2(t),

where T = ψ(T1, T2) = T1 and FT = F1. By using the expression for F2:2 given
above, the preceding equality holds if and only if F1 = F2. Therefore, we can
include the case n = 2 in Theorem 2.1 if we replace coherent systems with semi-
coherent systems.

Of course, the ID assumption F1 = · · · = Fn can be considered as the weakest
exchangeability (symmetry) condition. Another condition is

Pr(T1 < · · · < Tn) = Pr(Tσ(1) < · · · < Tσ(n)) (2.11)

for any permutation σ of [n]. The examples included in the following sections
show that they are not enough to get (2.4) and that (2.4) may hold when (2.11)
fails. The extension of representation (2.2) was also studied in [15]. It is based
on the concept of weak exchangeability for (T1, . . . , Tn) defined by the following
condition

Pr(Ti:n ≤ t) = Pr(Ti:n ≤ t|Tσ(1) < · · · < Tσ(n)) (2.12)

12



for every t, every i = 1, . . . , n and every permutation σ. Thus, it was proved
that if Pr(T1:n < · · · < Tn:n) = 1 (there are no ties) and (2.12) holds, then (2.2)
holds. The (equivalent) conditions in Theorem 2.1 can also be used to define a
new weak-exchangeability (or symmetry) condition. Theorem 8 in [9] provides
conditions to get both (2.2) and (2.4) with p = s. Here the condition p = s for
all the coherent systems is also a symmetry condition. The relationships between
these conditions are analyzed in the following examples.

3 Examples

The first example shows that the ID condition F1 = · · · = Fn is not enough for
getting either of useful formulae (2.2), (2.4), (2.9), (2.11) or p = s when the
component lifetimes dependence structure does not fulfil appropriate symmetry
(e.g., EXC) conditions.

Example 3.1. We treat the coherent system ψ(x1, x2, x3) = max(x1,min(x2, x3)).
Its structure signature is s = (0, 2/3, 1/3) and its minimal and maximal signatures
are a = (1, 1,−1) and b = (0, 2,−1), respectively. We assume that the component
lifetimes are ID with a common continuous distribution function F . We also
assume that the lifetime of the first component is independent of the lifetimes of
other components which are dependent with the following Clayton copula

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ

for u, v ∈ [0, 1] and θ = 1. Hence, the copula C of (T1, T2, T3) is

C(u1, u2, u3) = u1C1(u2, u3) =
u1u2u3

u2 + u3 − u2u3

, u1, u2, u3 ∈ [0, 1].

Note that C is not a DD copula since C(u, u, 1) = u2 and C(1, u, u) = u/(2− u)
do not coincide for 0 < u < 1. The probabilistic signature of ψ is then p =
(0, 2 − ln 4, ln 4 − 1) which is approximately equal to (0, 0.6137056, 0.3862944),
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and differs from s. The system distribution function can be computed as

FT (t) = Pr(max(T1,min(T2, T3)) ≤ t)

= Pr(T1 ≤ t,min(T2, T3) ≤ t)

= Pr(T1 ≤ t) Pr(min(T2, T3) ≤ t)

= F (t) [Pr(T2 ≤ t) + Pr(T3 ≤ t)− Pr(max(T2, T3) ≤ t)]

= F (t) [2F (t)− C1(F (t), F (t))]

= 2F 2(t)− F 2(t)

2− F (t)
.

We compare it with mixture distribution functions Fp and Fs represented by for-
mulae (2.2) and (2.4), respectively. To this end, we calculate the lifetime distri-
bution functions of the k-out-of-3 systems

F1:3(t) = 3F (t)− 2F 2(t)− C1(F (t), F (t)) + F (t)C1(F (t), F (t))

= 3F (t)− 2F 2(t)− F (t)

2− F (t)
+

F 2(t)

2− F (t)
,

F2:3(t) = 2F 2(t) + C1(F (t), F (t))− 2F (t)C1(F (t), F (t))

= 2F 2(t) +
F (t)

2− F (t)
− 2F 2(t)

2− F (t)
,

F3:3(t) = F (t)C1(F (t), F (t)) =
F 2(t)

2− F (t)
.

Therefore

Fs(t) =
2

3
F2:3(t) +

1

3
F3:3(t) =

4

3
F 2(t) +

2

3

F (t)

2− F (t)
− F 2(t)

2− F (t)
,

Fp(t) = (2− ln 4)F2:3(t) + (ln 4− 1)F3:3(t)

= (4− 2 ln 4)F 2(t) + (2− ln 4)
F (t)

2− F (t)
+ (3 ln 4− 5)

F 2(t)

2− F (t)
.

We can check that

Fs(t)− FT (t) =
2

3

F (t)[1− F (t)]2

2− F (t)
≥ 0,

Fs(t)− Fp(t) =

(
ln 4− 4

3

)
F (t)[1− F (t)][1 + 2F (t)]

2− F (t)
≥ 0,
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Figure 1: Distribution functions for the systems in Example 3.1.

and the inequalities are strict when F (t) differs from 0 and 1, whereas

Fp(t)− FT (t) = 2 (ln 4− 2)
F (t)[1− F (t)]

2− F (t)

(
1− ln 2

ln 4− 2
− F (t)

)
{
≥ 0, if F (t) ≤ 1−ln 2

ln 4−1
≈ 0.7943497,

≤ 0, if F (t) ≥ 1−ln 2
ln 4−1

.

The results of calculation are confirmed by Figure 1 where functions FT , Fs, and
Fp were plotted in black, blue and red, respectively, for the standard uniform
distribution function F (t) = t, t ∈ [0, 1], of the single component lifetime. The
picture shows that generally Fp better approximates FT than Fs, although we have

|Fs(t)− FT (t)| < |Fp(t)− FT (t)|

if

F (t) >
4− 3 ln 2

6 ln 2− 2
≈ 0.8896084.

Finally we observe that

Pr(T1 > T2 > T3) = Pr(T1 > T3 > T2) = Pr(T3 > T2 > T1) = Pr(T2 > T3 > T1)

= ln 2− 1

2
≈ 0.1931472,
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are equal but they are different from

Pr(T2 > T1 > T3) = Pr(T3 > T1 > T2) =
3

2
− 2 ln 2 ≈ 0.1137056.

This means that conditions (2.12) guarantying the equality of the structural and
probabilistic signatures do not hold, and actually p 6= s. Similar conclusions to all
the above ones can be obtained for the Clayton copula of T2 and T3 with different
θ > 0, but the formulae were more complicated.

The second example illustrates applicability of Theorems 2.1 and 2.2.

Example 3.2. Let (T1, T2, T3) be the ID lifetimes of three components with a
common marginal distribution function F and copula C given by

C(u1, u2, u3) = u3C2(u1, u2)

for u1, u2, u3 ∈ [0, 1], where

C2(u1, u2) = min

{
u1, u2,

u2
1 + u2

2

2

}

=


u2, if 0 ≤ u2 ≤ 1−

√
1− u2

1,
u21+u22

2
, if 1−

√
1− u2

1 ≤ u2 ≤
√

2u1 − u2
1,

u1, if
√

2u1 − u2
1 ≤ u2 ≤ 1,

for u1, u2 ∈ [0, 1] (see Example 3.5 in [19, p. 62]). Copula C2 is an exemplary
singular copula with fixed diagonal C2(u, u) = u2 for 0 ≤ u ≤ 1 constructed by
Fredricks and Nelsen [5] (see also [4], p. 32). It is uniformly distributed on two
quarter-circles u2 = 1 −

√
1− u2

1 and u2 =
√

2u1 − u2
1, 0 ≤ u1 ≤ 1, (see Figure

2), and its diagonal section satisfies

C2(u, u) = u2, 0 ≤ u ≤ 1.

It follows that C is diagonally dependent, and has all the diagonal sections
identical with those of the product copula

C(uP ) = u|P |, P ⊆ {1, 2, 3}.

However, note that C is not a d–copula since the bivariate marginals

C1,2(u1, u2) = C(u1, u2, 1) = C2(u1, u2)
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Figure 2: Support of the bidimensional copula C2 considered in Example 3.2.

and
C1,3(u1, u3) = C(u1, 1, u3) = u3C2(u1, 1) = u1u3

do not coincide.
Theorems 2.1 and 2.2 imply that

F1:3(t) = 3F (t)− 3F 2(t) + F 3(t),

F2:3(t) = 3F 2(t)− F 3(t),

F3:3(t) = F 3(t),

and

FT (t) = Fs(t) =
3∑
i=1

siFi:3(t)

for every coherent system of size n = 3. We also have

Pr(T1 < T2 < T3) = Pr(T2 < T1 < T3) = Pr(T3 < T2 < T1) = Pr(T2 < T3 < T1)

=
1

2
− 1

π
≈ 0.1816901,
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but that they are different from

Pr(T1 > T3 > T2) = Pr(T2 > T3 > T1) =
2

π
− 1

2
≈ 0.1366198.

Accordingly (2.11) does not hold, and equality p = s is not assured.
For example, if we consider the system ψ(x1, x2, x3) = max(min(x1, x2), x3),

then s = (0, 2/3, 1/3) 6= p = (0, p2, p3) because

p3 = Pr(T1 < T2 < T3) + Pr(T2 < T1 < T3) = 1− 2

π
≈ 0.3633802

and p2 = 1− p3 = 2/π ≈ 0.6366198. Moreover,

FT (t) = Fs(t) = 2F 2(t)− F 3(t) 6= Fp(t).

In the following example we analyze applicability of condition (2.12) for get-
ting representation (2.2). This is a modification of Example 3.7 from [15].

Example 3.3. Suppose that a random vector (T1, . . . , Tn) takes values over all
the permutations Σ([n]) of the set [n], and not all of the respective probabilities

Pr(T1 = σ(1), . . . , Tn = σ(n)) = pσ, σ ∈ Σ([n]),

are equal to 1
n!

which excludes exchangeability. We obviously have Ti:n = i, i =
1, . . . , n, with probability one which implies (2.12) and, in consequence, (2.2) holds
for any arbitrary coherent system of size n. However, (2.11) does not hold.

In particular, we focus our attention now on our favorite system ψ(x1, x2, x3) =
max(x1,min(x2, x3)) (see Examples 3.1 and 3.2) with the structural signature
(0, 2/3, 1/3). Here we have (2.2) with

p1 = Pr(T = T1:3) = 0,

p2 = Pr(T = T2:3) = p123 + p132 + p213 + p312 = 1− p231 − p321,

p3 = Pr(T = T3:3) = p231 + p321.

Note that if only p3 = p231 + p321 = 1
3
, we also obtain (2.4) even if not all of pσ,

σ ∈ Σ([3]), are equal to 1
6
. The explanation of the fact goes beyond the scope of

acting of Theorem 2.1. It follows from the specific structure of the system: it fails
with the last component failure if and only if T3:3 = T1, and with the second one
otherwise. So it suffices here that

Pr(T1 = 3) = p231 + p321 = s3 =
1

3
,
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and both the mixture representations (2.2) and (2.4) hold even if T1, T2, T3 have
different marginal distributions. However, if p3 6= 1/3, then

FT (t) = Fp(t) 6= Fs(t)

for all t. We finally recall an obvious observation: if there are no ties (i.e.
Pr(Ti = Tj) = 0 for all i 6= j), every k-out-of-n system satisfies both (2.2)
and (2.4) whatever are the component lifetime distributions and interdependencies
among them.

Marichal et al. [9] proved that the structural and probabilistic signatures
coincide if and only if the joint distribution of (T1, . . . , Tn) has no ties and

q(A) := Pr

(
max
i∈Ac

Ti < min
i∈A

Ti

)
=

1(
n
|A|

) , A ⊂ [n]. (3.1)

The relation is obviously satisfied by exchangeable vectors (T1, . . . , Tn). Next we
show an example of the joint distribution of the vector so that T1, . . . , Tn are not
only differently distributed but they have different supports as well, and formula
(3.1) still holds.

Example 3.4. Let (J1, . . . , Jn) denote a vector of random variables whose values
are all permutations of the set [n], and the respective probabilities are all identical
and equal to 1

n!
. The joint distribution of the component lifetimes (T1, . . . , Tn) is

defined conditionally on the values of (J1, . . . , Jn) as: Ti = n(Ji − 1) + i, i =
1, . . . , n. It follows that each Ti is uniformly distributed on the discrete set {i, n+
i, . . . , (n− 1)n+ i}, i = 1, . . . , n. Accordingly, all Ti, i = 1, . . . , n, have different
supports and they are obviously non-identically distributed. This together with
Theorem 2.1 imply that formula (2.4) cannot hold for all n-component systems
whose component lifetimes are T1, . . . , Tn. On the other hand, the orderings of
the vectors (J1, . . . , Jn) and (T1, . . . , Tn) are identical. This gives

Pr

(
max
i∈Ac

Ti < min
i∈A

Ti

)
= Pr

(
max
i∈Ac

Ji < min
i∈A

Ji

)
=

1(
n
|A|

) , A ⊂ [n],

which in turn implies p = s and finally non-validity of (2.2). We also notice that
the ith order statistic is uniformly distributed on the points (i−1)n+1, (i−1)n+
2, . . . , in for arbitrary i = 1, . . . , n.

In the special case of the system structure ψ(x1, x2, x3) = max(x1,min(x2, x3),
an elementary algebra shows that the distribution of the system lifetime assigns

19



probabilities 1/3 to points 4 and 7, and 1/6 to 5 and 6. However, representa-
tions (2.2) and (2.4) define a different distribution: the points 4, 5, and 6 have
probabilities 2/9, and the probabilities of 7, 8 and 9 are equal to 1

9
. Note that the

support of T does not coincide with the common support of Ts and Tp. So we
have

FT (t) 6= Fp(t) = Fs(t)

for all t.

Clearly, spreading the massed of discrete points i ∈ N over the intervals
[i−1, i], we would obtain continuous distributions of component lifetimes without
disturbing the properties of system signatures and lifetime distributions.

4 Signatures in the uniform frailty model

In this section we consider the uniform frailty reliability model which assumes
particular symmetry properties of multivariate conditional hazard rates. Our
purpose is to show that the uniform frailty property implies identity of the prob-
abilistic and structural signatures (2.1) and (2.3), respectively. First we recall
the basic notions. In what follows we assume that (T1, . . . , Tn) has an absolutely
continuous joint distribution.

Definition 4.1. For every k = 1, . . . , n−1, every k+1 elements i1, ..., ik, j of [n],
and any ordered sequence 0 < t1 < . . . < tk < +∞, the multivariate conditional
hazard rate function λj(·|i1, . . . , ik; t1, . . . , tk) : (tk,+∞)→[0,+∞) is defined as

λj(t|i1, . . . , ik; t1, . . . , tk)= lim
∆t→0

1

∆t
Pr(Tj≤ t+∆t|Ti1 = t1, . . . , Tik = tk, Tk+1:n>t).

(4.1)
For k = 0 and j = 1, . . . , n the multivariate conditional hazard rate function is
defined by

λj(t|∅) = lim
∆t→0

1

∆t
Pr(Tj ≤ t+ ∆t|T1:n > t), t > 0. (4.2)

The function (4.1) represents the failing tendency of the jth component if
surviving at time t when we know that the components with labels i1, . . . , ik have
failed at times t1 < · · · < tk < t, respectively, whereas the remaining components
are still operating at t. Similarly, (4.2) describes the failure inclination of the

20



component number j when all the components are still working at time t. For
further details see, e.g., [25, 26, 29], the review paper [27], and references cited
therein.

Note that (4.1) are multivariate conditional versions of failure intensity func-
tions. In particular, they satisfy∫ ∞

tk

λj(t|i1, . . . , ik; t1, . . . , tk) dt = +∞ (4.3)

for all i1, ..., ik, j ∈ [n], and almost all 0 < t1 < . . . < tk < +∞. Similarly, we
have ∫ ∞

0

λj(t|∅) dt = +∞, j = 1, . . . , n. (4.4)

The uniform frailty model requires that the component failure tendencies
(which depend on the labels of the already failed components and on their cor-
responding failure times) are however identical for all the working components.
The formal definition is the following.

Definition 4.2. We say that the joint probability distribution of (T1, . . . , Tn) sat-
isfy the property of uniform frailty if there exist functions λ(·|∅) : (0,+∞)→[0,+∞)
and λ(·|i1, . . . , ik; t1, . . . , tk) : (tk,+∞)→[0,+∞) for 1 ≤ k ≤ n − 1, i1, . . . , ik ∈
[n], and 0 < t1 < . . . < tk < +∞ such that the following equalities hold:

λj(t|i1, . . . , ik; t1, . . . , tk) = λ(t|i1, . . . , ik; t1, . . . , tk), t > tk, j 6∈{i1, . . . , ik},
λj(t|∅) = λ(t|∅), t > 0, j=1, . . . , n. (4.5)

Note that the above property for k = n− 1 is always trivially true.

Theorem 4.1. If the joint distribution of the component lifetimes (T1, . . . , Tn)
of a coherent system possesses the uniform frailty property, then the probabilistic
and structural signatures of the system are identical.

Proof. We aim at proving that under the uniform frailty assumption the equality
(3.1) holds which according to Proposition 7 in [9] is necessary and sufficient for
the equality p = s.

We start by recalling that, as shown in [24], the joint density function f of
(T1, . . . , Tn) can be expressed in terms of multivariate conditional hazard rate
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functions as follows

f(t1, . . . , tn) = λπ(1)(tπ(1)|∅) exp

(
−
∫ tπ(1)

0

Λ(u|∅) du
)

×
n∏
k=2

[
λπ(k)(tπ(k)|π(1), . . . , π(k − 1); tπ(1), . . . , tπ(k−1))

exp

(
−
∫ tπ(k)

tπ(k−1)

Λ(u|π(1), . . . , π(k − 1); tπ(1), . . . , tπ(k−1)) du

)]

for t1, . . . , tn > 0 with tπ(1) < . . . < tπ(n) and π being the permutation of [n] such
that the ordered values t1:n < · · · < tn:n obtained from t1, . . . , tn satisfy ti:n = tπ(i)

for i = 1, . . . , n, where

Λ(u|∅) :=
n∑
j=1

λj(u|∅),

and

Λ(u|π(1), . . . , π(k − 1); tπ(1), . . . , tπ(k−1))

:=
n∑
j=k

λπ(j)(u|π(1), . . . , π(k − 1); tπ(1), . . . , tπ(k−1)).

Obviously, the above sums inherit the properties (4.4) and (4.3), respectively, of
their summands.

Under the uniform frailty model assumption we have

λπ(1)(tπ(1)|∅) = λ(tπ(1)|∅) =
1

n
Λ(tπ(1)|∅),

and

λπ(k)(tπ(k)|π(1), . . . , π(k − 1); tπ(1), . . . , tπ(k−1))

= λ(tπ(k)|π(1), . . . , π(k − 1); tπ(1), . . . , tπ(k−1))

=
1

n+ 1− k
Λ(tπ(k)|π(1), . . . , π(k − 1); tπ(1), . . . , tπ(k−1))
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for k = 2, . . . , n. Therefore we can write

f(t1, . . . , tn) =
1

n!
Λ(tπ(1)|∅) exp

(
−
∫ tπ(1)

0

Λ(u|∅) du
)

×
n∏
k=2

[
Λ(tπ(k)|π(1), . . . , π(k − 1); tπ(1), . . . , tπ(k−1))

exp

(
−
∫ tπ(k)

tπ(k−1)

Λ(u|π(1), . . . , π(k − 1); tπ(1), . . . , tπ(k−1)) du

)]
.

Now we are in a position to prove

Pr(T1:n = Tπ(1), . . . , Tn:n = Tπ(n)) =
1

n!
(4.6)

for every permutation π of [n]. We have

Pr(T1:n = Tπ(1), . . . , Tn:n = Tπ(n))

=

∫
· · ·
∫
{0<tπ(1)<...<tπ(n)<∞}

f(t1, . . . , tn) dtπ(1) . . . dtπ(n)

=
1

n!

[∫ ∞
0

Λ(tπ(1)|∅) exp

(
−
∫ tπ(1)

0

Λ(u|∅) du
)
dtπ(1)[∫ ∞

tπ(1)

Λ(tπ(2)|π(1); tπ(1)) exp

(
−
∫ tπ(2)

tπ(1)

Λ(u|π(1); tπ(1)) du

)
dtπ(2)

. . .[∫ ∞
tπ(n)

Λ(tπ(n)|π(1), . . . , π(n− 1); tπ(1), . . . , tπ(n−1))

exp

(
−
∫ tπ(n)

tπ(n−1)

Λ(u|π(1), . . . , π(n− 1); tπ(1), . . . , tπ(n−1)) du

)
dtπ(n)

]
. . .

]]
.

Observe that∫ ∞
0

Λ(tπ(1)|∅) exp

(
−
∫ tπ(1)

0

Λ(u|∅) du
)
dtπ(1) =

[
− exp

(
−
∫ tπ(1)

0

Λ(u|∅) du
)]tπ(1)=∞

tπ(1)=0
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amounts to 1, and so do∫ ∞
tπ(k−1)

Λ(tπ(k)|π(1), . . . , π(k − 1); tπ(1), . . . , tπ(k−1))

exp

(
−
∫ tπ(k)

tπ(k−1)

Λ(u|π(1), . . . , π(k − 1); tπ(1), . . . , tπ(k−1)) du

)
dtπ(k)

=

[
− exp

(
−
∫ tπ(k)

tπ(k−1)

Λ(u|π(1), . . . , π(k − 1); tπ(1), . . . , tπ(k−1)) du

)]tπ(k)=∞
tπ(k)=tπ(k−1)

for k = 2, . . . , n. We calculate the multiple iterated integral in the following way:
first we determine the last definite integral, and then we plug its value 1 into
the previous one. This operation does not modify the form of the penultimate
integral, and allows us to check that its value equals 1. Repeating the procedure
n times we deduce that the iterated integral is equal to 1, and, in consequence,
equality (4.6) holds.

Finally, we observe that (4.6) does imply

Pr

(
max
i∈Ac

Ti < min
i∈A

Ti

)
=

∑
{π:π(i)>n−|A|, i∈A}

Pr(T1:n = Tπ(1), . . . , Tn:n = Tπ(n)) =
1(
n
|A|

) ,
as desired.

The following example shows that the uniform frailty is not a necessary con-
dition for the identity between the probabilistic and structural signatures.

Example 4.1. We assume the restrictions of the time-homogenous load-sharing
model (see [30] and the references therein) where the multivariate conditional
hazard rate functions depend merely on the labels of failed components and are
independent of the running time t and of the failure times t1, . . . , tk of the failed
components, as well. This allows us to simplify the notation

λj(t|∅) = λj(∅),
λj(t|i1, . . . , ik; t1, . . . , tk) = λj({i1, . . . , ik}). (4.7)

We further assume that n = 3,

λj(∅) = λ(∅), j = 1, 2, 3, (4.8)
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are all identical, and

λ1({2}) = λ2({3}) = λ3({1}) = a 6= λ2({1}) = λ3({2}) = λ1({3}) = b (4.9)

for some different positive numbers a and b. The conditions in (4.9) violate the
uniform frailty property. The values λj1({j2, j3}) are immaterial here. We have

q({1}) = Pr(T3:3 = T1) = Pr(T1:3 = T2, T2:3 = T3) + Pr(T1:3 = T3, T2:3 = T2)

=
1

3

[
λ3({2})

λ1({2}) + λ3({2})
+

λ2({3})
λ1({3}) + λ2({3})

]
.

Similarly, we calculate

q({2}) =
1

3

[
λ3({1})

λ2({1}) + λ3({1})
+

λ1({3})
λ1({3}) + λ2({3})

]
,

q({3}) =
1

3

[
λ1({2})

λ1({2}) + λ3({2})
+

λ2({1})
λ2({1}) + λ3({1})

]
.

Plugging (4.9) into the above formulae, we obtain

q({j}) =
1

3
, j = 1, 2, 3.

Using (4.8), we also get

q({j1, j2}) = Pr(T1:3 = Tj3) =
1

3
, {j1, j2, j3} = {1, 2, 3}.

The two above equalities guarantee (3.1), which in view of Proposition 7 in [9]
implies p = s.

Example 4.2. Here we combine the assumptions of a 3-component time-homoge-
neous load-sharing model stated in the preceding example with the uniform frailty
assumption. This enables us to drop the subscripts at λ’s in the notation of (4.7).
We additionally assume that λ({1}) 6= λ({2}). Writing L(X) = L(Y ) below
we mean that the distributions of random variables X and Y coincide. We also
extend the notation to conditional distributions. By Corollary 3 of [21], we have

L(T2:3|T1:3 = T1, T2:3 = T2, T3:3 = T3) = L(T2:3|T1:3 = T1, T2:3 = T2)

= L
(

V1

3λ(∅)
+

V2

2λ({1})

)
, (4.10)
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where V1 and V2 denote two independent standard exponential random variables.
Due to Proposition 1 in [21], the unconditional distribution of T2:3 is the uniform
mixture of three distributions

L(T2:3) =
1

3

3∑
i=1

L
(

V1

3λ(∅)
+

V2

2λ({i})

)
. (4.11)

If either λ({1}) 6= λ({2}) or λ({1}) 6= λ({3}), then distributions (4.10) and (4.11)
are different, and the weak exchangeability condition (2.12) assuring (2.2) is not
satisfied.

By Proposition 3 in [21],

L(T1) =
1

3
L
(

V1

3λ(∅)

)
+

1

6
L
(

V1

3λ(∅)
+

V2

2λ({2})

)
+

1

6
L
(

V1

3λ(∅)
+

V2

2λ({3})

)
+

1

6
L
(

V1

3λ(∅)
+

V2

2λ({2})
+

V3

2λ({2, 3})

)
+

1

6
L
(

V1

3λ(∅)
+

V2

2λ({3})
+

V3

2λ({2, 3})

)
,

where V3 is another independent standard exponential random variable. We ob-
tain the analogous representation for the distribution of T2 if we replace in the
right-hand side of the above formula λ({2}) and λ({2, 3}) by λ({1}) and λ({1, 3}),
respectively. It follows that if either λ({1}) 6= λ({2}) or λ({1, 3}) 6= λ({2, 3}),
then T1 and T2 have different marginal distributions. This contradicts the neces-
sary condition of identical component lifetime distributions which assures repre-
sentation (2.4) for the system lifetime.

5 Summary and conclusion

This section is devoted to comment on main results of the paper and to put them
in an historical perspective. Several interesting studies have been devoted, in the
last decade, to conceptual aspects of the general concept of signature. However,
only in the cases when the signature representation (2.4) holds, one gets a really
efficient tool for reliability analysis.

Actually (2.4) can be seen as a condition of symmetry on the distribution of
the components’ lifetimes T1, . . . , Tn, which is implied by exchangeability, but is
actually more general than it. It becomes then interesting to characterize the
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multivariate distributions for which the property (2.4) holds. As recalled above,
one such result had been first given in [9]. It had been shown therein that, for
whatever coherent structure ψ with n > 2, the signature representation (2.4)
holds if and only if, for any t > 0, the binary variables X1(t), . . . , Xn(t), that
represent the states of the components at time t, are exchangeable.

In the present paper we come back to considering the same characteriza-
tion problem, aiming however to use concepts of copulas in the description of
the stochastic dependence between the components. We also want to connect
them with the results given in [9]. The main result of the paper consists in full
characterization of the component lifetimes joint distributions which admit the
signature representation (2.4). This result extends the representation obtained in
[12] for identically distributed (ID) component lifetimes and diagonal dependent
(DD) copulas by considering the weaker concept of S-DD copulas proposed in
Definition 2.1. This condition preserves the diagonal dependence property on the
range of the common marginal distribution. Our characterization result provides
a useful tool for extending various stochastic ordering relations known for systems
with exchangeable components to the systems with components satisfying much
weaker dependence relations.

We remind that many papers had been devoted to analyzing structural prop-
erties of the system reliability function F̄T , when looked at as a functional of ψ
and of the joint distribution of T1, . . . , Tn. Such papers have emphasized the role
of the copulas among components’ lifetimes. In particular it has been pointed
out that, for any t ≥ 0, the system reliability value F̄T (t) can be written as a
function of the component’s reliability values F̄1(t), . . . , F̄n(t). It is natural that
this function is parametrized by ψ and by the survival copula, namely that it is
a functional of them. Moreover, it does not depend on t.

Actually, such a functional can be presented in a number of different forms,
so that different types of notation and terminologies have been employed by the
various authors, in the frame of distinct contexts. We just notice that, even if
presented under different forms, the system reliability F̄T (t) at time t can anyway
be seen as the probability of a union of different basic events, depending on the
structure of the system. Consequently, the computation of F T (t) can be carried
out, in any case, by appropriately resorting to the use of an inclusion-exclusion
formula. Thus, in the paper [16] (see also [10, 11]), the probability of (T > t) is
written as a function of the probabilities (Ti > t) for i = 1, . . . , n. In this setting,
the terms generalized distortion function and dual distortion function have been
used to describe the form of the afore-mentioned functional.

On the other hand, using the language common in other contexts, it is natural
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to think in terms of aggregation functions (see, e.g., [6]). In fact, for any t >
0, F̄T (t) can be seen as an aggregation of the components’ marginal reliability
functions. From the point of view of mathematical formalization, basic steps in
this direction amount to looking at ψ as a (binary) fuzzy measure and to rely on
the concept of Möbius transform in handling the inclusion-exclusion formula. By
following this path, the afore-mentioned aggregation function can be described
(see in particular [17, 30] and references therein) as a copula-based extension
of a fuzzy measure, namely as a special case in the class of aggregation-based
extensions of fuzzy measures as studied in [8] (see also references therein). The
fuzzy measure is given by the system’s structure ψ, while the copula appearing
in the above description turns out to be the survival copula of the lifetimes.
Any result obtained in the reliability context for the function F̄T (t) can then be
seen as a result for a continuous aggregation function obtained as a copula-based
extension of a binary fuzzy measure.

Coming back to commenting on our main results in Section 2, we notice
however that they are obtained by restricting our attention on the case when
T1, . . . , Tn are identically distributed (which is a necessary condition for (2.4) to
hold). This entails that the function connecting F̄T with F̄1, . . . , F̄n, namely the
aggregation function of our interest, is just analyzed on the diagonals, that is, in
the points of type uI (see Definition 2.1 and Theorem 2.2), when F̄1 = · · · = F̄n.

A different type of problem, actually not involving the form of F̄T directly,
is studied in Section 4. Regarding the joint distribution of T1, ..., Tn, we give a
sufficient condition under which the probability signature p coincides, for any
arbitrary coherent system, with the structural signature s. A necessary and
sufficient condition for the equality p = s was already given in [9]. Also this
equality amounts to a condition of symmetry, more general than exchangeability.
The sufficient condition given here is uniform frailty, a notion that has been
formalized in [21] and that is expressed in terms of the multivariate conditional
hazard rate functions. An open problem for the future research is representing
the necessary and sufficient conditions for the signature representation in terms
of the multivariate conditional hazard rates.
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