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Abstract

We derive a statistical theory that provides useful asymptotic approximations to the distributions 

of the single inferences of �ltered and smoothed probabilities, derived from time series characterized 

by Markov-switching dynamics. We show that the uncertainty in these probabilities diminishes when 

the states are separated, the variance of the shocks is low, and the time series or the regimes are 

persistent. As empirical illustrations of our approach, we analyze the U.S. GDP growth rates and 

the U.S. real interest rates. For both models, we illustrate the usefulness of the con�dence intervals 

when identifying the business cycle phases and the interest rate regimes.
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1 Introduction

In Markov-switching autoregressive models, the behavior of a time series is assumed to be disrupted

occasionally by shocks that produce di¤erent dynamics, regimes, or states, the transitions of which

are governed by an unobservable state variable that is usually assumed to follow a �rst-order Markov

chain. These models have become extremely popular in economic analyses since the work of Hamilton

(1989). Among other areas, regime-switching models have been applied to exchange rate swings (Engel

and Hamilton, 1990; Engel, 1994), stock market returns (Pagan and Schwert, 1990; Hamilton and Lin,

1996), interest rates (Garcia and Perron, 1996; Dahlquist and Gray, 2000.), asset returns (Kim, Nelson

and Startz, 1998; Ang and Bekaert, 2002), and asymmetries over the business cycle (McConnell and

Perez-Quiros, 2000; Chauvet and Hamilton, 2006).1

The widespread success of these models might rely on the fact that analysts can easily draw a proba-

bilistic inference about the hidden Markov chain, given the observations of the time series. The inference

used to separate the unobserved regimes is expressed through the �ltered state probabilities and the

smoothed full-sample probabilities, and historical dates of the turning points are typically established

when the probability of one particular regime crosses some pre-speci�ed thresholds (Chauvet and Hamil-

ton, 2006). This is of interest in its own right, because the regimes can provide substantive meaning

about the occurrence of economic events.

Although the outcomes of these analyses readily lead to policy implications, note that they are de-

veloped from single values of �ltered and smoothed inferences, which do not re�ect the uncertainty

surrounding these inferences. In this context, the primary purpose of this study is to derive a statistical

theory that provides useful asymptotic approximations to the distributions of the single inferences of �l-

tered and smoothed probabilities, derived from time series characterized by Markov-switching dynamics.

Bickel, Ritov, and Ryden (1998) show that under mild conditions, the inverse of the negative of the

Hessian evaluated at the Maximum-Likelihood (ML) estimates is a consistent estimator of the covari-

ance matrix of the set of parameters governing the Markov-switching autoregressive models. Using these

results, we show how the delta method gives a technique for computing the variance of these transfor-

mations based on a Taylor series approximation, which is used to compute their respective con�dence

intervals.

To evaluate the performance of our proposal, we conduct a set of Monte Carlo simulations, allowing

regimes a¤ecting the mean, the autoregressive parameters, and variance. The results suggest a thought-

provoking, recurrent pattern: the uncertainty on �ltered and smoothed probabilities increases signi�cantly

around the turning points. Therefore, we propose using sharp increases in the uncertainty to detect phase

changes and to separate the regimes, which could be especially useful in real-time analyses. In addition,

1Although we focus on economic applications, the Markov-switching model has found widespread applications in many

areas, including bioinformatics, biology, �nance, hydrology, marketing, medicine, and speech recognition. See Fruhwirth-

Schnatter (2006) for an overview.
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we show that the uncertainty diminishes when the regimes are clearly separated (i.e., the within-state

means are far from each other), the variance of the idiosyncratic shocks is low, the inertia of the time

series is high, and the regimes are persistent.

To illustrate our approach empirically, we propose a twofold exercise. In the �rst exercise, we compute

inferences on the U.S. business cycle phases using a model where GDP is characterized by a recurrent

sequence of shifts between two �xed equilibria of high-growth and low-growth means. The in-sample

results suggest that establishing the historical turning points when the probability of one particular busi-

ness cycle state remains above or below some pre-speci�ed thresholds, without knowing the uncertainty

surrounding the point estimates, is inadvisable, particularly when the point estimates are close to the

thresholds. In a real-time analysis, we �nd that a salient characteristic of the U.S. cycle dynamics is that

the uncertainty of the �ltered and smoothed probabilities increases signi�cantly when the changes in the

business cycle phase occur, while it decreases signi�cantly in the course of the new phase. Therefore,

it is worthwhile considering the con�dence intervals on the business cycle probabilities when monitoring

ongoing economic developments.

In the second empirical example, we follow Garcia and Perron (1996) and allow three possible regimes

a¤ecting both the mean and variance of the U.S. ex-post real interest rate, which follows autoregressive

dynamics of order two. Based on an updated sample, our results still suggest that the interest rate

is characterized by three distinct phases of low, middle, and high levels. We �nd single distinct phase

changes from the low regime to the middle regime in 1953:3, and from the middle regime to the low

regime in 1973:4. However, dating the regime shifts becomes increasingly uncertain after this point. The

shift to the high regime could occur between 1980:4 and 1981:2, the shift to the middle regime could

occur between 1986:4 and 1990:2, and the shift to the low regime could occur between 2002:1 and 2003.1.

The remainder of this paper is organized as follows. Section 2 presents the asymptotic distribution

theory for the �ltered and smoothed probabilities of one particular regime, and outlines a simple method

to construct asymptotically valid con�dence intervals. Section 3 proposes a simulation experiment to

assess the impact on the uncertainty surrounding the �ltered and smoothed probabilities of the model

parameters. Section 4 shows the usefulness of the proposed model by analyzing the U.S. business cycle

phases and the U.S. interest rate regimes. Lastly, Section 5 concludes the paper.

2 Computing uncertainty

2.1 The model

Let yt be a stationary time series of T + p observations whose autoregressive dynamics evolve according

to an unobservable K-state Markov-chain process st.2 For the sake of generality, the means, regression

2General characterizations of stationarity conditions for such processes can be found in Francq and Zakoïan (2001).
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coe¢ cients, and volatility of the Markov-switching autoregressive model are state-dependent:

yt = �st +

pX
j=1

�j;st�j (yt�j � �st�j ) + "t; (1)

where "t � N(0; �2st) and p is the lag-length of the underlying state-dependent autoregressive process.
3

To complete the statistical characterization of this process, we assume that st is a Markov chain of order

one. Then, the probability of a change in regime depends on the past only through the value of the most

recent regime

P (st = jjst�1 = i; :::; s1 = l; Yt�1) = P (st = jjst�1 = i) = pij ; (2)

where Yt = y1; y2; :::; yt, and i; j = 0; 1; : : : ;K � 1.

Since the nonlinear autoregressive process depends not only on st, but also on st�1; :::; st�p, it is

convenient to de�ne the latent variable s�t = (st; st�1; : : : ; st�p), which results in K
p+1 di¤erent states.

The transition probabilities of s�t can easily be found from the transition probabilities of the primitive

states st. Let us de�ne the states j of s�t as j = (j0; j1; : : : ; jp), with ji 2 f0; 1; : : : ;K � 1g, i = 0; 1; :::; p.

Then, the transition probabilities of s�t are

P (s�t = jjs�t�1 = i) := p�ij =

8>>><>>>:
pi0j0 always ir = jr�1 for r = 1; 2 : : : ; p

0 otherwise

(3)

2.2 Variance of �ltered probabilities

We collect the r model parameters in the vector � = (�0; : : : ; �K�1; �1;0; : : : ; �1;K�1; �p;0; : : : ; �p;K�1;

�20; : : : ; �
2
K�1; p00; : : : ; pK�1K�1

�
. As an application of Bayes� law for this setting, Hamilton (1989)

computes estimates of the �ltered probabilities, as follows:

P (s�t = ij�; Yt) := P it (�) =
f(ytj�; Yt�1; s�t = i)P (s�t = ij�; Yt�1)

f(ytj�; Yt�1)
; (4)

where f(ytj�; Yt�1; s�t ) is the pdf of a Gaussian distribution with mean �st +
pP
j=1

�st�j (yt�j � �st�j ) and

variance �2st , and f(ytj�; Yt�1) =
P
i

f(ytj�; Yt�1; s�t = i)P (s�t = ij�; Yt�1).

Then, given that the random series st follows a �rst-order Markov-chain process, it is easy to see that

the following equalities hold:

P (s�t = ij�; Yt�1) =
X
j

p�jiP
j
t�1(�); (5)

and

f(ytj�; Yt�1) =
X
i

f(ytj�; Yt�1; s�t = i)
X
j

p�jiP
j
t�1(�): (6)

3Following the standard assumptions on Markov-switching autoregressive models, we focus on normal errors in this

study. However, this is not restrictive, and can easily be generalized.
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From (6) and (5), if we denote  it as the pdf of a Gaussian distribution with mean �i0+
pP
z=1

�iz (yt�z��iz )

and variance �2i0 , the �ltered probabilities become

P it (�) =

 it
P
j

p�jiP
j
t�1(�)P

i

 it
P
j

p�jiP
j
t�1(�)

: (7)

Using the results suggested by Hamilton (1989), a natural estimate of the vector of parameters �

is the ML estimator b�, because the conditional likelihood function can be obtained as a by-product of
Hamilton�s �lter.4 Bickel, Ritov, and Ryden (1998) show that under mild conditions the ML estimator is

not only consistent, but is also asymptotically normal, and prove that the observed information matrix

is a consistent estimator of the Fisher information. Thus, the distribution of the ML estimate b� can be
well approximated for large samples by

b� � N(�; T�1I�1b� ); (8)

where Ib� is known as the Fisher information matrix. In practice, the covariance matrix can be estimated
by

Ib� = �T�1 @L(�)@�@�0
j�=b�; (9)

where L(�) is the log-likelihood

L(�) =
TX
t=1

log(f(ytj�; Yt�1)): (10)

Then, the covariance matrix of the ML estimator is estimated as the inverse of the negative of the Hessian

evaluated at b�.
Thus, assuming that P it (b�) is a smooth transformation of b� for all t, and that the partial derivatives

@P i
t (
b�)

�j
exist for all j = 1; 2; : : : ; s, the delta method applies. Then, the variance of P it (b�) becomes

�2
P i
t (
b�) = V ar(P it (

b�)) = r(P it (b�))0 ��@L(�)@�@�0
j�=b�

��1
r(P it (b�)); (11)

where r(P it (b�)) denotes the gradient of P it (�) evaluated at b�. This gradient is obtained by computing
@P i

t (�)
@�s

, for all s = 1; 2; : : : ; r. To this end, if we denote

A =  it; (12)

B =
X
j

P jt�1(�)p
�
ji; (13)

C =
X
i

 it
X
j

p�jiP
j
t�1(�); (14)

then the probabilities are given by the ratio

P it (�) =
A �B
C

: (15)

4Note that the �lter requires an initial condition of P i0(�), for all i, which typically is the ergodic probability.
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Then, the partial derivatives of this ratio are obtained as

@P it (�)

@�s
=

h
@A
@�s

B +A @B
@�s

i
C �AB @C

@�s

C2
; (16)

where
@A

@�s
=
@ it
@�s

; (17)

@B

@�s
=
X
j

"
@P jt�1(�)

@�s
p�ji + P

j
t�1(�)

@p�ji
@�s

#
; (18)

@C

@�s
=
X
i

24@ it
@�s

X
j

p�jiP
j
t�1(�) +  

i
t

 
@p�ji
@�s

P jt�1(�) + p
�
ji

@P jt�1(�)

@�s

!35 : (19)

Next, we explain the obtained estimation procedure from a practical point of view. The above equations

suggest an iterative algorithm for �nding the estimate of the gradients r(P it (�)), t = 1; : : : ; T . Starting

from the initial condition at t = 0 for the �ltered probabilities used in the Hamilton�s �lter and the gradient

for each i, fP i0(�);
@P i

0(�)
@�1

;
@P i

0(�)
@�2

; : : : ;
@P i

0(�)
@�r

g, which are the magnitudes on the right-hand sides of (16)-

(19), the left-hand sides of these expressions then produce a new estimate for the gradient r(P i1(�)).5

This estimate can be used to re-evaluate (16)-(19), and we can continue iterating in this fashion until

the last gradient r(P iT (�)). The gradients can now be used in (11) to obtain the variances of the �ltered

probabilities.

Finally, the inference about the unobserved state st at t, given observations up to t, can be expressed

in terms of the probability distribution of the �ltered probabilities:

P (st = ij�; Yt) := P it (�) =
X
i;i0=i

P (s�t = ij�; Yt); (20)

for all i = 0; 1; 2; : : : ;K � 1. Then, it follows that

r(P (st = ij�; Yt)) =
X
i;i0=i

r(P (s�t = ij�; Yt)) (21)

and, therefore, we can estimate the variance of the �ltered probabilities P (st = ij�; Yt) as:

�2
P i
t (
b�) = V ar(P it (

b�)) = X
i;i0=i

r(P (s�t = ij�; Yt))0
�
�@L(�)
@�@�0

j�=b�
��1 X

i;i0=i

r(P (s�t = ij�; Yt)): (22)

2.3 Variance of smoothed probabilities

When using a time series to separate the K possible states, probability statements about st that incor-

porate the overall information Yt are frequent in practice. Such probability statements are given by the

5 In the simulations and in the empirical applications, we use the ergodic probabilities as a initial condition of P i0(�).

For the means, the variances and the autoregressive parameters, the initial conditions for @P i0(�)

@�i
are zero. In the case of

the transition probabilities, @P
i
0(�)

@pij
, this derivative is positive when i = j, and negative when i 6= j. This implies that the

�ltered probability of regime i increases with pii, and decreases with pij, for i 6= j.
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full-sample smoothed probabilities P (st = ij�; YT ) := Smi
t(�). The smoother suggested in Kim (1994)

expresses these probabilities in a way that they may be obtained recursively from the �lter probabilities:

Smi
t(�) = P it (�)

K�1X
j=0

Smj
t+1(�)pij

K�1P
r=0

P rt (�)prj

; (23)

for all i = 0; 1; 2; : : : ;K � 1. The smoother operates as a backward algorithm, starting from Smj
T (�) =

P jT (�) and running backwards in time.

Following the same reasoning as in the case of the �ltered probabilities, the variance of the smoothed

probabilities can be computed as follows:

V ar(Smi
t(
b�)) := �2Smi

t
(b�) = r(Smi

t(
b�))0 ��@L(�)

@�@�0
j�=b�

��1
r(Smi

t(
b�)): (24)

The gradient r(Smi
t(�)) can be obtained by computing

@Smi
t(�)

@�s
as

@Smi
t(�)

@�s
=

@P i
t (�)
@�s

k�1P
j=0

Smj
t+1(�)pij

k�1P
r=0

P r
t (�)prj

+ P it (�)�

k�1P
j=0

"
@Sm

j
t+1

(�)

@�s
pij+Sm

j
t+1(�)

@pij
@�s

#
k�1P
r=0

P r
t (�)prj�Sm

j
t+1(�)piji

k�1P
r=0

h
@Prt (�)

@�s
prj+P

r
t (�)

@prj
@�s

i
 
k�1P
r=0

P r
t (�)prj

!2 ;

(25)

for s = 1; 2; :::; r. Taking into account that Smi
T (�) = P iT (�), equation (25) suggests using iterative

backwards algorithm to estimate the gradients r(Smi
t(�)), for all t = T�1; T�2; : : : ; 1. More speci�cally,

starting at t = T � 1, @P
z
T (�)
@�s

, P zT (�),P
z
T�1(�), and the transition probabilities are the magnitudes on the

right-hand side of (25), producing an estimate of
@Smi

T�1(�)

@�s
. This estimate, together with

@P z
T�2(�)

@�s
,

P zT�2(�),Sm
z
T�1(�) can now be used to calculate

@Smi
T�2(�)

@�s
. Then, continue iterating backwards in this

way until the �rst gradient r(Smi
1(�)) is calculated.

2.4 Asymptotic distribution

Dealing with the issue of inference on the �ltered and smoothed probabilities requires a distribution

for the unobserved probabilities. Using the results developed above, for a given regime i, the �ltered

probabilities follow asymptotically normal distributions, with means approximated by P it (b�) and Smi
t(
b�),

and variances approximated by �2
P i
t (
b�) and �2Smi

t(
b�), respectively.

Therefore, 100(1� �)% con�dence intervals have the form

CI�(PR
i
t) = [b

PRi
t

1��=2; b
PRi

t

�=2 ]; (26)

where PRit is P
i
t (
b�) for �ltered probabilities and Smi

t(
b�) for smoothed probabilities, and b� is de�ned as

P (N(PRit; �
2
PRi

t
) > b

PRi
t

� ) = �. These intervals can be improved on, in the sense that at least 95% of the

samples, the estimated value of PRit will be in
h
max

�
b
PRi

t

1��=2; 0
�
;min

�
b
PRi

t

�=2 ; 1
�i
.6

6An alternative would be to approximate the distribution of the �ltered and smoothed probabilities with a Beta distri-

bution with means P it (b�) and Smi
t(
b�), and variances �2

P it (
b�) and �2Smi

t(
b�) , respectively.
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3 Monte Carlo simulation

3.1 Inference on turning point dates

To evaluate the impact of the model parameters on the uncertainty associated to �ltered and smoothed

probabilities from (1), we follow Cavicchioli (2014) to consider the univariate Markov-switching model

yt = �st + �st(yt�1 � �st�1) + "t; (27)

where "t � N(0; �2st).
7 In this model, st is a two-state Markov-chain process of order one that takes the

value 0 in the �rst regime, and 1 in the second regime.

Using this model, we generate dummy variables st of zeroes and ones of length T = 250, which

are used to simulate di¤erent sequences of the two regimes of the unobserved state variable, assuming

that p00 = p11 = 0:9. In addition, we generate shocks "t with variances �20 = 0:5 and �21 = 1. The

dynamics of the generated time series yt are assumed to follow an autoregressive process of order one,

with autoregressive parameters �0 = 0:2 and �1 = 0:5, and within-state means �0 = 1 and �1 = �1,

respectively.

The estimated probabilities of state 1, the standard deviation of the point estimates, and the dates for

which the state variable takes the value one in this simulation (shaded areas) are plotted in Figure 1. The

�rst and the third panels of this �gure, which plot the �ltered and smoothed probabilities respectively,

show that the model accurately captures the two di¤erent regimes, because the probability of state 1 is

high when st = 1, and low when st = 0. The second and the fourth panels in the �gure show that the

standard deviation of the probability of state 1 in the middle of the two phases is low, which implies that

the information content of the �ltered probabilities as classi�cation rules is high in this example.

Notably, the uncertainty surrounding the point estimates of the probabilities increases signi�cantly

around the dates on which the model detects regime changes. As a result, the con�dence intervals become

wide around the turning points, indicating a high degree of uncertainty in identifying the state at these

dates. This suggests that rapid jumps in the uncertainty associated with a particular regime might be

useful in determining the timing of the turning points from (or towards) this regime.

3.2 Sensitivity analysis

In this section, we set up several Monte Carlo experiments to examine how the model parameters might

a¤ect the measures of the uncertainty of the �ltered and smoothed probabilities. For this purpose,

Figures 2 and 3 show the medians over the T generated observations of the standard deviation of the

probabilities of state 1 when the baseline parameters change as follows: in Panel A, �0��1 = 1; 1:1; :::; 3;

in Panel B, �20 = �21 = 0:5; 0:7; :::; 2; in Panel C, p00 = p11 = 0:5; 0:6; :::; 0:9; and in Panel D, �0 = �1 =

7Note that the model implies a general class of Markov-switching dynamics: it allows the regimes a¤ecting the mean,

the autoregressive parameters, and variance. Without loss of generalization, the lag length is restricted to one.

8



0:1; 0:2; :::; 0; 9. The �gures show that the uncertainty over the inference on the computed �ltered and

smoothed probabilities increases with the variance of the shocks, which means that it is more di¢ cult to

distinguish the regime switches in processes that include large shocks.

In addition, the uncertainty of the �ltered and smoothed probabilities decreases with the di¤erence of

within-state means because the regimes are clearly separated from one another, which implies that the

changes in regime are clear from the data. The uncertainty also decreases with the inertia of the states,

and with the autoregressive parameter of the process because, in both cases, the regimes are persistent

and the number of turning points, which are the source of the uncertainty, diminishes.

4 Empirical illustrations

The empirical relevance of the proposed theory is illustrated through two applications. The �rst appli-

cation focuses on a formal statistical model of business cycle phase shifts, which has probably been the

most extensive application of Markov-switching autoregressive models. In the second application, three

states are allowed to characterize the infrequent changes in the mean and variance of the ex-post real

interest rate.

4.1 Analysis of business cycle regimes

Hamilton (1989) proposes that output growth may follow one of two di¤erent autoregressions, with high

and low means, depending on whether the economy is expanding or contracting, with the shift between

the regimes governed by the outcome of an unobserved �rst-order Markov chain.8 Accordingly, the growth

rate of U.S. quarterly real GDP from 1951.1 to 2016.3, yt, is allowed to switch according to

yt = �st + "t: (28)

At time t, we label st = 0 as expansions and st = 1 as recessions, with �1 < �0.
9 Deviations from

this mean growth rate are created by "t, which is an i:i:d: Gaussian stochastic disturbance, with a mean

of zero and variance �2. Therefore, GDP is expected to exhibit high (usually positive) growth rates in

expansions and low (usually negative) growth rates in recessions. This pattern is depicted in the �rst

panel of Figure 4, which plots the growth rate of U.S. GDP, along with shaded areas that represent the

NBER recessions.

The maximum likelihood estimates, reported in Table 1, show that the transition probabilities are

highly persistent (bp00 = 0:95, bp11 = 0:69), and that the within-state means are separate from each other

(b�0 = 0:96, b�1 = �0:48). According to our simulation results, the separated within-state means and the
8Camacho and Perez-Quiros (2007) show that a model that decomposes output growth into a state-dependent mean and

a stationary process captures the U.S. business cycle dynamics with high precision.
9Based on Chauvet and Hamilton (2006), this is the model used by the Federal Reserve Bank of St. Louis to compute

the GDP-based recession indicator.
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persistence of the states help the Markov-switching autoregressive model to compute accurate inferences

of the U.S. business cycle dates. The ability of this simple model to characterize the U.S. business cycle

features is shown in the last two panels of Figure 4, which plot the �ltered and smoothed probabilities

of a low-growth regime. The �gure show that the o¢ cial business cycle dates correspond fairly closely to

the inferences about the unobservable state variable.10

In some cases, analysts might be interested in converting �ltered and smoothed probabilities into

speci�c sets of dates, establishing the timing of shifts between business cycle phases or turning points.

This requires speci�c rules to establish whether a particular quarter was an expansion quarter or a

recession quarter. Hamilton (1989) suggests that a natural metric might be based on whether analysts

can conclude that the economy is more likely to be in a recession, in other words, P it (b�) > 0:5 or

Smi
t(
b�) > 0:5.11 If we denote a business cycle turning point as having occurred the �ltered probabilities

move from below or above 0:5, the dates identi�ed by this metric roughly coincide with the NBER in

most cases.

In spite of the simplicity of this method, using the �ltered probabilities results in a few false negatives

in 1970:3 and 1974:2, and in the 2001 recession. Using the smoothed probabilities, the false negatives

refer to the 1970 and 2001 recessions.12 Now, we need to establish whether the uncertainty surrounding

the point estimates may help to identify the actual business cycle phase on these dates.

In line with our Monte Carlo results, Figure 5 shows that the standard deviations of the �ltered and

smoothed probabilities are low, with average �gures of about 0:04 in both cases. However, the standard

deviations exhibit sudden jumps near the business cycle turning points. Of particular interest are the

sudden jumps in variance exhibited in the 1970 and the 2001 recessions. Using the �ltered probabilities,

the standard deviation rises from 0:02 in 1969:3 to 0:14 in 1969:4 (the NBER peak), and falls from 0:18

in 1970:4 (NBER trough) to almost 0 in 1971:1. In addition, it rises from 0:03 in 2000:4 to 0:14 in 2001:1

(the NBER peak), and falls from 0:20 in 2001:4 (NBER trough) to 0:06 in 2002:1. Using the smoothed

probabilities, the standard deviation rises from 0:14 in 1969:3 to 0:28 in 1969:4 (the NBER peak), and

falls from 0:24 in 1970:4 (NBER trough) to almost 0 in 1971:1. In addition, it rises from 0:10 in 2000:4

to 0:20 in 2001:1 (the NBER peak), and falls from 0:12 in 2001:4 (NBER trough) to 0:04 in 2002:1.

This illustrates the usefulness of using the uncertainty surrounding the point estimates of the �ltered and

smoothed probabilities to establish the set of business cycle turning points.

An alternative way of dealing with the uncertainty of the �ltered and smoothed probabilities of

a recession is to use the con�dence intervals, as shown in Figure 6. The �gure shows that when a

recession begins, the amplitude of the estimated con�dence intervals increases, showing an increase in the

uncertainty of identifying the business cycle phase. When a recession consolidates, the amplitude of the

10Note that for model (28), the formulas for the �ltered probabilities and the derivatives forming the gradients can be

obtained by assuming that  it is the pdf of a Gaussian distribution with mean �i0 and variance �
2, where i0 2 f0; 1g.

11Chauvet and Hamilton (2006) and Chauvet and Piger (2008) suggest other metrics, also based on a comparison between

�ltered and/or smoothed probabilities with pre-speci�ed thresholds.
12The di¢ culties of identifying this short and mild recessions are documented in Kliesen (2003) and Hamilton (2011).

10



estimated con�dence intervals reduces, and the lower limits of the con�dence intervals take values close

to 1. As the recession period ends, the amplitude of the con�dence interval increases again, which could

be interpreted as a signal of a change in state.

One �nal remark is the usefulness of having the distribution of the single inferences of both the �ltered

and smoothed probabilities in real time. Computing inferences in real time di¤ers from the framework

shown so far because the GDP �gures, as originally released by the Bureau of Economic Analysis, can

di¤er substantially from the historical series now available. To overcome this potential drawback, we use

the real-time data set archived at the Federal Reserve Bank of Philadelphia, which includes the history

of GDP values that would actually have been available to a researcher at any given point in time.13

Using these time series, the inferences are computed in a recursive way. The �rst exercise begins

in 1956:4, with data available from 1951:1 to 1956:3, from which we estimate the Markov-switching

autoregressive model and collect the �ltered probability of a recession for 1956:3, and its variance. Then,

the sample is updated with the time series available in 1966:1 (data from 1951:1 to 1956:4), for which the

model is re-estimated, and we collect the inference for 1956:4 and its variance. The procedure continues

iteratively until the �nal time series available in 2016:4, which produces the �ltered probability of a

recession in 2016:3 and its corresponding variance.

Figure 7 displays the �ltered probabilities of recessions and their con�dence intervals, as they were

inferred in real time. As expected, the NBER business cycle becomes more di¢ cult to identify in real

time. Again, following the 0:5 rule, some false positives appear, for example in 1967:1, 1979:2, and

the year after the 1990 recession. For their potential damage, the time delays with which the last two

recessions are identi�ed are of special interest in this analysis. The probability of a recession does not

cross the 0:5 line until 2001:3 and 2008:4. However, the threshold belongs to the con�dence intervals in

2001:2 and 2008:1, the �rst quarters of their respective NBER recessions.

One �nal remark of the real-time analysis concerns the increased volatility of the inferred probability

of a recession that appears since the mid-1980s, which corresponds to the Great Moderation period.14

Kim and Nelson (1999) showed that the volatility reduction in output growth implied a narrowing gap

between growth rates during recessions and expansions. In line with our simulation results, this would

imply that the probabilities of recessions are estimated with higher uncertainty. Accordingly, performing

business cycle inferences became a more di¢ cult challenge, because the business cycle phases are more

di¢ cult to identify accurately.

4.2 Analysis of real interest rates regimes

Garcia and Perron (1996) employ a Markov-switching model to account for regime switches in an autore-

gressive model of U.S. ex-post real interest rate. In particular, they propose the following process with a

13We �ll in some minor gaps in this series, following Chauvet and Hamilton (2006).
14 In independent contributions, Kim and Nelson (1999) and McConnell and Perez-Quiros (2000) detected a substantial

moderation in output growth volatility, showing that this moderation is well modeled as a single break in the mid-1980s.
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three-state Markov-switching mean and variance:

rt = �st + �1

�
rt�1 � �st�1

�
+ �2

�
rt�2 � �st�2

�
+ "t; (29)

where "t is an i:i:d: Gaussian stochastic disturbance with a mean of zero and variance �2st . The authors

propose modeling st as the outcome of an unobserved three-state, �rst-order Markov process. In this

context, st can take the value 0 in the state they label as a low mean, 1 in the state they label as a middle

mean, or 2 in the state they label as a high mean.

Our empirical example uses the quarterly ex-post real interest rate, which is the di¤erence between

the end-of-quarter �gures of the nominal interest rate and the in�ation rate, using data from 1934.1 to

2016.3.15 The time series, shown in Figure 8, exhibits occasional jumps across negative, positive, and

highly positive values. The real rates became negative (and highly volatile) until the 1950s, during the

in�ationary period of the 1970s, and since the beginning of the new century. They reached (low) positive

values in the 1950s, 1960s, early 1970s, and in the late 1980s and 1990s. Finally, the early 1980s saw an

unprecedented huge spike in interest rates.

The ML estimation results are reported in Table 2. The within-regime estimated means suggest that

the dynamics of the time series are characterized by three distinct phases of low, middle, and high levels

of real interest rates. The volatility of the interest rate is signi�cantly higher in the low regime, while it

is closer and smaller in the middle and high regimes. Notably, the autoregressive parameters are close to

zero. In line with Garcia and Perron (1996), this suggests that the real interest rate may not have a unit

root because most of its persistence is accounted for by the regime switching in the mean. In addition,

the three regimes are highly persistent because the estimated probability that the same regime prevails

is above 0:95 in the three regimes. Finally, the smooth behavior of the estimated ex-ante real interest

rate, shown in Figure 8, helps to see the interest rate as a constant subject that shifts across the three

regimes.

Figure 9 shows the �ltered probabilities when the interest rate is in the low regime (top panel), the

middle regime (middle panel), and the high regime (bottom panel), along with their respective 95%

con�dence intervals.16 According to our simulation results, the clearly separated within-regime means

and the high persistence of the regimes diminish the uncertainty of the estimated probabilities, which

leads to very narrow con�dence intervals. The �gure shows that the con�dence intervals are very useful

to establish the degree of uncertainty in converting the �ltered probabilities into a speci�c set of dates

that provide the timing of shifts across the di¤erent interest rate regimes. Establishing the amount

of uncertainty over the timing of the turning points is of extreme importance to discriminating among

alternative potential explanations o¤ered for the shifts in the real interest rate.

According to Figure 9, the dating of the �rst shift from the low regime to the middle regime, and the

15The nominal interest rate is the three-month treasury bill rate (TB3MS), and the in�ation rate is constructed from the

CPI (CPIAUCNS) at annual rates, non-seasonally adjusted.
16The full sample smoothed probabilities were also computed, but they di¤ered very little from the �ltered probabilities.
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subsequent return to the low regime, seem to be associated with single distinct breaks at about 1953.3

and 1973.4, respectively. In contrast, the dates of the regime shifts that have occurred since this date are

more uncertain. Although the �ltered probability indicates that the shift from the low regime to the high

regime occurred in 1981.2, and that the shift to the middle regime occurred in 1986.4, the con�dence

intervals suggest that the shifts could occur in 1980.4 and 1990.2, respectively.17 Finally, the cut in the

cost of borrowing that characterizes the beginning of the new century is dated as 2003.1 by the �ltered

probabilities, while the con�dence intervals suggest that the shift could have occurred earlier, in 2002.1.

5 Conclusions

We contribute to the rapid growth in the literature on Markov-switching autoregressive models in the

last three decades by developing a distribution theory useful for testing and computing inferences from

�ltered and smoothed probabilities. The proposed framework is �exible enough to cover a large part of

the literature on Markov-switching autoregressive models.

Using a Monte Carlo analysis, we showed that the uncertainty over the probabilities diminishes when

the states are separated, the variance of the shocks is low, and the time series or the regimes are persistent.

Interestingly, the variance of the probabilities increases dramatically about the dates of phase changes.

Therefore, we consider that the con�dence intervals of the probabilities could be used, along with the

point estimates, to identify changes in the regime of the unobserved state variable.

We show the empirical relevance of using the con�dence intervals of �ltered and smoothed probabilities

computed within the Markov-switching autoregressive models framework by capturing the nonlinearities

in the U.S. business cycles of quarterly GDP growth rates. In particular, the con�dence intervals are

useful to identifying the U.S. recessions when the point estimates of the probabilities are close to the

threshold marking the phase changes. In addition, we show that the narrowing gap between the growth

rates during the recessions and expansions since the Great Moderation have made the business cycle

phases more di¢ cult to identify. Finally, we show that computing con�dence intervals could also be

useful to identifying the dates of jumps in the regimes of the U.S. real interest rate series, which are

important in light of the alternative explanations o¤ered for the regime changes.

17This result agrees with the analysis of Garcia and Perron (1996) and contrasts with the study of Huizinga and Mishkin

(1986).
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Table 1. MS model for GDP 

 

µ0 µ1 
2  p00 p11 

0.96 

(0.07) 

-0.48 

(0.30) 

0.57 

(0.06) 

0.95 

(0.02) 

0.69 

(0.11) 

 

Notes. The estimated model is 
tt s ty    , where 

ty  is the rate of growth of GDP, st is a two-state 

unobservable state variable that governs the business cycle dynamics, 20t ~ iidN( , )  , and 

 1ii t tp p s i s i   . Standard errors are in parentheses.  

 

Table 2. MS model for interest rate 

 

  µ0 µ1 µ2 1 2 

  
-2.01 

(0.55) 

1.50 

(0.19) 

5.03 

(0.65) 

0.19 

(0.06) 

0.04 

(0.06) 
2

0  2

1  2

2  p00 p01 p10 p11 p20 p21 

27.56 

(3.16) 

2.92 

(0.38) 

5.34 

(1.59) 

0.9886 

(0.0085) 

0.0058 

(0.0065) 

0.0174 

(0.0109) 

0.9826 

(0.0109) 

0.0002 

(0.0044) 

0.0440 

(0.0436) 

Notes. The estimated model is    
1 21 1 2 2t t tt s t s t s tr r r     
        , where tr  is the quarterly 

ex-post real interest rate, st is a three-state unobservable state variable, 20
tt s~ iidN( , )  , and 

 1t t ijp s j s i p   . Standard errors are in parentheses. 
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Figure 1. Simulation 
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Panel C. Smoothed probabilities of state 1 
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Panel D. Standard deviation of smoothed probabilities of state 1 
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Note. Shaded areas refer to dates where 1ts  . The parameters in the model are 0 1  , 1 1   , 

00 0.9p  , 11 0.9p  , 0 0.2  , 1 0.5  , 2

0 0.5   and 2

1 1  . 
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Figure 2. Model parameter changes and standard deviation of filtered probabilities 

 

    Panel A. Effect of the within-state means                Panel B. Effect of the variance of shocks 
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      Panel C. Effect of the inertia of the states          Panel D. Effect of the autoregressive parameter 

jjp

 ˆtP 


0.05

0.06

0.07

0.08

0.09

0.1

0.5 0.6 0.7 0.8 0.9

  j

 ˆtP 


0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 
 

Notes. The parameters in the baseline model are 0 0  , 1 1   , 00 0.9p  , 11 0.9p  , 0 0.2  , 

1 0.5  , 2

0 0.5   and 2

1 1  . The panels plot the median over the T observations of the standard 

deviations of the filtered probabilities of state 1, 
 ˆtP 

 , when the baseline parameters change as 

follows: in Panel A, 0 1 j   , j=1,1.1,1,2,...,3; in Panel B 2 2

0 1 0,5,0,7,...,2   ; in Panel C, 

00 11 0.5,0.6,...,0.9p p  ; and in Panel D, 0 1 0.1,0.2,...,0.9   . 
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Figure 3. Model parameter changes and standard deviation of smoothed probabilities 

 

     Panel A. Effect of the within-state means             Panel B. Effect of the variance of shocks 
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Notes. The parameters in the baseline model are 0 0  , 1 1   , 00 0.9p  , 11 0.9p  , 0 0.2  , 

1 0.5  , 2

0 0.5   and 2

1 1  . The panels plot the median over the T observations of the standard 

deviations of the smoothed probabilities of state 1 when the baseline parameters change as 

follows: in Panel A, 0 1 j   , j=1,1.1,1,2,...,3; in Panel B, 2 2

0 1 0,5,0,7,...,2   ; in Panel C, 

00 11 0.5,0.6,...,0.9p p  ; and in Panel D, 0 1 0.1,0.2,...,0.9   . 
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Figure 4. In-sample GDP, filtered and smoothed probabilities 
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Notes. GDP refers to the growth rate of US quarterly real Gross Domestic Product from 1951.1 to 

2016.3 Middle (bottom) chart refers to the inferred filtered (smoothed) probabilities of a regime of 

low growth. Shaded areas refer to the NBER recessions. 
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Figure 5. In-sample standard deviations of filtered and smoothed probabilities  
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Notes. Shaded areas refer to the NBER recessions. 
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Figure 6. In-sample confidence intervals  
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Notes. Dotted lines refer to the filtered (top panel) and smoothed (bottom panel) probabilities of recessions and black areas refer to their 95% 

confidence intervals. Grey areas refer to the NBER recessions. 
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Figure 7. Real-time filtered probabilities and confidence intervals 
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2016.3. The Grey areas refer to the NBER recessions.  
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Figure 8. Ex-ante and ex-post real interest rate 
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Notes. The ex-post interest rate is the difference between the end-of-quarter figures of nominal 

interest rate and the inflation rate, using data from 1934.1 to 2016.3. The ex-ante interest rate 

refers to its estimation in a three-state Markov-switching model with two lags where both means 

and variances are allowed to switch  
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Figure 9. Filtered probabilities and confidence intervals 

Panel A. Regime with low interest rate 
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Panel B. Regime with medium interest rate 
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Panel C. Regime with large interest rate 
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Notes. Dotted lines refer to the filtered probabilities of low (top panel), medium (middle panel), 

and large (bottom panel) interest rate. Black areas refer to their 95% confidence intervals. 


