This document is the Accepted Manuscript version of a Published Work that appeared in final form in Organometallics copyright © American Chemical Society, after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/om100738z

REVISED

Eight-membered Palladacycles Derived from the Insertion of Olefines into the Pd-C Bond of Ortho-palladated Pharmaceuticals Phenethylamine and Phentermine. Synthesis of Stable Heck-type Intermediates Containing Accessible $\boldsymbol{\beta}$-Hydrogens and its Use in the Synthesis of 2-Styryl-phenethylamines, Tetrahydroisoquinolines and Eight-membered Cyclic Amidines ${ }^{\dagger}$

José Vicente,* Isabel Saura-Llamas,* and José-Antonio García-López
Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de
Química, Universidad de Murcia, E-30071 Murcia, Spain
E-mail:jvs1@um.es

Delia Bautista

SAI, Universidad de Murcia, E-30071 Murcia, Spain

Keywords

Primary arylalkylamines, phenethylamines, cyclopalladated complexes, eight-membered palladacycles, eight-membered cyclic amidines, insertion of alkenes, Heck-type intermediates, Heck reaction, isoquinolines, 2-vinyl-phenethylamines.

[^0]
Summary

The ortho-metalated complexes derived from phenethylamine and phentermine $\left[\operatorname{Pd}\left(C, N-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CR}_{2} \mathrm{NH}_{2}-2\right)(\mu-\mathrm{X})\right]_{2}(\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Br}(\mathbf{A}) ; \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{Cl}(\mathbf{B}))$ react with olefins giving (1) the product of its insertion into the $\mathrm{Pd}-\mathrm{C}$ bond, $[\operatorname{Pd}\{C, N-$ $\left.\left.\mathrm{CH}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CR}_{2} \mathrm{NH}_{2}-2\right\}(\mu-\mathrm{X})\right]_{2}\left(\right.$ olefin $=\mathrm{CH}_{2}=\mathrm{CHR}^{\prime} ; \mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{C}(\mathrm{O}) \mathrm{Me}$ (1a), $\left.\mathrm{CO}_{2} \mathrm{Et}(\mathbf{1 c}) ; \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{C}(\mathrm{O}) \mathrm{Me}(\mathbf{1 b}), \mathrm{CO}_{2} \mathrm{Et}(\mathbf{1 d})\right),[\operatorname{Pd}\{C, N-$ $\left.\left.\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \mathrm{CHC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-2\right\}(\mu-\mathrm{Cl})\right]_{2}\left(\right.$ olefin $=$ norbornene, $\left.\mathrm{C}_{5} \mathrm{H}_{8} ; \mathbf{1 e}\right)$ or (2) the decomposition products of 1 , i.e., $\operatorname{Pd}(0)$ and the complexes containing the arylated olefin, trans- $\left[\mathrm{PdX}_{2}\left(\mathrm{NH}_{2} \mathrm{CR}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHPh}-2\right)_{2}\right]$ (olefin $=$ styrene; $\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}(\mathbf{3 f}) ; \mathrm{R}=\mathrm{Me}$, $\mathrm{X}=\mathrm{Br}(\mathbf{3 g})$). While complexes $\mathbf{1 c}$ and $\mathbf{1 d}$ can be isolated but decompose in solution to afford $\operatorname{Pd}(0)$ and the corresponding complexes $\mathbf{3}(\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}(\mathbf{3 c}) ; \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{Br}(\mathbf{3 d}))$, the others are surprisingly stable. Neutral ligands L cleave the bridge of complexes $\mathbf{1}$ to afford $\left[\operatorname{Pd}\left(\mathrm{C}^{\wedge} \mathrm{N}\right) \mathrm{X}(\mathrm{L})\right]$ (2) (L = 4-methyl-pyridine (pic), $\left.\mathrm{NH}_{3}, \mathrm{NHEt}_{2}, \mathrm{PPh}_{3},{ }^{\mathrm{t}} \mathrm{BuNC}, \mathrm{XyNC}\right)$. Complexes 3 react with 1,10-phenanthroline (phen) to give $\left[\mathrm{PdX}_{2}(\right.$ phen $\left.)\right]$ and the orthovinylated arylalkylamine $\mathrm{RCH}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CR}_{2} \mathrm{NH}_{2}-2(\mathrm{R}=\mathrm{H}(\mathbf{4 f})$, $\mathrm{Me}(\mathbf{4 g})$), which in the case of $\mathbf{3 c}$ or $\mathbf{3 d}$ can not be isolated as it undergoes an intramolecular hydroamination process to afford the tetrahydroisoquinoline $\mathbf{5 c}$ or $\mathbf{5 d}$, respectively. To prepare the tetrahydroisoquinoline $\mathbf{5 b}$, it is necessary to heat a mixture of complex $\mathbf{1 b}$ with one equiv of TlOTf. The eight-membered cyclic amidine $7 \mathbf{d}$ is obtained from thermal decomposition of complex cis- $\left[\mathrm{Pd}\left\{\mathrm{C}, \mathrm{N}-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CR}_{2} \mathrm{NH}_{2}-2\right\}(\mathrm{CNXy})_{2}\right] \mathrm{OTf}$ (8d), prepared by reaction of $\mathbf{2 d} \mathbf{- 5}$ with TlOTf and XyNC. The amidinium salt 7e-HOTf is formed by refluxing in toluene a mixture of $\mathbf{2 e} \mathbf{-} \mathbf{4}$ and TIOTf. The crystal structures of compounds $\mathbf{2 a} \cdot \mathrm{CHCl}_{\mathbf{3}}, \mathbf{2 b} \mathbf{- 1}$,
$\mathbf{2 d} \mathbf{- 3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{2 e} \mathbf{-} \mathbf{-} \cdot 1 / 2 \mathrm{CHCl}_{3}, \mathbf{3 d}, \mathbf{3 g}, \mathbf{6}$ and $\mathbf{7 e} \mathbf{- H O T f}$ have been determined by X-ray diffraction studies.

Introduction

Insertion of olefins into the $\mathrm{Pd}-\mathrm{C}$ bond of $\mathrm{C}^{\wedge} \mathrm{N}$ palladacycles derived from tertiary amines, ${ }^{1-10}$ imines, ${ }^{5,8,11,12}$ oxazolines, ${ }^{13}$ pyridines, ${ }^{4,14}$ and amides ${ }^{9,15,16}$ have been widely investigated because of their applications in organic synthesis. When starting from orthopalladated secondary or tertiary benzylamines, the reactions give, in most cases, $\operatorname{Pd}(0)$ and the products of the Heck reaction, i.e., the ortho-vinylidated amines. ${ }^{1,5}$ Instead, we report here that some olefins insert into the $\mathrm{Pd}-\mathrm{C}$ bond of ortho-palladated primary amines giving stable alkyl palladium compounds that can be decomposed to afford complexes containing coordinated the corresponding ortho-vinylidated amine; when these ligands are replaced, some can be isolated but others undergo a cyclization process through a hydroamination reaction affording tetrahydroisoquinolines. As far as we are aware, the latter behavior has only one precedent that involve a non-isolated ortho-palladated compound. ${ }^{17}$

Scheme 1. Schematic Representation of Some Reactions Studied in this Work

In this study we have used ortho-palladated complexes of the important drugs phenethylamine ${ }^{18}$ and phentermine ${ }^{19}$ in order to ortho-functionalize them with a vinyl group (Scheme 1). We have previously used the same or similar ortho-palladated complexes ${ }^{20}$ of pharmaceutical products to ortho-functionalize them (with $\mathrm{Br}^{21} \mathrm{I}^{19,21}$) or to form cycles involving the ortho-carbon, an unsaturated molecule ($\mathrm{CO},{ }^{21} \mathrm{RNC}^{22,23}$) and the nitrogen atom. The interest of this type of research stands on the potential use of these organic compounds or some of their derivatives. Thus, recently, 2-I-tryptophan methyl ester obtained following our method ${ }^{19}$ has been used for the total synthesis of the enantiopure alkaloid phalarine. ${ }^{24}$

Scheme 2. Schematic Representation of the Classic Catalytic Cycle for the Heck-Mizoroki

The group of reactions we have studied are closely related to the Heck-Mizoroki olefin arylation reaction, which is one of the best studied catalytic systems (Scheme 2). ${ }^{25-29}$ However, our non-cyclic system differs from the Heck catalytic cycle in two aspects: 1) it lacks the oxidative addition step and 2) the NH_{2} group and the halogen atom of the cyclopalladated complexes perform the role of the ligand L required to complete the coordination sphere of Pd in the Heck cycle. The latter difference is responsible of the
different behavior found in some reactions with regard to those in the Heck process, which will be discussed below.

Whereas organometallic complexes arising from insertion of $\mathrm{CO},{ }^{30-32}$ RNC,,10,22,23,31,33,34 alkynes ${ }^{30,32,35,36}$ and allenes ${ }^{37}$ into the Pd-C bond of C, N-palladacycles have been isolated, ${ }^{38-40}$ no complexes emerging from alkene insertion have been reported, although they have been postulated as intermediates in the stoichiometric and catalytic ortho olefination of N, N-disubstituted arylalquilamines. ${ }^{3,9,41}$ In general, $\mathrm{Pd}(\mathrm{II})$ complexes with alkyl ligands containing β-hydrogens quickly decompose by a β-hydride elimination process (Scheme 2, (c) $)^{28,42,43}$ occurring by a cisoid metal/ $\mathrm{C}-\mathrm{H}(\beta)$ group interaction. Therefore, some of these complexes are stable if this interaction can not be achieved because (1) firmly bound ligands around the Pd atom (for example, a chelating $\mathrm{C}^{\wedge} \mathrm{N}$ palladacycle and a diphosphine ${ }^{44}$ or a $\mathrm{C}^{\wedge} \mathrm{O}$ palladacycle and a diimine, ${ }^{45} \mathrm{RNC}^{45}$ or phosphine ${ }^{46-48}$ ligand) do not allow the generation of the required vacant on the Pd atom or (2) the β-hydrogens are inaccessible. ${ }^{49}$ Some $\operatorname{Pd}(\mathrm{II})$ complexes here reported, containing alkyl ligands with β-hydrogens (derived from $\left.\mathrm{CH}_{2}=\mathrm{CHC}(\mathrm{O}) \mathrm{R}, \mathrm{R}=\mathrm{Me}, \mathrm{OEt}\right)$ are the first compounds stable enough to be isolated in spite of not fulfilling any of the two mentioned stability conditions because the β-hydrogens belong to a methylene group within an eight-membered ring (i.e., they are conformationally accessible) and they contain one bridging halide ligand coordinated to the metal (i.e., there is a coordination position not blocked).

In addition, we also show (1) that some changes in the nature of the olefin have a destabilizing effect on the insertion product, e.g., the replacement of (1a) $\mathrm{CO}_{2} \mathrm{Et}$ by Ph does not allow to isolate the alkyl complex, and the arylated olefin coordinated to Pd is formed instead and (1b) the olefins $\mathrm{CH}_{2}=\mathrm{CHC}(\mathrm{O}) \mathrm{R}(\mathrm{R}=\mathrm{Me}, \mathrm{OEt})$ by norbornene give the expected very stable alkyl complexes; (2) that mononuclear derivatives obtained by cleavage of the
halogen bridge of the insertion products with neutral ligands are more stable than their parent complexes because the entering ligand blocks the coordination site necessary for the β hydrogen elimination, although some derivatives containing XyNC can be decomposed through a $\mathrm{C}-\mathrm{N}$ coupling process; (3) that replacing the chloride bridges by the weakly bonded triflate anion (OTf) has the contrary effect, because it facilitates the β-hydrogen elimination; and (4) that although some arylated olefins can be isolated $(\mathrm{R}=\mathrm{Ph})$, when $\mathrm{R}=\mathrm{C}(\mathrm{O}) \mathrm{Me}$ or $\mathrm{CO}_{2} \mathrm{Et}$ an intramolecular hydroamination occurs giving the corresponding tetrahydroisoquinolines.

Results and Discussion

Synthesis, Structure and Reactivity towards Neutral Ligands of Eight-membered

 Palladacycles. Ortho-metalated complexes derived from phenethylamine and phentermine $\left[\operatorname{Pd}\left(C, N-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CR}_{2} \mathrm{NH}_{2}-2\right)(\mu-\mathrm{X})\right]_{2}\left(\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Br}(\mathbf{A}) ;{ }^{50} \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{Cl}(\mathbf{B}) ;{ }^{51}\right.$ Scheme 3) react with olefins $\mathrm{CH}_{2}=\mathrm{CHR}$ ' or norbornene $\left(\mathrm{C}_{5} \mathrm{H}_{8}\right)$ in a 1:2 molar ratio at room temperature, to give dimeric complexes $\left[\mathrm{Pd}\left\{C, N-\mathrm{CH}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CR}_{2} \mathrm{NH}_{2}-2\right\}(\mu-\mathrm{X})\right]_{2}(\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}$, $\left.\mathrm{R}^{\prime}=\mathrm{C}(\mathrm{O}) \mathrm{Me}(\mathbf{1 a}), \mathrm{CO}_{2} \mathrm{Et}(\mathbf{1 c}) ; \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{C}(\mathrm{O}) \mathrm{Me}(\mathbf{1 b}), \mathrm{CO}_{2} \mathrm{Et}(\mathbf{1 d})\right)$ and $\left[\mathrm{Pd}\left\{C, N-\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \mathrm{CHC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-2\right\}(\mu-\mathrm{Cl})\right]_{2}$ (1e), respectively, which contain eight-membered palladacycles arising from the insertion of one molecule of alkene into the $\mathrm{Pd}-\mathrm{C}$ bond. There are only a few eight-membered C-palladacycles reported in the literature, arising from insertion of one molecule of alkyne into the $\mathrm{Pd}-\mathrm{C}$ bond of a six-membered ring, ${ }^{36,52}$ or containing chelating bis(diaminocarbene) ligands. ${ }^{53}$ Complexes 1a, 1c and 1d are soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, whereas $\mathbf{1 b}$ and 1e precipitate out the reaction mixture. The ${ }^{1} \mathrm{H}$ spectra in CDCl_{3} of soluble complexes $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{1 d}$ are difficult to analyze because of the existence of various isomers arising from the presence of two chiral centers and the relative position of theC, N-chelated ligands (cisoid and transoid isomers). However, their ${ }^{1} \mathrm{H}$ NMR spectra in DMSO- d_{6} become simpler probably because the solvent splits the bridges leading to mononuclear species. ${ }^{54}$ In all cases, only one set of signals is observed, which means that the insertions and the cleavage of bridges are regiospecific (see below). Similarly, 1a, 1b, 1d or 1e reacts with a neutral ligand in a 1:2 molar ratio to give only one mononuclear derivative $\left[\mathrm{Pd}\left\{C, N-\mathrm{CH}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CR}_{2} \mathrm{NH}_{2}-2\right\} \mathrm{X}(\mathrm{L})\right]\left(\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{H}, \mathrm{R}{ }^{\prime}=\mathrm{C}(\mathrm{O}) \mathrm{Me}, \mathrm{L}={ }^{\mathrm{t}} \mathrm{BuNC}\right.$ (2a); $\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{Me}, \mathrm{L}=4$-methylpyridine (pic), $\mathrm{R}^{\prime}=\mathrm{C}(\mathrm{O}) \mathrm{Me},(\mathbf{2 b - 1}), \mathrm{XyNC}(\mathbf{2 b - 2}) ; \mathrm{X}=$ $\mathrm{Cl}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{L}=$ pic (2d-1), $\mathrm{NH}_{3}(\mathbf{2 d - 2}), \mathrm{NHEt}_{2}(\mathbf{2 d - 3}),{ }^{\mathrm{t}} \mathrm{BuNC}(\mathbf{2 d - 4}), \mathrm{XyNC}$ (2d-5) or $\left[\mathrm{Pd}\left\{\mathrm{C}, \mathrm{N}-\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}-2\right\} \mathrm{Cl}(\mathrm{L})\right]\left(\mathrm{L}=\right.$ pic, 2e-1; PPh_{3}, 2e-2; ${ }^{t}$ BuNC, 2e-3; XyNC, 2e-4; Scheme 3).

Scheme 3. Synthesis of Eight-membered Palladacycles Derived from Insertion of Methyl Vinyl Ketone, Ethyl Acrylate and 2-Norbornene into the Pd-C Bond of Ortho-metalated Primary Phenethylamines

X	R	R^{\prime}	L	
Br	H	$\mathrm{C}(\mathrm{O}) \mathrm{Me}$	${ }^{\mathrm{t}} \mathrm{BuNC}$	$\mathbf{2 a}$
Cl	Me	$\mathrm{C}(\mathrm{O}) \mathrm{Me}$	pic	$\mathbf{2 b - 1}$
Cl	Me	$\mathrm{C}(\mathrm{O}) \mathrm{Me}$	XyNC	$\mathbf{2 b - 2}$
Cl	Me	$\mathrm{CO}_{2} \mathrm{Et}$	pic	$\mathbf{2 d - 1}$
Cl	Me	$\mathrm{CO}_{2} \mathrm{Et}$	NH_{3}	$\mathbf{2 d - 2}$
Cl	Me	$\mathrm{CO}_{2} \mathrm{Et}$	NHEt_{2}	$\mathbf{2 d - 3}$
Cl	Me	$\mathrm{CO}_{2} \mathrm{Et}$	${ }^{\text {t }} \mathrm{BuNC}$	$\mathbf{2 d - 4}$
Cl	Me	$\mathrm{CO}_{2} \mathrm{Et}$	XyNC	$\mathbf{2 d - 5}$

In agreement with the proposed structures, the ${ }^{1} \mathrm{H}$ NMR spectra of monomeric complexes 2 show the inequivalence of the NH_{2} and CH_{2} protons and CMe_{2} methyl groups, caused by the presence of one or several chiral centers in the molecule (see ${ }^{1} \mathrm{H}$ NMR Tables in the SI). For derivatives containing inserted methyl vinyl ketone or ethyl acrylate, the methine hydrogen atom is on C^{α}, which is the most frequent regioisomer found in the insertion of electron-poor alkenes into the Pd-C bonds of neutral complexes. ${ }^{3,27,29,38,41,55}$ We propose for
all 2-norbornene derivatives structures arising from the syn addition of the $\mathrm{Pd}-\mathrm{C}$ bond to the exo face of the olefin (Chart 1) as we have established this geometry in $\mathbf{2 e} \mathbf{- 1}$ by a NOESY 2D experiment $\left(\mathrm{H}^{\alpha}\right.$ and H^{β} show NOEs to the signals of the hydrogen atoms of the ethylene bridge) and in $2 \mathrm{e}-\mathbf{4} \cdot 1 / 2 \mathrm{CHCl}_{3}$ (see below) through the resolution of its crystal structure (see below). This is also the geometry observed for similar cases. ${ }^{26,27,56,57}$

Chart 1. Isomers Arising From Insertion of 2-Norbornene into the Pd-C Bond of Sixmembered Palladacycles

endo isomer

exo isomer

The crystal structures of complexes $\mathbf{2 a} \cdot \mathrm{CHCl}_{3}, \mathbf{2 b} \mathbf{- 1}, \mathbf{2 d} \mathbf{- 3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{2 e}$ $4 \cdot 1 / 2 \mathrm{CHCl}_{3}$ have been solved by X-ray diffraction studies (Figures 1-4) confirming the proposed regiochemistry of the insertion reactions. For complexes $\mathbf{2 b - 1}$ and $\mathbf{2 d} \mathbf{- 3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ there are two and three independent molecules in the asymmetric unit, respectively. In all these complexes the palladium atom is in a slightly distorted square-planar environment. Taking into account the eight internal torsion angles, ${ }^{58}$ the metal forms part of an eightmembered ring that adopts a boat-chair (2b-1, $\left.\mathbf{2 d} \mathbf{- 3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{2 e} \mathbf{- 4} \cdot 1 / 2 \mathrm{CHCl}_{3}\right)$ or a twist-boat-chair $\left(\mathbf{2 a} \cdot \mathrm{CHCl}_{3}\right)$ conformation. For the other complexes we assume that the monodentated ligands are also placed in trans position to the NH_{2} group. For $\mathbf{2 e} \mathbf{- 2}$ and the isocyanide derivatives, this is the expected geometry because of the great transphobia between C-/C-donor and C-/P-donor pairs of ligands. ${ }^{34,59}$

In complexes 2a, 2b-1 and 2d-3, there is an intramolecular hydrogen bond between the oxygen atom of the carbonyl group and one of hydrogen atoms of the NH_{2} group while the other is hydrogen bonded to the carbonyl group of another molecule giving rise to dimers. In complex $\mathbf{2 b} \mathbf{- 1}$, the dimers are formed between the two independent molecules of the asymmetric unit. In addition, the dimers are further associated through non-classical hydrogen bonds involving aromatic hydrogens and the chloro ligands to give a tridimensional structure.

Figure 1. X-ray thermal ellipsoid plot (50\% probability) of complex $\mathbf{2 a} \cdot \mathrm{CHCl}_{3}$ showing the labeling scheme (solvent molecule and hydrogen atoms bonded to carbon have been omitted for clarity). Selected bond lengths (\AA) and angles (deg): $\operatorname{Pd}(1)-\mathrm{C}(1)=2.098(2), \operatorname{Pd}(1)-\mathrm{N}(1)=$ $2.088(2), \operatorname{Pd}(1)-\operatorname{Br}(1)=2.5201(3), \operatorname{Pd}(1)-\mathrm{C}(13)=1.931(3) ; \mathrm{C}(1)-\operatorname{Pd}(1)-\mathrm{N}(1)=90.61(9)$, $\mathrm{N}(1)-\operatorname{Pd}(1)-\operatorname{Br}(1)=87.55(6), \operatorname{Br}(1)-\operatorname{Pd}(1)-\mathrm{C}(13)=95.00(7), \mathrm{C}(13)-\mathrm{Pd}(1)-\mathrm{C}(1)=86.86(10)$.

Figure 2. X-ray thermal ellipsoid plot of one (A) of the two independent molecules of complex 2b-1 (50\% probability) showing the labeling scheme (hydrogen atoms bonded to carbon have been omitted for clarity). Selected bond lengths (\AA) and angles (deg) are given for both independent molecules. For A: $\operatorname{Pd}(1)-\mathrm{N}(1)=2.067(2), \operatorname{Pd}(1)-\mathrm{N}(2)=2.039(2)$, $\operatorname{Pd}(1)-\mathrm{C}(1)=2.097(3), \operatorname{Pd}(1)-\mathrm{Cl}(1)=2.3894(7) ; \mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)=89.94(10), \mathrm{N}(1)-\operatorname{Pd}(1)-$ $\mathrm{Cl}(1)=93.01(7), \mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{N}(2)=87.02(7), \mathrm{N}(2)-\mathrm{Pd}(1)-\mathrm{C}(1)=89.91(10), \mathrm{Pd}(1)-\mathrm{C}(1)-$ $\mathrm{C}(2)=113.20(18)$. For $\mathrm{B}: \operatorname{Pd}(2)-\mathrm{N}(3)=2.060(2), \mathrm{Pd}(2)-\mathrm{N}(4)=2.036(2), \operatorname{Pd}(2)-\mathrm{C}(31)=$ 2.102(3), $\mathrm{Pd}(2)-\mathrm{Cl}(2)=2.3947(7) ; \mathrm{C}(31)-\mathrm{Pd}(2)-\mathrm{N}(3)=90.15(10), \mathrm{N}(3)-\mathrm{Pd}(2)-\mathrm{Cl}(2)=$ $92.33(7), \mathrm{Cl}(2)-\operatorname{Pd}(2)-\mathrm{N}(4)=87.97(7), \mathrm{N}(4)-\mathrm{Pd}(2)-\mathrm{C}(31)=89.37(10), \operatorname{Pd}(2)-\mathrm{C}(31)-\mathrm{C}(32)=$ 114.74(18)

Figure 3. X-ray thermal ellipsoid plot of one (A) of the three independent molecules of complex $\mathbf{2 d} \mathbf{- 3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50% probability) showing the labeling scheme (solvent molecules and hydrogen atoms bonded to carbon have been omitted for clarity). Selected bond lengths (\AA) and angles (deg) are given for the three independent molecules. For A: $\operatorname{Pd}(1)-\mathrm{N}(1)=$ $2.064(2), \operatorname{Pd}(1)-\mathrm{N}(2)=2.084(2), \mathrm{Pd}(1)-\mathrm{C}(1)=2.078(2), \mathrm{Pd}(1)-\mathrm{Cl}(1)=2.4250(6) ; \mathrm{C}(1)-$ $\operatorname{Pd}(1)-\mathrm{N}(1)=90.81(9), \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)=92.34(6), \mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{N}(2)=84.59(6), \mathrm{N}(2)-$ $\operatorname{Pd}(1)-\mathrm{C}(1)=92.27(9), \operatorname{Pd}(1)-\mathrm{C}(1)-\mathrm{C}(2)=116.47(17)$. For $\mathrm{B}: \operatorname{Pd}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)=2.071(2)$, $\operatorname{Pd}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)=2.084(2), \operatorname{Pd}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)=2.069(2), \operatorname{Pd}\left(1^{\prime}\right)-\mathrm{Cl}\left(1^{\prime}\right)=2.4368(6) ; \mathrm{C}\left(1^{\prime}\right)-\mathrm{Pd}\left(1^{\prime}\right)-$ $\mathrm{N}\left(1^{\prime}\right)=90.67(9), \mathrm{N}\left(1^{\prime}\right)-\mathrm{Pd}\left(1^{\prime}\right)-\mathrm{Cl}\left(1^{\prime}\right)=91.84(6), \mathrm{Cl}\left(1^{\prime}\right)-\mathrm{Pd}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)=85.58(6), \mathrm{N}\left(2^{\prime}\right)-$ $\operatorname{Pd}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)=92.21(9), \operatorname{Pd}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)=116.78(16)$. For $\mathrm{C}: \operatorname{Pd}\left(1^{\prime \prime}\right)-\mathrm{N}\left(1^{\prime \prime}\right)=2.067(2)$, $\operatorname{Pd}\left(1^{\prime \prime}\right)-\mathrm{N}\left(2^{\prime \prime}\right)=2.086(2), \operatorname{Pd}\left(1^{\prime \prime}\right)-\mathrm{C}\left(1^{\prime \prime}\right)=2.082(2), \mathrm{Pd}\left(1^{\prime \prime}\right)-\mathrm{Cl}\left(1^{\prime \prime}\right)=2.4102(6) ; \mathrm{C}\left(1^{\prime \prime}\right)-\mathrm{Pd}\left(1^{\prime \prime}\right)-$ $\mathrm{N}\left(1^{\prime \prime}\right)=91.06(9), \mathrm{N}\left(1^{\prime \prime}\right)-\mathrm{Pd}\left(1^{\prime \prime}\right)-\mathrm{Cl}\left(1^{\prime \prime}\right)=90.20(6), \mathrm{Cl}\left(1^{\prime \prime}\right)-\mathrm{Pd}\left(1^{\prime \prime}\right)-\mathrm{N}\left(2^{\prime \prime}\right)=86.53(6), \mathrm{N}\left(2^{\prime \prime}\right)-$ $\operatorname{Pd}\left(1^{\prime \prime}\right)-C\left(1^{\prime \prime}\right)=92.27(9), \operatorname{Pd}\left(1^{\prime \prime}\right)-C\left(1^{\prime \prime}\right)-C\left(2^{\prime \prime}\right)=116.36(16)$.

Figure 4. X-ray thermal ellipsoid plot of complex $\mathbf{2 e}-\mathbf{4} \cdot 1 / 2 \mathrm{CHCl}_{3}$ (50% probability) showing the labeling scheme (solvent molecules and hydrogen atoms bonded to carbon have been omitted for clarity). Selected bond lengths $(\AA \AA)$ and angles (deg): $\operatorname{Pd}(1)-\mathrm{N}(1)=2.0961(17)$,
$\operatorname{Pd}(1)-\mathrm{Cl}(1)=2.4463(5), \operatorname{Pd}(1)-\mathrm{C}(21)=1.928(2), \operatorname{Pd}(1)-\mathrm{C}(8)=2.053(2) ; \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$ $=89.77(5), \mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{C}(21)=88.81(6), \mathrm{C}(21)-\mathrm{Pd}(1)-\mathrm{C}(8)=94.18(8), \mathrm{C}(8)-\mathrm{Pd}(1)-\mathrm{N}(1)=$ 87.14(7), $\operatorname{Pd}(1)-\mathrm{C}(8)-\mathrm{C}(7)=116.34(13)$.

Study of the Stability of Complexes 1 and 2. Synthesis of Tetrahydroisoquinolines

and 2-Ortho-vinylidated Phenethylamines. In the solid state at room temperature, these complexes remain unaltered for long periods of time. In solution, complexes $\mathbf{1 a}, \mathbf{1 c}$ and $\mathbf{1 d}$ are stable in DMSO for days, whereas complexes 1c and 1d start to decompose after 4 h in CHCl_{3}. All mononuclear complexes are stable except the norbornene derivatives $\mathbf{2 e} \mathbf{-} \mathbf{1}$ and $\mathbf{2 e} \mathbf{e}$ 2 (see below). The stability of complexes derived from the carbonyl-olefins is noteworthy because the eight-membered metallacycles are not conformationally rigid and $\mathrm{Pd}(\mathrm{II})$ has one easily available coordination site through the halide bridge, i.e., they do not fulfill none of the two stability conditions established for $\operatorname{Pd}(\mathrm{II})$ complexes with alkyl ligands containing β hydrogens to prevent quick decomposition by a β-hydride elimination process (see Introduction and Scheme 1, steps (c) and (d))..28,42,43,45,47,48,57,60 Three factors could contribute to this behavior: (1) the $\mathrm{Pd}-\mathrm{NH}_{2}$ bond strength, since reactions of olefins (including those used by us) with N, N-disubstituted benzylamines do not afford the homologues of complexes 1, but the arylated olefins resulting from their decomposition, in spite of the potential stabilizing effect of the seven membered ring formed, ${ }^{3,9,41}$ (2) the presence of an electronwithdrawing substituent on the α-carbon, ${ }^{61}$ since the alkyl $\operatorname{Pd}(\mathrm{II})$ intermediate is not isolated in the reaction with styrene (see below); and (3) the flexibility of the eight-membered palladacycle could be somehow restricted by the presence in solution of the intramolecular hydrogen bond we observe in the solid state (Figures 1-3); this stabilizing effect would not be present in the case of the styrene insertion either.

Complexes 1 and 2, except 2e derived from norbornene, are actual models for the proposed alkyl complex intermediate in the Heck-Mizoroki catalytic process ${ }^{3,9,39,41,43,62}$ because they can be decomposed to give the arylated olefins. Thus, when a solution of $\mathbf{1 c}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 45^{\circ} \mathrm{C}\right)$ or $\mathbf{1 d}\left(\mathrm{CHCl}_{3}, 60^{\circ} \mathrm{C}\right)$ is stirred for 12 or 7 h , respectively, the coordination complex containing as ligand the arylated olefin trans$\left[\mathrm{PdX}_{2}\left(\mathrm{NH}_{2} \mathrm{CR}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}-2\right)_{2}\right](\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}(\mathbf{3 c}) ; \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{Br}(\mathbf{3 d}))$ is obtained in $60-70 \%$ yield along with metallic palladium (Scheme 4). Analogous complexes 3f $\left(\mathrm{R}^{\prime}=\mathrm{Ph}, \mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}\right)$ or $\mathbf{3 g}\left(\mathrm{R}^{\prime}=\mathrm{Ph}, \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{Br}\right)$ can be obtained by reacting palladacycles \mathbf{A} or \mathbf{B} with styrene in a 1:2 molar ratio, although in this case, it is not possible to isolate the eight-membered palladacycle $\mathbf{1 f}$ or $\mathbf{1 g}$, respectively. As far as we are aware, this is the first work reporting that the arylated olefins formed from the insertion of an alkene and a β-reductive elimination process are trapped as ligands by $\operatorname{Pd}(I I)$.

Scheme 4. Decomposition of Dimeric Complexes Derived from the Insertion of Ethyl

3c, 3d, 3f, 3g

X	R	
Br	H	\mathbf{A}
Cl	Me	\mathbf{B}

X	R	R^{\prime}	
Br	H	$\mathrm{CO}_{2} \mathrm{Et}$	\mathbf{c}
Cl	Me	$\mathrm{CO}_{2} \mathrm{Et}$	\mathbf{d}
Br	H	Ph	\mathbf{f}
Cl	Me	Ph	\mathbf{g}

A possible mechanism for the decomposition reactions of complexes $\mathbf{1}$ to give complexes 3 involve: 1) β-hydrogen elimination to give an η^{2}-olefin-hydrido-complex of $\operatorname{Pd}($ II) (I; Scheme 4), 2) formation of a dinuclear intermediate (II), and 3) disproportionation of II to give $\mathrm{H}_{2}, \mathrm{Pd}(0)$ and complex 3. This step is different from that postulated in the Heck catalytic cycle (Scheme 2), ${ }^{3,5-7,9-11,14,16,48}$ probably because of the existence in our case of the $\mathrm{NH}_{2}-\mathrm{Pd}$ strong bond. We have previously obtained similar complexes in the decomposition of $\left[\operatorname{Pd}\left\{\mathrm{C}(=\mathrm{NXy}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}-2\right\} \mathrm{Br}(\mathrm{CNXy})\right]$ to give $\left[\mathrm{PdBr}_{2}\{2-(\mathrm{XyNH}) \text { isoindole }\}_{2}\right], \mathrm{Pd}(0)$ and H_{2}, or in the halogenation of $\left[\mathrm{Pd}_{2}\left(C, N-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}-2\right)_{2}(\mu-\mathrm{Cl})_{2}\right]$ or $(S, S)-\left[\mathrm{Pd}_{2}\{C, N-\right.$ $\left.\left.\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NCH}_{2} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{NH}_{2}-2\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]$ to afford $\left[\mathrm{PdX}_{2}\left(\mathrm{~L}-\mathrm{X}^{\prime}\right)_{2}\right]\left(\mathrm{L}-\mathrm{X}^{\prime}=\right.$ ortho-halogenated primary amine) and $\mathrm{PdX}^{\prime}{ }_{2}$. ${ }^{19,21,22}$

Scheme 5. Synthesis of Vinylidated-amines and Tetrahydroisoquinolines

The reaction of complex $\mathbf{3 f}$ or $\mathbf{3 g}$ with 1,10 -phenanthroline $\cdot \mathrm{H}_{2} \mathrm{O}$ (phen) led to $\left[\mathrm{PdX}_{2}(\right.$ phen $\left.)\right](\mathrm{X}=\mathrm{Cl}$ or Br$)$ and the free ortho-vinylidated amines 2-styryl-phenethylamine (4f) or -phentermine ($\mathbf{4 g}$; Scheme 5). When the analogous reactions were carried out with complexes $\mathbf{3 c}$ and $\mathbf{3 d}$, the tetrahydroisoquinolines $\mathbf{5 c}$ and $\mathbf{5 d}$ formed. They must arise from the intramolecular hydroamination of the 2-vinylidated phenethylamine, as its double bond is activated by the presence of an electron-withdrawing group. ${ }^{7,17,63}$ Therefore, complexes $\mathbf{3 c}$ and 3d contain short-lived species as ligands. Protonation of $\mathbf{5 d}$ with HCl afforded $\mathbf{5 d}-\mathrm{HCl}$. 5d was also obtained, along with $\operatorname{Pd}(0)$ and $\left[\mathrm{PdCl}_{2}(\mathrm{CNXy})_{2}\right]$, when complex 2d-5 was refluxed in toluene, which means that 5d is not nucleophilic enough to attack the coordinated XyNC ligand. The reaction that affords $\mathbf{5 d}$ probably follows an analogous pathway to that proposed for the decomposition of palladacycle 1d (Scheme 4), but the presence of the isocyanide must generate different intermediates (Scheme 6). Thus, for example, formation of the intermediate \mathbf{I}^{\prime} will require, probably, the previous dissociation of the chloro ligand to
allow the β-hydrogen migration; decomposition of II' will not lead to 3d because this would involve the dissociation of XyNC instead of the amine.

Scheme 6. Proposed Mechanism for the Thermal Decomposition of 2d-5.

Complexes $\mathbf{1 e}$ and $\mathbf{2 e}$, derived from 2-norbornene insertion, did not decompose through β-hydride elimination, as the palladium and the β-hydrogen atom cannot adopt the needed mutually syn disposition. Instead, at room temperature, complex $\mathbf{2 e - 1}$ loses 4-picoline in solution to regenerate $\mathbf{1 e}$, while $\mathbf{2 e - 2}$ undergoes extrusion of 2-norbornene to give $[\operatorname{Pd}\{C, N-$ $\left.\left.\mathrm{CH}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CR}_{2} \mathrm{NH}_{2}-2\right\} \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)\right]$ (6), which can be independently prepared by reaction of the palladacycle \mathbf{B} and PPh_{3} in a 1:2 molar ratio (Scheme 7). Other authors have previously observed 2 -norbornene deinsertion from their palladium(II) complexes as a consequence of high steric congestion around the metal center. ${ }^{64}$

Scheme 7. Decomposition of Mononuclear Complexes Derived from the Insertion of 2-

In the ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{3}$ and $\mathbf{4}$ each olefinic hydrogen appears as a doublet, with coupling constants between 15.2 and 16.0 Hz , which is in agreement with the trans geometry of the double bond.

The crystal structures of complexes 3d and 3g (Figures 5 and 6) show two centrosymmetric molecules with the palladium atom coordinated to two chloro ligands and the nitrogen atoms of two ortho-vinylidated amines, in an almost perfect square-planar geometry. The amino ligands adopt a mutually trans disposition, which is the normal geometry for bis(amino)-dihalopalladium(II) complexes. ${ }^{19,32,65}$ The olefinic double bond shows a trans geometry. In both complexes, the molecules are associated through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to give chains along the a axis. In complex 3d, two adjacent chains are connected through a weak interaction between the chloro ligand and one aromatic hydrogen (Figures 7 and 8).

Figure 5. X-ray thermal ellipsoid plot of complex 3d (50\% probability) showing the labeling scheme (hydrogen atoms bonded to carbon have been omitted for clarity). Selected bond lengths (\AA) and angles $(\mathrm{deg}): \operatorname{Pd}(1)-\mathrm{N}(1)=2.052(2), \operatorname{Pd}(1)-\mathrm{Cl}(1)=2.3000(7), \mathrm{C}(11)-\mathrm{C}(12)$ $=1.316(4) ; \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)=89.40(7), \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1 \mathrm{~A})=90.60(7)$.

Figure 6. X-ray thermal ellipsoid plot of complex $\mathbf{3 g}$ (50% probability) showing the labeling scheme (hydrogen atoms bonded to carbon have been omitted for clarity). Selected bond lengths (\AA) and angles $(\operatorname{deg}): \operatorname{Pd}(1)-\mathrm{N}(1)=2.0638(16), \mathrm{Pd}(1)-\mathrm{Cl}(1)=2.2991(5), \mathrm{C}(9)-\mathrm{C}(10)$ $=1.339(3) ; \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)=87.47(5), \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1 \mathrm{~A})=92.53(5)$.

Figure 7. X-ray packing view of complex 3d showing the double chains along the a axis formed through hydrogen bond interactions. Details (including symmetry operators) are given in the Supporting Information.

Figure 8. X-ray packing view of complex $\mathbf{3 g}$ showing the chains along the a axis formed through hydrogen bond interactions. Details (including symmetry operators) are given in the Supporting Information.

Reported methods of synthesis of $\mathbf{4 f}$ use as starting materials: (1) 2bromobenzaldehyde, styrene and nitromethane, followed by reduction with LiAlH_{4} (three
steps, overall yield 49%, ${ }^{63}$ and 2) 2-methylbenzaldehyde, benzyltriphenylphosphonium bromide, N-bromosuccinimide and sodium cyanide, followed by reduction with LiAlH_{4} (four steps, 42% overall yield) ${ }^{66}$ Our method requires three steps using phenethylamine, $\mathrm{Pd}(\mathrm{OAc})_{2}$, styrene and phenanthroline with an overall yield of 10%. Compound $\mathbf{5 c}$ has been prepared by: 1) condensation of phenylethyl chloride and ethyl cyanoacetate using stannic chloride and hydrogenation of the resulting dihydroisoquinoline (three steps, overall yield $28-35 \%$), ${ }^{67}$ 2) reaction of ethyl (E)-2-(2-bromoethyl)-cinnamate with potassium phthalimide followed by treatment with hydrazine hydrate (two steps, 63%), ${ }^{68}$ or 3) reaction of 3,4-dihydroisoquinoline (prepared from 2-chloroethyl-benzaldehyde and $\mathrm{NH}_{4} \mathrm{OH}$) with malonic acid ethyl ester (two steps, overall yield $74 \%) .{ }^{69}$ Our method requires three steps using phenethylamine, $\mathrm{Pd}(\mathrm{OAc})_{2}$, ethylacrylate and phenanthroline with an overall yield of 16%. To our knowledge, no synthesis of compounds $\mathbf{4 g}, \mathbf{5 b}$ and $\mathbf{5 d}$ have been reported. In our opinion, the main interest of this part of our study is based on (1) the isolation of the stable Heck intermediates $\mathbf{1}$ and $\mathbf{2}$, (2) the synthesis of complexes 3 containing non-existent amines, (3) the observation of the hydroamination of ortho-vinylated-phenethylamines into tetrahydroisoquinolines and (4) the first reported synthesis of $\mathbf{4 g}, \mathbf{5 b}$ and $\mathbf{5 d}$.

The crystal structure of complex 6 (Figure 9) shows the palladium atom in a distorted square-planar environment. The chelate ligand forms a six-membered palladacycle with a boat conformation. These features are similar to those of analogous complexes containing primary or secondary ortho-metalated phenethylamines. ${ }^{18,21,32,50,70}$ The phosphine and the NH_{2} group are mutually trans, according to the higher transphobia of the pair of ligands $\mathrm{P} / \mathrm{C}_{\mathrm{Ar}}$ than $\mathrm{P} / \mathrm{N} .{ }^{34,59}$ The molecules form intermolecular $\mathrm{H} \cdots \mathrm{Cl} \cdots \mathrm{H}$ bridging hydrogen bonds between the chloro ligand of one molecule and a Me and a NH hydrogens of another one giving rise to dimers (Figure 10).

Figure 9. X-ray thermal ellipsoid plot of complex 6 (50% probability) showing the labeling scheme (hydrogen atoms bonded to carbon have been omitted for clarity). Selected bond lengths (\AA) and angles $($ deg $): \operatorname{Pd}(1)-\mathrm{C}(1)=1.9964(17), \operatorname{Pd}(1)-\mathrm{N}(1)=2.1226(16), \operatorname{Pd}(1)-$ $\mathrm{Cl}(1)=2.4136(5), \operatorname{Pd}(1)-\mathrm{P}(1)=2.2606(5) ; \mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)=82.30(7), \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)=$ 89.98(5), $\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)=96.653(17), \mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{C}(1)=91.52(5)$.

Figure 10. X-ray packing view of complex 6 showing intermolecular $\mathrm{H}_{\mathrm{Me}} \cdots \mathrm{Cl} \cdots \mathrm{HN}$ hydrogen bond interactions.

Decomposition of Complexes by Replacement of the Chloro Ligand by Triflato.
To generate the required vacant on the Pd atom to allow the β-hydrogen elimination there is an alternative way to that used in the thermal decomposition of complex $\mathbf{5 d}$: the replacement
of the chloro ligand by an easily replaceable one such as triflato. Complex 1b did not decompose when stirred in CHCl_{3} at room temperature or when it was treated with a stream of CO, however, when a suspension of $\mathbf{1 b}$ in THF was reacted with TlOTf and refluxed, the corresponding tetrahydroisoquinolonium salt $\mathbf{5 b}$-HOTf (Scheme 8) was obtained. The impure salt was treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}$, then with HCl to give the rather hygroscopic isoquinolinium salt $\mathbf{5 b} \mathbf{- H C l}$ that was neutralized with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to afford pure tetrahydroisoquinoline $\mathbf{5 b}$, which is easier to manipulate (Scheme 8). In this case, the process is facilitated by the formation of an unstable triflato- or solvento-complex (III), ${ }^{48}$ which decomposition probably occurs by direct formation the 2 -vinylidated phentermine that cyclizes to give $\mathbf{5 b} \mathbf{b} \mathbf{O T f}$.

Scheme 8. Decomposition of $\mathbf{1 b}$ in the Presence of Thallium Triflate.

As expected, the replacement of the chloro ligand by triflato in norbornene derivatives did not allow the β-hydrogen migration (see Scheme 7), since of the inaccessibility of the β hydrogen still remains. Thus, when the isocyanide complex $2 \mathrm{e}-\mathbf{4}$ was reacted with one equiv of TlOTf in refluxing toluene, the eight-membered amidinium salt 7e-HOTf is obtained
(Scheme 9). Therefore, instead of the β-hydrogen migration, the insertion of the isocyanide followed by a reductive $\mathrm{C}-\mathrm{N}$ coupling is the favored process. We have used this method to prepare other cyclic amidines, although with one less member in the cycle. ${ }^{21-23}$ If a similar reaction is carried out starting from complex $\mathbf{2 e} \mathbf{e} \mathbf{3}$, containing coordinated ${ }^{\mathrm{t}} \mathrm{BuNC}$, an unidentified compound was obtained as the main product, which showed no ${ }^{t} \mathrm{Bu}$ resonance in its ${ }^{1} \mathrm{H}$ NMR spectrum. A similar behavior has been previously observed by us when trying to prepare the amidinium salt derived from the insertion of ${ }^{\mathrm{t}} \mathrm{BuNC}$ into the $\mathrm{Pd}-\mathrm{C}$ bond of palladacycle $\mathbf{A .}^{23}$

Scheme 9. Decomposition of 2e-4 in Presence of Thallium Triflate. Synthesis of 7e-HOTf.

We have mentioned above that $\mathbf{2 d - 5}$ decomposes when refluxed in toluene affording the tetrahydroisoquinoline $\mathbf{5 b}$ (Scheme 6). If the same reaction is carried out in the presence of one equiv of TlOTf, both β-hydrogen elimination and $\mathrm{C}-\mathrm{N}$ coupling processes are observed simultaneously (Scheme 10). The ${ }^{1} \mathrm{H}$ NMR spectrum of the product resulting after removing $\operatorname{Pd}(0)$ and the solvent, showed the presence of the amidinium salt 7d-HOTf and a
$\operatorname{Pd}(\mathrm{II})$-complex containing the ortho-vinylidated amine (probably, intermediate \mathbf{V}). The treatment of this residue with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ afforded a $1: 3$ mixture of $\mathbf{5 d}$ and the cyclic amidine $\mathbf{7 d}$.

Scheme 10. Proposed Pathways for the Decomposition of Complex 2d-5 in the Presence of
Triflate

In order to favor the isocyanide insertion over the β-hydride elimination, we seek to use as starting material a complex with strongly coordinating ligands, that is, a complex where all the coordination positions of $\mathrm{Pd}(\mathrm{II})$ were blocked. The reaction of complex 2d-5 with TlOTf and XyNC (molar ratio 1:1:1; Scheme 11) allows the synthesis of the cationic complex cis- $\left.\left[\mathrm{Pd}\left\{C, N-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CR}_{2} \mathrm{NH}_{2}-2\right\}(\mathrm{CNXy})_{2}\right] \mathrm{OTf}(\mathbf{8 d})$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of this complex confirm the proposed structure, as well as its IR spectrum, which shows two strong peaks corresponding to the $v(\mathrm{C} \equiv \mathrm{N})$ stretching frequencies at 2184 and $2000 \mathrm{~cm}^{-1}$. As designed, when complex $8 \mathbf{d}$ was heated in CHCl_{3} at $70{ }^{\circ} \mathrm{C}$ in a Carius tube, and the resulting mixture was treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the amidine $7 \mathbf{d}$ was obtained as a unique product with a 60% isolated yield (Scheme 11). Therefore, depending on the reaction conditions, complex 2d-5 can be decomposed selectively 1) by refluxing it in toluene, to afford the tetrahydroisoquinoline 5d through a β-hydride elimination process (Scheme 6) or 2) by heating it in the presence of TlOTf and XyNC, to give the cyclic amidine 7d through insertion of XyNC and $\mathrm{C}-\mathrm{N}$ coupling processes (Scheme 11). When $\mathbf{2 d - 5}$ is refluxed in toluene in the presence of TlOTf it decomposes through both pathways (Scheme 10).

Scheme 11. Synthesis and Decomposition of Complex 8d

The crystal structure of the compound 7e-HOTf (Figure 11) has been determined by X-ray diffraction studies and it shows a fused eight-membered azacycle with a twist-boat conformation. Additionally, both groups (C 1 and C 9) at the disubstituted norbornane unit are in an exo disposition, as expected.

Figure 11. X-ray thermal ellipsoid plot of the cation of compound 7e-HOTf (50\% probability) showing the labeling scheme (hydrogen atoms bonded to carbon have been omitted for clarity). Selected bond lengths (\AA) and angles (deg): $\operatorname{Pd}(1)-N(1)=2.0638(16)$,
$\operatorname{Pd}(1)-\mathrm{Cl}(1)=2.2991(5), \mathrm{C}(9)-\mathrm{C}(10)=1.339(3) ; \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)=87.47(5), \mathrm{N}(1)-\operatorname{Pd}(1)-$ $\mathrm{Cl}(1 \mathrm{~A})=92.53(5)$.

Conclusion

The insertion of alkenes into the $\mathrm{Pd}-\mathrm{C}$ bond of ortho-metalated phenethylamines allows the synthesis of stable eight-membered palladacycles bearing one or two β-hydrogens. The stability of some of these complexes is surprising as the β-hydrogens are conformationally available and at least a halogen ligand coordinated to the metal offers an accessible coordination site for the β-hydrogen elimination process. Under various reaction conditions these complexes decompose through a β-hydride elimination process to give complexes containing two coordinated ortho-vinylidated arylakylamine - some of which do not exist in the free state - that can be replaced and isolated (styryl derivatives) or spontaneously transformed into tetrahydroisoquinolines (ethyl acrylate derivatives). Replacement of the chloro ligand by triflato can be used to promote decomposition by β hydrogen elimination (methyl vinyl derivatives) or to insert isocyanides affording cyclic amidine derivatives. We also show (1) that some changes in the nature of the olefin have a destabilizing effect on the insertion product, e.g., (1a) the replacement of $\mathrm{CO}_{2} \mathrm{Et}$ by Ph does not allow to isolate the alkyl complex, and the arylated olefin coordinated to Pd is formed instead and (1b) the change of olefins $\mathrm{CH}_{2}=\mathrm{CHC}(\mathrm{O}) \mathrm{R}(\mathrm{R}=\mathrm{Me}, \mathrm{OEt})$ by norbornene gives the expected very stable alkyl-complexes and (2) that mononuclear derivatives obtained by cleavage of the halogen bridge of the insertion products with neutral ligands are more stable than their parent complexes because the entering ligand blocks the coordination site necessary for the hydrogen elimination, although some derivatives containing XyNC can be decomposed through a $\mathrm{C}-\mathrm{N}$ coupling process.

Experimental Section

General Procedures. Infrared and NMR spectra, C, H, N and S analyses, conductance measurements, and melting point determinations were carried out as described elsewhere. ${ }^{32}$ Unless otherwise stated, reactions were carried out at room temperature and without special precautions against moisture.

The ortho-metalated complexes $\left[\mathrm{Pd}_{2}\left\{C, N-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}-2\right\}_{2}(\mu-\mathrm{Br})_{2}\right](\mathbf{A})^{50}$ and $\left[\mathrm{Pd}_{2}\left\{C, N-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}-2\right\} 2(\mu-\mathrm{Cl})_{2}\right](\mathbf{B})^{51}$ were prepared as previously reported. Ethyl acrylate (Merck), styrene (Aldrich), methyl vinyl ketone, 2-norbornene, 4-methylpyridine (4picoline), $\mathrm{NHEt}_{2}, \mathrm{PPh}_{3},{ }^{\mathrm{t}} \mathrm{BuNC}, \mathrm{XyNC}, \mathrm{HOTf}\left(\mathrm{HSO}_{3} \mathrm{CF}_{3}\right)$ (Fluka), NH_{3} (gas, Air Products) and palladium acetate (Johnson Matthey) were used as received. TlOTf ($\mathrm{TlSO}_{3} \mathrm{CF}_{3}$) was prepared by reaction of $\mathrm{Tl}_{2} \mathrm{CO}_{3}$ and $\mathrm{HSO}_{3} \mathrm{CF}_{3}$ (1:2) in water and recrystallized from acetone $/ \mathrm{Et}_{2} \mathrm{O}$. Chart 2 gives the numbering schemes for the six- and eight-membered palladacycles, ortho-vinylated phenethylamines and N -heterocycles.

Chart 2. Numbering Schemes for Six- and Eight-membered Palladacycles, Ortho-vinylated Phenethylamines, Tetrahydroisoquinolines, Amidines and Amidinium Salts

Synthesis of $\left[\mathrm{Pd}_{2}\left\{C, N-\mathrm{CH}(\mathrm{COMe}) \mathrm{CH}_{2} \mathrm{C}_{6} \mathbf{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)-2\right\}_{2}(\mu-\mathrm{Br})_{2}\right] \quad$ (1a).

 Methyl vinyl ketone $(0.058 \mathrm{~mL}, 0.693 \mathrm{mmol})$ was added to a solution of complex $\left[\mathrm{Pd}_{2}\{C, N-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}-2\right\}_{2}(\mu-\mathrm{Br})_{2}\right](\mathbf{A} ; 200 \mathrm{mg}, 0.326 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The resulting mixture was stirred for 2 h and then filtered through a plug of Celite. The filtrate was concentrated to ca. 2 mL , and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give complex 1a as an orange solid. Yield: $191 \mathrm{mg}, 0.253 \mathrm{mmol}, 78 \%$. Dec pt: $130{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}_{2}$ (753.172): C, 38.27 ; H, 4.28 ; N, 3.72. Found: C, $38.40 ; \mathrm{H}, 4.37$; N, 3.81. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH})$ $3205 \mathrm{~s}, 3126 \mathrm{vs} ; v(\mathrm{CO}) 1610 \mathrm{vs} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400.91 \mathrm{MHz}$): $\delta 2.06$ (m, partially obscured by the methyl resonance, $1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2}$), $2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.11-2.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}_{2}\right)$, $2.70\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.0 \mathrm{~Hz}\right), 2.97-3.17\left(\mathrm{~m}, 3 \mathrm{H}, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2} \mathrm{Ar}+2 \mathrm{H}$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.34$ (m, partially obscured by the signal corresponding to traces of $\mathrm{H}_{2} \mathrm{O}$ in the deuterated solvent, $\left.1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right), 4.14\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=11.2,{ }^{3} J_{\mathrm{HH}}=6.4 \mathrm{~Hz}\right), 4.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.8\right.$ $\mathrm{Hz}), 7.16\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 6,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.20-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4+\mathrm{H} 5) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DMSO- $\left.d_{6}, 100.81 \mathrm{MHz}\right): \delta 28.8(\mathrm{~s}, \mathrm{Me}), 30.4\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right), 32.4\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 47.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 54.4 (s, $\mathrm{C}^{\alpha} \mathrm{H}$), 126.2 ($\left.\mathrm{s}, \mathrm{CH}, \mathrm{C} 4\right), 126.7$ ($\left.\mathrm{s}, \mathrm{CH}, \mathrm{C} 5\right), 128.6$ ($\left.\mathrm{s}, \mathrm{CH}, \mathrm{C} 6\right), 130.6$ ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 3$), 137.5 (s, C2), 141.0 (s, C1), 203.1 (s, CO).Synthesis of $\left[\mathrm{Pd}_{2}\left\{\mathrm{C}, \mathrm{N}-\mathrm{CH}(\mathrm{COMe}) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-2\right\}_{2}(\mu-\right.$ $\mathbf{C l})_{\mathbf{2}} \cdot \mathbf{1} / \mathbf{4} \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}} \mathbf{(\mathbf { 1 b } \cdot \mathbf { 1 } / \mathbf { 4 } \mathbf { C H } _ { \mathbf { 2 } } \mathbf { C l } _ { \mathbf { 2 } }) \text { . Methyl vinyl ketone } (0 . 0 6 0 \mathrm { mL } , 0 . 7 1 7 \mathrm { mmol }) \text { was added to }}$ a suspension of complex $\left[\mathrm{Pd}_{2}\left\{C, N-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}-2\right\}_{2}(\mu-\mathrm{Cl})_{2}\right](\mathbf{B} ; 200 \mathrm{mg}, 0.345 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the resulting mixture was stirred for 1 h . A yellow solid precipitated,
which was collected by filtration, washed with a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and air-dried to give complex $\mathbf{1 b} \cdot 1 / 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a yellow solid. Yield: 176 mg , $0.237 \mathrm{mmol}, 69 \% . \mathrm{Mp}: 130{ }^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}_{2} \cdot 1 / 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (741.609): C, 45.75 ; H, 5.50 ; N, 3.77. Found: C, $45.88 ; \mathrm{H}, 5.84 ; \mathrm{N}, 3.86 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3190 \mathrm{~s}, 3125$ $\mathrm{s} ; v(\mathrm{CO}) 1605 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6}, 400.91 \mathrm{MHz}$): $\delta 1.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.37(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{Me}, \mathrm{CMe}_{2}\right), 1.98\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.6,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeCO}), 2.29(\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=12.0 \mathrm{~Hz}$), 2.46 (d, one-half of the doublet was obscured by the DMSO signal, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.0 \mathrm{~Hz}\right), 3.31(\mathrm{~m}$, partially obscured by the signal corresponding to traces of $\mathrm{H}_{2} \mathrm{O}$ in the deuterated solvent, $\left.1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right), 4.12\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=10.8,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 4.69\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=11.6 \mathrm{~Hz}\right), 5.74\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 7.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3$ + H6), $7.21\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.30\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DMSO- $\left.d_{6}, 50.3 \mathrm{MHz}\right): \delta 28.5\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 30.1(\mathrm{~s}, \mathrm{MeCO}), 30.8\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right), 35.0(\mathrm{~s}, \mathrm{Me}$, CMe_{2}), $45.0\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 53.4\left(\mathrm{~s}, \mathrm{C}^{\alpha} \mathrm{H}\right), 57.4\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 126.2(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 4), 127.6(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 5)$, 129.6 (s, CH, C6), 133.1 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 3$), 135.3 ($\mathrm{s}, \mathrm{C} 2$), 142.8 ($\mathrm{s}, \mathrm{C} 1$), 204.9 (s, CO). The ${ }^{13} \mathrm{C}$ NMR resonance corresponding to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was not observed.

Synthesis of $\left[\mathrm{Pd}_{2}\left\{\boldsymbol{C}, \mathrm{~N}-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}_{\mathbf{t}}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)-2\right\}_{2}(\mu-\mathrm{Br})_{2}\right]$ (1c). Ethyl acrylate $(0.095 \mathrm{~mL}, 0.874 \mathrm{mmol})$ was added to a solution of complex $\left[\mathrm{Pd}_{2}\{C, N-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}-2\right\}_{2}(\mu-\mathrm{Br})_{2}\right](\mathbf{A} ; 245 \mathrm{mg}, 0.399 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and the mixture was stirred for 1.5 h . Formation of a small amount of palladium(0) was observed. The suspension was filtered through a plug of Celite, the filtrate was concentrated to ca. 2 mL , and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added to precipitate a small amount of a brown impurity, which was removed by filtration. The filtrate was concentrated to ca. 5 mL , and n-pentane (20 mL) was added. The suspension was filtered, and the solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give complex 1c as an orange solid. Yield: $237 \mathrm{mg}, 0.291 \mathrm{mmol}, 73 \% . \mathrm{Mp}: 105$
${ }^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pd}_{2}$ (813.224): C, 38.40; H, 4.46; N, 3.44. Found: C, 38.68; H, 4.53; N, 3.63. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3232 \mathrm{br} ; \downarrow(\mathrm{CO}) 1660 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300.1$ $\mathrm{MHz}): \delta 1.21\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{Me},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 2.20\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.8,{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right)$, $2.66\left(\mathrm{~m}\right.$, partially obscured by the $\mathrm{CH}_{2} \mathrm{Ar}$ signal, $\left.1 \mathrm{H}, \mathrm{NH}_{2}\right), 2.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=10.2\right.$ Hz), 2.99-3.26(m, $4 \mathrm{H}, 2 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{~N}+1 \mathrm{H}$ of $\mathrm{C}^{\beta} \mathrm{H}_{2}+1 \mathrm{H}$ of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 3.68\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H}\right.$, $\left.{ }^{3} J_{\mathrm{HH}}=11.7,{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right), 4.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.85\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.2 \mathrm{~Hz}\right), 7.09-$ 7.12 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 6$), $7.20-7.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4+\mathrm{H} 5\right.$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DMSO- $d_{6}, 75.45$ $\mathrm{MHz}): \delta 14.4(\mathrm{~s}, \mathrm{Me}), 32.2\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right), 32.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 41.1\left(\mathrm{~s}, \mathrm{C}^{\alpha} \mathrm{H}\right), 47.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{~N}\right), 59.3(\mathrm{~s}$, $\mathrm{CH}_{2} \mathrm{O}$), 126.3 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 4$), 126.5 ($\left.\mathrm{s}, \mathrm{CH}, \mathrm{C} 5\right), 128.5(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 6), 130.6$ ($\left.\mathrm{s}, \mathrm{CH}, \mathrm{C} 3\right), 137.5$ (s, $\mathrm{C} 2), 141.4$ ($\mathrm{s}, \mathrm{C} 1$), 176.1 (s, CO).

Synthesis of $\left[\mathrm{Pd}_{2}\left\{C, N-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}_{\mathbf{2}}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-2\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]$ (1d). Ethyl acrylate $(0.250 \mathrm{~mL}, 2.23 \mathrm{mmol})$ was added to a solution of complex $\left[\mathrm{Pd}_{2}\{C, N-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}-2\right\}_{2}(\mu-\mathrm{Cl})_{2}\right](\mathbf{B} ; 400 \mathrm{mg}, 0.689 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and the resulting mixture was stirred for 3 h . Formation of a small amount of palladium(0) was observed. The mixture was filtered through a plug of Celite, and the filtrate was concentrated to dryness. The yellow residue was stirred with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ for 10 min , and the suspension was filtered. The solid was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$ and air-dried to give complex 1 d as a yellow solid. Yield: $432 \mathrm{mg}, 0.553 \mathrm{mmol}, 80 \%$. Mp: $145{ }^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pd}_{2}$ (780.428): C, 46.17; H, 5.68; N, 3.59. Found: C, $46.15 ; \mathrm{H}, 5.85 ; \mathrm{N}, 3.54$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3236 \mathrm{~m}, 3146 \mathrm{~m} ; v(\mathrm{CO}) 1640 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300.1 \mathrm{MHz}\right): \delta 1.16$ (s, $3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), $1.23\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right.$), $1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 2.11(\mathrm{dd}, 1$ $\mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.5,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}$), 2.50 (d, one-half of the doublet was partially obscured by the DMSO resonance, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.78\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=11.7 \mathrm{~Hz}\right), 3.08(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.1 \mathrm{~Hz}\right), 3.17\left(" \mathrm{t} ", 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}} \approx{ }^{3} J_{\mathrm{HH}} \approx 11.7 \mathrm{~Hz}\right), 3.66\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H}\right.$,
$\left.{ }^{3} J_{\mathrm{HH}}=11.1,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 4.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=11.4 \mathrm{~Hz}\right), 7.10$ (dd, $\left.1 \mathrm{H}, \mathrm{H} 6,{ }^{3} J_{\mathrm{HH}}=7.5,{ }^{4} J_{\mathrm{HH}}=1.5 \mathrm{~Hz}\right), 7.15-7.29(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4+\mathrm{H} 5) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DMSO- $d_{6}, 75.45 \mathrm{MHz}$): $\delta 14.4\left(\mathrm{~s}, \mathrm{MeCH}_{2}\right), 27.8\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 31.7\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right), 33.9(\mathrm{~s}, \mathrm{Me}$, CMe_{2}), 39.9 (s, $\mathrm{C}^{\alpha} \mathrm{H}$), 44.3 (s, $\mathrm{CH}_{2} \mathrm{Ar}$), 56.2 (s, CMe_{2}), 59.4 (s, $\mathrm{CH}_{2} \mathrm{O}$), 125.4 (s, CH, C4), 126.5 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 5$), 128.6 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 6$), 132.2 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 3$), 134.3 ($\mathrm{s}, \mathrm{C} 2$), 142.2 ($\mathrm{s}, \mathrm{C} 1$), 176.6 (s , CO).

Synthesis of $\left[\mathrm{Pd}_{2}\left\{C, N-\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \mathrm{CHC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-\mathbf{2}\right\}_{2}(\mu-\mathrm{Cl})_{2}\right] \quad(1 \mathrm{e}) .2-$ Norbornene ($62 \mathrm{mg}, 0.650 \mathrm{mmol}$) was added to a suspension of complex $\left[\mathrm{Pd}_{2}\{C, N-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}-2\right\}_{2}(\mu-\mathrm{Cl})_{2}\right](\mathbf{B} ; 150 \mathrm{mg}, 0.258 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the resulting mixture was stirred for 1 h . A yellow solid precipitated, which was collected by filtration, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and air-dried to give complex $\mathbf{1 e}$ as a yellow solid. Yield: $181 \mathrm{mg}, 0.235 \mathrm{mmol}, 91 \%$. Dec pt: $175{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Pd}_{2}$ (768.504): C, $53.14 ; \mathrm{H}, 6.30 ; \mathrm{N}, 3.65$. Found: C, $52.73 ; \mathrm{H}, 6.18 ; \mathrm{N}, 3.59$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH})$ 3214 w . The insolubility of complex $\mathbf{1 e}$ in all common solvents prevented us from measuring its NMR spectra.

Synthesis of $\left[\mathrm{Pd}\left\{\boldsymbol{C}, \mathrm{N}-\mathrm{CH}(\mathrm{COMe}) \mathrm{CH}_{2} \mathrm{C}_{6} \mathbf{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \mathbf{- 2}\right\} \mathrm{Cl}\left(\mathrm{CN}^{t} \mathbf{B u}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$

 ($\mathbf{2 a} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$). ${ }^{\mathrm{t}} \mathrm{BuNC}(0.058 \mathrm{~mL}, 0.513 \mathrm{mmol})$ was added to a solution of complex $\mathbf{1 a}(180 \mathrm{mg}$, $0.239 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and the mixture was stirred for 15 min . The resulting yellow solution was concentrated to ca. 1 mL , and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give a first crop of complex $\mathbf{2 a} \cdot \mathrm{H}_{2} \mathrm{O}$ as a colorless solid (104 mg). The filtrate was concentrated to ca. 5 mL and cooled in an ice bath for 30 min . A precipitate slowly formed. The suspension was filtered, and the solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give a second crop of complex $\mathbf{2 a} \cdot \mathrm{H}_{2} \mathrm{O}$ as a colorless solid (88 mg). Yield: $192 \mathrm{mg}, 0.402 \mathrm{mmol}, 84 \%$. Dec pt: 156${ }^{\circ}$ C. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{OPd} \cdot \mathrm{H}_{2} \mathrm{O}$ (477.732): C, 42.74; H, 5.70; N, 5.86. Found: C, 42.76; H, $5.76 ; \mathrm{N}, 5.50$ IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{OH}) 3494 \mathrm{br}, v(\mathrm{NH}) 3235 \mathrm{~m} ; v(\mathrm{CN}) 2219$ vs; $v(\mathrm{CO})$ 1590 br. ${ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right), 2.14(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{MeCO}), 2.34\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.6,{ }^{3} J_{\mathrm{HH}}=6.4 \mathrm{~Hz}\right), 2.47\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}_{2}\right), 2.76(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.00\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}\right), 3.08-3.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right)$, 3.29-3.35 (m, 2 H, CH 2 N), $3.48\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.6,{ }^{3} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 4.18(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=10.4,{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right), 7.08\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 6,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.19-7.25(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3+$ $\mathrm{H} 4+\mathrm{H} 5) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100.81 \mathrm{MHz}): \delta 29.5(\mathrm{~s}, \mathrm{MeCO}), 30.1(\mathrm{~s}, \mathrm{CMe} 3), 30.3\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right)$, $32.8\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 42.0\left(\mathrm{~s}, \mathrm{C}^{\alpha} \mathrm{H}\right), 47.5\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{~N}\right), 58.3\left(\mathrm{br} \mathrm{s}, C \mathrm{Ce}_{3}\right), 126.9(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 4+\mathrm{C} 5)$, 127.9 (t, CN, $\left.{ }^{1} J_{\mathrm{CN}}=20.3 \mathrm{~Hz}.\right), 128.5$ (s, CH, C6), 130.7 (s, CH, C3), 136.6 (s, C2), 140.8 (s, C1), 203.8 (s, CO). Single crystals of $\mathbf{2 a} \cdot \mathrm{CHCl}_{3}$ suitable for an X-ray diffraction study were obtained by slow diffusion of n-pentane into a solution of $\mathbf{2 a} \cdot \mathrm{H}_{2} \mathrm{O}$ in CHCl_{3}.

Synthesis of $\left[\mathbf{P d}\left\{C, N-\mathrm{CH}(\mathrm{COMe}) \mathrm{CH}_{2} \mathrm{C}_{6} \mathbf{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-\mathbf{2}\right\} \mathbf{C l}\left(\mathrm{NC}_{5} \mathbf{H}_{4} \mathrm{Me}-4\right)\right]$

($\mathbf{2 b} \mathbf{b} \mathbf{1}$). 4-Picoline ($0.080 \mathrm{~mL}, 0.822 \mathrm{mmol}$) was added to a suspension of complex $\mathbf{1 b} \cdot 1 / 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{mg}, 0.337 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the mixture was stirred for 20 min. The resulting solution was concentrated to ca. 2 mL , and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a small amount of a yellow impurity, which was removed by filtration. The filtrate was concentrated to ca. 2 mL and n-pentane (30 mL) was added. A yellow suspension formed, which was stirred in an ice bath for 30 min , and then filtered. The solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give complex $\mathbf{2 b} \mathbf{- 1}$ as a pale yellow solid. Yield: $303 \mathrm{mg}, 0.668 \mathrm{mmol}, 99 \%$. Dec pt: $144{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{OPd}$ (453.314): C, 52.99 ; H, 6.00; N, 6.18. Found: C, $53.16 ; \mathrm{H}, 6.34 ; \mathrm{N}, 6.23$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3231 \mathrm{w}, 3120 \mathrm{w}$; $v(\mathrm{C}=\mathrm{N}) 1617 \mathrm{~s} ; v(\mathrm{CO}) 1583 \mathrm{vs} .{ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.45(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.99\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=12.3,{ }^{3} J_{\mathrm{HH}}=4.8 \mathrm{~Hz}\right), 2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeCO}), 2.35(\mathrm{~s}$,
$3 \mathrm{H}, \mathrm{Me}, \mathrm{pic}), 2.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 2.57\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.2 \mathrm{~Hz}\right)$, $3.04\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.2 \mathrm{~Hz}\right), 3.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.44-3.58(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H}+1 \mathrm{H}$ of $\mathrm{C}^{\beta} \mathrm{H}_{2}$), 7.09 ("d", $2 \mathrm{H}, m-\mathrm{H}$, pic, ${ }^{3} J_{\mathrm{HH}}=6.0 \mathrm{~Hz}$), $7.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 6,{ }^{3} J_{\mathrm{HH}}=7.2\right.$ $\mathrm{Hz}), 7.26-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4), 7.31-7.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5), 8.22\left(" \mathrm{~d} ", 2 \mathrm{H}, o-\mathrm{H}, \mathrm{pic},{ }^{3} J_{\mathrm{HH}}=\right.$ $6.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.81 MHz): $\delta 21.0(\mathrm{~s}, \mathrm{Me}, \mathrm{pic}), 28.1\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 30.0(\mathrm{~s}$, MeCO), 31.2 ($\mathrm{s}, \mathrm{C}^{\beta} \mathrm{H}_{2}$), 35.1 ($\mathrm{s}, \mathrm{Me}, \mathrm{CMe}_{2}$), $44.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right.$), $46.2\left(\mathrm{~s}, \mathrm{C}^{\alpha} \mathrm{H}\right), 56.5\left(\mathrm{~s}, \mathrm{CMe}_{2}\right)$, 125.9 (s, m-CH, pic), 126.0 (s, CH, C4), 126.7 (s, CH, C5), 128.3 (s, CH, C6), 133.4 (s, CH, C3), 134.9 ($\mathrm{s}, \mathrm{C} 2$), 142.2 ($\mathrm{s}, \mathrm{C} 1$), 149.7 ($\mathrm{s}, p-\mathrm{C}, \mathrm{pic}), 151.9$ ($\mathrm{s}, o-\mathrm{CH}, \mathrm{pic}), 203.4$ (s, CO). Single crystals suitable for an X-ray diffraction study were obtained by slow diffusion of a 1:1 mixture of $\mathrm{Et}_{2} \mathrm{O}$ and n-pentane into a solution of $\mathbf{2 b} \mathbf{- 1}$ in CHCl_{3}.

Synthesis of $\left[\mathrm{Pd}\left\{\mathrm{C}, \mathrm{N}-\mathrm{CH}(\mathrm{COMe}) \mathrm{CH}_{2} \mathrm{C}_{6} \mathbf{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-2\right\} \mathrm{Cl}(\mathrm{CNXy})\right](2 \mathrm{~b}-2)$.

 $\mathrm{XyNC}(92 \mathrm{mg}, 0.701 \mathrm{mmol})$ was added to a suspension of complex $\mathbf{1 b} \cdot 1 / 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{mg}$, $0.337 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, the mixture was stirred for 15 min and filtered through a plug of Celite. The filtrate was concentrated to ca. 2 mL , and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give a first crop of complex $\mathbf{2 b} \mathbf{- 2}$ as a pale yellow solid (256 mg). The filtrate was concentrated to ca. 3 mL , and n-pentane (20 mL) was added. The suspension was filtered, and the solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give a second crop of complex $\mathbf{2 b - 2}$ as a pale yellow solid (65 mg). Yield: $321 \mathrm{mg}, 0.653 \mathrm{mmol}, 97 \%$. Mp: $135^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{OPd}$ (491.314): C, 56.22; H, $5.95 \mathrm{~N}, 5.70$. Found: C, 55.90 ; H, 5.67; N, 5.63. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3205 \mathrm{~m} ; v(\mathrm{C}=\mathrm{N}) 2189 \mathrm{vs}, 2177$ vs; $v(\mathrm{CO}) 1625$ vs. ${ }^{1} \mathrm{H}$ NMR (400.91 MHz): δ 1.37 (s, $3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 1.50 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 2.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{MeCO}$), 2.29 (dd, partially obscured by the MeCO signal, $1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=14.0,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}$), $2.43(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}, \mathrm{Xy})$, $2.52\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4,{ }^{4} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 2.78\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=11.0 \mathrm{~Hz}\right), 2.90$(br d, $\left.1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=11.0 \mathrm{~Hz}\right), 3.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.56\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right.$, $\left.{ }^{2} J_{\mathrm{HH}}=14.0,{ }^{3} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 4.40\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=11.2,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.11-7.25(\mathrm{~m}, 7$ $\mathrm{H}, \mathrm{Ar}+\mathrm{Xy}) \cdot{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.45 MHz): $\delta 18.8$ (s, Me, Xy), 28.1 (s, Me, CMe_{2}), 30.0 (s, MeCO), $30.2\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right), 35.5\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 40.2\left(\mathrm{~s}, \mathrm{C}^{\alpha} \mathrm{H}\right), 44.8\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 57.2\left(\mathrm{~s}, \mathrm{CMe}_{2}\right)$, 125.9 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 4$), 127.2 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 5$), 128.1 ($\mathrm{s}, m-\mathrm{CH}, \mathrm{Xy}$), 128.9 (s, CH, C6), 129.9 (s, $p-\mathrm{CH}$, Xy), 132.7 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 3$), 134.0 ($\mathrm{s}, \mathrm{C} 2$), 135.6 ($\mathrm{s}, o-\mathrm{C}, \mathrm{Xy}$), 141.8 ($\mathrm{s}, \mathrm{C} 1$), 204.7 (s, CO). The ${ }^{13} \mathrm{C}$ NMR resonances corresponding to the i-C of Xy and the CN group are not observed.

Synthesis of $\left[\mathbf{P d}\left\{C, N-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}^{2}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-\mathbf{2}\right\} \mathbf{C l}\left(\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{Me}-4\right)\right]$

 (2d-1). 4-Picoline ($0.045 \mathrm{~mL}, 0.460 \mathrm{mmol}$) was added to a solution of complex $\mathbf{1 d}(150 \mathrm{mg}$, $0.192 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was stirred for 30 min and filtered through a plug of Celite. The filtrate was concentrated to ca. 1 mL and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added. The resulting solution was cooled at $0^{\circ} \mathrm{C}$ in an ice bath. A yellow precipitate slowly formed. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$ and air-dried to give a first crop of complex $\mathbf{2 d} \mathbf{- 1}$ as a pale yellow solid (77 mg). The filtrate was concentrated to ca. 5 mL , and the resulting suspension was filtered. The solid was washed with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and air-dried to give a second crop of complex $\mathbf{2 d} \mathbf{- 1}$ as a pale yellow solid (74 mg). Yield: $151 \mathrm{mg}, 0.312 \mathrm{mmol}, 81 \% . \mathrm{Mp}: 127^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{Pd}$ (483.34): C, 52.18; H, 6.05; N, 5.80. Found: C, 51.91; H, 6.38; N, 5.47. IR $\left(\mathrm{cm}^{-1}\right): \downarrow(\mathrm{NH}) 3231 \mathrm{w}, 3182 \mathrm{~m}, 3110$ $\mathrm{m} ; v(\mathrm{CO}) 1651 \mathrm{~s} ; v(\mathrm{C}=\mathrm{N}) 1617 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR (300.1 MHz): $\delta 1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} J_{\mathrm{HH}}=7.1\right.$ Hz), $1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 2.08\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.9,{ }^{3} J_{\mathrm{HH}}\right.$ $=7.1 \mathrm{~Hz}), 2.34(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}$, pic $), 2.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.6 \mathrm{~Hz}\right), 2.94\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H}\right.$, $\left.{ }^{3} J_{\mathrm{HH}}=11.3,{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right), 2.96\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=11.0 \mathrm{~Hz}\right), 3.06\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}\right.$ $=11.0 \mathrm{~Hz}), 3.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.6 \mathrm{~Hz}\right), 3.26\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.9,{ }^{3} J_{\mathrm{HH}}=\right.$ $11.5 \mathrm{~Hz}), 4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.95-6.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6), 7.04$ ("d", $2 \mathrm{H}, m-\mathrm{H}, \mathrm{pic},{ }^{3} J_{\mathrm{HH}}=6.6$$\mathrm{Hz}), 7.24-7.28(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4+\mathrm{H} 5), 8.13$ ("d", $\left.2 \mathrm{H}, o-\mathrm{H}, \mathrm{pic},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.45 MHz): $\delta 14.5\left(\mathrm{~s}, \mathrm{MeCH}_{2}\right), 21.0(\mathrm{~s}, \mathrm{Me}, \mathrm{pic}), 28.5\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 30.7\left(\mathrm{~s}, \mathrm{C}^{\alpha} \mathrm{H}\right)$, $32.8\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right), 35.1\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 44.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 56.3\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 60.0\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right), 125.7(\mathrm{~s}$, m-CH, pic), 125.8 (s, CH, C4), 126.7 (s, CH, C5), 128.2 (s, CH, C6), 133.1 (s, CH, C3), 134.6 (s, C2), 142.6 (s, C1), 149.3 ($\mathrm{s}, p-\mathrm{C}, \mathrm{pic}), 151.5$ ($\mathrm{s}, o-\mathrm{CH}, \mathrm{pic}), 177.9$ ($\mathrm{s}, \mathrm{CO})$.

Synthesis of $\left[\mathrm{Pd}\left\{\mathrm{C}, \mathrm{N}-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}^{2}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-\mathbf{2}\right\} \mathrm{Cl}\left(\mathrm{NH}_{3}\right)\right]$ (2d-2).

 NH_{3} was bubbled for 10 min through a solution of complex $\mathbf{1 d}(150 \mathrm{mg}, 0.192 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The resulting mixture was stirred under a NH_{3} atmosphere for 30 min and filtered through a plug of Celite. The filtrate was concentrated to ca. $2 \mathrm{~mL}, \mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added, and the mixture was cooled at $0^{\circ} \mathrm{C}$ in an ice bath. A yellow precipitate slowly formed. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$ and air-dried to give a first crop of complex 2d-2 as a pale yellow solid (102 mg). The filtrate was concentrated to ca. 5 mL , and n-pentane was added (20 mL). The suspension was filtered, and the solid was washed with n-pentane $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give a second crop of complex 2d-2 (21 mg) as a pale yellow solid. Yield: $123 \mathrm{mg}, 0.301 \mathrm{mmol}, 78 \%$. Dec pt: 122 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{Pd}$ (407.244): C, 44.24; H, 6.19; N, 6.88. Found: C, 43.96; H, 6.17; N, 6.67. IR (cm $\left.{ }^{-1}\right): v(\mathrm{NH}) 3318 \mathrm{~m}, 3257 \mathrm{~m}, 3179 \mathrm{br} ; \downarrow(\mathrm{CO}) 1640$ vs. ${ }^{1} \mathrm{H}$ NMR (300.1 $\mathrm{MHz}): \delta 1.31\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.45(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}$, CMe_{2}), $1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}_{3}\right), 2.07\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.8,{ }^{3} J_{\mathrm{HH}}=5.8 \mathrm{~Hz}\right), 2.52(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.6 \mathrm{~Hz}$), $2.66\left(\mathrm{br} \mathrm{s}\right.$, partially obscured by the $\mathrm{C}^{\alpha} \mathrm{H}$ signal, $1 \mathrm{H}, \mathrm{NH}_{2}$), $2.74(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=11.8,{ }^{3} J_{\mathrm{HH}}=5.8 \mathrm{~Hz}\right), 3.00-3.14\left(\mathrm{~m}, 3 \mathrm{H}, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2} \mathrm{Ar}+1 \mathrm{H} \mathrm{of} \mathrm{C}^{\beta} \mathrm{H}_{2}+1 \mathrm{H}$ of NH_{2}), $4.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.06-7.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6), 7.12-7.29(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4+\mathrm{H} 5)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.45 MHz): $\left.\delta 14.5(\mathrm{~s}, \mathrm{MeCH})_{2}\right), 28.3\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 30.0\left(\mathrm{~s}, \mathrm{C}^{\alpha} \mathrm{H}\right), 32.6(\mathrm{~s}$, $\mathrm{C}^{\beta} \mathrm{H}_{2}$), 34.9 ($\mathrm{s}, \mathrm{Me}, \mathrm{CMe}_{2}$), 45.2 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}$), 56.2 ($\mathrm{s}, \mathrm{CMe}_{2}$), 60.1 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{O}$), 125.8 (s, CH,C4), 127.2 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 5$), 128.3 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 6$), 132.7 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 3$), 134.3 ($\mathrm{s}, \mathrm{C} 2$), 142.1 ($\mathrm{s}, \mathrm{C} 1$), 176.8 (s, CO).

Synthesis of $\quad\left[\mathrm{Pd}\left\{\mathrm{C}, \mathrm{N}-\mathrm{CH}\left(\mathrm{CO}_{2}{\mathrm{Et}) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathbf{N H}_{2}\right)-}^{-}\right.\right.\right.$

 $\left.\mathbf{2}\} \mathbf{C l}\left(\mathbf{N H E t}_{\mathbf{2}}\right)\right] \cdot \mathbf{1} / \mathbf{3} \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}} \mathbf{(\mathbf { 2 d } \mathbf { - 3 } \cdot \mathbf { 1 } / \mathbf { 3 } \mathbf { C H } _ { \mathbf { 2 } } \mathbf { C l } _ { \mathbf { 2 } }) . \mathrm { NHEt } _ { 2 } (0 . 0 3 4 \mathrm { mL } , 0 . 3 2 7 \mathrm { mmol }) \text { was added to a }}$ solution of complex $\mathbf{1 d}(120 \mathrm{mg}, 0.153 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The solution was stirred for 30 min and filtered through a plug of Celite. The filtrate was concentrated to ca. 2 mL , $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added, and the mixture was cooled at $0^{\circ} \mathrm{C}$ in an ice bath. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$ and air-dried to give a first crop of complex $\mathbf{2 d} \mathbf{d} \mathbf{3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a pale yellow solid (84 mg). The filtrate was concentrated to ca. 2 mL , and n-pentane (20 mL) was added. The suspension was filtered, and the solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give a second crop of complex 2d3•1/3 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a pale yellow solid (24 mg). Yield: $108 \mathrm{mg}, 0.220 \mathrm{mmol}, 72 \%$. Dec pt: 126 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{Pd} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (491.649): C, 47.23; H, 6.90; N, 5.70. Found: C, 47.40; H, 6.91; N, 5.75. IR (cm^{-1}): $v(\mathrm{NH}) 3251 \mathrm{~m}, 3219 \mathrm{~m}, 3146 \mathrm{w} ; \downarrow(\mathrm{CO}) 1633$ vs. ${ }^{1} \mathrm{H}$ NMR (300.1 MHz): $\delta 0.82\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{Me},\left(\mathrm{MeCH}_{2}\right)_{2} \mathrm{~N},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 1.24(\mathrm{t}, 3 \mathrm{H}, \mathrm{Me}$, $\left.\left(\mathrm{MeCH}_{2}\right)_{2} \mathrm{~N},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 1.31\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{MeCH}_{2} \mathrm{O},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right)$, $1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 2.12\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.8,{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right), 2.27-2.41(\mathrm{~m}, 2 \mathrm{H}$, 1 H of $\left(\mathrm{MeCH}_{2}\right)_{2} \mathrm{~N}+1 \mathrm{H}$ of $\left.\left(\mathrm{MeCH}_{2}\right)_{2} \mathrm{~N}\right), 2.44-2.55\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left(\mathrm{MeCH}_{2}\right)_{2} \mathrm{~N}+1 \mathrm{H}$ of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 2.61\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=11.4,{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right), 2.76-2.90\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{MeCH}_{2}\right)_{2} \mathrm{~N}\right)$, $3.01\left(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, \mathrm{NH}_{2},{ }^{3} J_{\mathrm{HH}}=9.3 \mathrm{~Hz}\right), 3.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.17(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.8,{ }^{3} J_{\mathrm{HH}}=11.7 \mathrm{~Hz}\right), 4.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 5.30(\mathrm{~s}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), 7.08-7.11(m, $\left.1 \mathrm{H}, \mathrm{H} 6\right), 7.18-7.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4+\mathrm{H} 5)$. The ${ }^{1} \mathrm{H}$ resonance attributable to $\mathrm{NHEt} t_{2}$ was obscured by the $\mathrm{C}^{\beta} \mathrm{H}_{2}$ and $\mathrm{CH}_{2} \mathrm{Ar}$ signals. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.45 $\mathrm{MHz}): \delta 14.3(\mathrm{~s}, \mathrm{MeCH} 2 \mathrm{O}), 14.8\left(\mathrm{~s}, \mathrm{Me},\left(\mathrm{MeCH}_{2}\right)_{2} \mathrm{~N}\right), 15.2\left(\mathrm{~s}, \mathrm{Me},\left(\mathrm{MeCH}_{2}\right)_{2} \mathrm{~N}\right), 28.6(\mathrm{~s}, \mathrm{Me}$,$\mathrm{CMe}_{2}$), $30.1\left(\mathrm{~s}, \mathrm{C}^{\alpha} \mathrm{H}\right), 34.0\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right), 35.2\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 45.4\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 46.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$, $\left.\left(\mathrm{MeCH}_{2}\right)_{2} \mathrm{~N}\right), 48.1\left(\mathrm{~s}, \mathrm{CH}_{2},\left(\mathrm{MeCH}_{2}\right)_{2} \mathrm{~N}\right), 56.1\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 60.1\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right), 125.8(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 4)$, 127.2 (s, CH, C5), 128.4 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 6$), 133.0 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 3$), 134.9 ($\mathrm{s}, \mathrm{C} 2$), 142.2 ($\mathrm{s}, \mathrm{C} 1$), 178.3 (s , CO). The ${ }^{13} \mathrm{C}$ NMR resonance corresponding to the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was not observed. Single crystals suitable for an X-ray diffraction study were obtained by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of $\mathbf{2 d} \mathbf{d} \cdot \mathbf{3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in CHCl_{3}.

Synthesis of $\left[\mathrm{Pd}\left\{\mathrm{C}, \mathrm{N}-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}^{2}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-2\right\} \mathrm{Cl}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)\right](2 \mathrm{~d}-4)$.

${ }^{\mathrm{t}}$ BuNC ($0.095 \mathrm{~mL}, 0.840 \mathrm{mmol}$) was added to a solution of complex 1d ($300 \mathrm{mg}, 0.384$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The solution was stirred for 15 min and filtered through a plug of Celite. The filtrate was concentrated to ca. 2 mL and n-pentane (30 mL) was added. The suspension was filtered, and the solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give complex 2d-4 as a pale yellow solid. Yield: $306 \mathrm{mg}, 0.646 \mathrm{mmol}, 84 \%$. Dec pt: $150{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{Pd}$ (473.351): C, 50.75 ; H, 6.60; N, 5.92 . Found: C, 50.64 ; H, 6.46; $\mathrm{N}, 6.16$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3261 \mathrm{~m}, 3216 \mathrm{w} ; v(\mathrm{CN}) 2212$ vs; $v(\mathrm{CO}) 1643$ vs. ${ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.47(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}, \mathrm{CMe}_{2}$), $1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 2.38\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.6,{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right), 2.51(\mathrm{dd}, 1$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4,{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 2.88\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 3.11(\mathrm{br} \mathrm{d}, 1 \mathrm{H}$, $\left.\mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 3.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.36\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.6\right.$, $\left.{ }^{3} J_{\mathrm{HH}}=11.6 \mathrm{~Hz}\right), 3.56\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=11.6,{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right), 4.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.07$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 6,{ }^{3} J_{\mathrm{HH}}=6.8,{ }^{4} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 7.12\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.2,{ }^{4} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 7.17-$ $7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 4+\mathrm{H} 5) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.81 MHz): $\delta 14.3\left(\mathrm{~s}, \mathrm{MeCH}_{2}\right), 26.6\left(\mathrm{~s}, \mathrm{C}^{\alpha} \mathrm{H}\right), 28.2$ ($\mathrm{s}, \mathrm{Me}, \mathrm{CMe}_{2}$), $30.1\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 32.3\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right), 35.4\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 45.1\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 56.6$ (s, $C \mathrm{Me}_{2}$), $57.9\left(\mathrm{~s}, C \mathrm{CMe}_{3}\right), 60.0\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right), 125.9(\mathrm{~s}, \mathrm{CH}, \mathrm{Ar}), 127.1(\mathrm{~s}, \mathrm{CH}, \mathrm{Ar}), 128.0(\mathrm{brt}, \mathrm{CN}$,
$\left.{ }^{1} J_{\mathrm{CN}}=19.5 \mathrm{~Hz}\right), 128.5(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 6), 132.6(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 3), 134.0(\mathrm{~s}, \mathrm{C} 2), 141.9(\mathrm{~s}, \mathrm{C} 1), 177.1(\mathrm{~s}$, CO).

 XyNC ($110 \mathrm{mg}, 0.838 \mathrm{mmol}$) was added to a solution of complex $\mathbf{1 d}(300 \mathrm{mg}, 0.384 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The solution was stirred for 15 min and filtered through a plug of Celite. The filtrate was concentrated to ca. 2 mL and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give complex $\mathbf{2 d} \mathbf{- 5}$ as a pale yellow solid. Yield: $342 \mathrm{mg}, 0.656 \mathrm{mmol}, 85 \% . \mathrm{Mp}: 169^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{2} \operatorname{Pd}$ (521.395): C, 55.29; H, 5.99; N, 5.37. Found: C, 55.28; H, 6.17; N, 5.13. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3257 \mathrm{~m}, 3217 \mathrm{w} ; ~ v(\mathrm{CN}) 2196$ vs; $v(\mathrm{CO}) 1646$ vs. ${ }^{1} \mathrm{H}$ NMR (400.91 MHz): δ $1.25\left(\mathrm{X}\right.$ part of an ABX_{3} system, $\left.3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} J_{\mathrm{AX}}={ }^{3} J_{\mathrm{BX}}=7.2 \mathrm{~Hz}\right), 1.39(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}$, CMe_{2}), 1.51 (s, $3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 2.42 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}, \mathrm{Xy}$), 2.45 (dd, partially obscured by the signal of Me of Xy, $\left.1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=14.0,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 2.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4\right.$ $\mathrm{Hz}), 2.96\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 3.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.28(\mathrm{br} \mathrm{d}$, partially obscured by the $\mathrm{CH}_{2} \mathrm{Ar}$ signal, $\left.1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=11.6 \mathrm{~Hz}\right), 3.35\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}\right.$ $\left.=13.6,{ }^{3} J_{\mathrm{HH}}=12.0 \mathrm{~Hz}\right), 3.85\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=11.6,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 4.11,4.18(\mathrm{AB}$ part of an ABX_{3} system, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O},{ }^{2} J_{\mathrm{AB}}=10.4 \mathrm{~Hz}$), 7.09-7.24 (m, 7 H, Ar +Xy$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.81 MHz): $\delta 14.32\left(\mathrm{~s}, \mathrm{MeCH}_{2}\right), 18.6$ (s, Me, Xy), 26.33 (s, $\mathrm{C}^{\alpha} \mathrm{H}$), 28.3 (s, Me, CMe_{2}), $32.3\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right), 35.5\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 45.1\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 56.87\left(\mathrm{~s}, C \mathrm{Cle}_{2}\right), 60.3\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right)$, 126.0 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 4$), 127.2 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 5$), 127.9 ($\mathrm{s}, m-\mathrm{CH}, \mathrm{Xy}$), 128.7 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 6$), 129.6 (s, $p-\mathrm{CH}$, Xy), 132.7 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 3$), 133.9 ($\mathrm{s}, \mathrm{C} 2$), 135.7 ($\mathrm{s}, o-\mathrm{C}, \mathrm{Xy}$), 141.9 ($\mathrm{s}, \mathrm{C} 1$), 177.2 (s, CO). The ${ }^{13} \mathrm{C}$ NMR resonances corresponding to the $i-\mathrm{C}$ of Xy and the CN group are not observed.
Synthesis of $\left[\mathrm{Pd}\left\{\mathrm{C}, \mathrm{N}-\mathbf{C H}\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \mathrm{CHC}_{6} \mathbf{H}_{4} \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}-\mathbf{2}\right\} \mathrm{Cl}\left(\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{Me}-\right.\right.$

 4) $] \cdot \mathbf{1} / \mathbf{2} \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}\left(\mathbf{2 e} \mathbf{- 1 \cdot 1} / \mathbf{2} \mathbf{C H}_{2} \mathbf{C l}_{\mathbf{2}}\right)$. 4-Picoline ($0.060 \mathrm{~mL}, 0.616 \mathrm{mmol}$) was added to asuspension of complex $\mathbf{1 e}(120 \mathrm{mg}, 0.156 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the resulting yellow solution was stirred for 20 min . The mixture was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL , and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give complex $\mathbf{2 e}-\mathbf{1} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a colorless solid. Yield: $143 \mathrm{mg}, 0.275 \mathrm{mmol}, 88 \%$. Mp: $129{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{Pd} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (519.845): C, $54.30 ; \mathrm{H}, 6.20 ; \mathrm{N}, 5.39$. Found: C, $54.30 ; \mathrm{H}, 6.42 ; \mathrm{N}$, 5.40. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3271 \mathrm{~m}, 3189 \mathrm{~m}, 3125 \mathrm{~m} ; v(\mathrm{C}=\mathrm{N})$ 1617. ${ }^{1} \mathrm{H}$ NMR (300.1 MHz): δ $0.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{b}} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=9.5 \mathrm{~Hz}\right), 0.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{b}} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=9.3 \mathrm{~Hz}\right), 1.22-1.26(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}$), 1.32-1.63 (m, partially obscured by the CMe_{2} signals, $2 \mathrm{H}, \mathrm{C}^{\mathrm{e}} \mathrm{H}_{2}$), $1.49(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}$, $\left.\mathrm{CMe}_{2}\right), 1.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}\right), 2.07\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{a}} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=\right.$ $3.4 \mathrm{~Hz}), 2.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{a}} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}\right), 2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{pic}), 2.40\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{c}} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=\right.$ $3.3 \mathrm{~Hz}), 2.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 2.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.9 \mathrm{~Hz}\right), 2.88(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}\right), 5.30\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 6.96(\mathrm{~d} \mathrm{~d}, 2 \mathrm{H}$, $m-\mathrm{H}$, pic, $\left.{ }^{3} J_{\mathrm{HH}}=5.3 \mathrm{~Hz}\right), 7.20-7.30(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4+\mathrm{H} 5+\mathrm{H} 6), 8.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, o-\mathrm{H}$, pic $)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.45 MHz): $\delta 20.9(\mathrm{~s}, \mathrm{Me}, \mathrm{pic}), 28.2\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 30.3\left(\mathrm{~s}, \mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}\right), 31.2(\mathrm{~s}$, $\mathrm{C}^{\mathrm{e}} \mathrm{H}_{2}$), $36.0\left(\mathrm{~s}, \mathrm{C}^{\mathrm{b}} \mathrm{H}_{2}\right), 36.1\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 40.8\left(\mathrm{~s}, \mathrm{C}^{\mathrm{c}} \mathrm{H}\right), 43.5\left(\mathrm{~s}, \mathrm{C}^{\mathrm{a}} \mathrm{H}\right), 43.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 44.1$ ($\mathrm{s}, \mathrm{C}^{\alpha} \mathrm{H}$), $51.6\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}\right), 55.3\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 124.4(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 6), 124.9(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 4), 125.3$ (s, m CH, pic), 125.9 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 5$), 133.1 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 3$), 136.1 ($\mathrm{s}, \mathrm{C} 2$), 145.4 ($\mathrm{s}, \mathrm{C} 1$), 148.4 (s, p - C pic), 151.6 (s, $o-\mathrm{CH}$, pic). The ${ }^{13} \mathrm{C}$ NMR resonance attributable to $C \mathrm{Me}_{2}$ was not observed.

 ($70 \mathrm{mg}, 0.266 \mathrm{mmol}$) was added to a suspension of complex $\mathbf{1 e}(100 \mathrm{mg}, 0.130 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the resulting solution was stirred for 30 min . The mixture was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL , and n-pentane (30 mL) was added. The suspension was filtered, and the solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) andair-dried to give complex $\mathbf{2 e - 2}$ as a pale yellow solid. Yield: $124 \mathrm{mg}, 0.192 \mathrm{mmol}, 74 \%$. Dec pt: $165{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{39}$ CINPPd (646.538): C, $65.02 ; \mathrm{H}, 6.08 ; \mathrm{N}, 2.17$. Found: C, 65.00; H, 6.18; N, 2.15. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3281,3208,3129 .{ }^{1} \mathrm{H}$ NMR ($400.91 \mathrm{MHz},-60^{\circ} \mathrm{C}$): $\delta 0.25\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{C}^{\mathrm{b}} \mathrm{H}_{2}\right), 1.11\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}\right.$ of $\mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}+1 \mathrm{H}$ of $\left.\mathrm{C}^{\mathrm{e}} \mathrm{H}_{2}\right), 1.22-1.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{e}} \mathrm{H}_{2}\right)$, 1.42 (br s, $4 \mathrm{H}, 1 \mathrm{Me}$ of $\mathrm{CMe}_{2}+1 \mathrm{H}$ of $\mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}$), $1.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right.$), $1.76\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H}\right)$, 1.95 (br s, $1 \mathrm{H}, \mathrm{NH}_{2}$), 2.01 (br s, $1 \mathrm{H}, \mathrm{C}^{\mathrm{c}} \mathrm{H}$), 2.63-2.68 (m, $2 \mathrm{H}, \mathrm{C}^{\mathrm{a}} \mathrm{H}+1 \mathrm{H}$ of CH2 Ar$), 2.82$ (d, $1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}$), $3.07\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.0 \mathrm{~Hz}\right), 3.90\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}_{2}\right), 7.12$ (d, $\left.1 \mathrm{H}, \mathrm{H} 6,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.28-7.67\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4+\mathrm{H} 5+\mathrm{PPh}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.81 MHz, $-60{ }^{\circ} \mathrm{C}$): $\delta 28.3\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 30.1\left(\mathrm{~s}, \mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}\right), 32.3\left(\mathrm{~d}, \mathrm{C}^{\mathrm{e}} \mathrm{H}_{2},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=4.7 \mathrm{~Hz}\right)$, $35.4\left(\mathrm{~s}, \mathrm{C}^{\mathrm{b}} \mathrm{H}_{2}\right), 35.9\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 40.5\left(\mathrm{~s}, \mathrm{C}^{\mathrm{c}} \mathrm{H}\right), 44.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 46.7\left(\mathrm{~d}, \mathrm{C}^{\alpha} \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=9.5\right.$ $\mathrm{Hz}), 50.5\left(\mathrm{~d}, \mathrm{C}^{\mathrm{a}} \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=5.1 \mathrm{~Hz}\right), 50.8\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}\right), 55.3\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 124.3(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 4), 125.4(\mathrm{~s}$, $\mathrm{CH}, \mathrm{C} 6), 126.9(\mathrm{~s}, \mathrm{CH}, \mathrm{Ar}), 127.4\left(\mathrm{~d}, o-\mathrm{CH}, \mathrm{PPh}_{3},{ }^{2} J_{\mathrm{PC}}=10.4 \mathrm{~Hz}\right), 129.8\left(\mathrm{~s}, p-\mathrm{CH}, \mathrm{PPh}_{3}\right)$, 132.70 ($\mathrm{s}, \mathrm{CH}, \mathrm{Ar}$), 132.75 (d, $\left.i-\mathrm{C}, \mathrm{PPh}_{3},{ }^{1} J_{\mathrm{PC}}=48.1 \mathrm{~Hz}\right) 134.9\left(\mathrm{br} \mathrm{s}, m-\mathrm{CH}, \mathrm{PPh}_{3}\right), 135.1(\mathrm{~s}$, C2), 147.4 (s, C1). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.50 MHz): $\delta 34.7(\mathrm{~s})$.

 $(\mathbf{2 e - 3 \cdot 1 / 2 H} \mathbf{2} \mathbf{O}) .{ }^{\mathrm{t}} \mathrm{BuNC}(0.110 \mathrm{~mL}, 0.073 \mathrm{mmol})$ was added to a suspension of complex $\mathbf{1 e}$ ($350 \mathrm{mg}, 0.455 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}$), and the resulting solution was stirred for 15 min . The mixture was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL and n-pentane (30 mL) was added. The suspension was filtered, and the solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give complex $\mathbf{2 e - 3} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ as a pale yellow solid. Yield: $390 \mathrm{mg}, 0.818 \mathrm{mmol}, 90 \%$. Mp: $157{ }^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{Pd} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ (476.398): C, $55.46 ; \mathrm{H}, 7.19 ; \mathrm{N}, 5.88$. Found: C, $55.74 ; \mathrm{H}, 7.18 ; \mathrm{N}, 6.04 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH})$ $3194 \mathrm{~m} ; ~ v(\mathrm{CN}) 2191$ vs. ${ }^{1} \mathrm{H}$ RMN (400.91 MHz): $\delta 1.18-1.31\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}\right.$ of $\mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}+1 \mathrm{H}$ of $\mathrm{C}^{\mathrm{e}} \mathrm{H}_{2}$), $1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.41\left(\mathrm{~m}\right.$, partially obscured by the CMe_{3} signal, $1 \mathrm{H}, \mathrm{C}^{\mathrm{b}} \mathrm{H}_{2}$),$1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.49-1.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}\right.$ or $\left.\mathrm{C}^{\mathrm{e}} \mathrm{H}_{2}\right), 1.60(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}_{2} \mathrm{O}\right), 1.66-1.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}\right.$ or $\left.\mathrm{C}^{\mathrm{e}} \mathrm{H}_{2}\right), 1.92\left(\right.$ br d, $\left.1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 2.21(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}^{\mathrm{b}} \mathrm{H}_{2}\right), 2.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{a}} \mathrm{H},{ }^{4} J_{\mathrm{HH}}=2.0 \mathrm{~Hz}\right), 2.47\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.8,{ }^{4} J_{\mathrm{HH}}=2.0 \mathrm{~Hz}\right)$, 2.56-2.59 (m, 2 H, 1 H of $\left.\mathrm{CH}_{2} \mathrm{Ar}+\mathrm{C}^{\mathrm{c}} \mathrm{H}\right), 2.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}^{\beta} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}\right), 2.87(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}$), $3.27\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}\right.$), $7.10\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.6\right.$, $\left.{ }^{4} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 7.14\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=7.6,{ }^{4} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 7.22\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=7.6\right.$, $\left.{ }^{4} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 7.38\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100.81 \mathrm{MHz}): \delta 29.0(\mathrm{~s}, \mathrm{Me}$, CMe_{2}), 29.9 ($\mathrm{s}, \mathrm{Me}, \mathrm{CMe}_{3}$), $30.6\left(\mathrm{~s}, \mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}\right), 31.6\left(\mathrm{~s}, \mathrm{C}^{\mathrm{e}} \mathrm{H}_{2}\right), 36.3\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 37.1\left(\mathrm{~s}, \mathrm{C}^{\mathrm{b}} \mathrm{H}_{2}\right)$, $42.2\left(\mathrm{~s}, \mathrm{C}^{\mathrm{c}} \mathrm{H}\right), 44.0\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 47.8\left(\mathrm{~s}, \mathrm{C}^{\mathrm{a}} \mathrm{H}\right), 50.8\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}\right), 53.8\left(\mathrm{~s}, \mathrm{C}^{\alpha} \mathrm{H}\right), 55.3\left(\mathrm{~s}, \mathrm{CMe}_{2}\right)$, 57.0 (s, CMe $), 124.2$ ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 6$), 124.9 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 4$), 126.8 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 5$), 132.5 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 3$), $134.0\left(\mathrm{brt}, \mathrm{CN},{ }^{1} J_{\mathrm{CN}}=20.1 \mathrm{~Hz}\right), 134.8(\mathrm{~s}, \mathrm{C} 2), 146.4(\mathrm{~s}, \mathrm{C} 1)$.

Synthesis of $\left[\mathbf{P d}\left\{\mathrm{C}, \mathrm{N}-\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \mathrm{CHC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-2\right\} \mathrm{Cl}(\mathrm{CNXy})\right] \quad(2 \mathrm{e}-4)$. XyNC ($110 \mathrm{mg}, 0.838 \mathrm{mmol}$) was added to a suspension of complex $\mathbf{1 e}(300 \mathrm{mg}, 0.390$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and the resulting solution was stirred for 15 min . The mixture was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL and n-pentane (20 mL) was added. The suspension was filtered, and the solid was washed with n-pentane (2×5 mL) and air-dried to give complex $\mathbf{2 e - 4}$ as a pale yellow solid. Yield: $398 \mathrm{mg}, 0.772 \mathrm{mmol}$, 99%. Dec pt: $162{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{Pd}$ (515.434): C, $60.59 ; \mathrm{H}, 6.45 ; \mathrm{N}, 5.43$. Found: C, 60.27; H, 6.72; N, 5.32. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3274 \mathrm{w}, 3196 \mathrm{~m}, 3129 \mathrm{w} ; \downarrow(\mathrm{CN}) 2166$ vs. ${ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 1.27\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}\right.$ of $\mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}+1 \mathrm{H}$ of $\left.\mathrm{C}^{\mathrm{e}} \mathrm{H}_{2}\right), 1.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{b}} \mathrm{H}_{2}\right)$, $1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.54-1.71\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}\right.$ of $\mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}+1 \mathrm{H}$ of $\left.\mathrm{C}^{\mathrm{e}} \mathrm{H}_{2}\right), 1.99\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=10.8 \mathrm{~Hz}\right), 2.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{b}} \mathrm{H}_{2}\right), 2.36(6 \mathrm{H}, \mathrm{Me}, \mathrm{Xy}), 2.54$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{a}} \mathrm{H},{ }^{4} J_{\mathrm{HH}}=3.6 \mathrm{~Hz}\right), 2.57-2.63\left(\mathrm{~m}, 3 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{Ar}+1 \mathrm{C}^{\mathrm{c}} \mathrm{H}+\mathrm{C}^{\mathrm{a}} \mathrm{H}\right), 2.83(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{C}^{\beta} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}\right), 2.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.37\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.8\right.$
$\mathrm{Hz}), 7.05\left(\mathrm{~d}, 1 \mathrm{H}, m-\mathrm{H}, \mathrm{Xy},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.15-7.24(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4+\mathrm{H} 5+p-\mathrm{H}, \mathrm{Xy})$, $7.40\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.45 MHz): $\delta 18.8$ (s, Me, Xy), 28.1 (s, Me, CMe_{2}), $30.5\left(\mathrm{~s}, \mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}\right), 31.6\left(\mathrm{~s}, \mathrm{C}^{\mathrm{e}} \mathrm{H}_{2}\right), 36.3\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 37.3\left(\mathrm{~s}, \mathrm{C}^{\mathrm{b}} \mathrm{H}_{2}\right), 42.3\left(\mathrm{~s}, \mathrm{C}^{\mathrm{c}} \mathrm{H}\right), 43.9$ ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}$), $48.2\left(\mathrm{~s}, \mathrm{C}^{\mathrm{a}} \mathrm{H}\right), 50.9\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}\right), 55.61\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 55.63\left(\mathrm{~s}, \mathrm{C}^{\alpha} \mathrm{H}\right), 124.3(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 6)$, 124.9 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 4$), 126.9 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 5$), 127.8 ($\mathrm{s}, m-\mathrm{CH}, \mathrm{Xy}), 129.0$ ($\mathrm{s}, p-\mathrm{CH}, \mathrm{Xy}), 132.5$ (s, $\mathrm{CH}, \mathrm{C} 3), 134.7$ ($\mathrm{s}, \mathrm{C} 2$), 135.4 ($\mathrm{s}, o-\mathrm{C}, \mathrm{Xy}$), 146.3 ($\mathrm{s}, \mathrm{C} 1$). The ${ }^{13} \mathrm{C}$ NMR resonances corresponding to the i - C of Xy and the CN group are not observed. Single crystals of $\mathbf{2 e}$ $4 \cdot 1 / 2 \mathrm{CHCl}_{3}$ suitable for an X-ray diffraction study were obtained by slow diffusion of n pentane into a solution of $\mathbf{2 e - 4}$ in CHCl_{3}.

Synthesis of $\left[\mathrm{PdBr}_{2}\left\{\mathbf{2}-\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathbf{H}_{4} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right\}_{2}\right](\mathbf{3 c})$. Method a. Ethyl acrylate $(0.115 \mathrm{~mL}, 1.05 \mathrm{mmol})$ was added to a suspension of complex $\left[\mathrm{Pd}_{2}\{C, N-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}-2\right\}_{2}(\mu-\mathrm{Br})_{2}\right](\mathbf{A} ; 300 \mathrm{mg}, 0.489 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ and the mixture was stirred for 48 h . Decomposition to metallic palladium was observed. The mixture was filtered through a plug of Celite, the filtrate was concentrated to ca. 2 mL , and $\mathrm{Et}_{2} \mathrm{O}$ was added $(30 \mathrm{~mL})$. The suspension was filtered, and the yellow solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x}$ 5 mL) and air-dried to give a first crop of crude complex $\mathbf{3 c}$ as a yellow solid (209 mg). The filtrate was concentrated to ca. 5 mL , and a precipitate formed. The suspension was filtered, and the solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give a second crop of crude complex $\mathbf{4 c}$ as a yellow solid (17 mg ; total amount of crude $\mathbf{3 c}$: $226 \mathrm{mg}, 0.321 \mathrm{mmol}$, $66 \%)$. Method b. A solution of complex 1c $(150 \mathrm{mg}, 0.184 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was heated at $45^{\circ} \mathrm{C}$ for 12 h . Decomposition to metallic palladium was observed. The mixture was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL , and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give crude complex 3c as a yellow solid (77 mg, $1.109 \mathrm{mmol}, 59 \%$).

Recrystallization. Crude 3c ($200 \mathrm{mg}, 0.283 \mathrm{mmol}$) was dissolved in acetone (15 mL), and the solution was filtered through a plug of Celite. The filtrate was concentrated to ca. 2 mL and cooled at $0^{\circ} \mathrm{C}$ in an ice bath. A yellow precipitate slowly formed. The suspension was filtered, and the solid was washed with cold acetone $(3 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and air-dried to give pure complex $4 \mathbf{c}$ as a yellow solid ($47.5 \mathrm{mg}, 0.067 \mathrm{mmol}, 21 \%$). $\mathrm{Mp}: 174{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pd}$ (704.787): C, 44.31; H, 4.86; N, 3.97. Found: C, 43.93; H, 4.85; N, 3.96. IR (cm^{-1}): $v(\mathrm{NH}) 3290 \mathrm{~m}, 3229 \mathrm{~m}, 3143 \mathrm{~m} ; ~ v(\mathrm{CO}) 1706$ vs. ${ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{Me},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 2.86\left(\mathrm{br} \mathrm{t}, 2 \mathrm{H}, \mathrm{NH}_{2},{ }^{3} J_{\mathrm{HH}}=6.0 \mathrm{~Hz}\right), 3.03($ "quint", 2 H , $\left.\mathrm{CH}_{2} \mathrm{~N},{ }^{3} J_{\mathrm{HH}}=6.4 \mathrm{~Hz}\right), 3.15\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right), 4.25\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O},{ }^{3} J_{\mathrm{HH}}=7.2\right.$ $\mathrm{Hz}), 6.39\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=15.6 \mathrm{~Hz}\right), 7.25-7.35(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 4+\mathrm{H} 5+\mathrm{H} 6), 7.57(\mathrm{~m}, 1 \mathrm{H}$, H3), $8.06\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{C}^{\beta} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=15.6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.81 MHz): $\delta 14.3(\mathrm{~s}, \mathrm{Me}), 34.9$ (s, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 46.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{~N}\right), 60.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right), 120.8\left(\mathrm{~s},=\mathrm{C}^{\alpha} \mathrm{H}\right), 127.2(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 3), 127.6(\mathrm{~s}, \mathrm{CH}$,
 (s, CO).

Synthesis of $\left[\mathbf{P d C l}_{2}\left\{\mathbf{2}-\left(\mathrm{NH}_{2} \mathrm{CMe}_{2} \mathbf{C H}_{2}\right) \mathbf{C}_{6} \mathbf{H}_{4} \mathbf{C H}=\mathbf{C H C O}_{2} \mathbf{E t}\right\}_{2}\right]$ (3d). A solution of complex 1d ($275 \mathrm{mg}, 0.352 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ was heated at $60{ }^{\circ} \mathrm{C}$ for 7 h . Decomposition to metallic palladium was observed. The solvent was removed, $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to the residue, and the suspension was filtered through a plug of Celite. The filtrate was concentrated to ca. 1 mL , and n-hexane (20 mL) was added. The suspension was filtered, and the solid was washed with n-hexane ($2 \times 5 \mathrm{~mL}$) and air-dried to give complex 3d as a yellow solid. Yield: $155 \mathrm{mg}, 0.231 \mathrm{mmol}, 66 \%$. Dec pt: $140{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pd}$ (671.991): C, 53.62; H, 6.30; N, 4.17. Found: C, 53.21; H, 6.70; N, 4.36. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3210 \mathrm{br} ; v(\mathrm{CO}) 1708 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (300.1 MHz): $\delta 1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} J_{\mathrm{HH}}=\right.$ $7.1 \mathrm{~Hz}), 1.43\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CMe}_{2}\right), 2.94\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 4.26\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$,
$\left.{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right), 6.37\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=15.7 \mathrm{~Hz}\right), 7.26-7.37(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 4+\mathrm{H} 5+\mathrm{H} 6)$, 7.60-7.62 (m, $1 \mathrm{H}, \mathrm{H} 3), 8.02\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{C}^{\beta} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=15.7 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.45 MHz): δ 14.3 (s, MeCH_{2}), 29.7 (s, CMe), 45.5 ($\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 57.4\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 60.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right), 120.1$ (s , $\left.=\mathrm{C}^{\alpha} \mathrm{H}\right), 127.2$ ($\left.\mathrm{s}, \mathrm{CH}, \mathrm{C} 3\right), 127.7$ ($\left.\mathrm{s}, \mathrm{CH}, \mathrm{C} 4\right), 129.9$ (s, CH, C5), 132.3 (s, CH, C6), 134.5 (s, $\mathrm{C} 2), 136.1$ ($\mathrm{s}, \mathrm{C} 1$), 142.5 ($\mathrm{s},=\mathrm{C}^{\beta} \mathrm{H}$), 166.7 (s, CO). Single crystals suitable for an X-ray diffraction study were obtained by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of 3d in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$.

Synthesis of $\left[\mathbf{P d B r}_{\mathbf{2}}\left\{\mathbf{2}-\left(\mathbf{N H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}}\right) \mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \mathbf{C H}=\mathbf{C H P h} \mathbf{3}_{2}\right] \mathbf{(3 f)}\right.$. Styrene $(0.135 \mathrm{~mL}$, $1.178 \mathrm{mmol})$ was added to a solution of complex $\left[\mathrm{Pd}_{2}\left\{C, N-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}-2\right\}_{2}(\mu-\mathrm{Br})_{2}\right](\mathbf{A}$; $340 \mathrm{mg}, 0.554 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and the mixture was stirred for 24 h . Decomposition to metallic palladium was observed. The mixture was filtered through a plug of Celite, the filtrate was concentrated to ca. 2 mL , and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give crude complex $\mathbf{3 f}$ as a pale yellow solid ($221 \mathrm{mg}, 0.31 \mathrm{mmol}, 56 \%$). Crude $\mathbf{3 f}(120 \mathrm{mg}, 0.168$ mmol) was dissolved in acetone (15 mL), and the solution was filtered through a plug of Celite. The filtrate was concentrated to ca. 2 mL and cooled at $0^{\circ} \mathrm{C}$ in an ice bath. A yellow precipitate slowly formed. The suspension was filtered, and the solid was washed with cold acetone ($2 \times 2 \mathrm{~mL}$) and air-dried to give pure complex $\mathbf{3 f}$ as a pale yellow solid ($30 \mathrm{mg}, 0.042$ mmol, recrystallization yield: 25%). Mp: $185{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{Pd}$ (712.854): C, 53.92 ; H, 4.81 ; N, 3.93. Found: C, $53.68 ; \mathrm{H}, 4.82 ; \mathrm{N}, 3.96$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3308 \mathrm{~m}, 3252$ m. ${ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 2.64\left(\mathrm{brt}, 2 \mathrm{H}, \mathrm{NH}_{2},{ }^{3} J_{\mathrm{HH}}=5.6 \mathrm{~Hz}\right), 2.99-3.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right.$ $\left.+\mathrm{CH}_{2} \mathrm{~N}\right), 6.99\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=16.0 \mathrm{~Hz}\right), 7.16\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 6,{ }^{3} J_{\mathrm{HH}}=7.2,{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right)$, 7.21-7.28(m, 3H, H4 + H5 + p-H of Ph), 7.31 (d, partially obscured by the signal of $m-\mathrm{H}$ of $\left.\mathrm{Ph}, 1 \mathrm{H},=\mathrm{C}^{\beta} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=15.2 \mathrm{~Hz}\right), 7.34\left(\mathrm{t}, 2 \mathrm{H}, m-\mathrm{H}, \mathrm{Ph},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right), 7.56(\mathrm{~d}, 2 \mathrm{H}, o-\mathrm{H}, \mathrm{Ph}$,
$\left.{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right), 7.59\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.6,{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.81 MHz): δ $35.3\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 46.3\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{~N}\right), 125.5\left(\mathrm{~s},=\mathrm{C}^{\beta} \mathrm{H}\right), 126.5(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 3), 126.9(\mathrm{~s}, o-\mathrm{CH}, \mathrm{Ph})$, 127.5 (s, CH, C4), 127.8 (s, CH, C5), 127.9 (s, $p-\mathrm{CH}, \mathrm{Ph}), 128.7$ (s, $m-\mathrm{CH}, \mathrm{Ph}), 129.9$ (s, CH, C6) $131.7\left(\mathrm{~s},=\mathrm{C}^{\alpha} \mathrm{H}\right), 134.6(\mathrm{~s}, \mathrm{C} 1), 136.7(\mathrm{~s}, \mathrm{C} 2), 137.2(\mathrm{~s}, i-\mathrm{C}, \mathrm{Ph})$.

Synthesis of $\left[\mathbf{P d C l}_{2}\left\{\mathbf{2}-\left(\mathbf{N H}_{\mathbf{2}} \mathbf{C M E}_{2} \mathbf{C H}_{2}\right) \mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \mathbf{C H}=\mathbf{C H P h}\right\}_{2}\right](\mathbf{3 g})$. Styrene $(0.120 \mathrm{~mL}$, $1.047 \mathrm{mmol})$ was added to a solution of complex $\left[\mathrm{Pd}_{2}\left\{C, N-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}-2\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]$ (B; $150 \mathrm{mg}, 0.258 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the mixture was stirred for 48 h . Decomposition to metallic palladium was observed. The mixture was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL , and $\mathrm{Et}_{2} \mathrm{O}$ was added (20 mL). The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give a first crop of complex $\mathbf{3 g}$ as a pale yellow solid (90 mg). The filtrate was concentrated to dryness, and the residue was stirred with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and air-dried to give a second crop of complex $\mathbf{3 g}$ as a pale yellow solid (18 mg). Yield: $108 \mathrm{mg}, 0.159 \mathrm{mmol}, 62 \% . \mathrm{Mp}: 177{ }^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Pd}$ (680.058): C, 63.58; H, 6.22; N, 4.12. Found: C, 63.38; H, 6.51; N, 4.48. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3273 \mathrm{~m}, 3197 \mathrm{~s}, 3122 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 1.42\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CMe}_{2}\right), 2.88$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $3.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 6.99\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=16.0 \mathrm{~Hz}\right), 7.15-7.36(\mathrm{~m}, 6$ $\mathrm{H}, \mathrm{H} 4+\mathrm{H} 5+\mathrm{H} 6+m-\mathrm{H}$ of $\mathrm{Ph}+p-\mathrm{H}$ of Ph$), 7.39\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{C}^{\beta} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=15.8 \mathrm{~Hz}\right), 7.53(\mathrm{~d}, 2$ $\left.\mathrm{H}, o-\mathrm{H}, \mathrm{Ph},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100.81 \mathrm{MHz}): \delta$ 29.8 ($\mathrm{s}, \mathrm{CMe}_{2}$), 45.7 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}$), 57.6 ($\mathrm{s}, \mathrm{CMe}_{2}$), 126.6 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 3$), 126.7 ($\mathrm{s}, o-\mathrm{CH}, \mathrm{Ph}$), 126.8 $\left(\mathrm{s},=\mathrm{C}^{\beta} \mathrm{H}\right), 127.4(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 4), 127.5(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 5), 127.8$ ($\left.\mathrm{s}, p-\mathrm{CH}, \mathrm{Ph}\right), 128.7$ ($\left.\mathrm{s}, m-\mathrm{CH}, \mathrm{Ph}\right)$, $131.1\left(\mathrm{~s},=\mathrm{C}^{\alpha} \mathrm{H}\right), 131.9(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 6), 134.4(\mathrm{~s}, \mathrm{C} 1), 137.3$ ($\left.\mathrm{s}, i-\mathrm{C}, \mathrm{Ph}\right)$, $137.5(\mathrm{~s}, \mathrm{C} 2)$. Single crystals suitable for an X-ray diffraction study were obtained by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of $\mathbf{3 g}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Synthesis of (E)-2-Styryl-phenethylamine (4f). 1,10-Phenanthroline monohydrate ($21 \mathrm{mg}, 0.105 \mathrm{mmol}$) was added to a solution of complex $\mathbf{3 f}(75 \mathrm{mg}, 0.105 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ and the resulting mixture was stirred for 30 h . A yellow solid precipitated, which was separated by filtration and identified as $\left[\mathrm{PdBr}_{2}\right.$ (phen) $]$ by IR and ${ }^{1} \mathrm{H}$ NMR. The solvent was removed from the filtrate, n-pentane (30 mL) was added to the residue, and the resulting suspension was filtered through a plug of Celite. The solvent was removed from the filtrate under vacuum to give compound $\mathbf{4 f}$ as a colorless liquid. Yield: $23 \mathrm{mg}, 0.103 \mathrm{mmol}, 49 \%$. IR $\left(\mathrm{cm}^{-1}\right): \downarrow(\mathrm{NH}) 3370 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 1.22\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right.$ $\left.+\mathrm{CH}_{2} \mathrm{~N}\right), 6.99\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=16.0 \mathrm{~Hz}\right), 7.12-7.28(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4+\mathrm{H} 5+\mathrm{H} 6+p-\mathrm{H}$ of $\mathrm{Ph}), 7.36\left(\mathrm{t}, 2 \mathrm{H}, m-\mathrm{H}, \mathrm{Ph},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.37\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{C}^{\beta} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=16.0 \mathrm{~Hz}\right), 7.51(\mathrm{~m}, 2 \mathrm{H}$, $o-\mathrm{H}, \mathrm{Ph}), 7.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100.81 \mathrm{MHz}): \delta 37.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 43.1\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $125.9(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 3), 126.0\left(\mathrm{~s},=\mathrm{C}^{\beta} \mathrm{H}\right), 126.5(\mathrm{~s}, o-\mathrm{CH}, \mathrm{Ph}), 126.6(\mathrm{~s}, \mathrm{CH}, \mathrm{Ar}), 127.6(\mathrm{~s}, \mathrm{CH}, \mathrm{Ar})$, 127.7 (s, CH of $\mathrm{Ar}+p-\mathrm{CH}$ of Ph), 128.6 ($\mathrm{s}, m-\mathrm{CH}, \mathrm{Ph}), 130.1(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 6), 130.4\left(\mathrm{~s},=\mathrm{C}^{\alpha} \mathrm{H}\right)$, 136.3 (s, C2), 137.5 (s, C1). The ${ }^{13} \mathrm{C}$ NMR resonance corresponding to i - C of Ph was not observed. EI-HRMS: exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N} 223.1361$; found 223.1360; $\Delta=0.0001$.

Synthesis of (E)-2-Styryl-phentermine (4g). 1,10-Phenanthroline monohydrate (44 $\mathrm{mg}, 0.220 \mathrm{mmol})$ was added to a solution of complex $\mathbf{3 g}(150 \mathrm{mg}, 0.220 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) and the resulting mixture was stirred for 30 h . A yellow solid precipitated, which was separated by filtration and identified as $\left[\mathrm{PdCl}_{2}\right.$ (phen)] by IR and ${ }^{1} \mathrm{H}$ NMR. The solvent was removed from the filtrate, n-pentane (20 mL) was added to the residue, and the resulting suspension was filtered through a plug of Celite. The solvent was removed from the filtrate under vacuum to give compound $\mathbf{4 g}$ as a colorless liquid. Yield: $103 \mathrm{mg}, 0.410 \mathrm{mmol}, 94 \%$. IR (cm ${ }^{-1}$): $v(\mathrm{NH}) 3357$ br. ${ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 1.01$ (s, $6 \mathrm{H}, \mathrm{CMe}_{2}$), 1.19 (br s, 2 H , $\left.\mathrm{NH}_{2}\right), 2.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 6.86\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=16.4 \mathrm{~Hz}\right), 7.07-7.15(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4+\mathrm{H} 5$
$+\mathrm{H} 6+p-\mathrm{H}$ of Ph $), 7.23\left(\mathrm{t}, 2 \mathrm{H}, m-\mathrm{H}, \mathrm{Ph},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.37\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{C}^{\beta} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=16.0 \mathrm{~Hz}\right)$, $7.38\left(\mathrm{~d}, 2 \mathrm{H}, o-\mathrm{H}, \mathrm{Ph},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}\right), 7.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(100.81$ MHz): $\delta 30.7\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 46.7\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 51.1$ ($\mathrm{s}, \mathrm{CMe}_{2}$), 125.9 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 3$), 126.3 (s,o-CH, $\mathrm{Ph}), 126.6(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 4), 126.9(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 5), 127.4\left(\mathrm{~s},=\mathrm{C}^{\beta} \mathrm{H}+p-\mathrm{CH}\right.$ of Ph$), 128.5(\mathrm{~s}, m-\mathrm{CH}$, $\mathrm{Ph}), 129.8\left(\mathrm{~s},=\mathrm{C}^{\alpha} \mathrm{H}\right), 131.9(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 6), 136.4(\mathrm{~s}, \mathrm{C} 1), 137.1$ (s, C2), 137.5 ($\left.\mathrm{s}, i-\mathrm{C}, \mathrm{Ph}\right)$. EIHRMS: exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N} 251.1674$; found 251.1667; $\Delta=0.0007$.

Synthesis of 1-(Acetylmethyl)-3,3-dimethyl-1,2,3,4-tetrahydroisoquinolinium

Chloride ($5 \mathrm{~b}-\mathrm{HCl}$) and 1-(Acetylmethyl)-3,3-dimethyl-1,2,3,4-tetrahydroisoquinoline (5b). $\mathrm{TlOTf}(148 \mathrm{mg}, 0.418 \mathrm{mmol})$ was added to a suspension of complex $\mathbf{1 b} \cdot 1 / 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}(140$ $\mathrm{mg}, 0.202 \mathrm{mmol})$ in acetone $(15 \mathrm{~mL})$, and the resulting suspension was stirred for 12 h . The solvent was removed, THF (15 mL) was added, and the mixture was refluxed for 8 h . Decomposition to metallic palladium was observed. The suspension was filtered through a plug of Celite, and the solvent was removed from the filtrate. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added, and the resulting suspension was filtered. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(200 \mathrm{mg}, 1.88 \mathrm{mmol})$ were added to the filtrate, and the suspension was stirred for 3 h and filtered. The solvent was removed from the filtrate, and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to the residue. HCl was bubbled through the solution for 5 min . The resulting suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and air-dried to give a first crop of compound $\mathbf{5 b} \mathbf{-} \mathbf{H C l}$ as a very hygroscopic white solid (39 mg). The filtrate was concentrated to ca. 3 mL , and n-pentane was added. The suspension was filtered, and the solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) to give a second crop of compound $\mathbf{5 b} \mathbf{- H C l}(6 \mathrm{mg})$. Yield: $45 \mathrm{mg}, 0.177 \mathrm{mmol}, 44 \% .{ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 1.44$ (s, $3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 1.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 2.28 (s, 3 H , $\mathrm{MeCO}), 2.77\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=16.4 \mathrm{~Hz}\right), 3.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}\right), 3.51$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO},{ }^{2} J_{\mathrm{HH}}=18.8,{ }^{3} J_{\mathrm{HH}}=5.2 \mathrm{~Hz}\right), 3.82\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO},{ }^{2} J_{\mathrm{HH}}=18.8,{ }^{3} J_{\mathrm{HH}}=4.4\right.$

Hz), 4.97 (m, $1 \mathrm{H}, \mathrm{CH}$), 7.07 (m, $1 \mathrm{H}, \mathrm{H} 8$), 7.11 (m, $1 \mathrm{H}, \mathrm{H} 5)$, 7.22-7.27 (m, $2 \mathrm{H}, \mathrm{H} 6+\mathrm{H} 7$), 9.12 (br s, $1 \mathrm{H}, \mathrm{NH}_{2}$), 10.26 (br s, $1 \mathrm{H}, \mathrm{NH}_{2}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.81 MHz): $\delta 21.9$ (s, Me, CMe_{2}), 27.5 ($\mathrm{s}, \mathrm{Me}, \mathrm{CMe}_{2}$), 30.8 ($\mathrm{s}, \mathrm{MeCO}$), 39.6 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}$), 46.1 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}$), 49.2 (s, CH), 54.9 (s, CMe $)$, 124.7 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 8$), 127.5 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 7$), 128.1 (s, CH, C6), 129.6 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 5$), 130.5 (s, C8a), 131.1 (s, C4a), 207.8 (s, CO).
$\mathrm{Na}_{2} \mathrm{CO}_{3}(200 \mathrm{mg}, 1.88 \mathrm{mmol})$ was added to a solution of $\mathbf{5 b} \mathbf{- H C l}(49 \mathrm{mg}, 0.193$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, the mixture was stirred for 4 h and then filtered. The solvent was removed from the filtrate, and cold n-pentane (20 mL) was added. The suspension was filtered through a plug of Celite, and the solvent was removed from the filtrate under vacuum to give compound $\mathbf{5 b}$ as a colorless liquid. Yield: $38 \mathrm{mg}, 0.175 \mathrm{mmol}, 91 \%$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH})$ 3330 br; $v(\mathrm{CO}) 1714$ vs. ${ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 1.10$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 1.23 (s, $3 \mathrm{H}, \mathrm{Me}$, CMe_{2}), 1.78 (br s, $1 \mathrm{H}, \mathrm{NH}$), $2.18(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeCO}), 2.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}^{2}{ }^{2} J_{\mathrm{HH}}=16.0 \mathrm{~Hz}\right), 2.79$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=15.6 \mathrm{~Hz}\right), 2.86\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO},{ }^{2} J_{\mathrm{HH}}=17.6,{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}\right), 3.11(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO},{ }^{2} J_{\mathrm{HH}}=17.6,{ }^{3} J_{\mathrm{HH}}=3.2 \mathrm{~Hz}\right), 4.51\left(\right.$ "br d", $\left.1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.04-7.09(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H} 5+\mathrm{H} 8), 7.12-7.16$ (m, $2 \mathrm{H}, \mathrm{H} 6+\mathrm{H} 7) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.81 MHz): $\delta 24.4$ (s, Me, CMe_{2}), 30.7 (s, MeCO), 31.6 ($\mathrm{s}, \mathrm{Me}, \mathrm{CMe}_{2}$), 42.4 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}$), 48.8 ($\mathrm{s}, \mathrm{CMe}_{2}$), 48.9 (s, CH), 51.0 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}$), 124.6 ($\left.\mathrm{s}, \mathrm{CH}, \mathrm{C} 8\right), 125.8$ ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 7$), 126.2 ($\left.\mathrm{s}, \mathrm{CH}, \mathrm{C} 6\right), 129.7$ ($\left.\mathrm{s}, \mathrm{CH}, \mathrm{C} 5\right)$, 135.3 (s, C4a), 136.6 (s, C8a), 208.5 (s, CO). EI-HRMS: exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$ 217.1467; found 217.1470; $\Delta=0.0003$.

Synthesis of 1-(Ethoxycarbonylmethyl)-1,2,3,4-tetrahydroisoquinoline (5c). 1,10Phenanthroline monohydrate ($56 \mathrm{mg}, 0.282 \mathrm{mmol}$) was added to a solution of complex 3c ($150 \mathrm{mg}, 0.283 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and the resulting mixture was stirred for 30 h . A yellow solid precipitated, which was separated by filtration and identified as $\left[\operatorname{PdBr}_{2}(\mathrm{phen})\right]$ by IR and ${ }^{1} \mathrm{H}$ NMR. The solvent was removed from the filtrate, n-pentane (10 mL) was added to
the residue, and the resulting suspension was filtered through a plug of Celite. The solvent was removed from the filtrate under vacuum to give compound $\mathbf{5 c}$ as a colorless liquid. Yield: $82 \mathrm{mg}, 0.237 \mathrm{mmol}, 66 \%$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3352 \mathrm{w} ; v(\mathrm{CO}) 1732 \mathrm{vs} .{ }^{1} \mathrm{H}$ NMR (300.10 MHz): $\delta 1.26\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{Me},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right), 2.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.69-3.05\left(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{H}\right.$ of $\mathrm{CH}_{2} \mathrm{CO}+$ 2 H of $\mathrm{CH}_{2} \mathrm{Ar}+1 \mathrm{H}$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.18\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right)$, $4.46\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=9.6,{ }^{3} J_{\mathrm{HH}}=3.3 \mathrm{~Hz}\right), 7.07-7.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.45 MHz): $\delta 14.1$ (s, Me), 29.7 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}$), 40.6 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}$), 41.3 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}$), 52.6 (s, CH), 60.5 (s, $\mathrm{CH}_{2} \mathrm{O}$), 125.8 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 7+\mathrm{C} 8$), 126.2 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 6$), 129.4 ($\left.\mathrm{s}, \mathrm{CH}, \mathrm{C} 5\right), 135.4$ ($\mathrm{s}, \mathrm{C} 4 \mathrm{a}$), 137.5 (s, C8a), 172.3 (s, CO). $\mathrm{FAB}^{+}-\mathrm{MS}: m / z 220.0\left[(\mathrm{M}+1)^{+}\right]$. EI-HRMS: exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} 219.1259$; found 219.1265; $\Delta=0.0006$.

Synthesis of 1-(Ethoxycarbonylmethyl)-3,3-dimethyl-1,2,3,4-

 tetrahydroisoquinoline (5d) and 1-(Ethoxycarbonylmethyl)-3,3-dimethyl-1,2,3,4tetrahydroisoquinolinium Triflate (5d-HOTf). 1,10-Phenanthroline monohydrate (32 mg , 0.177 mmol) was added to a solution of complex $\mathbf{3 d}(121 \mathrm{mg}, 0.180 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ mL) and the resulting mixture was stirred for 30 h . A yellow solid precipitated, which was separated by filtration and identified as $\left[\mathrm{PdCl}_{2}\right.$ (phen) $]$ by IR and ${ }^{1} \mathrm{H}$ NMR. The solvent was removed from the filtrate, n-pentane (20 mL) was added to the residue, and the resulting suspension was filtered through a plug of Celite. The solvent was removed from the filtrate under vacuum to give compound 5d as a colorless liquid. Yield: $60 \mathrm{mg}, 0.242 \mathrm{mmol}, 67 \%$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3352 \mathrm{w} ; v(\mathrm{CO}) 1732$ vs. ${ }^{1} \mathrm{H}$ NMR (300.1 MHz): $\delta 1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right)$, $1.21\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 1.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 2.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=\right.$ 15.9 Hz), $2.74\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO},{ }^{2} J_{\mathrm{HH}}=16.5,{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right), 2.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=\right.$ $15.9 \mathrm{~Hz}), 3.02\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO},{ }^{2} J_{\mathrm{HH}}=16.5,{ }^{3} J_{\mathrm{HH}}=3.3 \mathrm{~Hz}\right), 3.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.13(\mathrm{q}, 2$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{O},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}$), $4.46\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right), 7.03-7.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5), 7.10-$7.17 (m, $3 \mathrm{H}, \mathrm{H} 6+\mathrm{H} 7+\mathrm{H} 8) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.45 MHz): $\delta 14.0\left(\mathrm{~s}, \mathrm{MeCH}_{2}\right), 24.3(\mathrm{~s}, \mathrm{Me}$, CMe_{2}), 31.4 ($\mathrm{s}, \mathrm{Me}, \mathrm{CMe}_{2}$), 41.1 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}$), 42.2 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}$), 48.9 (s, $C \mathrm{Cex}_{2}$), 49.2 (s, CH), 60.4 (s, $\mathrm{CH}_{2} \mathrm{O}$), 124.7 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 8$), 125.8 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 7$), 126.2 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 6$), 129.5 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 5$), 135.1 (s, C4a), 135.9 (s, C8a), 172.4 (s, CO). $\mathrm{FAB}^{+}-\mathrm{MS}: m / z 247.9\left[(\mathrm{M}+1)^{+}\right]$.

HOTf ($0.050 \mathrm{~mL}, 0.565 \mathrm{mmol}$) was added to a solution of compound $\mathbf{5 d}(35 \mathrm{mg}$, $1.141 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ in an ice bath for 30 min. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and air-dried to give compound 5d-HOTf as a colorless solid. Yield: $44 \mathrm{mg}, 0.110 \mathrm{mmol}, 78 \% . \mathrm{Mp}: 89^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}$ (397.410): C, 48.36; H, 5.58; N, 3.52; S, 8.07. Found: C, 48.22; H, 5.63; N, 3.64; S, 8.10. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3172 \mathrm{w} ; v(\mathrm{CO}) 1726$ s. ${ }^{1} \mathrm{H}$ NMR (300.1 $\mathrm{MHz}): \delta 1.16\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 1.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.68(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}$, $\left.\mathrm{CMe}_{2}\right), 2.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=17.1 \mathrm{~Hz}\right), 3.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=17.1 \mathrm{~Hz}\right), 3.35(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.14-7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5+\mathrm{H} 8), 7.28-$ $7.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6+\mathrm{H} 7\right.$), 7.88 (br s, $1 \mathrm{H}, \mathrm{NH}_{2}$), 9.01 (br s, $1 \mathrm{H}, \mathrm{NH}_{2}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.45 MHz): $\delta 13.7$ ($\mathrm{s}, \mathrm{MeCH}_{2}$), 21.0 ($\mathrm{s}, \mathrm{Me}, \mathrm{CMe}_{2}$), 28.0 ($\mathrm{s}, \mathrm{Me}, \mathrm{CMe}_{2}$), 35.7 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}$), 39.4 (s, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 50.9(\mathrm{~s}, \mathrm{CH}), 55.9\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 62.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right), 120.1\left(\mathrm{q}, \mathrm{CF}_{3},{ }^{1} J_{\mathrm{CF}}=318.9 \mathrm{~Hz}\right), 124.9$ ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 8$), 127.9 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 7$), 128.7 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 6$), 128.7 ($\mathrm{s}, \mathrm{C} 8 \mathrm{a}), 129.7$ ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 5), 131.0$ (s, C4a), 172.3 (s, CO).

Synthesis of $\left[\mathbf{P d}\left\{\boldsymbol{C}, \mathbf{N}-\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \mathbf{C H}_{\mathbf{2}} \mathbf{C M e}_{\mathbf{2}} \mathbf{N H}_{\mathbf{2}} \mathbf{- 2} \boldsymbol{\}} \mathbf{C l}\left(\mathbf{P P h}_{\mathbf{3}}\right)\right]\right.$ (6). $\mathrm{PPh}_{3}(104 \mathrm{mg}, 0.396$ mmol) was added to a solution of complex $\left[\mathrm{Pd}_{2}\left\{C, N-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}-2\right\}_{2}(\mu-\mathrm{Cl})_{2}\right](\mathbf{B} ; 115$ $\mathrm{mg}, 0.198 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and resulting solution was stirred for 30 min . The mixture was filtered through a plug of MgSO_{4}, the filtrate was concentrated to ca. 3 mL , and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2$ x 3 mL) and air-dried to give complex $\mathbf{6}$ as a colorless solid. Yield: $148 \mathrm{mg}, 0.268 \mathrm{mmol}$,
68%. Dec pt: $220^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{29}$ CINPPd (552.374): C, $60.88 ; \mathrm{H}, 5.29 ; \mathrm{N}, 2.53$. Found: C, 60.55 ; H, 5.47; N, 2.57. IR (cm^{-1}): $v(\mathrm{NH}) 3324 \mathrm{w}, 3262 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (400.91 $\mathrm{MHz}): \delta 1.34(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 3.01\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.35\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.7.6,{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 6.46\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H} 6,{ }^{3} J_{\mathrm{HH}}=7.6,{ }^{4} J_{\mathrm{HP}}=4.5,{ }^{4} J_{\mathrm{HH}}=0.9 \mathrm{~Hz}\right), 6.74(\mathrm{td}, 1 \mathrm{H}$, $\left.\mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=7.4,{ }^{4} J_{\mathrm{HH}}=0.9 \mathrm{~Hz}\right), 6.80\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.4,{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.26-7.31(\mathrm{~m}, 6$ $\left.\mathrm{H}, m-\mathrm{H}, \mathrm{PPh}_{3}\right), 7.35-7.39\left(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{H}, \mathrm{PPh}_{3}\right), 7.52-7.57\left(\mathrm{~m}, 6 \mathrm{H}, o-\mathrm{H}, \mathrm{PPh}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.81): $\delta 30.0\left(\mathrm{~d}, \mathrm{Me},{ }^{4} J_{\mathrm{CP}}=1.7 \mathrm{~Hz}\right), 49.6\left(\mathrm{~d}, C \mathrm{Me}_{2},{ }^{3} J_{\mathrm{CP}}=2.2 \mathrm{~Hz}\right), 56.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 123.3(\mathrm{~s}$, $\mathrm{CH}, \mathrm{C} 4), 125.1\left(\mathrm{~d}, \mathrm{CH}, \mathrm{C} 5,{ }^{4} J_{\mathrm{CP}}=3.9 \mathrm{~Hz}\right), 127.6(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 3), 128.0\left(\mathrm{~d}, m-\mathrm{CH}, \mathrm{PPh}_{3},{ }^{3} J_{\mathrm{CP}}=\right.$ $10.5 \mathrm{~Hz}), 130.2\left(\mathrm{~d}, p-\mathrm{CH}, \mathrm{PPh}_{3},{ }^{4} J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, i-\mathrm{C}, \mathrm{PPh}_{3},{ }^{1} J_{\mathrm{CP}}=49.5 \mathrm{~Hz}\right), 134.7(\mathrm{~d}$, $\left.o-\mathrm{CH}, \mathrm{PPh}_{3},{ }^{3} J_{\mathrm{CP}}=11.6 \mathrm{~Hz}\right), 136.5\left(\mathrm{~d}, \mathrm{CH}, \mathrm{C} 6,{ }^{3} J_{\mathrm{CP}}=9.8 \mathrm{~Hz}\right), 138.8(\mathrm{~s}, \mathrm{C} 2), 153.1(\mathrm{~s}, \mathrm{C} 1, \mathrm{C}-$ Pd). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.5 MHz): $\delta 34.5$ (s). Single crystals suitable for an X-ray diffraction study, were obtained by slow diffusion of n-pentane into a solution of $\mathbf{6}$ in CHCl_{3}.

Synthesis of (Z)-2,2-Dimethyl-5-(ethoxycarbonyl)-4-(2,6-dimethylphenylimino)-1,2,3,4,5,6-hexahydro-3-benzo[d]azocine (7d). Method A: TIOTf (138 mg, 0.390 mmol) was added to a solution of complex $\mathbf{2 d - 5}(200 \mathrm{mg}, 0.383 \mathrm{mmol})$ in acetone (30 mL), and the mixture was stirred for 5 min . The solvent was removed, toluene (20 mL) was added, and the resulting suspension was refluxed for 12 h . Decomposition to metallic palladium was observed. The solvent was removed, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added. The suspension was filtered through a plug of Celite, and the filtrate was stirred with $\mathrm{Na}_{2} \mathrm{CO}_{3}(200 \mathrm{mg}, 1.88$ mmol) for 3 h . The suspension was filtered, and the solvent was removed from the filtrate. The ${ }^{1} \mathrm{H}$ MNR spectrum of this residue corresponds to a 1:3 mixture of compounds $\mathbf{5 d}$ and $\mathbf{7 d}$. $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to the residue, and the suspension was filtered through a plug of Celite. The filtrate was concentrated to ca. 2 mL and n-pentane (20 mL) was added, and the mixture cooled at $0{ }^{\circ} \mathrm{C}$ in an ice bath. During this time, a colorless solid formed. The
suspension was filtered, and the solid was washed with n-pentane $(2 \times 2 \mathrm{~mL})$ and air-dried to give a first crop of compound $\mathbf{7 d}$ as a colorless solid $(40 \mathrm{mg})$. The solvent was removed from the filtrate, and the residue was stirred in n-pentane $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The suspension was filtered, and the solid was whased with n-pentane $(2 \mathrm{~mL})$ to give a second crop of $7 \mathbf{d}$ as a colorless solid (15 mg). Yield: $55 \mathrm{mg}, 0.145 \mathrm{mmol}, 38 \%$. The solvent was removed from the filtrate to get a colorless liquid, which proved to be the tetrahydroisoquinoline $\mathbf{5 d}$ by ${ }^{1} \mathrm{H}$ NMR. Method B: A solution of complex $\mathbf{8 d}(200 \mathrm{mg}, 0.261 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ was heated at $70^{\circ} \mathrm{C}$ in a Carius tube for 24 h . Decomposition to metallic palladium was observed. The suspension was filtered through a plug of Celite, $\mathrm{Na}_{2} \mathrm{CO}_{3}(300 \mathrm{mg}, 2.83 \mathrm{mmol})$ was added to the filtrate, and the mixture was stirred for 3 h . The suspension was filtered, the solvent was removed from the filtrate. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, and the solution was filtered through a plug of Celite. The filtrate was concentrated to ca. $4 \mathrm{~mL}, n$ pentane (20 mL) was added, and the mixture was cooled at $0{ }^{\circ} \mathrm{C}$ in an ice bath. The suspension was filtered, and the solid was washed with n-pentane ($2 \times 2 \mathrm{~mL}$) and air-dried to afford compound $7 \mathbf{d}$ as a colorless solid. Yield: $58 \mathrm{mg}, 0.153 \mathrm{mmol}, 59 \% . \mathrm{Mp}: 178{ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3385 \mathrm{w} ; v(\mathrm{CO}) 1744 \mathrm{vs} ; v(\mathrm{C}=\mathrm{N}) 1634$ vs. ${ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 1.05(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{Xy}), 1.34\left(\mathrm{X}\right.$ part of an ABX_{3} system, $3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} J_{\mathrm{AX}}=$ $\left.{ }^{3} J_{\mathrm{BX}}=7.2 \mathrm{~Hz}\right), 1.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 2.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{Xy}), 2.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=\right.$ 14.4 Hz), 3.37 (d, partially obscured by the $\mathrm{CH}_{2} \mathrm{CH}$ signal, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$), 3.39 (dd, partially obscured by the $\mathrm{CH}_{2} \mathrm{Ar}$ signal, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH},{ }^{2} J_{\mathrm{HH}}=15.2 \mathrm{~Hz}$), $3.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.72(\mathrm{dd}, 1$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH},{ }^{2} J_{\mathrm{HH}}=15.6,{ }^{3} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 4.24,4.37\left(\mathrm{AB}\right.$ part of an $\mathrm{ABX}_{3}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O},{ }^{2} J_{\mathrm{AB}}=$ 10.7 Hz), 4.38 (dd, partially obscured by the $\mathrm{CH}_{2} \mathrm{O}$ signal, $1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=11.2,{ }^{3} J_{\mathrm{HH}}=8.4$ Hz), 6.70-6.75 (m, $2 \mathrm{H}, m-\mathrm{H}+p-\mathrm{H}, \mathrm{Xy}), 6.90(\mathrm{~m}, 1 \mathrm{H}, m-\mathrm{H}, \mathrm{Xy}), 6.98-7.03$ (m, $1 \mathrm{H}, \mathrm{H} 10$), 7.17 (m, $2 \mathrm{H}, \mathrm{H} 8+\mathrm{H} 9), 7.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 7) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.81 MHz): $\delta 14.2\left(\mathrm{~s}, \mathrm{MeCH}_{2}\right)$,
16.9 (s, Me, Xy), 17.6 ($\mathrm{s}, \mathrm{Me}, \mathrm{Xy}$), 30.5 ($\mathrm{s}, \mathrm{Me}, \mathrm{CMe}_{2}$), 30.8 ($\mathrm{s}, \mathrm{CMe}_{2}$), 35.3 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}$), 46.0 (s, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 47.6(\mathrm{~s}, \mathrm{CH}), 53.4$ (s, CMe_{2}), $61.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right), 122.4$ ($\left.\mathrm{s}, \mathrm{p}-\mathrm{CH}, \mathrm{Xy}\right), 126.4$ (s, CH, C9), 127.0 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 8$), 127.8 ($\mathrm{s}, m-\mathrm{CH}, \mathrm{Xy}$), 127.9 ($\mathrm{s}, m-\mathrm{CH}, \mathrm{Xy}$), 128.9 ($\mathrm{s}, o-\mathrm{C}, \mathrm{Xy}$), 129.1 (s, o-C, Xy), 130.8 (s, CH, C10), 132.0 (s, CH, C7), 135.8 (s, C10a), 138.0 (s, C6a), 144.9 (br $\mathrm{s}, i-\mathrm{C}, \mathrm{Xy}), 153.3(\mathrm{~s}, \mathrm{C}=\mathrm{N}), 170.7$ (s, CO). ESI-HRMS: exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}$ $379.2386\left[(\mathrm{M}+1)^{+}\right]$; found $379.2384\left[(\mathrm{M}+1)^{+}\right] ; \Delta=0.0002$.

Synthesis of (Z)-2,2-Dimethyl-5,6-(2,3-norbornadiyl)-4-(2,6-dimethylphenylimino)-1,2,3,4,5,6-hexahydro-3-benzo[d]azocinium Triflate (7e-HOTf). $\mathrm{TlOTf}(103 \mathrm{mg}, 0.291 \mathrm{mmol})$ was added to a solution of complex $\mathbf{2 e}-\mathbf{4}(150 \mathrm{mg}, 0.291 \mathrm{mmol})$ in acetone (15 mL), the resulting suspension was stirred for 10 min , and solvent was removed. Toluene (15 mL) was added, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 4 h . Decomposition to metallic palladium was observed. The toluene was removed, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added, and the resulting solution was filtered through a plug of Celite. The filtrate was concentrated to ca. 1 mL and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give compound $\mathbf{7 e - H O T f}$ as a colorless solid. Yield: $106 \mathrm{mg}, 0.203 \mathrm{mmol}, 70 \%$. An analytically pure sample of compound $\mathbf{7 e - H O T f}$ was obtained by recrystallization from $\mathrm{CHCl}_{3} / \mathrm{Et}_{2} \mathrm{O} . \mathrm{Mp}: 282{ }^{\circ} \mathrm{C} . \Lambda_{\mathrm{M}}\left(\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)=137\left(5.28 \times 10^{-4}\right.$ M). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (522.632): C, 62.05; H, 6.36; N, 5.36, S, 6.13. Found: C, 61.63; H, 6.42; N, 5.53; S, 5.85. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 337 \mathrm{~s}, 3181 \mathrm{br} ; v(\mathrm{C}=\mathrm{N})=1613$ vs. ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 400.91 \mathrm{MHz}$): $\delta 1.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{Xy}), 1.31$ (s, $3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 1.66-1.71 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$), $1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right.$), 1.82-1.94 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$), $2.16\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{b}} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}\right.$ $=10.8 \mathrm{~Hz}), 2.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.8 \mathrm{~Hz}\right), 2.54\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{c}} \mathrm{H}\right), 3.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}^{\mathrm{a}} \mathrm{H}\right.$, $\left.{ }^{4} J_{\mathrm{HH}}=3.6 \mathrm{~Hz}\right), 2.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.21(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 5+\mathrm{H} 6), 6.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}), 7.02\left(\mathrm{~d}, 1 \mathrm{H}, m-\mathrm{H}, \mathrm{Xy},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.16\left(\mathrm{~d}, 1 \mathrm{H}, m-\mathrm{H}, \mathrm{Xy},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.21(\mathrm{t}, 1$
$\left.\mathrm{H}, p-\mathrm{H}, \mathrm{Xy},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.30-7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 9+\mathrm{H} 10), 7.33-7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 8), 7.56(\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{H} 7,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}$), 9.42 (br s, $\left.1 \mathrm{H}, \mathrm{NH}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $d_{6}, 100.81 \mathrm{MHz}$): $\delta 16.5$ (s, Me, Xy), 17.7 (s, Me, Xy), 28.2 (s, Me, CMe $)$, $28.8\left(\mathrm{~s}, \mathrm{C}^{\mathrm{d}} \mathrm{H}_{2}\right.$), $30.2\left(\mathrm{~s}, \mathrm{C}^{\mathrm{e}} \mathrm{H}_{2}\right), 30.3$ (s, Me, CMe_{2}), $39.1\left(\mathrm{~s}, \mathrm{C}^{\mathrm{b}} \mathrm{H}_{2}\right), 39.6\left(\mathrm{~s}, \mathrm{C}^{\mathrm{c}} \mathrm{H}\right), 41.3\left(\mathrm{~s}, \mathrm{C}^{\mathrm{a}} \mathrm{H}\right), 42.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 51.1(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 5), 51.6(\mathrm{~s}$, CH, C6), 58.5 ($\mathrm{s}, \mathrm{CMe}_{2}$), 126.1 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 7$), 127.8 (s, CH, C9), 128.5 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 8$), 129.7 (s , $m-\mathrm{CH}, \mathrm{Xy}), 130.0$ (s, m-CH, Xy), 130.8 ($\mathrm{s}, p-\mathrm{CH}, \mathrm{Xy}$), 131.1 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 10$), 136.2 ($\mathrm{s}, o-\mathrm{C}$, Xy), 137.1 ($\mathrm{s}, o-\mathrm{C}, \mathrm{Xy}$), 137.2 (s, C10a), 140.2 ($\mathrm{s}, \mathrm{C} 6 \mathrm{a}$), 167.6 ($\mathrm{s}, \mathrm{C} 4)$. The ${ }^{13} \mathrm{C}$ NMR resonances corresponding to the $i-\mathrm{C}$ of Xy is not observed. Single crystals suitable for an Xray diffraction study were obtained by slow diffusion of n-pentane into a solution of 7e-HOTf in acetone.

Synthesis of $\left[\mathbf{P d}\left\{C, N-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}^{2}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-\mathbf{2}\right\}(\mathrm{CNXy})_{2}\right] \mathrm{OTf}(\mathbf{8 d})$.

XyNC ($50 \mathrm{mg}, 0.381 \mathrm{mmol}$) and TlOTf ($102 \mathrm{mg}, 0.289 \mathrm{mmol}$) were added to a suspension of complex 2d-5 ($150 \mathrm{mg}, 0.287 \mathrm{mmol}$) in acetone (15 mL). The resulting mixture was stirred for 2 h and then filtered through a plug of Celite. The solvent was removed from the filtrate, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give complex $\mathbf{8 d}$ as an orange solid. Yield: $195 \mathrm{mg}, 0.254 \mathrm{mmol}, 89 \%$. Mp: $220{ }^{\circ} \mathrm{C}$ dec. $\Lambda_{\mathrm{M}}\left(\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)=$ $142\left(5.27 \times 10^{-4} \mathrm{M}\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{PdS}$ (766.190): C, 53.30; H, 5.26; N, 5.48; S, 4.18. Found: C, 53.11; H, 5.41; N, 5.73; S, 3.92. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3217 \mathrm{~m}, 3128 \mathrm{~m} ; v(\mathrm{CN})$ 2200 vs, 2184 vs; $v(\mathrm{CO}) 1678$ vs. ${ }^{1} \mathrm{H}$ NMR (400.91 MHz): $\delta 1.28\left(\mathrm{X}\right.$ part of an ABX_{3} system, $\left.3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} J_{\mathrm{AX}}={ }^{3} J_{\mathrm{BX}}=7.2 \mathrm{~Hz}\right), 1.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 2.31$ (s, $6 \mathrm{H}, \mathrm{Me}, \mathrm{Xy}$), 2.42 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}, \mathrm{Xy}$), $2.55\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right.$), $2.67(\mathrm{dd}, 1$ $\left.\mathrm{H}, \mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.6,{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right), 3.28\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=15.2 \mathrm{~Hz}\right), 3.54(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{C}^{\beta} \mathrm{H}_{2},{ }^{2} J_{\mathrm{HH}}=13.6,{ }^{3} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 3.62\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.8 \mathrm{~Hz}\right), 3.97(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}$,
$\left.\mathrm{C}^{\alpha} \mathrm{H},{ }^{3} J_{\mathrm{HH}}=10.4,{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}\right), 4.19\left(\mathrm{AB}\right.$ part of an ABX_{3} system, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O},{ }^{2} J_{\mathrm{AB}}=8.4$ $\mathrm{Hz}), 5.35\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}\right), 7.04\left(\mathrm{~d}, 2 \mathrm{H}, m-\mathrm{H}, \mathrm{Xy},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.15-7.26$ $(\mathrm{m}, 7 \mathrm{H}, 4 \mathrm{H}$ of $\mathrm{Ar}+m-\mathrm{H}$ and $p-\mathrm{H}$ of Xy$), 7.33\left(\mathrm{~d}, 1 \mathrm{H}, p-\mathrm{H}, \mathrm{Xy},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ RMN (100.81 MHz): $\delta 14.3$ (s, MeCH_{2}), 18.6 (s, Me, Xy), 18.7 ($\mathrm{s}, \mathrm{Me}, \mathrm{Xy}$), 27.5 (s, Me, CMe_{2}), $27.8\left(\mathrm{~s}, \mathrm{C}^{\alpha} \mathrm{H}\right), 31.6\left(\mathrm{~s}, \mathrm{C}^{\beta} \mathrm{H}_{2}\right), 33.4\left(\mathrm{~s}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 45.1\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 51.2\left(\mathrm{~s}, \mathrm{CMe}_{2}\right)$, $60.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right), 120.6\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{SO}_{3},{ }^{1} J_{\mathrm{CF}}=320.5 \mathrm{~Hz}\right), 125.4(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 4), 127.2(\mathrm{~s}, \mathrm{CH}, \mathrm{C} 5)$, 128.1 (s, m-CH, Xy), 128.4 (s, m-CH, Xy), 129.4 ($\mathrm{s}, \mathrm{CH}, \mathrm{C} 6$), 130.4 ($\mathrm{s}, \mathrm{p}-\mathrm{CH}, \mathrm{Xy}$), 130.7 (s , $p-\mathrm{CH}, \mathrm{Xy}), 132.4$ (s, CH, C3), 134.4 (s, C2), 135.4 (s, o-C, Xy), 136 ($\mathrm{s}, o-\mathrm{C}, \mathrm{Xy}$), 139.3 (br s, $\mathrm{CN}), 141.5(\mathrm{~s}, \mathrm{C} 1), 144.3(\mathrm{br} \mathrm{s}, \mathrm{CN}), 176.4(\mathrm{~s}, \mathrm{CO})$. The ${ }^{13} \mathrm{C}$ NMR resonances corresponding to i-C of both Xy groups are not observed.

Single Crystal X-ray Structure Determinations. Relevant crystallographic data and details of the refinements for the structures of compounds $\mathbf{2 a} \cdot \mathrm{CHCl}_{3}, \mathbf{2 b} \mathbf{- 1}, \mathbf{2 d} \mathbf{- 3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathbf{2 e}-\mathbf{4} \cdot 1 / 2 \mathrm{CHCl}_{3}, \mathbf{3 d}, \mathbf{3 g}, \mathbf{6}$, and $\mathbf{7 e - H O T f}$ are given in Table 1 and 2. Data Collection. Crystals suitable for X-ray diffraction were mounted in inert oil on a glass fiber and transferred to a Bruker SMART diffractometer. Data were recorded at $100(2) \mathrm{K}$ using graphitemonochromated Mo-Ka radiation $(\lambda=0.71073 \AA)$ and ω-scan mode. Multi-scan absorption corrections were applied for all complexes. Structure Solution and Refinements. Crystal Structures were solved by the direct method and all non hydrogen atoms refined anisotropically on F^{2} using the program SHELXL-97. ${ }^{71}$ Hydrogen atoms were refined as follows: Compounds $\mathbf{2 a} \cdot \mathrm{CHCl}_{3}, \mathbf{2 b - 1}, \mathbf{2 d - 3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{6}$ and $\mathbf{7 e - H O T f}: \mathrm{NH}$ or/and NH_{2}, free; methyl, rigid group; all others, riding. Complexes $\mathbf{2 e}-\mathbf{4} \cdot 1 / 2 \mathrm{CHCl}_{3}$, $\mathbf{3 d}$ and $\mathbf{3 g}$: NH_{2}, free with SADI; methyl, rigid group; all others, riding. Special features: Complex $\mathbf{2 a} \cdot \mathrm{CHCl}_{3}$: the chloroform is disordered over two positions with a ca. 69:31 occupancy distribution. 2e-
$4 \cdot 1 / 2 \mathrm{CHCl}_{3}$: the half molecule of chloroform is disordered over two positions with a ca. $50: 50$ occupancy distribution. 3d: the $\mathrm{CO}_{2} \mathrm{Et}$ group is disordered over two positions with a ca. 52:48 occupancy distribution.

Acknowledgment. We thank Ministerio de Educación y Ciencia (Spain), FEDER (CTQ200760808/BQU) and Fundación Séneca (04539/GERM/06) for financial support. J.-A. G.-L. is grateful to the University of Murcia (Spain) for a research grant.

Supporting Information Available. Torsion angles of the eight-membered rings in compounds $\mathbf{2 a} \cdot \mathbf{C H C l}_{3}, \mathbf{2 b} \mathbf{- 1}, \mathbf{2 d} \mathbf{- 3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{2 e}-\mathbf{4} \cdot 1 / 2 \mathrm{CHCl}_{3}$, selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for the new compounds, details (including symmetry operators) of hydrogen bondings and listing of all refined and calculated atomic coordinates, anisotropic thermal parameters, bond lengths and angles and CIF files for compounds $\mathbf{2 a} \cdot \mathrm{CHCl}_{3}, \mathbf{2 b} \mathbf{- 1}, \mathbf{2 d - 3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathbf{2 e}$ $\mathbf{4} \cdot 1 / 2 \mathrm{CHCl}_{3}, \mathbf{3 d}, \mathbf{3 g}, \mathbf{6}$ and $\mathbf{7 e - H O T f}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Tsuji, J. Acc. Chem. Res. 1969, 2, 144. Ryabov, A. D.; Polyakov, V. P.; Yatsimirsky, A. K. J. Chem. Soc., Perkin Trans. 2 1983, 1503.
(2) Holton, R. A. Tetrahedron Lett. 1977, 4, 355. Julia, M.; Duteil, M.; Lallemand, J. Y. J. Organomet. Chem. 1975, 102, 239. Holton, R. A.; Kjonaas, R. A. J. Organomet. Chem. 1977, 133, C5. Holton, R. A.; Kjonaas, R. A. J. Am. Chem. Soc. 1977, 99, 4177. Kamiyama, S.; Kimura, T.; Kasahara, A.; Izumi, T.; Maemura, M. Bull. Chem. Soc. Jpn. 1979, 52, 142. Sokolov, V. I.; Troitskaya, L. L.; Reutov, O. A. J. Organomet. Chem. 1979, 182, 537. Kasahara, A.; Izumi, T.; Watabe, H. Bull. Chem. Soc. Jpn. 1979, 52, 957. Liang, C. D. Tetrahedron Lett. 1986, 27, 1971.
(3) Brisdon, B. J.; Nair, P.; Dyke, S. F. Tetrahedron 1981, 37, 173. Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K. J. Chem. Soc., Perkin Trans. 2 1983, 1511.
(4) Izumi, T.; Endo, K.; Saito, O.; Shimizu, I.; Maemura, M.; Kasahara, A. Bull. Chem. Soc. Jpn. 1978, 51, 663.
(5) Chao, C. H.; Hart, D. W.; Bau, R.; Heck, R. F. J. Organomet. Chem. 1979, 179, 301.
(6) Ryabov, A. D.; Yatsimirsky, A. K. Tetrahedron Lett. 1980, 21, 2757. Ryabov, A. D.; Sakodinskaya, I. K.; Dvoryantsev, S. N.; Eliseev, A. V.; Yatsimirsky, A. K. Tetrahedron Lett. 1986, 27, 2169.
(7) Barr, N.; Dyke, S. F.; Quessy, S. N. J. Organomet. Chem. 1983, 253, 391.
(8) Janecki, T.; Jeffreys, J. A. D.; Pauson, P. L.; Pietrzykowski, A.; McCullough, K. J. Organometallics 1987, 6, 1553.
(9) Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K. J. Organomet. Chem. 1991, 406, 309.
(10) Böhm, A.; Polborn, K.; Sünkel, K.; Beck, W. Z. Naturforsch., B: Chem. Sci. 1998, 53, 448.
(11) Girling, I. R.; Widdowson, D. A. Tetrahedron Lett. 1982, 23, 1957. Girling, I. R.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 1988, 1317.
(12) Zuccaccia, C.; Bellachioma, G.; Cardaci, G.; Macchioni, A.; Binotti, B.; Carfagna, C. Helv. Chim. Acta 2006, 89, 1524. Janecki, T.; Jeffreys, J. A. D.; Pauson, P. L.; Pietrzykowski, A.; McCullough, K. J. Organometallics 1987, 6, 553. Girling, I. R.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 1988, 1317.
(13) Balavoine, G.; Clinet, J. C. J. Organomet. Chem. 1990, 390, C84.
(14) Hiraki, K.; Fuchita, Y.; Takechi, K. Inorg. Chem. 1981, 20, 4316.
(15) Horino, H.; Inoue, N. Tetrahedron Lett. 1979, 20, 2403. Hegedus, L. S. Tetrahedron 1984, 40, 2415.
(16) Horino, H.; Inoue, N. J. Org. Chem. 1981, 46, 4416.
(17) Barr, N.; Bartley, J. P.; Clark, P. W.; Dunstan, P.; Dyke, S. F. J. Organomet. Chem. 1986, 302, 117.
(18) Vicente, J.; Saura-Llamas, I.; Cuadrado, J.; Ramírez de Arellano, M. C. Organometallics 2003, 22, 5513.
(19) Vicente, J.; Saura-Llamas, I.; Bautista, D. Organometallics 2005, 24, 6001.
(20) Vicente, J.; Saura-Llamas, I. Comments Inorg. Chem. 2007, 28, 39.
(21) Vicente, J.; Saura-Llamas, I.; García-López, J. A.; Calmuschi-Cula, B.; Bautista, D. Organometallics 2007, 26, 2768.
(22) Vicente, J.; Saura-Llamas, I.; Grünwald, C.; Alcaraz, C.; Jones, P. G.; Bautista, D. Organometallics 2002, 21, 3587.
(23) Vicente, J.; Saura-Llamas, I.; García-López, J. A.; Bautista, D. Organometallics 2009, 28, 448.
(24) Trzupek, J.; Lee, D.; Crowley, B.; Marathias, V.; Danishefsky, S. J. Am. Chem. Soc. 2010, 132, 8506.
(25) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581. Heck, R. F.; Noelly, J. P. J. Org. Chem. 1972, 37, 2320. Whitcombe, N. J.; Hii, K. K.; Gibson, S. E. Tetrahedron 2001, 57, 7449. Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2005, 61, 11771. Knowles, J. P.; Whiting, A. Org. Biomol. Chem. 2007, 5, 31. Deeth, R. J.; Smith, A.; Hii, K. K.; Brown, J. M. Tetrahedron Lett. 1998, 39, 3229. Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009. Rosner, T.; Le Bars, J.; Pfaltz, A.; Blackmond, D. G. J. Am. Chem. Soc. 2001, 123, 1848. Consorti, C. S.; Flores, F. R.; Dupont, J. J. Am. Chem. Soc. 2005, 127, 12054. de Vries, J. G. Dalton Trans. 2006, 421. Surawatanawong, P.; Fan, Y.; Hall, M. B. J. Organomet. Chem. 2008, 693, 1552.
(26) de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. 1995, 33, 2379.
(27) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2.
(28) Albert, K.; Gisdakis, P.; Rösch, N. Organometallics 1998, 17, 1608.
(29) Crisp, G. T. Chem. Soc. Rev. 1998, 27, 427. Ludwig, M.; Strömberg, S.; Svensson, M.; Åkermark, B. Organometallics 1999, 18, 970.
(30) Tao, W.; Silverberg, L. J.; Rheingold, A. L.; Heck, R. F. Organometallics 1989, 8, 2550. Vicente, J.; Saura-Llamas, I.; Turpín, J.; Ramírez de Arellano, M. C.; Jones, P. G. Organometallics 1999, 18, 2683.
(31) Dupont, J.; Pfeffer, M. J. Chem. Soc., Dalton Trans. 1990, 3193.
(32) Vicente, J.; Saura-Llamas, I.; Turpín, J.; Bautista, D.; Ramírez de Arellano, C.; Jones, P. G. Organometallics 2009, 28, 4175.
(33) Yamamoto, Y.; Yamazaki, H. Inorg. Chim. Acta 1980, 41, 229. Zografidis, A.; Polborn, K.; Beck, W.; Markies, B. A.; van Koten, G. Z. Naturforsch., B: Chem. Sci. 1994, 49, 1494. Kim, Y.-J.; Chang, X. H.; Han, J. T.; Lim, M. S.; Lee, S. W. Dalton Trans. 2004, 3699. Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Jones, P. G.; Bautista, D. Organometallics 2008, 27, 3254.
(34) Vicente, J.; Abad, J. A.; Hernández-Mata, F. S.; Rink, B.; Jones, P. G.; Ramírez de Arellano, M. C. Organometallics 2004, 23, 1292.
(35) Maassarani, F.; Pfeffer, M.; Le Borgne, G. Organometallics 1987, 6, 2029. Maassarani, F.; Pfeffer, M.; Le Borgne, G. Organometallics 1987, 6, 2043. Pfeffer, M. Recl. Trav. Chim. Pays-Bas 1990, 109, 567. Pfeffer, M. Pure Appl. Chem. 1992, 64, 335. Albert, J.; D'Andrea, L.; Granell, J.; Zafrilla, J.; Font-Bardia, M.; Solans, X. J. Organomet. Chem. 2007, 692, 4895.
(36) Albert, J.; Granell, J.; Luque, A.; Font-Bardia, M.; Solans, X. Polyhedron 2006, 25, 793.
(37) Chengebroyen, J.; Pfeffer, M.; Sirlin, C. Tetrahedron Lett. 1996, 37, 7263. Diederen, J. J. H.; Frühauf, H.-W.; Hiemstra, H.; Vrieze, K.; Pfeffer, M. Tetrahedron Lett. 1998, 39, 4111. Chengebroyen, J.; Linke, M.; Robitzer, M.; Sirlin, C.; Pfeffer, M. J. Organomet. Chem. 2003, 687, 313. Sirlin, C.; Chengebroyen, J.; Konrath, R.; Ebeling, G.; Raad, I.; Dupont, J.; Paschaki, M.; Kotzyba-Hibert, F.; Harf-Monteil, C.; Pfeffer, M. Eur. J. Org. Chem. 2004, 1724.
(38) Ryabov, A. D. Synthesis 1985, 233.
(39) Dupont, J.; Consorti, C. S.; Spencer, J. Chem. Rev. 2005, 105, 2527.
(40) Omae, I. J. Organomet. Chem. 2007, 692, 2608.
(41) Cai, G.; Fu, Y.; Li, Y.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 7666.
(42) Reger, D. L.; Garza, D. G.; Lebioda, L. Organometallics 1991, 10, 902. Ozawa, F.; Hayashi, T.; Koideb, H.; Yamamoto, A. J. Chem. Soc., Chem. Commun. 1991, 1469. Strömberg, S.; Zetterberg, K.; Siegbahn, P. E. M. J. Chem. Soc., Dalton Trans. 1997.
(43) Chen, W.; Yao, F.; Zhe, L.; Quing-Xiang, G. Chin. J. Chem. 2008, 26, 358.
(44) Oestreich, M.; Dennison, P. R.; Kodanko, J. J.; Overman, L. E. Angew. Chem., Int. Ed. 2001, 40, 1439. Burke, B. J.; Overman, L. E. J. Am. Chem. Soc. 2004, 126, 16820.
(45) Vicente, J.; Abad, J.-A.; López-Sáez, M.-J.; Jones, P. G. Organometallics 2010, 29, 409.
(46) Zhang, L.; Zetterberg, K. Organometallics 1991, 10, 3806.
(47) Kawataka, F.; Kayaki, Y.; Shimizu, I.; Yamamoto, A. Organometallics 1994, 13, 3517.
(48) Yamamoto, A. J. Organomet. Chem. 1995, 500, 337.
(49) Clique, B.; Fabritius, C.-H.; Couturier, C.; Monteiro, N.; Balme, G. Chem. Commun. 2003, 272. Beccalli, E. M.; Broggini, G.; Martinelli, M.; Masciocchi, N.; Sottocornola, S. Org. Lett. 2006, 8, 4521. Beccalli, E. M.; Borsini, E.; Brenna, S.; Galli, S.; Rigamonti, M.; Broggini, G. Chem. Eur. J. 2010, 16, 1670.
(50) Vicente, J.; Saura-Llamas, I.; Palin, M. G.; Jones, P. G.; Ramírez de Arellano, M. C. Organometallics 1997, 16, 826.
(51) Vicente, J.; Saura-Llamas, I.; Bautista, D. Organometallics 2005, 24, 6001.
(52) Benito, M.; López, C.; Morvan, X.; Solans, X.; Font-Bardía, M. J. Chem. Soc., Dalton Trans. 2000, 4470.
(53) Hahn, F. E.; von Fehren, T.; Wittenbecher, L.; Fröhlich, R. Z. Naturforsch., B: J. Chem. Sci. 2004, 59, 541. Hahn, F. E.; von Fehren, T.; Lügger, T. Inorg. Chim. Acta 2005, 358, 4137. Ahrens, S.; Zeller, A.; Taige, M.; Strassner, T. Organometallics 2006, 25, 5409. Wanniarachchi, Y. A.; Subramanium, S. S.; Slaughter, L. M. J. Organomet. Chem. 2009, 694, 3297.
(54) Vicente, J.; Arcas, A.; Fernández-Hernández, J. M.; Bautista, D. Organometallics 2001, 20, 2767. Vicente, J.; Arcas, A.; Borrachero, M. V.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1987, 1655. Vicente, J.; Arcas, A.; Borrachero, M. V.; Molíns, E. M., C. J. Organomet. Chem. 1989, 359, 127.
(55) Heck, R. F. Acc. Chem. Res. 1979, 12, 146. Albéniz, A. C.; Espinet, P.; LópezFernández, R. Organometallics 2003, 22, 4206. McConville, M.; Saidi, O.; Blacker, J.; Xiao, J. J. Org. Chem. 2009, 74, 2692.
(56) Shibasaki, M.; Vogl, E. M. J. Organomet. Chem. 1999, 576, 1. Zocchi, M.; Tieghi, G. J. Chem. Soc., Dalton Trans. 1979, 944. Rülke, R. E.; Kaasjager, V. E.; Kliphuis, D.; Elsevier, C. J.; van Leeuwen, P. W. N. M.; Vrieze, K.; K., G. Organometallics 1996, 15, 668. Catellani, M.; Motti, E.; Paterlini, L. J. Organomet. Chem. 2000, 593-594, 240.
(57) Larock, R. C.; Hershberger, S. S.; Takagi, K.; Mitchell, M. A. J. Org. Chem. 1986, 51, 2450. Brumbaugh, J. S.; Whittle, R. R.; Parvez, M.; Sen, A. Organometallics 1990, 9, 1735. Li, C.-S.; Cheng, C.-H.; Liao, F.-L.; Wang, S.-L. J. Chem. Soc., Chem. Commun. 1991, 710. van Asselt, R.; Gielens, E. E. C. G.; Rulke, R. E.; Vrieze, K.; Elsevier, C. J. J. Am. Chem. Soc. 1994, 116, 977. Markies, B. A.; Kruis, D.; Rietveld, M. H. P.; Verkerk, K. A. N.; Boersma, J.; Kooijman, H.; Lakin, M. T.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 1995, 117, 5263. Delis, J. G. P.; Aubel, P. G.; Vrieze, K.; van Leeuwen, P. W. N. M.; Veldman, N.;

Spek, A. L. Organometallics 1997, 16, 4150. Vicente, J.; Abad, J. A.; Förtsch, W.; LópezSáez, M.-J.; Jones, P. G. Organometallics 2004, 23, 4414.
(58) Pérez, J.; Nolsøe, K.; Kessler, M.; García, L.; Pérez, E.; Serrano, J. L. Acta Crystallogr., Sect. B 2005, 61, 585. Kessler, M.; Bueso, M. C.; Pérez, J. J. Chemom. 2007, 21, 53.
(59) Vicente, J.; Arcas, A.; Bautista, D.; Jones, P. G. Organometallics 1997, 16, 2127. Vicente, J.; Abad, J.-A.; Frankland, A. D.; Ramírez de Arellano, M. C. Chem. Eur. J. 1999, 5, 3066. Larraz, C.; Navarro, R.; Urriolabeitia, E. P. New J. Chem. 2000, 24, 623. Carbayo, A.; Cuevas, J. V.; García-Herbosa, G.; García-Granda, S.; Miguel, D. Eur. J. Inorg. Chem. 2001, 2361. Vicente, J.; Arcas, A.; Bautista, D.; Ramírez de Arellano, M. C. J. Organomet. Chem. 2002, 663, 164. Vicente, J.; Abad, J. A.; Frankland, A. D.; López-Serrano, J.; Ramírez de Arellano, M. C.; Jones, P. G. Organometallics 2002, 21, 272. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G. Organometallics 2002, 21, 4454. Crespo, M.; Granell, J.; Solans, X.; Font-Bardia, M. J. Organomet. Chem. 2003, 681, 143. Rodríguez, N.; Cuenca, A.; Ramírez de Arellano, C.; Medio-Simón, M.; Peine, D.; Asensio, G. J. Org. Chem. 2004, 69, 8070. Vicente, J.; Arcas, A.; Gálvez-López, M. D.; Jones, P. G. Organometallics 2006, 25, 4247. Vicente, J.; Arcas, A.; Gálvez-López, M.-D.; JuliáHernández, F.; Bautista, D.; Jones, P. G. Organometallics 2008, 27, 1582. Vicente, J.; Arcas, A.; Gálvez-López, M.-D.; Jones, P. G.; Bautista, D. Organometallics 2009, 28, 3501.
(60) Coulson, D. R. J. Am. Chem. Soc. 1969, 91, 200. Segnitz, A.; Bailey, P. M.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1973, 698. Hosokawa, T.; Calvo, C.; Lee, H. B.; Maitlis, P. M. J. Am. Chem. Soc. 1973, 95, 4914. Yoshida, G.; Kurosawa, H.; Okawara, R. Chem. Lett. 1977, 1387. Diversi, P.; Ingrosso, G.; Lucherini, A. J. Chem. Soc., Chem. Commun. 1978, 735. Diversi, P.; Ingrosso, G.; Lucherini, A.; Murtas, S. J. Chem. Soc.,

Dalton Trans. 1980, 1633. Samsel, E. G.; Norton, J. R. J. Am. Chem. Soc. 1984, 106, 5505. Holton, R. A.; Zoeller, J. R. J. Am. Chem. Soc. 1985, 107, 2124. Maassarani, F.; Pfeffer, M.; Le Borgne, G.; Grandjean, D. Organometallics 1986, 5, 1511. Arnek, R.; Zetterberg, K. Organometallics 1987, 6, 1230. Catellani, M.; Chiusoli, G. P. J. Organomet. Chem. 1988, 346, C27. Diversi, P.; Ingrosso, G.; Lucherini, A.; Lumini, T.; Marchetti, F.; Adovasio, V.; Nardelli, M. J. Chem. Soc., Dalton Trans. 1988, 133. Vetter, W. M.; Sen, A. J. Organomet. Chem. 1989, 378, 485. Catellani, M.; Mann, B. E. J. Organomet. Chem. 1990, 390, 251. Albeniz, A. C.; Espinet, P.; Jeannin, Y.; Philoche-Levisalles, M.; Mann, B. E. J. Am. Chem. Soc. 1990, 112, 6594. Reger, D. L.; Garza, D. G.; Baxter, J. C. Organometallics 1990, 9, 873. Kim, Y. J.; Osakada, K.; Takenaka, A.; Yamamoto, A. J. Am. Chem. Soc. 1990, 112, 1096. Osakada, K.; Ozawa, Y.; Yamamoto, A. J. Chem. Soc., Dalton Trans. 1991, 759. Dekker, G. P. C. M.; Elsevier, C. J.; Vrieze, K.; van Leeuwen, P. W. N. M.; Roobeek, C. F. J. Organomet. Chem. 1992, 430, 357. Bocelli, G.; Catellani, M.; Ghelli, S. J. Organomet. Chem. 1993, 458, C12. Reger, D. L.; Garza, D. G. Organometallics 1993, 12, 554. van Asselt, R.; Gielens, E. E. C. G.; Rülke, R. E.; Elsevier, C. J. J. Chem. Soc., Chem. Commun. 1993, 1203. Markies, B. A.; Verkerk, K. A. N.; Rietveld, M. H. P.; Boersma, J.; Kooijman, H.; Spek, A. L.; van Koten, G. J. Chem. Soc., Chem. Commun. 1993, 1317. Rülke, R. E.; Kliphuis, D.; Elsevier, C. J.; Fraanje, J.; Goubitz, K.; van Leeuwen, P. W. N. M.; Vrieze, K. J. Chem. Soc., Chem. Commun. 1994, 1817. Green, M. J.; Britovsek, G. J. P.; Cavell, K. J.; Skelton, B. W.; White, A. H. Chem. Commun. 1996, 1563. Hoel, G. R.; Stockland Jr., R. A.; Anderson, G. K.; Ladipo, F. T.; Braddock-Wilking, J.; Rath, N. P.; Mareque-Rivas, J. C. Organometallics 1998, 17, 1155. Luinstra, G. A.; Brinkmann, P. H. P. Organometallics 1998, 17, 5160. Braunstein, P.; Frison, C.; Morise, X. Angew. Chem., Int. Ed. 2000, 39, 2867. Bray, K. L.; Charmant, J. P. H.; Fairlamb, I. J. S.; Lloyd-Jones, G. C. Chem. Eur. J. 2001, 7, 4205.

Catellani, M.; Mealli, C.; Motti, E.; Paoli, P.; Perez-Carreño, E.; Pregosin, P. S. J. Am. Chem. Soc. 2002, 124, 4336. Spaniel, T.; Schmidt, H.; Wagner, C.; Merzweiler, K.; Steinborn, D. Eur. J. Inorg. Chem. 2002, 2868. Lloyd-Jones, G. C.; Slatford, P. A. J. Am. Chem. Soc. 2004, 129, 2690. Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2006, 128, 15415.
(61) Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 0323.
(62) Beletskaya, I. P.; Kashin, A. N.; Karlstedt, N. B.; Mitin, A. V.; Cheprakov, A. V.; Kazankov, G. M. J. Organomet. Chem. 2001, 622, 89. Alacid, E.; Alonso, D. A.; Botella, L.; Nájera, C.; Pacheco, M. C. Chem. Rec. 2006, 6, 117.
(63) Tsuchida, S.; Kaneshige, A.; Ogata, T.; Baba, H.; Yamamoto, Y.; Tomioka, K. Org. Lett. 2008, 10, 3635.
(64) Catellani, M.; Fagnola, M. C. Angew. Chem., Int. Ed. 1994, 33, 2421. Catellani, M.; Frignani, F.; Rangoni, A. Angew. Chem., Int. Ed. 1997, 36, 119. Catellani, M.; Cugini, F. Tetrahedron 1999, 55, 6595. Catellani, M.; Motti, E.; Faccini, F.; Ferraccioli, R. Pure Appl. Chem. 2005, 77, 1243. Catellani, M.; Motti, E.; Della Ca’, N. Acc. Chem. Res. 2008, 41, 1512.
(65) Cattalini, L.; Martelli, M. J. Am. Chem. Soc. 1969, 91, 312.
(66) Lewis, F. D.; Bassani, D. M.; Burch, E. L.; Cohen, B. E.; Engleman, J. A.; Reddy, G. D.; Schneider, S.; Jaeger, W.; Gedeck, P.; Gahr, M. J. Am. Chem. Soc. 1995, 117, 660.
(67) Crabb, T. A.; Mitchell, J. S.; Newton, R. F. J. Chem. Soc., Perkin Trans. 2 1977, 370.
(68) Bunce, R. A.; Peeples, C. J.; Jones, P. B. J. Org. Chem. 1992, 57, 1727.
(69) Pelletier, J. C.; Cava, M. P. Synthesis 1987, 474.
(70) Biscoe, M. R.; Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 6686.
(71) Sheldrick, G. M. SHELX-97; University of Göttingen, Göttingen, Germany, 1997.

Table 1. Crystal Data and Structure Refinement Details for Complexes 2a $\cdot \mathrm{CHCl}_{3}, \mathbf{2 b} \mathbf{- 1}, \mathbf{2 d} \mathbf{- 3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathbf{2 e - 4} \cdot 1 / 2 \mathrm{CHCl}_{3}$

	2a. CHCl_{3}	2b-1	2d-3•1/3 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$2 \mathrm{e}-4 \cdot 1 / 2 \mathrm{CHCl}_{3}$
formula	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BrCl}_{3} \mathrm{~N}_{2} \mathrm{OPd}$	$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{OPd}$	$\mathrm{C}_{19.33} \mathrm{H}_{33.67} \mathrm{Cl}_{1.67} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$	$\mathrm{C}_{26.5} \mathrm{H}_{33.5} \mathrm{Cl}_{2.5} \mathrm{~N}_{2} \mathrm{Pd}$
fw	579.07	453.29	491.63	575.08
temp (K)	100(2)	100(2)	100(2)	100(2)
cryst habit	colorless prism	yellow needle	yellow prism	yellow block
cryst size (mm)	$0.38 \times 0.07 \times 0.06$	$0.21 \times 0.09 \times 0.06$	$0.31 \times 0.19 \times 0.07$	$0.35 \times 0.29 \times 0.17$
cryst syst	monoclinic	monoclinic	triclinic	triclinic
space group	$P 2{ }_{1} / n$	$P 21 / c$	P $\overline{1}$	P $\overline{1}$
$a(\AA)$	13.7835(7)	8.2796(4)	11.1431(5)	8.9523(7)
$b(\AA)$	7.7422(4)	17.1677(8)	18.3285(8)	11.2509(9)
$c(\AA)$	22.1079(12)	27.9086(13)	18.4872(8)	13.0758(11)
α (deg)	90	90	60.820(2)	86.830(2)
β (deg)	02.136(2)	90.535(2)	88.523(2)	76.836(2)
$\gamma(\mathrm{deg})$	90	90	89.449(2)	86.417(2)
$V\left(\AA^{3}\right)$	2306.5(2)	3966.8(3)	3295.5(3)	1278.76(18)
Z	4	8	6	2
$\rho_{\text {calcd }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.668	1.518	1.486	1.494
$\mu(\mathrm{Mo}, \mathrm{K} \alpha)\left(\mathrm{mm}^{-1}\right)$	2.894	1.080	1.063	1.004
$F(000)$	1152	1856	1524	590
θ range (deg)	1.60-28.23	1.88-28.29	1.83-28.19	1.82-28.60
no. rflns collected	25736	45462	38363	15848
no. indep rflns	5354	9177	14783	6000
$R_{\text {int }}$	0.0302	0.0457	0.0247	0.0142
max, min transmsn	0.845, 0.636	0.938, 0.832	0.929, 0.647	0.848, 0.717
no. of restraints/params	77/274	2/475	18/754	7/304
goodness of fit on F^{2}	1.039	1.111	1.037	1.068
R1 ($I>2 \sigma(I)$)	0.0287	0.0381	0.0310	0.0299
wR2 (all rflns)	0.0746	0.0796	0.0790	0.0729
largest diff peak, hole (e \AA^{-3})	0.765, -0.746	0.801, -0.632	0.895, -1.234	1.953, -0.944

Table 2. Crystal Data and Structure Refinement Details for Compounds 3d, 3g, 6 and 7e-HOTf

	3d	3g	6	7e-HOTf
formula	$\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pd}$	$\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{NPd}$	$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{ClNPPd}$	$\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
fw	671.96	680.02	552.34	522.61
temp (K)	100(2)	100(2)	100(2)	100(2)
cryst habit	colorless needle	yellow prism	colorless block	colorless prism
cryst size (mm)	$0.25 \times 0.04 \times 0.04$	$0.16 \times 0.09 \times 0.06$	$0.22 \times 0.17 \times 0.06$	$0.35 \times 0.15 \times 0.11$
cryst syst	triclinic	triclinic	triclinic	triclinic
space group	P $\overline{1}$	P $\overline{1}$	P $\overline{1}$	P $\overline{1}$
$a(\AA)$	5.9788(8)	6.0466(5)	9.9381(3)	9.6895(8)
$b(\AA)$	9.4650(12)	10.1257(8)	11.6534(4)	10.3646(8)
$c(\AA)$	14.2252(18)	13.9180(11)	12.6531(4)	13.2662(12)
α (deg)	80.693(2)	101.558(2)	98.737(2)	90.106(2)
β (deg)	89.281(2)	96.832(2)	108.481(2)	106.203(2)
γ (deg)	74.993(2)	104.834(2)	113.649(2)	103.980(2)
$V\left(\AA^{3}\right)$	766.94(17)	793.89(11)	1205.64(7)	1238.05(18)
Z	1	1	2	2
$\rho_{\text {calcd }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.455	1.422	1.521	1.402
$\mu(\mathrm{Mo}, \mathrm{K} \alpha)\left(\mathrm{mm}^{-1}\right)$	0.816	0.780	0.963	0.186
$F(000)$	348	352	564	552
θ range (deg)	2.26-28.20	2.14-28.15	2.01-28.12	2.03-28.71
no. rflns collected	8928	9186	13985	15496
no. indep rflns	3448	3551	5394	5821
$R_{\text {int }}$	0.0409	0.0218	0.0168	0.0206
max, min transmsn	0.968, 0.822	0.955, 0.885	0.944, 0.816	0.980, 0.816
no. of restraints/params	1/188	1/197	25/299	0/337
goodness of fit on F^{2}	1.056	1.082	1.063	1.030
$\mathrm{R} 1(I>2 \sigma(I))$	0.0401	0.0271	0.0235	0.0394
wR2 (all rflns)	0.0850	0.0657	0.0573	0.1012
largest diff peak, hole (e	0.676, -0.428	0.803, -0.241	0.423, -0.288	0.461, -0.376

\AA^{-3})

For the Table of Contents use only

Ortho-palladated phenethylamine and phentermine react with olefins to give isolable and stable alkyl $\operatorname{Pd}(\mathrm{II})$ complexes containing β-hydrogens that can be used to prepare the corresponding ortho-vinylidated arylakylamines, tetrahydroisoquinolines or eigth-membered cyclic amidine derivatives

[^0]: ${ }^{\dagger}$ Dedicated to Prof. Aurelia Arcas and Maria-Teresa Chicote on occasion of their 60 birthdays.

