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Abstract: Land cover classification in semiarid areas is a difficult task that has been tackled using
different strategies, such as the use of normalized indices, texture metrics, and the combination of
images from different dates or different sensors. In this paper we present the results of an experiment
using three sensors (Sentinel-1 SAR, Sentinel-2 MSI and LiDAR), four dates and different normalized
indices and texture metrics to classify a semiarid area. Three machine learning algorithms were
used: Random Forest, Support Vector Machines and Multilayer Perceptron; Maximum Likelihood
was used as a baseline classifier. The synergetic use of all these sources resulted in a significant
increase in accuracy, Random Forest being the model reaching the highest accuracy. However, the
large amount of features (126) advises the use of feature selection to reduce this figure. After using
Variance Inflation Factor and Random Forest feature importance, the amount of features was reduced
to 62. The final overall accuracy obtained was 0.91 ± 0.005 (α = 0.05) and kappa index 0.898 ± 0.006
(α = 0.05). Most of the observed confusions are easily explicable and do not represent a significant
difference in agronomic terms.

Keywords: random forest; support vector machines; multilayer perceptron; feature selection; sentinel
missions; multisensor

1. Introduction

Semi-arid Mediterranean regions are extremely challenging for land cover classifica-
tion using remote sensing imagery. The reason is the landscape’s high spatial irregularity
related to specific socio-economic and physical characteristics. This irregularity includes
a high variety of spatial patterns, a strong fragmentation and a wide range of vegetation
coverages [1]. Distinction between crops and natural vegetation, rain-fed and irrigated
crops, or between some anthropogenic surfaces is a complex and difficult issue to solve,
hindered by the diverse spectral properties of rocks and soils and by the diverse biophysical
characteristics of plant species.

This issue has been addressed by using indices derived from reflectivity that em-
phasize different biophysical characteristics of the surface [2]. Other derived information
such as texture [1] has also been used to increase classification accuracy. Some descriptive
statistics derived from the Grey Level Co-occurrence Matrix (GLCM) [3] are the most ex-
tended texture features used for classification purposes [4,5]. Multi-temporal classification
approaches have also been used to improve accuracy, as it means the inclusion of a wider
range of information related to phenology, biophysical state and temporal evolution of
crops and natural vegetation [6–9].

Synthetic Aperture Radar (SAR) backscatter intensity information from co- and cross-
polarized channels has proven to be useful to identify different types of crops or biophysical
parameters such as plant phenology and morphology in many recent studies [10–12].
Metrics derived from SAR data as the ratio cross-/co-polarization have been also tested
in several studies to retrieve biophysical parameters for crop classification [6,13]. Soil
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moisture, roughness and topography have been shown to affect the surface backscatter [14];
hence SAR data may be also considered a proxy for other ancillary information. Other
indices derived from SAR polarizations, such as the Dual Polarization SAR Vegetation
Index (DPSVI) developed by [15], aim to separate bare soil from vegetation. SAR imagery
is being used currently for crop classification because it may provide information on soil
moisture, biomass or crop growth. Additionally, it has the advantage that is not affected by
either cloud coverage or the satellite passage time.

The Sentinel program from the European Spatial Agency (ESA) includes specific satel-
lites focusing on many different aspects of Earth observation, including land monitoring.
Sentinel-1 (S1) and Sentinel-2 (S2) are two constellations of twin-polar orbiting satellites
launched between 2014 and 2018. Their combined use allows high temporal resolution to
be achieved.

S1A and S1B operates in a C-band SAR, imaging day and night in all weather condi-
tions with the C-SAR instrument in four different modes, with variable resolution ranging
down to 5 m, and a coverage area up to 400 km. Revisit time combining ascending and
descending modes from both satellites is about a couple of days over Europe, achieving
a global coverage every two weeks. One of the four modes of acquisition of the reflected
signal is the Interferometric Wide-Swath (IW) mode, in which co- (VV) and cross- (VH)
polarization backscatter intensity values are obtained. The utility of Sentinel-1 SAR time
series for crop monitoring has been stated in several studies [11,12,16,17].

S2A and S2B contain a Multi-Spectral Instrument (MSI), an optical (passive) system
that samples 13 spectral bands from visible, near-infrared and short-wave infrared. They
have high temporal resolution (revisit time of 5 days at equator and 2–3 days under
cloud-free conditions in mid-latitudes) and high spatial resolution (10 m in the visible and
near-infrared spectra). Their data have already been tested in land cover classification
and biophysical parameters estimation [18–20] with good results due to their temporal
and spatial resolution, which is better than Landsat, but at the same time is completely
interoperable with it [21].

In recent years, there has been an increasing trend towards the synergetic usage of
optical and SAR data in land cover classification. Denize et al. [6] used S1 and S2 to
better identify winter land use in a small study area in northern France because of the
independence of SAR from atmospheric conditions. Campos et al. [7] classified land
cover using S1 and S2 in a study area, similar to ours both environmentally and in size.
In some cases segmentation was also included in the classification workflow [22]. The
temporal evolution of imagery from both sensors has also been used to improve land
cover classification [14]. Other studies used higher-resolution imagery combinations of
multispectral and SAR in smaller areas, even using time series [13]. Some studies focused on
some specific land covers or environments; for example, Haas et al. [23] or Tavares et al. [24]
combined S1 and S2 to map urban ecosystem services, and Amoakoh et al. [25] to classify
land cover in a peatland in Ghana.

Some studies demonstrate the significant improvement when using machine learning
(ML) methods for classification. Masiza et al. [26] compared Xgboost, Random Forest (RF),
Support Vector Machines (SVM), Neural Networks and Naive Bayes to classify the S1 and S2
combination in small farming areas. Dobrinić et al. [27] used machine learning methods (RF
and Extreme Gradient Boosting) for land cover classification in Lyon (France), increasing
overall accuracy from 85% to 91%, significantly improving classification in urban areas
and reducing confusions between forest and low vegetation. De Luca et al. [28] studied
the integration of both sensors using RF in a heterogeneous Mediterranean forest area,
including time-series of each SAR and optical bands and spectral indices; they obtained an
overall accuracy of 90% and the integration of SAR improved by 2.53%, which was obtained
using only optical data. Zhang et al. [9] studied the differences in temporal signatures
between vegetation cover types, combining three types of temporal information of S1 and
S2 using the SVM classifier. De Fioravante et al. [29] proposed a land cover classification
methodology for Italy based on decision rules using the EAGLE-compliant classification
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system [30], obtaining an overall accuracy of 83%, which seems to be much lower than those
obtained using machine learning. Most recent and innovative research includes further
comparisons with methods of Deep Learning and Artificial Neural Networks, as in [31]
or [32].

The synergetic use of optical and SAR data has already proven its utility also in
mapping and classifying different types and stages of crops [33], as well as some dif-
ferent agricultural practices [34] or problems in crops growing [35]. It has also proven
useful in forest applications. Andalibi et al. [36] used S2, Landsat8, MODIS and AVHRR
to estimate the plant canopy Leaf Area Index. Zhang et al. [37] integrated topography
indices with S1 and S2 to estimate forest height using different machine learning algo-
rithms. Guerra Hernandez et al. [38] mapped above-ground biomass by integrating
ICESat-2, S1, S2, ALOS2/PALSAR2, and topographic information in Mediterranean forests.
Kabisch et al. [39] combined Landsat, S2, and RapidEye to analyze land use change in
urban areas.

Recently, Light detection and ranging (LiDAR) data are being increasingly used in
an integrated manner with multispectral information and radar in land cover analysis.
The availability of accurate information about the height of objects such as trees or buildings
may improve the accuracy of the resulting metrics. It has been used to map forest coverage
metrics. For instance, Heinzel et al. [40] combined LiDAR and high-resolution CIR imagery
to identify trees in a small study area. Montesano et al. [41] used Landsat, SAR and LiDAR
to improve the estimation of forest biomass. More recently, Chen et al. [42], Morin et al. [43]
or Torres de Almeida et al. [44] combined S1, S2 and LiDAR to estimate forest aboveground
biomass. Spectral and LiDAR information have also been combined to analyze urban
areas [45,46]. Rittenhouse et al. [47] combined Landsat, LiDAR and aerial imagery to
estimate forest metrics with which to establish a forest classification.

Since the launch of new satellites such as GEDI or ICEsat2, the availability of remote
LiDAR data has increased, providing another source of information that is being increas-
ingly used to complement multispectral and other derived variables, mainly to map forest
coverage metrics [42,43,48].

One of the conclusions that can be drawn from these studies is that the more sources,
the better results. However, an increase in the number of sources indeed increases the di-
mensionality of the problem, so feature selection based on importance [49,50] or comparing
different subsets extracted from the main data [44] is usually performed

Although S1 and S2 have been previously combined to improve land cover classifica-
tion accuracy, the inclusion of LiDAR metrics in the feature dataset has been mainly focused
to the estimation of specific metrics in specific environments such as forest, agricultural and
urban areas. The aim of this study was to find out whether a synergetic use of different type
of sensors, S1, S2 and LiDAR, and features extracted as indices and texture measures may
enhance classification accuracy in a semi-arid Mediterranean area when trying to separate
covers of different nature, but similar spectral characteristics, at a regional scale. The most
used algorithms to this purpose are RF, SVM and Neural Networks, so we decided to com-
pare their performance, using a Maximum Likelihood Classifier (MLC) as a baseline model.
We also used two-step feature selection to reduce dimensionality of models based first on
the analysis of the collinearity of predictors and followed by an analysis of the importance
for the model of the remaining features. Among the novelties proposed in this study, we
explore the improvement in the classifications obtained using the following strategies:
(a) the incorporation of information from different sensors with temporal information to
address phenological changes in vegetation and (b) the performance of different machine
learning algorithms. In addition, once RF has been identified as the algorithm that obtains
the best results while reducing the computational cost, a feature selection procedure is
proposed to reduce the high dimensionality caused by the integration of information from
three different sensors. The analysis of per-class feature importance produced interesting
insights about which features are more relevant to increase the accuracy of each different
class. Another interesting aspect of this study is the use of public LiDAR data that are



Remote Sens. 2023, 15, 312 4 of 29

openly available for the whole Spanish territory, so this study could be easily replicated in
other areas.

2. Materials and Methods
2.1. Study Area

The study area is the Mar Menor basin (1275 km2) in Southeast Spain (Figure 1). It is
characterized by a slight slope of less than 10% from northwest to southeast, directing its
drainage towards the Mar Menor lagoon. The climate is Mediterranean semiarid, with high
rainfall irregularity. The annual mean rainfall is less than 300–350 mm, depending on the
proximity to the coastal line. Additionally, the high spatial and temporal variability of
rainfall results in a usual alternation of extreme droughts and floods. Temperatures are
warm all year long, with a mean ranging from 16 ◦C to 18 ◦C and annual mean maximum
reaching more than 42 ◦C. The Mar Menor (135 km2) is the largest coastal saline lagoon in
the Western Mediterranean Sea. It is almost closed by a sand barrier that is 22 km long
and between 100 and 1200 m wide named La Manga del Mar Menor. The lagoon and its
surroundings encompass the most important figures of protection delivered by European
laws because of their remarkable ecological values.

Figure 1. Study area: Mar Menor Basin.

Despite the low rainfall, the soil features in the inland area of the basin, as well as its
temperature and orography make the area very well fit for agricultural purposes. It has
been cultivated since ancient times, and it has been progressively changing, during the
last fifty years, from rain-fed to irrigated agriculture using water transferred from river
Tagus, water from desalination plants and also underground water. The inland area of
the basin is then one of the main agricultural surfaces in Murcia Region. According to
regional statistics [51], rain-fed crops and low-density tree fields are currently less than
4500 ha, mainly cultivated with almond and olive trees. Some vineyard fields remain
rain-fed, although they have been gradually abandoned and neglected, or have been
transformed to use irrigation. Fields of irrigated grass crops alternate with irrigated dense
tree crops in lower slope areas, representing nearly 38,000 ha. Main irrigated crops include
perennials such as citrus and vineyards, and annual horticultural crops such as pepper,
lettuce, artichoke, cauliflower, broccoli, melon and watermelon. Greenhouses cover more
than 1500 ha in this area, although this figure only refers to surfaces completely closed with
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a plastic structure, leaving out any other type of cover such as nets used to prevent birds
and insects from nibbling fruit on trees, and also to prevent hail damages.

Considering natural vegetation, there is a wide range of biodiversity and vegetation
heterogeneity, mainly Mediterranean scrubs, although there are also patches of Mediter-
ranean forest. The other main use in this territory is urban; many large urbanized surfaces,
whose summer population increase is hard to quantify, can be found along the coastline
delimiting the lagoon. The agricultural and residential development in the basin have been
affecting the marine ecosystem for several decades [52,53].

2.2. Datasets

Eight SAR and MSI images (four images each) were selected. Instead of using a date
for each season, imagery were selected according to the sowing and harvesting calendar
for most of the crops in the area (Table 1). Including temporal reflectivity differences due to
phenologic and agronomic stages increases the information available to discriminate among
classes. Images were downloaded from Copernicus Open Access Hub repository [54].

Table 1. Sentinel-1 and Sentinel-2 images used in this study.

Sensor Season Date File

S1 (SAR) Autumn 8 Nov 2018 S1B_IW_GRDH_1SDV_20181108T060953_20181108T061018_013509_018FF3_AD05
S1 (SAR) Winter 24 Mar 2019 S1B_IW_GRDH_1SDV_20190224T060950_20190224T061015_015084_01C30C_24BF
S1 (SAR) Early spring 13 April 2019 S1B_IW_GRDH_1SDV_20190413T060951_20190413T061016_015784_01DA0A_1C2E
S1 (SAR) Late spring 19 May 2019 S1B_IW_GRDH_1SDV_20190519T060952_20190519T061017_016309_01EB1A_8F1C
S2 (MSI) Autumn 7 Nov 2018 S2A_MSIL1C_20181107T105231_N0207_R051_T30SXG_20181107T130405
S2 (MSI) Winter 25 Feb 2019 S2A_MSIL1C_20190225T105021_N0207_R051_T30SXG_20190225T125616
S2 (MSI) Early spring 11 April 2019 S2B_MSIL1C_20190411T105029_N0207_R051_T30SXG_20190411T130806
S2 (MSI) Late spring 10 June 2019 S2B_MSIL1C_20190610T105039_N0207_R051_T30SXG_20190610T125046

2.2.1. Sentinel-2 Data

S2 Top of Atmosphere (TOA) data (L1C product) were acquired and corrected with
ACOLITE [55–57] using the interface and code freely distributed by the Remote Sensing
and Ecosystem Modeling (REMSEM) team, part of the Royal Belgian Institute of Natural
Science (RBINS) and Operational Directorate Natural Environment (OD Nature). This
correction method produced a more accurate classification than others such as Sen2Cor [58]
or MAJA [59] in the same study area [60].

The MSI bands used were those with 10 and 20 m of spatial resolution (Table 2),
with the latter resampled to 10 m resolution. Eleven bands per date are used, making a
total of 44 features.

Table 2. MSI spectral bands selected for classification, including Visible (VIS), Near Infra-Red (NIR)
and Short Wave Infra-Red (SWIR).

Band Central Wavelength S2A
(nm) Bandwidth (nm) Resolution (m)

B1 AOT 442.7 21 60
B2 Blue 492.4 66 10
B3 Green 559.8 36 10
B4 Red 664.6 31 10
B5 NIR 704.1 15 20
B6 NIR 740.5 15 20
B7 NIR 782.8 20 20
B8 NIR 832.8 106 10
B8A NIR 864.7 21 20
B11 SWIR 1613.7 91 20
B12 SWIR 2202.4 175 20
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The use of indices to recognize biophysical patterns on the Earth surface is a common
and effective practice supported in a wide range of studies [61–64]. Indices highlight
basic interactions between spectral variables. Hence, some indices were calculated from
MSI bands:

• The Normalized Difference Vegetation Index (NDVI) [65] is used for measuring and
monitoring vegetation cover and biomass production with satellite imagery. It is
calculated with Equation (1).

NDVI =
B8A − B4

B8A + B4
(1)

where B8A is a narrow Near-Infrared (NIR) band for vegetation detection and B4 is
the red band (R) from S2A MSI.

• Tasseled cap brightness (TCB) [66] tries to emphasize spectral information from satel-
lite imagery. Spectral bands from the visible and infrared (both near and shortwave)
are used to obtain a matrix that highlights brightness, greenness, yellowness, none-
such [66] and wetness [67] coefficients. In this case, we used the brightness equation,
also known as the soil brightness index (SBI), which detects variations in soil re-
flectance. The equation for S2 is:

TCB = (0.3037 · B2) + (0.2793 · B3) + (0.4743 · B4) + (0.5585 · B8) + (0.5082 · B11) + (0.1863 · B12) (2)

where B1, B2 and B3 are the blue (B), green (G) and red (R) bands, respectively; B8 is
the NIR band; and B11 and B12 are the SWIR from S2A MSI.

• The Soil Adjusted Vegetation Index (SAVI) [68]: Due to the NDVI’s sensitivity to
the proportion of soil and vegetation, this index is added to the NDVI a soil factor.
In semiarid areas, this is a way to fit the index to background average reflectance.
The equation is:

SAVI = (1 + L)
B8 − B4

B8 + B4 + L
(3)

where B8 is the NIR band, B4 is the R band and L is a factor for soil brightness with a
value of 0.5 to fit with the majority of covers.

• The Normalized Difference Built-up Index (NDBI) [69] is used to distinguish built sur-
faces, which receive positive values, from bare soils. It is calculated with Equation (4):

NDBI =
B11 − B8

B11 + B8
(4)

where B11 is the SWIR band and B8 the NIR band.
• The Modified Normalized Difference Water Index (MNDWI) [70] was proposed to

detect superficial water. However, due to the relation between SWIR and wetness in
soils, it can be also used to detect water in surfaces of vegetation or soil. The index is
calculated with Equation (5):

MNDWI =
B3 − B11

B3 + B11
(5)

where B3 is the G band and B11 the SWIR band.

These indices were selected from the large amount of available indices because they
cover the main features in the study area that affect reflectivity values and coverages (bare
soil, vegetation and water availability). In addition, tasseled cup brightness averages
reflectivity. There are five indices and four dates, making a total of 20 features.

Other metrics obtained from optical data are texture features, namely some of the
Haralick’s GLCM texture metrics [3] based on tonal differences in pair of pixels within a
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predefined neighborhood. These metrics allow to distinguish vertical patterns of parallel
lines more than one pixel wide. However, the large number of Haralick metrics and the use
of four images multiply massively the number of possible layers. To tackle this problem
we used only the three such metrics recommended in [71]: Contrast, entropy and angular
second moment (Equations (6) to (8)).

Contrast =
N−1

∑
i,j=0

Pi,j(i− j)2 (6)

Entropy =
N−1

∑
i,j=0

Pi,j(− log Pi,j) (7)

AngularSecondMoment =
N−1

∑
i,j=0

P2
i,j (8)

where Pi,j is the probability of i and j values occurring in adjacent pixels, and i and j are the
labels of the column and row of the GLCM, respectively.

Such metrics were calculated on two summary layers per date: the first principal
component of the spectral layers (that is, an albedo layer) and the NDVI. That means four
dates, two summary layers and three GLCM metrics, making a total of 24 features.

2.2.2. Sentinel-1 Data

SAR images were selected in the Interferometric Wide (IW) mode with a full swath
of 250 km and 5 × 20 m of spatial resolution in single look. This is the main acquisition
mode over Earth’s surface using Terrain Observations by Progressive Scans SAR (TOPSAR),
which provides three sub-swaths composed of a series of bursts, obtained by steering the
beam from backward to forward in the azimuth direction with enough overlapping to
ensure continuous coverage when merged. The incidence angle used for IW mode ranges
from 29.1◦ to 46◦. To obtain the final Ground Range Detected (GRD) product, all bursts and
sub-swath are merged and resampled to the common pixel spacing range, which means
that GRD product data have been focused, multi-looked and projected to ground range
using an Earth ellipsoid model.

Images taken in ascending or descending orbit may have differences in backscatter
intensity because of the impact of the local incidence angle on the pixel area. All images
used in this study are in descending mode with incidence angles ranging from almost
30.5 to slightly more than 46.4 degrees. The possible geometric issues were corrected
applying a radiometric terrain correction in the preprocessing workflow [72], although the
study area has little slope, so such geometric issues were probably not very serious before
correcting them.

Pre-processing of S1 SAR images was carried out in SNAP 7.0 in batch mode, following
the next steps: (1) radiometric calibration, (2) speckle filtering, (3) terrain correction and (4)
conversion to dB. They were also resampled in step 3 to 10 m using the SRTM 1Sec HGT as
Digital Elevation Model (DEM) with the nearest neighbor model. The projection used was
the same used by the optical images to facilitate collocation with S2 data. Speckle filtering
was performed with a Lee Sigma filter window size of 5 × 5, a sigma of 0.9 and a target
size window of 3 × 3. S1 IW GRD images may include amplitude and intensity bands in
co- and cross-polarization (VV, VH), but for this study only intensity was used.

In addition, DPSVI was calculated to separate bare soil from vegetation:

DPSVI =
(σ0

VV + σ0
VH)

σ0
VV

(9)

That means three features (VV, VH and DPSVI) per date, making a total of twelve features.
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2.2.3. LiDAR Metrics

LiDAR is an active remote sensing system that uses laser pulses in the visible spectrum
to record the altitude of several points on the Earth’s surface [73]. The Spanish Geographical
Institute (IGN) maintains a National Aerial Orthophotography Plan (PNOA) [74] with a
sampling density of 0.5 points per square meter. Data used in this study were obtained from
August 2016 to March 2017. The recorded points are pre-classified according to the Ameri-
can Society for Photogrammetry and Remote Sensing (ASPRS) standards. Although the
accuracy of this classification is unknown, we decided not to reclassify the points to avoid
an over-complication of the process. This data can be downloaded from the website of the
IGN’s National Centre for Geographic Information [75].

In the LiDAR preprocessing phase, points not belonging to bare soil, vegetation,
buildings or water were filtered out. Then, the proportion of points of low vegetation (ppB),
medium size vegetation (ppM), high vegetation (ppA), buildings (ppE) or water (ppH) were
computed per each 10× 10 m cell corresponding to the S2 images. Additionally, the number
of medium or high vegetation points whose nearest neighbor is another medium or high
vegetation point (Nvv) was also computed.

The altitude of the terrain obtained from the Spanish official DEM with resolution
5 m [76] was subtracted from each of the points to obtain their heights. With these estimated
heights, we calculated the average height and standard deviation of each of the classes
in each 10 × 10 cell. The resulting layers are average height of small vegetation (mZB),
average height of medium size vegetation (mZM), average height of high vegetation (mZA),
average height of building points (mZE), average height of ground points (mZG), standard
deviation of small vegetation (sZB), standard deviation of medium size vegetation (sZM),
standard deviation of high vegetation (sZA), standard deviation of building points (sZE)
and standard deviation of ground points (sZG). If a cell has no points of a given class its
average and standard deviation are estimated as 0.

The Hopkins statistic [77] is a method of measuring the cluster tendency of a dataset.
It is defined as:

H =
∑m

i=1 ud
i

∑m
i=1 ud

i + ∑m
i=1 wd

i
(10)

where ud
i is the distance of each point to its nearest neighbor, and wd

i is the distance in m of
randomly chosen points to their nearest neighbor. The R package clustertend [78] allows to
calculate the Hopkins index. We calculated the spatial cluster tendency (HI) of medium
and high vegetation points in each 10 × 10 cell.

The NbClust function in the NbClust R package [79] allows to calculate the optimal
number of clusters that might be extracted from a set of points. It provides 30 different
cluster indices and selects the number of clusters that maximizes most of them. We also
calculated the optimum number of clusters of medium and high vegetation points according
to this function in each 10 × 10 cell (nCl).

Ripley’s K function [80] measures the tendency of points to appear dispersed or
forming clusters. It is defined as:

K(d) =
A
n2 ∑

i=1
nCi,d (11)

where d is a given distance, A is the area of the analyzed territory, n is the number of points
and Ci,d is the number of points whose distance to point i is lower than d. Values of K(d)
larger than the expected indicate a clustered point pattern, whereas K(d) values lower than
the expected indicate a regular point pattern [80]. We calculated a relative K function as:

Kr(d) =
K(d)− Kth(d)

Kth(d)
(12)
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where Kth(d) is the expected value of K(d) assuming a random point distribution. As the
function is calculated at several distances, it may be used to estimate the clustered/regular
pattern at different scales. The R package spatstats [81] was used to calculate the K function.

We extracted four metrics from the Kr function for medium and high vegetation points:
the maximum and minimum values (wCv and wDv respectively) and the distances at
which they occur (wCd and wDd respectively). In summary, twenty-two features from a
single LiDAR image were obtained.

2.2.4. Training Datasets

Eleven different datasets were generated to obtain different classifications, five with
each different predictor set separately: S1, S2, indices, texture and LiDAR metrics, and six
other grouping different sets of predictors that added new information to every new dataset:
S1+S2, S1+LiDAR, S2+LiDAR, S1+S2+LiDAR+indices, S1+S2+LiDAR+indices+ textures.
The datasets by sensor or derived information included 44 reflectivity features from optical
sensor data, 20 indices derived from them, 24 texture measures also obtained from optical
data, 8 SAR bands and the 4 DPSVI derived from them, and 26 LiDAR metrics. Hence the
number of features ranged from 12 (S1) to 126 (S1+S2+LiDAR+indices+texture). Table 3
summarizes all of the datasets. The names of the features are formed by combining the
name of the layer and its date.

Table 3. Summary of the datasets. The names of the features are formed by combining the name of
the layer and its date.

Dataset Variables Dates

S1 VV VH 8 Nov 2018, 24 Mar 2019, 13 Apr 2019, 19 May 2019
S1 indices DPSVI 8 Nov 2018, 24 Mar 2019, 13 Apr 2019, 19 May 2019
S2 B01 B02 B03 B04 B05 B07 B08 B08A B11 B12 7 Nov 2018, 25 Feb 2019, 11 Apr 2019, 10 Jun 2019
S2 indices NDVI SAVI NDBI MNDWI 7 Nov 2018, 25 Feb 2019, 11 Apr 2019, 10 Jun 2019
S2 texture PC1 NDVI Entropy Contrast 7 Nov 2018, 25 Feb 2019, 11 Apr 2019, 10 Jun 2019

Second angular moment
LiDAR ppA ppM ppB ppH ppE mZG mZB mZM Aug 2018

mZH mZA mZE sZG sZB sZM sZA sZE sZH
Hv He Nk Nke NvvwCv wCd wDv wDd

2.3. Training Areas and Classification Scheme

Training areas were digitized using the aerial ortophotography from the Spanish
PNOA [74] acquired in 2016 and 2019. A stratified sampling design was conducted to guar-
antee a reasonable presence of all classes. Representativity for the set was enhanced using
Isolation Forest with the methodology proposed in [82], resulting in a total of 131 polygons,
distributed as shown in Table 4. The classification scheme adopted was decided grouping
land covers in the study area. Netting is a class related with recent agricultural practices
that produces spectral responses different from those of greenhouses or irrigated crops. It
consists of covering trees using nets with diverse mesh sizes to prevent both insects and
birds from eating the fruit, and to protect from hail damages. Although some residual
rain-fed areas exist in the study area, they are not included in the classification scheme
because most of them are in a process of transformation to irrigation or being abandoned.
In both cases their spectral signatures are similar to bare soil areas. We prefer to classify
them as bare soil or scrub, as their surfaces are not in production any longer and are usually
susceptible to a change of use.

2.4. Image Classification

Supervised pixel-based image classification was carried out with the different feature
sets using three algorithms: RF, SVM and Multilayer Perceptron (MLP). Maximum Likeli-
hood (MLC) was also used as a baseline classifier to compare these algorithms using the R
package tabularMLC [83].
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Table 4. Land covers taken into account in the classification, including the number of polygons for
training and validation and number of total pixels per class

Id Class Description Polygons Pixels

1 Forest Mediterranean forest 10 1000
2 Scrub Scrubland 12 1200
3 Dense tree crops Fruit and citrus trees 18 1800
4 Irrigated grass crops Mainly horticultural crops 10 1000
5 Impermeable All artificial surfaces 18 1639
6 Water Water bodies, including artificial reservoirs 12 1158
7 Bare soil Uncovered or low-vegetation covered land 11 1055
8 Greenhouses Irrigated crops surfaces under plastics structures 26 2600
9 Netting Irrigated tree and vegetables crops covered by nets 14 1400

2.4.1. Random Forest

RF [84] is a non-parametric classification and regression method based on an ensemble
of decision trees, usually between 500 and 2000, with two procedures to reduce correlation
among trees: (1) each tree is trained with a bootstrapped subsample of the training data,
and (2) the feature used to split each node of the trees is selected from a randomly generated
subset of features. Although counterintuitive, this modifications reduce correlation among
trees, giving more sense to the whole ensemble learning concept [8,85]. Once all trees are
calibrated, each one contributes with a vote to classify every new pixel. Finally, the pixel is
assigned to the most-voted class. Another option is to obtain the proportion of trees that
voted for each class and use this information to obtain metrics of uncertainty.

The number of trees (ntree) and the number of features randomly chosen to split each
node (mtry) are the parameters that the user must decide upon or optimize. The default
values for the parameters (ntree = 500 and mtry = f loor(

√
p), where p is the number

of features) usually allow a high accuracy to be reached [86]. In fact, depending on the
problem, a smaller number of trees might be accurate enough, but 500 is a safe default that
does not increase the computational cost excessively.

Although RF is not usually the most accurate machine learning (ML) method, it has
several advantages [86–91]: (1) It is robust in case of high dimensionality, correlated features,
small sample sizes or outliers. (2) It is possible to obtain a ranking of the importance of the
features by measuring how the accuracy decreases when a feature is randomly reshuffled
while the rest remains unchanged. (3) It is possible to evaluate the effect of the features in
the model that can then be used as an explicative model, not only predictive. (4) It is possible
to compute the distances between pairs of cases that could be used in an unsupervised
classification. (5) It is computationally lighter than other ML methods, especially taking into
account that it is not very sensitive to the values of the parameters, significantly reducing
the computational cost of its calibration. (6) It provides an internal accuracy metric called
Out-Of-Bag Cross Validation (OOB-CV) that has been considered an unbiased estimate of
generalization error, provided that the training data are unbiased and randomly sampled.
However, the authors of [90] highlighted that to calculate OOB-CV, RF internally splits
each training polygon and uses its pixels both for training and testing. As pixels belonging
to a single polygon are usually quite similar, the reported OOB-CV accuracy is easily
overestimated. Ref. [90] proposed a modification of the algorithm (Spatial Dependence
Random Forest—SDRF) to divide whole polygons, instead of pixels, into in-bag and out-of-
bag.

The R libraries randomForest [92] and SDRF [90] (derived from the former) were used.
The default value of mtry was used, but ntree was set as 2000 to avoid high variability in
the feature importances when the number of predictors is quite high and they are collinear.

2.4.2. Support Vector Machines

SVM [93,94] is a very flexible classification algorithm that separates classes with
optimal margin non-linear hyperplanes in the feature space. A cost parameter determines
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the degree of flexibility of such hyperplanes. Low flexibility could lead to underfitting,
but high flexibility could lead to overfitting. A kernel transformation allows to linearize
non-linear frontiers. Thus, the parameters used by SVM are the type of kernel, a parameter
of the kernel function and the cost parameter. We used the R package kernlab [95].

SVM is very sensitive to the values of these parameters, so an optimization strategy is
needed. In this case we used a Gaussian kernel whose parameter (σ) controls the width
of the function (low σ values tend to produce overfitting, and very high σ values tend to
produce underfitting). This parameter was optimized following the strategy proposed
in [96]. The C parameter was optimized using a five-fold cross-validation without repetition.
Two cross-validation loops were designed to optimize parameter values in the inner loop
and to test their accuracy in the outer loop.

2.4.3. Multilayer Perceptron

MLP is the most used variant of neural networks. It consists on an input layer, with as
many inputs as predictors, one or mode hidden layers with a variable number of neurons,
and an output layer with as many outputs as classes. Each neuron performs a linear
combination of its inputs and applies a nonlinear transformation to the result to produce
the output of the neuron. In this case we have used the sigmoid transformation function
for the hidden layers and softmax for the output layer. The well-known backpropagation
algorithm [97] is used to train the neural network. We used the RSNNS package [98] to
build and calibrate the neural networks using the default learning rate and 100 epochs.

The optimization of the MLP was performed following the same strategy as in the case
of SVM, optimizing the number of hidden layers (one or two) and the number of neurons
(1 to 13).

2.5. Validation

Overal accuracy and kappa index were used for the comparison of the accuracy
reached with different datasets, including 95% confidence intervals to decide the signifi-
cance of differences. The validation used was a Leave-One-Out Cross-Validation (LOOCV)
at the polygon level (n = 131); this process consists of iteratively training the classification
models with all training polygons except one, which is left out of the process for testing.
The caret library [99] was used to obtain confusion matrices and other accuracy statistics.

Both statistics have been subjected to recent critiques [100–102] as not giving all of
the necessary information to evaluate the final map accuracy. However they have the
advantage of providing a global statistics summarizing all of the accuracy issues, which
is convenient when comparing large amounts of classifications; in addition, despite the
criticism, both are still widely used.

However, when analyzing the final map, and according with the recommendations in
the aforementioned papers, we will provide per-class accuracy statistics: precision recall
and balanced accuracy and a graphical representation of omission and commission errors
Surfaces obtained for each class will also be compared with official statistics to detect and
explain any major deviation.

We calculated the 95% confidence interval of overall accuracy and kappa index,
and considered that the estimated accuracies of two methods are different if their confidence
intervals do not overlap.

2.6. Feature Selection

Because of the high number of features (126) and the high probability of multicollinear-
ity among them, feature selection was advisable. The Variance Inflation Factor (VIF) is a
feature selection method commonly used to detect collinear features. It was calculated
for the predictors used in the best of the prior classifications. It estimates a linear model
to predict each feature using the rest as predictors and computes its VIF = 1/(1− R2).
The higher the VIF, the more collinear the feature. We calculated VIF in a recursive manner,
eliminating in each step the feature with the highest VIF until all VIFs are smaller than a
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threshold. There are no rules of thumb to establish such as a threshold. Researchers in re-
cent decades have suggested that this threshold should be established with caution, taking
into account other factors that may have influence the variability of predictors [103,104].
We tested several thresholds and calculated the resulting OOB-CV accuracy using the
SDRF function.

As VIF only takes into account collinearity, it might miss non-linear relations among
features. Thus, once the appropriate VIF threshold was selected, the RF ranking of feature
importance was used as a second feature selection step. Inside a leave-one-polygon-out CV
loop, an RF model using 2000 trees was trained to obtain the feature importance ranking.
The features were then sequentially eliminated from the least important until using just the
most important. The resulting accuracies were then computed using SDRF. This process
was repeated 131 times leaving out a different training polygon each time. The result
was a list of 131 importance rankings and a matrix of accuracies with polygons in rows
and features used in columns. Finally, the resulting rankings for all of the polygons were
compared to check if they were similar enough to obtain a final feature subset with which
to build an accurate and parsimonious classification model with RF.

3. Results
3.1. Classifications with Multisensor and Derived Predictors

Table 5 shows the classification accuracy metrics when using each of the datasets
with the four classification algorithms as well as the tested combinations. Figure 2 shows
overall accuracy values; it can be seen that the response of the three machine learning
algorithms to the changes in predictor sets is very similar, whereas the response of MLC is
clearly different.
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Figure 2. Classification accuracy by dataset and classification method with 95% confidence intervals.
LOOCV by polygon (n = 131).

It is noteworthy that, when using individual datasets, the greatest accuracy was
reached using normalized indices. It seems that such indices are useful as a variable trans-
formation to increase class separability. The accuracy of the different dataset combination
was not higher, except when combining all datasets and all datasets except Texture. S1 and
LiDAR alone produced quite less accurate models than S2- or S2-derived datasets, and
even S1 and S2 did not outperform the S2 indices. It is only when all of the datasets were
used in a synergetic way that maximum accuracy was achieved.

In most cases, RF was the most accurate method; only for S2 and S2+LiDAR, SVM and
MLP, respectively, were the most accurate. However, in both cases RF cannot be considered
significantly less accurate than those methods, as their confidence intervals overlap. In all
cases the accuracy of the baseline model was significantly lower than that of the machine
learning methods, except when using just S1 data. In this case Maximum Likelihood
accuracy is not significantly lower than RF’s and both are significantly higher than SVM’s
and MLP’s.
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Table 5. Classification accuracy by dataset and classification method including overall accuracy and
kappa index values with 95% confidence intervals. LOOCV by polygon (n = 131). The most accurate
algorithm is highlighted in bold for each dataset combination.

Predictors Model Accuracy Acc. 95%CI Kappa Index Kappa 95%CI

S1

MLC 0.5725 0.5639, 0.5811 0.5115 0.5017, 0.5213
MLP 0.5520 0.5433, 0.5606 0.4840 0.4741, 0.4939
SVM 0.5557 0.5471, 0.5643 0.4903 0.4804, 0.5001
RF 0.5760 0.5674, 0.5846 0.5113 0.5015, 0.5211

S2

MLC 0.6331 0.6247, 0.6414 0.5807 0.5712, 0.5902
MLP 0.8693 0.8633, 0.8751 0.8509 0.8443, 0.8576
SVM 0.8708 0.8631, 0.8747 0.8527 0.8461, 0.8593
RF 0.8704 0.8645, 0.8762 0.8519 0.8453, 0.8586

LiDAR

MLC 0.4496 0.441, 0.4582 0.3866 0.377, 0.3962
MLP 0.6173 0.6089, 0.6258 0.5620 0.5524, 0.5716
SVM 0.6597 0.6515, 0.6679 0.6115 0.6022, 0.6209
RF 0.6992 0.6912, 0.7071 0.6565 0.6474, 0.6655

Indices

MLC 0.4683 0.4596, 0.4769 0.3688 0.3586, 0.3791
MLP 0.8370 0.8305, 0.8433 0.8141 0.8068, 0.8214
SVM 0.8540 0.8478, 0.8601 0.8336 0.8266, 0.8405
RF 0.8822 0.8765, 0.8877 0.8656 0.8593, 0.8720

Texture

MLC 0.4802 0.4715, 0.4888 0.4161 0.4064, 0.4258
MLP 0.6890 0.6809, 0.697 0.6445 0.6353, 0.6536
SVM 0.7238 0.716, 0.7315 0.6844 0.6756, 0.6933
RF 0.7507 0.7431, 0.7582 0.7144 0.7058, 0.7229

S1+S2

MLC 0.6300 0.6216, 0.6384 0.5760 0.5665, 0.5856
MLP 0.8661 0.8601, 0.8719 0.8473 0.8406, 0.8541
SVM 0.8682 0.8622, 0.874 0.8494 0.8428, 0.8561
RF 0.8793 0.8736, 0.8849 0.8621 0.8556, 0.8685

S1+LiDAR

MLC 0.5976 0.589, 0.6061 0.5475 0.5379, 0.557
MLP 0.7123 0.7044, 0.7202 0.6701 0.6611, 0.6791
SVM 0.7239 0.7161, 0.7317 0.6847 0.6759, 0.6935
RF 0.7861 0.7789, 0.7932 0.7554 0.7472, 0.7635

S2+LiDAR

MLC 0.4563 0.4476, 0.4649 0.3937 0.3841, 0.4033
MLP 0.8789 0.8734, 0.8841 0.8611 0.8550, 0.8701
SVM 0.8669 0.8609, 0.8727 0.8481 0.8414, 0.8548
RF 0.8766 0.8708, 0.8822 0.8591 0.8526, 0.8656

S1+S2+LiDAR

MLC 0.6147 0.6062, 0.6231 0.5660 0.5565, 0.5755
MLP 0.8700 0.864, 0.8758 0.8516 0.8449, 0.8582
SVM 0.8699 0.864, 0.8757 0.8515 0.8448, 0.8581
RF 0.8778 0.8721, 0.8835 0.8605 0.8540, 0.867

S1+S2+LiDAR+Indices

MLC 0.5840 0.5754, 0.5925 0.5267 0.517, 0.5364
MLP 0.8848 0.8792, 0.8903 0.8686 0.8623, 0.8749
SVM 0.8707 0.8648, 0.8764 0.8525 0.8458, 0.8591
RF 0.8883 0.8827, 0.8937 0.8725 0.8662, 0.8787

S1+S2+LiDAR+Indices+Texture

MLC 0.7040 0.696, 0.7119 0.6611 0.6521, 0.6702
MLP 0.8770 0.8712, 0.8826 0.8595 0.8531, 0.866
SVM 0.8853 0.8797, 0.8908 0.8692 0.8629, 0.8755
RF 0.8997 0.8944, 0.9048 0.8856 0.8797, 0.8915

3.2. Feature Selection

As the highest accuracy is reached using all datasets and RF, the next step is to try
to select the best subset of predictors to achieve a similar, or possibly better, accuracy.
The first step is to use VIF to eliminate collinear predictors. Instead of choosing a fixed
VIF threshold, several values were tested to calculate the resulting accuracy. Figure 3
shows the results corresponding to accuracy and kappa with the 95% confidence intervals.
Although non-significantly higher accuracies were reached with larger thresholds, 160 was
the finally used VIF threshold as it represents a step increase in accuracy with respect to
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smaller threshold values. The smaller the threshold, the smaller the number of features.
This threshold means a reduction in the number of features from 126 to 84.

Figure 3. Accuracy metrics and 95% confidence intervals achieved with every dataset and with the
predictors selected increasing the VIF threshold. S1, Texture and S1+LiDAR results do not appear
because they are lower than the y axis lower limit in the figure.

Figure 4 shows the per-polygon average accuracy and 95% confidence intervals when
the least important features, starting with the 84 features selected by the VIF method, were
removed. These means and confidence intervals were calculated from the 131 accuracy
values calculated using SDRF OOB-CV using a different polygon for testing in each round.
The final accuracy values were obtained from the validation of each individual polygon in
the loop passage in which it was used as a test. According to these results, we decided to
reject in each case the 21 least important features. As there were 131 different models, it
was necessary to check if all of the models had the same important variables. A total of
59 features were present in all of the models, and just one was present in less than 50% of
the models. Thus, we decided to reject this last feature and build a final classification model
with the remaining features (Table 6). Interestingly, features from the five initial datasets
remained as important after all of the feature selection process: S1 (8 out of 12 features),
S2 (20 out of 44 features), indices (15 out of 20 features), texture (11 out of 24 features) and
LiDAR (8 out of 26 features)—a total of 62 features.
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Figure 4. Accuracy metrics achieved while decreasing the number of predictors.

Table 6. Features selected for the final model. LiDAR features were derived from a single dataset
recorded between August 2016 and March 2017.

Sensor Autumn Winter Spring Late Spring Single Image

S1 VV,VH VV,VH VV,VH VV,VH
S2 B01,B03,B05,B07 B01,B03,B05,B08,B12 B01,B05,B08,B12 B01,B03,B06,B12

B08,B11,B12
indices SAVI,NDVI SAVI,NDVI SAVI,NDVI NDVI,NDBI

NDBI,MNDWI NDBI,MNDWI NDBI,MNDWI MNDWI
Texture PC1_Contr, PC1_SA NDVI_SA, PC1_SA NDVI_SA, PC1_SA NDVI_Contr, PC1_SA

PC1_Contr PC1_Contr PC1_Contr
LiDAR wDd, sZM, sZG, sZE,

sZA, mZM, mZE, mZA

3.3. Final Classification and Errors

The final classification using the selected features reached an accuracy of 0.91± 0.005
(α = 0.05) and kappa of 0.898± 0.006 (α = 0.05). Omission and commission errors appear
in Table 7 and, disaggregated, in Figure 5. Only the omission errors of scrub, impermeable
areas, greenhouses and netting, and the commission errors of bare soil, greenhouses and
netting exceeded 0.1, with both errors in netting beyond 0.2. Table 7 also includes omission
and commission errors of the RF model using only S2 data and indices. The differences
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in natural surfaces are negligible, but all cultivated areas and bare soil show a substantial
error reduction in the final model.

Table 7. Omission and commission errors of the S1+S2 and the final classification.

Features Error Forest Scrub Dense Tree Irrig. Grass Imperm. Water Bare Soil Greenh. Netting

S2 Omission 0.032 0.143 0.048 0.033 0.215 0.002 0.084 0.148 0.355
S2 Commission 0.016 0.064 0.019 0.074 0.08 0.028 0.311 0.159 0.4
Final Omission 0.032 0.125 0.034 0.028 0.106 0.000 0.075 0.107 0.25
Final Commission 0.017 0.064 0.018 0.015 0.077 0.024 0.136 0.128 0.27
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Figure 5. Confusion between classes in the S2 model (above) and the final model (below).

Most of the confusions represent a really small proportion of pixels and can be con-
sidered residual noise. The most frequent confusions are between scrubs, bare soil and
impermeable areas on the one hand, and greenhouses and netting on the other hand. We
think these errors represent a more general lack of separability among classes. In semiarid
areas, the distinction between scrubs and bare soil is very fuzzy. Moreover, in the surround-
ings of urban areas, there are frequently pixels mixing isolated houses, bare soil and some
disperse scrubs. The confusion among greenhouses and netting is the quantitatively most
salient (see also Table 8). It may be explained because the spectral signatures of both classes
may be similar. However, it is not a very relevant confusion as both are, from an agronomic
point of view, subclasses of irrigated crops.
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Table 8. Main classification statistics per class.

Classes Precision Recall Balanced Accuracy

Forest 0.968 0.983 0.990
Scrub 0.875 0.936 0.961
Dense tree crops 0.966 0.982 0.988
Irrigated grass crops 0.972 0.985 0.991
Impermeable 0.894 0.923 0.954
Water 1.000 0.976 0.988
Bare soil 0.925 0.864 0.929
Greenhouses 0.893 0.872 0.923
Netting 0.750 0.730 0.850

Figure 6 shows the importance ranking of the features included in the final model;
features of all of the original datasets appear in the final model. The most important
features included in the final model are reflectivities and normalized indices. The ten
highest positions are occupied by optical features, with preference for spring dates: the
four aerosol bands (B01), the spring green (B03), red edge (B06) and Infrared (B08) bands,
and three indices, two from late spring and one of the early spring, NDVI and NDBI,
and SAVI, respectively. In fact ,the 23th first positions are occupied by reflectivity features
or indices. The second dataset in terms of importance seems to be the SAR derived metrics,
followed by LiDAR and texture.
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Figure 6. Global feature importance.
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Figure 7 shows the 20 most important features to classify each of the classes. S2
reflectivity and indices are the most important and predominant for all classes. In natural
vegetation classes and greenhouses, only these variables appear. That is coherent with
the lack of difference in omission and commission errors in natural covers shown in
Table 7. SAR variables are important to distinguish water pixels, impermeable areas and
irrigated grass crops. LiDAR variables appear in dense tree crops (mean height of buildings
and high vegetation), irrigated grass crops (mean and standard deviation of medium
vegetation height, and the distance of the minimum of the Ripley function for vegetation
points) impermeable areas (mean height of buildings), bare soil (mean height of buildings
and standard deviation of the height of ground points) and netting (mean and standard
deviation of high vegetation points).
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Figure 7. Twenty most important features per class.

The predominance of S2 features reflects their well-known relevance in land cover
classification. The new variables only add extra information related to the characteristics of
some usually difficult to classify covers that allow for a better discrimination: height of the
trees in tree crops and netting (that mostly cover tree crops), height and pattern of medium
vegetation in grass crops, and height of buildings in impermeable (mostly urban) areas.
The case of bare soil is more intriguing; the importance of the standard deviation of the
height of ground points (with respect to the average of the pixel) may reflect erosive forms
that are usual in semiarid environments; on the other hand, the average height of buildings
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is probably telling apart small constructions in bare soil areas from buildings in urban areas.
In water pixels, SAR response is contributing to distinguish water from other dark covers.

3.4. Land Cover Maps

Figure 8 shows the estimated land cover maps using just S2 reflectivity and the final
model after feature selection. There is a clear reduction in the impermeable and an increase
in bare soil in irrigated crops. Table 9 shows the total extension for each class. According
to the prior knowledge of the area, it seems to be quite qualitatively accurate. However,
the surfaces assigned to Scrubs and Bare soils seem too high. The reason is, probably,
that residual rain-fed crops have been classified as such. Discrimination between rain-
fed and irrigated crops was discarded in this study due to the aforementioned issues
(Sections 2.1 and 2.5). Moreover, fallow fields remain, usually, uncultivated for two years,
producing a spectral signature similar to classes where soil and sparse vegetation are
dominant. Fields in very early stages of growing or that have been recently harvested show
a similar issue. In this study these fields seem to have been labelled as bare soil, scrub or
even as impermeable in some cases, as those shown in Figure 9. The number of image
dates used seems to be not enough to avoid the problems of inter- or even intra-annual
crop rotations; a larger date range might improve the results even more. We are aware that
some rain-fed fields may remain, but it is a negligible amount and they are probably in
the process of being abandoned or transformed into irrigated crops, due to the land use
transformation dynamics in the study area.

However, the process and methodology have demonstrated high accuracy at a re-
gional scale, better than previous classifications made with data from only one sensor [60].
An example of the resulting map from both datasets appears in Figure 10. In this case the
improvement in the classification accuracy when using data from several sensors is evident.
Additionally, the delineation of the final polygons has been also improved.

Table 9. Total surface classified for each class.

Class Ha

Forest 2627.78
Scrub 40,362.55

Dense tree crops 23,277.19
Irrigated grass crops 10,893.35

Impermeable 22,044.31
Water 16,332.55

Bare soil 16,752.88
Greenhouse 3233.16

Netting 8165.51
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1.	Forest

2.	Shrub

3.	Dense	tree	crops

4.	Irrigated	crops

5.	Impermeable

6.	Water

7.	Bare	soil

8.	Greenhouses

9.	Netting

Figure 8. Land cover map obtained with only S2 reflectivities (above) and with the final model
(below).
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Figure 9. Issues with fallow fields in classification: Right: (a) example of classification as bare soil (class
7); (b) example of classification as scrub (class 2). Left: both areas areas in ortho-photography (2019).

Figure 10. Example of improvement in classification: (a) classification with S2 and indices in previous
study [60]; (b) same area classified in the present study with S1 and S2; (c) same area classified in the
present study with S1, S2 and LiDAR; (d) ortho-photography (2019).



Remote Sens. 2023, 15, 312 22 of 29

4. Discussion

According to our results, adding S1 to S2 indices does not significantly increase
classification accuracy. Chatziantoniou et al. [105] evaluated the combined use of S1
and S2 data for a regional-scale Mediterranean wetlands classification, reaching the same
conclusion. In a study similar to ours, Denize et al. [6] achieved an overall accuracy of 0.81
with a kappa index of 0.77 using a multi-temporal study with images from winter autumn
and spring to identify winter land uses in an area of study located in the north of France
similar to Mar Menor basin in terms of field size and proximity to the coast. However, there
are some important differences in climate, crop system and agricultural practices. Probably,
the inclusion of features providing the height of the objects (LiDAR) and edges information
(Texture) is the reason why the overall accuracy in this study is larger than in theirs.

Heinzel et al. [40] combined LiDAR features, some of the GLCM texture metrics
(derived from color infrared images as well as from LiDAR) and optical features, achieving
an overall accuracy, using all 464 features, of 0.88, but reducing the number of features
to achieve at least 95% of accuracy, the model was reduced to only 14 features and its
accuracy only decreased down to 0.85. Shingh et al. [106] used optical data and LiDAR,
interpolating either point heights or intensities, to discriminate urban areas from vegetation
covers, but without taking into account the point class information. They tested various
resolutions and classification methods, reaching a maximum accuracy of 0.83 with 10 m
resolution and 0.85 with 1 m resolution using maximum likelihood, and 0.79 and 0.82,
respectively, using classification trees.

LiDAR-derived information has been successfully used to classify urban areas and
different crops in small areas with high resolution [45,46]. Our classification schema is not
as disaggregated and our study area is quite larger than in other studies. Hence, instead of
fusing the LiDAR data with the reflectivity data using methods such as PCA or GLCM, we
have extracted several metrics derived from LiDAR. After the feature selection process, only
the most simple metrics (number of points in each 10x10 m pixel) remained in the dataset.
Additionally, features from texture metrics helped in distinguishing vertical patterns of
parallel lines more than one pixel wide, according to explanations of [71], so it may allow
to recognize edge-like features inside a class.

Peña et al. [107] combined, among others, indices with textural features extracted
from GLCM to classify between crops with different growing calendars, coming to the
conclusion that the most influential features for an accurate classification were spectral
indices, especially NDVI, distantly followed by texture features. Despite their secondary
position in the importance ranking, texture features contributed to reduce uncertainty,
mainly between different permanent crops, but the resulting overall accuracy was 0.80 with
a kappa of 0.75. We have found similar accuracy using texture features, as some of these
metrics remained as important after selection, although located in the tail of the importance
ranking. Another similarity between both studies is the number of dates used, three and
four, encompassing just a period of one year, although from different seasons: mid-spring
and early and late summer in [107], and winter, early and late spring and autumn in ours.

In our study, just the addition of SAR data to reflectivity has not been enough to
significantly increase the classification accuracy (Table 5), neither using optical data alone
nor adding indices as well. Part of the problem may be the use of segmentation as a part
of the process. Our study area is larger than in previous studies and the classes involved
are more diverse, so it is difficult to obtain a segmentation parameter appropriate for all of
the classes.

The usual threshold for the VIF analysis ranges from 5 to 10 [103,104]; however, in this
case, it was necessary to raise the threshold to 160 in order to keep a high classification
accuracy. This result highlights that very correlated features may still convey significant
information for the classification process.

The most important features are the reflectivities, both globally and per class. How-
ever, the inclusion among the twenty most important features, for irrigated grass crops,
impermeable surfaces and water, of SAR features, is interesting; water and urban areas
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have specific radar responses. On the other hand, LiDAR features appear in agricultural
surfaces and bare soil. Height statistics of vegetation and ground points over a reference
DEM seem to be the most relevant. There is also a clear relation between the class of
vegetation recorded in the LiDAR points, and the estimated land cover.

It is noteworthy that the total surface classified as cultivated vegetation (Table 9) sums
up more than expected according to the government official statistics [51]. The surface
occupied by greenhouses also double the official amount. Adding all crop classes, we
found almost 5000 ha more than in the official statistics. Previous remote sensing studies
performed by [108], recently used as reference in a report about the state of the lagoon [109],
already pointed out the existence of more irrigated surface than declared in regional
statistics. Additionally, it has been reported [110] that the Hydrographic Demarcation of
Segura River (DHS) is fighting against illegal irrigated areas, which are estimated to be
over 7500 ha. If we take all of these facts into consideration, the extension estimated by our
classification for cultivated vegetation seems realistic.

The main problem with the proposed methodology is the need to calculate all of the
LiDAR metrics; it is a rather time-consuming process. Although the obtained accuracy
increase is significant, at least with RF, it is true that it is not globally quantitatively
important. However, it has been shown that some classes can indeed benefit from the
extra information. Figure 10 shows a case in which the classification using only S2 is quite
worse than using S1+S2 or S1+2+LiDAR. In this case the improvement in the classification
accuracy when using data from several sensors is evident. Additionally, the delineation of
the final polygons has also been improved.

On the other hand, RF has proven to be the most accurate model without any optimiza-
tion, which saves computing time substantially. We acknowledge that the optimization
carried out with SVM and MLP has not been as thorough as possible, especially taking into
account that both methods are very sensitive to the values of their parameters. However,
we think it is a fair comparison with RF, which has not been optimized at all. At any rate,
the main objective of the work is to compare the accuracy achieved by different datasets,
not by different algorithms.

5. Conclusions

Multi-sensor and multi-source predictors have been applied to land cover remote
sensing classification in the Mar Menor basin. The use of all sources together showed
significantly better accuracy results with respect to classifications made with just one source
or diverse partial combinations of different datasets. To the best of our knowledge, such
a combination of features has not been tested yet. It has demonstrated high efficacy in
labelling this classification scheme at a regional scale.

The combination of all datasets produced a classification with an overall accuracy
of almost 0.90 and a kappa index of more than 0.88, which were boosted to 0.91± 0.005
(α = 0.05) and a kappa of 0.898± 0.006 (α = 0.05) after feature selection. The removal of
unnecessary features was successfully done by combining VIF, optimizing the collinearity
threshold, and an analysis of importance of variables for every training and validation
polygon of remaining features. The final number of features dropped from 126 to 62.

The balanced accuracies of all classes were higher than 0.9 and all errors of omission
and commission were below 0.15 except in the netting class. This class is easily confounded
with greenhouses; however, both are two different spectral classes of the same informational
class—dense tree crops. Besides this confusion, a less important confusion case appeared
among scrubs, bare soil and impermeable (urban) surfaces. The existence of fallow fields
and intermixing of these three classes in periurban areas are the most probable causes of
the problem, but further research must be conducted on the issue. Resulting land cover
surfaces are coherent with other sources.

The analysis of per-class feature importance offers some insights about the relation
among the new features and the classes that classification can help to increase.
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The following abbreviations are used in this manuscript:

ASPRS American Society for Photogrammetry and Remote Sensing
DEM Digital Elevation Model
DPSVI Dual Polarization SAR Vegetation Index
ESA European Spatial Agency
GLCM Grey Level Coocurrence Matrix
GRD Ground Range Detection
IW Interferometric Wide
LiDAR Light Detection and Ranging
LOO-CV Leave One Out Cross Validation
ML Machine Learning
MLC Maximum Likelihood Classifier
MLP Multilayer Perceptron
MNDWI Modified Normalized Difference Water Index
MSI MultiSpectral Instrument
mZB average height of small vegetation
mZM average height of medium size vegetation
mZA average height of high vegetation
mZE average height of building points
mZG average height of ground points
NDBI Normalized Difference Building Index
NDVI Normalized Difference Vegetation Index
NIR Near Infrared

Nvv
number of medium or high vegetation points whose nearest neighbor
is a medium or high vegetation point

OD-Nature Operational Directorate Natural Environment
OOB-CV Out Of Bag Cross Validation
PNOA National Aerial Orthophotography Plan
ppB Proportion of points of low vegetation
ppM Proportion of points of medium size vegetation
ppA Proportion of points of high vegetation
ppE Proportion of points of buildings
ppH Proportion of points of water
REMSEM Remote Sensing and Ecosystem Modelling
RBINS Royal Belgian Institute of Natural Science
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S1 Sentinel 1
S2 Sentinel 2
SAR Synthetic Aperture Radar
SAVI Soil Adjusted Vegetation Index
SBI Soil Brightness Index
SVM Support Vector Machine
SWIR Short Wave Infrared
sZB standard deviation of small vegetation height
sZM standard deviation of medium size vegetation height
sZA standard deviation of high vegetation
sZE standard deviation of building points
sZG standard deviation of ground points
TCB Tasselled Cap Brightness
TOA Top Of the Atmosphere
TOPSAR Terrain Observation by Progresssive Scans SAR
VIF Variance Inflation Factor
wCv Maximum value of the Ripley’s K function
wDv Minimum value of the Ripley’s K function
wCd Distance of the maximum value of the Ripley’s K function
wDd Distance of the minimum value of the Ripley’s K function
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