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Abstract 16 

Ponds are among the world’s most endangered freshwater ecosystems. A comprehensive knowledge of 17 

pond biodiversity is urgently required to inform effective pond conservation actions. Most studies about 18 

pond biodiversity focus on aquatic taxa, while the terrestrial biodiversity, especially of birds, has been 19 

little studied. Moreover, the few studies existing on pond biodiversity do not account for different 20 

detection rates of species, thus yielding biased results. Here, we apply a hierarchical Bayesian modelling 21 

technique to data obtained from visual censuses to estimate bird richness associated to small ponds in a 22 

semiarid region, considering the imperfect detection of species. The model incorporates specific 23 

responses to site characteristics (pond typology), landscape (environmental heterogeneity) and at regional 24 

scale (mean annual precipitation). Ponds were used by two thirds of the terrestrial breeding bird 25 

community of the study region. Our modelling approach increased by an average of 7.5 species the 26 

observed site-specific richness. Drinking troughs supported greater richness than other pond types. 27 

Environmental heterogeneity was positively related with species richness, whereas no clear relation was 28 

observed between richness and precipitation. In addition to their ecosystem services to human welfare, 29 

our results suggest small ponds may act as key landscape elements for terrestrial birds in semiarid 30 

regions.  31 

 32 

Keywords: waterbodies, artificial pools, drinking troughs, cattle ponds, environmental heterogeneity, 33 

precipitation 34 

 35 

Introduction 36 

Freshwater habitats host almost 9.5% of the species described to date, even though they cover only 0.01% 37 

of the total water surface area of the Earth (Balian et al., 2008). However, inland waters are considered 38 

among the most endangered ecosystems in the world and their associated biodiversity is declining much 39 

faster than that of marine and terrestrial environments (Reid et al., 2019). Large aquatic ecosystems such 40 

as rivers, lakes and reservoirs have traditionally attracted the attention of freshwater conservationists and 41 

managers (Oertli et al., 2009). However, ponds and other small waterbodies can make collectively a non-42 

negligible contribution to the total freshwater area of the world, even higher than rivers and large lakes 43 

(Downing et al., 2006; Downing, 2010), and making up 3-4% of some landscapes (Lehner & Döll, 2004). 44 
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Despite their contribution, these small isolated waterbodies are often neglected by wildlife managers and 45 

policy makers (Céréghino et al., 2008).  46 

 47 

Ponds are temporary or permanent water sources (both natural and man-made) with a size varying from 1 48 

m2 to 2 ha and no more than 8 m in depth (Oertli et al., 2005). In the last two decades, several studies 49 

have highlighted the great potential of small ponds to support a high richness of aquatic species (Gómez-50 

Rodríguez et al., 2009; Oertli et al., 2010; Akasaka & Takamura, 2012; Biggs et al., 2016), including rare 51 

and unique taxa (Lemmens et al., 2013; Ilg & Oertli, 2014; Fait et al., 2020). Moreover, the contribution 52 

of ponds to biodiversity conservation is particularly important at regional scale, with a high proportion of 53 

the regional species pool being present in ponds (Williams et al., 2004; Davies et al., 2008; Zamora-54 

Marín et al., 2021a). The role of ponds to provide key services for biodiversity may be even more 55 

pronounced in arid and semiarid regions, where temporary or permanent waterbodies are in short supply 56 

(Abellán et al., 2006; Sebastián-González et al., 2010; Lisón & Calvo, 2014). However, just as other 57 

freshwater ecosystems, ponds are exposed to many pressures derived from human activities, such as land 58 

drainage, nutrient loading, the decline of traditional farming and cattle raising, as well as the introduction 59 

of invasive alien species (Declerck et al., 2006), most of these threats having increased in recent years. 60 

Among these pressures, land-use changes related to intensive farming are particularly affecting temporary 61 

ponds (Ferreira & Beja, 2013) and traditional drinking troughs (Buono et al., 2019), leading to infilling, 62 

groundwater overexploitation or pond abandonment. As a consequence, many, if not most, ponds have 63 

vanished from the farmlands of continental Europe, even the loss rate reaching as much as 90% in some 64 

countries (Oertli et al., 2005). This is why studies aimed at providing robust knowledge on the role of 65 

small ponds in biodiversity conservation are urgently required in order to establish pond management 66 

strategies.  67 

 68 

To date, pond biodiversity research has mainly focused on strict or facultative aquatic taxa, such as 69 

macrophytes (Della Bella et al., 2008; Bubíková & Hrivnák, 2018), macroinvertebrates (Florencio et al., 70 

2014; Hill et al., 2016; Fait et al., 2020) and amphibians (Arntzen et al., 2017). However, recent studies 71 

have pointed to the need to assess the importance of freshwater ecosystems for conserving not only 72 

aquatic organisms but also terrestrial species (Soininen et al., 2015; Smit et al., 2019), including 73 

pollinating insects (Walton et al., 2020), bats (Razgour et al., 2010), large mammals (Harper et al., 2019) 74 
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and farm birds (Lewis-Phillips et al., 2019a). In the case of terrestrial fauna, these habitats provide 75 

essential cross-system services such as food (Davies et al., 2016) or drinking water (Abdu et al., 2018), 76 

both extremely important resources for wildlife, especially during the breeding season (Lewis-Phillips et 77 

al., 2020) or during hot periods (Lee et al., 2017). Until now, very few studies have analysed the role of 78 

small ponds in providing services to protect terrestrial biodiversity. In the case of birds, Lewis-Phillips et 79 

al., (2019, 2020) found a greater bird abundance and richness in managed open-canopy ponds than in 80 

unmanaged overgrown ponds, due mainly to the higher abundance of emergent insects in the former. 81 

More generally, bird communities associated to small waterbodies have been described in some arid 82 

regions (Bock, 2015; Abdu et al., 2018; Smit et al., 2019), pointing to the moderate contribution of 83 

services made by ponds to terrestrial birds. However, these studies did not account for differences in 84 

species detectability, which strongly affects occupancy estimates in birds (Einoder et al., 2018), thus 85 

yielding biased results that may underestimate the true species richness associated with certain sampling 86 

sites (MacKenzie & Bailey, 2004).  87 

 88 

Species richness is the most commonly used biological measurement in ecological studies and monitoring 89 

programs (MacKenzie et al., 2006; Kéry et al., 2009). However, determining species richness with 90 

accuracy can be complicated because of variability in species-specific detection rates (Kéry & Schmidt, 91 

2008). Previous approaches have traditionally ignored detectability by using raw species counts, leading 92 

to questionable inferences with respect to species richness patterns (Kéry & Royle, 2008). Rare species 93 

are frequently overlooked in community-level studies, mainly due to their limited detection rates, which 94 

are influenced by low abundances (MacKenzie et al., 2005), despite the fact that most of them are 95 

considered as species of conservation concern or even have poor conservation status. Nevertheless, 96 

management and conservation strategies should consider all species inhabiting a particular site, not just 97 

those species which provide enough data (Zipkin et al., 2010). Concern about the imperfect detection of 98 

species in ecological studies has increased over recent years, and the rapid development of hierarchical 99 

models has led to different approaches being used (Guillera-Arroita, 2017). Among the many advantages 100 

of hierarchical models in comparison with other previous approaches (see Kéry & Royle, 2008) -e.g. 101 

classical richness estimators- is the fact that they can incorporate habitat and sampling effects that 102 

influence occupancy and detection processes, thus enabling the extensive evaluation of several features 103 

that may modulate species richness and detectability (Maphisa, Smit-Robinson & Altwegg, 2019). 104 
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Moreover, richness estimation through hierarchical models allows to compute independently occupancy 105 

and detectability estimates for each species within a community, thus accounting for the different 106 

detection rates of species (Kéry & Royle, 2016). Furthermore, hierarchical occupancy models have rarely 107 

been applied to aquatic ecosystems and are vastly underrepesented in the literature (Devarajan et al., 108 

2020). Indeed, very few studies apply hierarchical models to pond biodiversity data (Ferreira & Beja, 109 

2013). 110 

 111 

This study looks at the species richness of terrestrial breeding birds associated to 39 small ponds in the 112 

most arid region of Europe (southeast of the Iberian Peninsula), using hierarchical Bayesian multi-species 113 

occupancy modelling to account for differences in detectability across species. Our hierarchical modelling 114 

incorporates three spatial scale covariates, which were expected to affect bird species richness in the 115 

study ponds. Firstly, at pond site scale, we hypothesized that some pond attributes can promote the 116 

terrestrial bird richness associated to ponds (Davies et al., 2016). For this reason, we explore differences 117 

in species richness associated to three pond types that differ in their structural characteristics: artificial 118 

pools, cattle ponds and drinking troughs. Secondly, we evaluate a measure of environmental 119 

heterogeneity (hereafter, EH) as an environmental variable shaping bird richness associated to ponds at 120 

landscape scale. Lastly, mean annual precipitation was incorporated in the model as one of the main 121 

climatic factors shaping bird richness at regional scale. Based on previous studies (Qian & Kissling, 2010; 122 

Stein et al., 2014; Lorenzón et al., 2016), we hypothesized that both environmental factors (EH and 123 

precipitation) might be drivers of bird species richness associated to ponds. Therefore, our objectives 124 

were to estimate species richness of terrestrial birds associated to three different pond types, and to 125 

explore its relationship with EH and precipitation. 126 

 127 

Materials and methods 128 

Study area 129 

The study was conducted in the province of Murcia, in the Iberian southeast, which is the most arid 130 

region of continental Europe (Armas et al., 2011). The province of Murcia extends over an area of 11,317 131 

km2 and is characterized by a dry warm Mediterranean climate, with a strong water deficit during spring 132 

and summer. Mean annual precipitation is 350 mm in most of the province and the average annual 133 

temperature ranges from 18.5 ºC in the driest coastal areas –characterized by scarce precipitation- to 12.0 134 
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ºC in the coldest inland zones (Machado et al., 2011). However, during dry hydrological years, mean 135 

annual precipitation usually does not exceed 200 mm, with rainfall being extremely unusual during late 136 

spring and summer (mean monthly precipitation 11.5 mm). Despite the semiarid conditions, the existence 137 

of a coast-inland climatic gradient promotes high ecosystem heterogeneity, which is even more 138 

pronounced as a result of multiple environmental factors, which include weather conditions, intense 139 

human pressure, topography and the availability of water resources. Three main different types of 140 

ecosystem can be identified in the study area: semidesert zones, Mediterranean shrublands and coniferous 141 

forests, mainly composed of Pinus halepensis Miller 1768 and Pinus pinaster Aiton 1789 (Esteve et al., 142 

2015). In general, the further one moves inland from the coast, the greater the presence of mountainous 143 

areas, the more continental the climate (colder winters and higher mean annual precipitation) and the 144 

lower the pressure of human occupancy. Indeed, mean annual precipitation can usually reach 680 mm in 145 

some inland places, which is more than twice the 250 mm normally recorded in the most arid zones.  146 

 147 

Regarding the principal land uses, rainfed and irrigated agriculture predominate in the lowlands and high 148 

plateaus, whereas steeper areas are occupied by Mediterranean shrubland and pine forests. In recent 149 

decades, intensive irrigated agriculture has expanded to almost half of the study area, which has involved 150 

the excessive overexploitation of groundwater and surface water resources (Rupérez-Moreno et al., 2017). 151 

In addition, traditional livestock grazing has experienced a sharp decline over the last decades, thus 152 

leading to the lack of maintenance of cattle ponds and drinking troughs. Moreover, some traditional 153 

waterbodies are also exposed to some unsuitable practices such as piping or channelling (López 154 

Bermúdez et al., 2016). Indeed, the loss rate of traditional ponds in the study area have been estimated in 155 

36% for cattle ponds (Verdiell-Cubedo, 2012) and 23% for other types of small ponds in the last decades 156 

(Ballester-Sabater et al., 2003). This situation has dramatically decreased the availability of water 157 

resources (both groundwater fed or not) for wildlife (Valera et al., 2011), especially in periods with a 158 

marked water deficit, usually spring and summer. Thus, the availability of water resources for wildlife is 159 

considerably lower in natural or semi-natural zones of the study area, where the main land uses are 160 

rainfed agriculture and Mediterranean shrubland and forests, and no irrigation ponds appear in the 161 

landscape. Consequently, due to the marked scarcity of rivers and streams, artificial pools and traditional 162 

ponds (cattle ponds and drinking troughs) still present become the dominant waterbodies in these rural 163 
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landscapes and they can play an essential role in supporting terrestrial biodiversity (Lisón & Calvo, 2014; 164 

Abdu et al., 2018).  165 

 166 

Sampling sites: pond types and environmental variables 167 

Study ponds were selected according to the following criteria: 1) easy pond access by birds, so that they 168 

could drink safely from the pond shoreline or border; 2) size (up to 450 m2), allowing the authors to 169 

visually record bird activity along the whole pond shoreline from the same position; 3) a degree of 170 

isolation from other water sources including wetlands, rivers, intermittent streams and other waterbodies 171 

(average distance to nearest water source was 935 ± 728 m), which ensured that birds from the 172 

surrounding area would use the particular pond; and 4) location in areas far from human settlements 173 

(urban centres) in order to avoid biases from human influence -other than pond use- on the bird 174 

community composition. As far as possible, ponds were selected along a coast-inland climatic gradient to 175 

ensure representative information on the bird communities associated to ponds in areas under different 176 

climatic conditions.  177 

 178 

Overall, we selected 39 ponds spread over the study area (Fig. 1) and belonging to three different pond 179 

types according to their structural features: 14 artificial pools, 12 cattle ponds and 13 drinking troughs 180 

(see a representative picture for each pond type in Fig. 1). Artificial pools are permanent ponds with 181 

cemented bottoms and a round or square structure, mostly located in forest or agroforestry landscapes, 182 

where extensive agriculture and hunting are the main land uses. They are intermediate in size and depth 183 

compared with the other two pond types. Most of them are directly fed from small natural springs, while 184 

the rest are filled by farmers or rangers. Cattle ponds are temporal round waterbodies, which were 185 

originally dug into Mediterranean farmlands to collect runoff water and provide drinking water for cattle. 186 

They hold water at least during nine months per annual cycle. Cattle ponds are larger (270 ± 96 m) and 187 

deeper (100 ± 37 cm) than the other two pond types. Although cattle ponds were dug artificially, they 188 

appear natural because of their silt bottom and absence of artificial structures around them. They are 189 

typically located in plateaus dominated by extensive grassland and tree farming. Lastly, drinking troughs 190 

are lineal permanent artificial small waterbodies where cattle drink. In contrast to cattle ponds, drinking 191 

troughs are exclusively located in mountain areas dominated by Mediterranean mature forests with small 192 

scattered patches of extensive agriculture. Moreover, they are characterized by their small size and 193 
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shallowness, which limits the development of aquatic vegetation. Although fed from small natural 194 

springs, all of them have been modified by lining with cement to ensure water permanence, thus adding to 195 

their artificial appearance. Both permanent and temporary ponds held surface water during the study 196 

period.  197 

 198 

We considered environmental heterogeneity (EH) and mean annual precipitation to be the main 199 

environmental variables affecting bird richness associated to study ponds at landscape and regional scale, 200 

respectively. Regarding EH, a 1-km radius around each study pond enabled the land cover proportion 201 

occupied by four main land use types to be calculated: tree crop (almond trees and vineyards), herbaceous 202 

farming (cereal crops), Mediterranean shrubland and woodland (pine forests). This buffer size was 203 

selected because bird community composition associated to ponds is markedly influenced by nearby land 204 

uses (Sebastián-González & Green, 2014). To identify the land use types, the land cover mapping data 205 

from the Spanish National Forestry Inventory (Dirección General de Desarrollo Rural y Política, 2012) 206 

were used, along with the free software QGIS (version 2.18.19). Following Bain & Stevenson (1999), 207 

standard deviation was calculated as a proxy of the land cover EH, using the cover proportion occupied 208 

by each land-use type. A high standard deviation meant the dominance of a single land-use type (e.g. 1-209 

km radius fully occupied -100%- by woodland), thus indicating low habitat heterogeneity. Conversely, 210 

the lowest standard deviation meant the four selected land-use types (tree crop, herbaceous farming, 211 

shrubland and woodland) extend over a similar proportion of land cover (e.g. each land-use type covering 212 

25% of land cover), thus indicating high habitat heterogeneity. Mean annual precipitation was extracted 213 

from the climate atlas of the province of Murcia (Garrido et al., 2013) with a 1-km2 grid size.  214 

 215 

Bird surveys 216 

We conducted three visits to 19 study ponds in 2017 and to 20 ponds in 2018. Visits were carried out in 217 

early-mid spring (April), late spring (May-June) and early summer (July) to cover the whole breeding 218 

season of the bird species in the study area. Intervals between visits to each pond were no longer than 40 219 

days. As the ponds were far away from each other (average distance = 4.2 km), spatial autocorrelation in 220 

our bird observations at the study ponds was unlikely. Home-range size in passerine birds is often 221 

particularly reduced during the breeding season (Roldano, 2002), due to territoriality and brooding 222 

activities, and it rarely exceeds 2 ha. (Morganti et al., 2017). Indeed, in a previous study using mist 223 
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netting to individually mark birds in some of the same study ponds (Zamora-Marín et al., 2021b), we 224 

reported no recapture cases between different near ponds, despite most birds were caught twice at the 225 

same pond. The order of the visits was constant throughout the study period to correct for the slightly 226 

earlier phenology of bird species in warmer coastal areas (unpublished data). Each visit consisted of a 3-227 

hour census conducted by direct observation from within a portable hide, which was deployed in a 228 

position (at least 10 m from the pond) that maximized the visibility of pond shoreline. As far as possible, 229 

the hide was set up close to surrounding vegetation to avoid affecting bird behaviour. In addition, 230 

conventional video cameras (Panasonic Handycam, HC-V180, Panasonic Corporation, Osaka, Japan) 231 

were set in 14 out of the 39 study ponds during the 3-hour censuses with the aim of covering the entire 232 

water surface at the largest ponds. Surveys began at sunrise (7:00-8:30 h), in good weather conditions 233 

(rainless and windless days) and were always conducted by the same surveyors (JMZ-M and AZ-L). This 234 

time of the day has been reported as being the period with greatest bird activity, after which species 235 

detectability declines steeply (Lynch, 1989; Whitman et al., 1997). As far as was possible, surveys were 236 

conducted during rainless periods because birds visit ponds much less in rainy conditions in arid regions 237 

(Lynn et al., 2008; García-Castellanos et al., 2016). We recorded all birds seen or heard within a 10-m 238 

buffer from the study pond. All birds were identified at species level, except crested lark (Galerida 239 

cristata (L., 1758)) and Thekla´s lark (Galerida theklae (Brehm, 1858)), which were pooled at genus 240 

level (Galerida sp.) to avoid misidentification (Guillaumet et al., 2005). 241 

 242 

Modelling framework 243 

We used a Bayesian multi-species occupancy model (Dorazio & Royle, 2005; Dorazio et al., 2006) to 244 

evaluate the bird species richness associated to the study ponds, as well as to examine the influence of 245 

pond typology, EH and mean annual precipitation on bird richness. This model is an extension of the 246 

single species site occupancy model (MacKenzie et al., 2002), whereby the hierarchical structure 247 

combines community and species level attributes within a single analytical framework (Zipkin et al., 248 

2010). The hierarchical model is composed of the ecological process (governed by occupancy 249 

probability) and the observational process (governed by detectability probability). Data are compiled as a 250 

2×2 matrix (Y) with i rows by k columns, corresponding to sites and species, respectively. The number of 251 

temporal replicates or surveys j for each site i where the species k was observed is quantified in the 252 

matrix. The ecological process assumes that site specific occupancy (i. e. ‘true’ presence⁄absence) for 253 
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species k at site i is denoted z(i,k), where z(i,k) = 1 if species k occurs in site i and is zero otherwise. The 254 

model for occurrence is specified as z(i,k) ~ Bern(ψi,k) where ψi,k is the probability that species k occurs at 255 

site i. The true occurrence is imperfectly observed, and we define the detection model for species k at site 256 

i in survey j as Y(i,k) ~ Bern(pi,k·z(i,k)) where pi,k is the detection probability of species k for the jth 257 

temporal replicate at site i, given that species k is in fact present at site i (Zipkin et al., 2009). In the 258 

simplest specification of the model, the occurrence and detection probabilities are composed of species-259 

specific effects and site-level effects (Dorazio et al., 2006; Kéry & Royle, 2016). Extensions of this basic 260 

model have explicitly incorporated landscape characteristics into the probability of occupancy (Zipkin et 261 

al., 2009; Jiménez-Franco et al., 2019; Maphisa et al., 2019). Following this approach, we modelled the 262 

occurrence probability for species k at site i by incorporating the three above mentioned site-specific 263 

covariates: pond type (artificial pool, AP; cattle pond, CP; drinking trough, DT), environmental 264 

heterogeneity of the surrounding landscape (EH) and mean annual precipitation (PREC). Linear and 265 

quadratic effects of EH and precipitation were included, and both quantitative covariates were 266 

standardized. Therefore, the probability of occupancy was defined as follows:  267 

 268 

logit(ψ
i,k

) ~ Normal (μ
lpsi,i,k

, σlpsi,i,k
2 ) 269 

μ
lpsi,i,k

= β
1,k

APi + β
2,k

CPi + β
3,k

DTi + β
4,k

EHi + β
5,k

EHi
2 + β

6,k
PRECi+β

7,k
PRECi

2 270 

 271 

The coefficients from  β
1,k

 to  β
7,k

 are the effects of pond type, EH of the landscape (linear and squared) 272 

and precipitation (linear and squared), for species k respectively. We assumed that detection probabilities 273 

varied depending on the species but were not influenced by survey characteristics: 274 

logit(p
k
) ~ Normal(μ

lp,k
,σlp,k

2 ). The model was fitted using JAGS (Plummer, 2003) run in R version 3.6.3 275 

(R Core Team, 2020) with the package jagsUI (Kellner, 2015), using uninformative priors, three chains, 276 

15 000 iterations and a burn-in of 5 000 iterations and a thin rate of 2. Convergence was assessed by 277 

examining the R-hat values for each parameter estimate (Brooks & Gelman, 1998). We present posterior 278 

means and the 95% credible intervals (CRI), the Bayesian analogue to confidence intervals. 279 

 280 

Results 281 

We recorded a total of 80 bird species associated to the 39 surveyed small ponds of different types (Table 282 

S1, Supporting Information). The observed species corresponded to 34 different avian families, with 283 
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flycatchers (Muscicapidae) and finches (Fringillidae) being the richest families (nine and eight species, 284 

respectively), whereas finches were also the dominant family in terms of abundance (64% of the total 285 

abundance). European serin (Serinus serinus L., 1766), common chaffinch (Fringilla coelebs L., 1758) 286 

and common linnet (Linaria cannabina (L., 1758)) were the most frequent species in general, occurring 287 

in 97.4%, 87.2% and 76.9% of the study ponds, whereas 16 species were occasional and were only 288 

recorded in a single pond site. Detection probability estimates ranged from 0.10 to 0.84 (median = 0.35) 289 

which illustrates the high variability in detectability among recorded species. Interestingly, our multi-290 

species model revealed that eight or more species were undetected at 12 out of our 39 study ponds. 291 

Indeed, richness estimation increased by an average of 7.5 species over observed richness (Fig. 2). 292 

 293 

Almost full occupancy estimates in artificial pools and drinking troughs were revealed for rock bunting 294 

(Emberiza cia L., 1766), red crossbill (Loxia curvirostra L., 1758), great tit (Parus major L., 1758), 295 

European serin, common chaffinch and Eurasian blackbird (Turdus merula L.,1758), indicating the 296 

widespread use of small ponds by these species (Fig. S1, Supporting Information). Common linnet, larks 297 

(Galerida sp.) and European serin were the most frequent species in cattle ponds. 298 

 299 

The multi-species occupancy model revealed the important effect of pond type on associated bird richness 300 

(Fig. 3), with a higher visually estimated local richness in drinking troughs (median = 31.8, range = 25.9, 301 

45.2) than in the other pond types. Cattle ponds supported the second highest estimated richness (median 302 

= 22.7, range = 15.4, 33.3), whereas artificial pools were the poorest pond type in terms of estimated 303 

richness (median = 21.0, range = 13.8, 33.1). Some 29 bird species were exclusively associated to a single 304 

pond type, with differences between the typologies, cattle ponds supporting more exclusive taxa (16 305 

species) than drinking troughs and artificial pools (10 and 3 exclusive species, respectively). Considered 306 

as a whole, drinking troughs represented the pond type with the highest observed bird richness (61 307 

species), followed closely by cattle ponds (55), whereas artificial pools were the species-poorest, with 41 308 

taxa. On the other hand, EH was positively related to bird richness after controlling for differences in 309 

detectability across species (Fig. 4). However, no clear relation was observed in the case of mean annual 310 

precipitation (Fig. 5), even though the wettest sites seemed to support the highest bird richness. 311 

 312 

Discussion 313 
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In addition to their widely reported contribution to freshwater biodiversity, small ponds can also play an 314 

essential role in providing ecological services for terrestrial wildlife (Lisón & Calvo, 2014; Sutherland et 315 

al., 2018; Lewis-Phillips et al., 2019a). Our study supports the importance of small ponds for maintaining 316 

terrestrial bird communities in semiarid regions, which is highlighted by the high terrestrial bird richness 317 

associated to the study ponds. Interestingly, two thirds of the species composing the entire community of 318 

terrestrial breeding birds in the study region, which comprises 120 species (Calvo et al., 2017), were 319 

observed visiting these small isolated aquatic ecosystems. This richness value is similar to reported from 320 

pond-uninfluenced line transects conducted through the province of Murcia (73 species, see Jiménez-321 

Franco et al., 2019), thus suggesting study ponds were used by a large proportion of the bird assemblage 322 

breeding in terrestrial habitats of the study area. Indeed, 1-km line transects conducted in terrestrial 323 

habitats adjacent to study ponds revealed that 71% (±14.5% SD) of the bird species composing the local 324 

breeding bird community were recorded making use of the study ponds (authors´ unpublished data). 325 

However, this proportion of species may have been even higher because of our multi-species occupancy 326 

model yielded a median detection probability of 0.35 among all species. In this sense, several factors have 327 

been shown to affect detectability in bird species (Rigby & Johnson, 2019), including the effects from 328 

survey design, species behaviour, environmental conditions and observer performance (Jarzyna & Jetz, 329 

2016; Guillera-Arroita, 2017; Jiménez-Franco et al., 2019). In our case, the use of a non-remote survey 330 

method may have underestimated the occurrence of elusive and large species, such as raptors and crows, 331 

which have been reported to make use of waterbodies through remote cameras (Votto et al., 2020). Even 332 

though our sampling method was deemed suitable for the study aims and some large or medium-sized 333 

bird species were occasionally detected (e. g. Accipiter gentilis (L., 1758), Columba palumbus L., 1758 334 

and Corvus corone L., 1758), this survey technique may trigger avoidance behaviour in some elusive 335 

species due to the hide’s presence. However, a methodological study recently conducted at the same 336 

ponds showed direct observation as the most efficient sampling method for detecting bird species 337 

associated to ponds, being even more effective than other traditional techniques such as mist netting 338 

(Zamora-Marín et al., 2021b). Indeed, direct observation (e.g. point counts and line transects) is a suitable 339 

survey method for community-level studies based on bird richness and abundance data, because of it 340 

allows to efficiently record different avian guilds (including gregarious and large birds), thus providing 341 

representative data on the whole community (Whitman et al., 1997; Faaborg et al., 2004). Furthermore, 342 

conversely to other survey methods, direct observation demands less human and economic resources 343 
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(Poulin et al., 2000). In our case, it should be noted we only surveyed a representative subset of the total 344 

number of small waterbodies in the study area, meaning that the bird richness associated to small ponds in 345 

the study area could be even greater than reported here. 346 

 347 

The studied ponds accounted for a greater proportion of the regional bird species pool (80 out of 120 348 

terrestrial breeding bird species, 67%, in the study area) than reported for small waterbodies from arid 349 

regions, although comparisons must be considered with care due to the different sampling designs. For 350 

instance, less than 50% of the local bird communities were recorded as using artificial waterholes in the 351 

Kalahari desert (Abdu, Lee & Cunningham, 2018a; Smit et al., 2019) and about 36% using natural ponds 352 

from Western Cape, South Africa (Lee et al., 2017). These differences in the use of ponds by terrestrial 353 

birds may be explained by the dissimilar physiological responses of bird species inhabiting different 354 

aridity scenarios. In arid regions, the availability of water resources is naturally scarcer (or even totally 355 

absent) compared with semiarid zones, meaning that avifauna from arid regions have been under greater 356 

selection pressures to become independent of drinking water (Smit et al., 2019), for example, by 357 

obtaining water from the diet (Smit, 2013). In semiarid study areas like ours, several natural springs and 358 

other small waterbodies (farm ponds, cattle ponds and drinking troughs, among others) have traditionally 359 

been present (López Bermúdez et al., 2016), providing water and other resources for wildlife. For this 360 

reason, most bird species from semiarid regions have not developed physiological responses to become 361 

independent of drinking water, since they have evolved in landscapes with certain availability of free-362 

water resources. These standing water resources were originally represented by natural springs, rock 363 

pools and pools in intermittent or ephemeral streams (Sánchez‐Montoya et al., 2016), and more recently 364 

by artificial waterbodies such as cattle ponds and drinking troughs. Therefore, bearing in mind the 365 

scarcity of natural water resources in semiarid regions, small traditional ponds seem to have become 366 

essential for supporting terrestrial biodiversity, particularly bird communities.  367 

 368 

Importantly, higher terrestrial bird richness was observed in drinking troughs than in the other pond types. 369 

In our opinion, two factors seem to be responsible for the patterns of species richness associated to our 370 

study pond types. On the one hand, vegetation cover is a local factor (i.e. pond attribute) that has been 371 

reported to negatively affect terrestrial bird richness associated to ponds (Lewis-Phillips et al., 2019b). 372 

Most of the artificial pools we studied were encroached upon or overgrown by emergent vegetation, 373 
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making the water less visible and accessible for birds, while decreasing food availability as a result of the 374 

development and emergence of aquatic insects, consequently decreasing the associated bird richness 375 

(Lewis-Phillips et al., 2020). Moreover, habitats overgrown by emergent vegetation may also increase the 376 

predation risk perceived by small passerines (Whittingham & Evans, 2004), thus promoting an avoidance 377 

behaviour. In our study, drinking troughs showed a pond shoreline discontinuously covered by bush 378 

vegetation, thus allowing diversified bird use. Most of the observations for foliage gleaners in our study 379 

(e.g. Sylviidae and Phylloscopidae families) corresponded to birds accessing pond shoreline through 380 

adjacent bushes, as a behavioural response from their feeding habits. However, ground-foraging bird 381 

species (e.g. Fringillidae and Columbidae families) were often observed accessing pond shoreline from 382 

non-vegetated open areas. Thus, the occurrence of contrasting structural features within a given pond (i.e. 383 

high within-pond heterogeneity) seems to play an important role in promoting the use by a diversified 384 

bird community, as previously suggested (Davies et al., 2016). On the other hand, regional factors may 385 

directly influence the likelihood of species inhabiting a given pond site. These regional factors include 386 

large-scale environmental conditions that affect all systems in a region (e.g. land-use patterns), thus 387 

determining the regional species pool (De Meester et al., 2005). Previous studies have reported the strong 388 

influence of land uses on terrestrial bird richness (Waltert et al., 2004; Allen et al., 2019). In our case, it 389 

was expected that land uses around the ponds would directly affect the regional pool of bird species, and 390 

consequently the number of bird species using small ponds. Drinking troughs were mainly situated in 391 

mature forests with small scattered patches of extensive tree crops. On a global scale, forest and 392 

agroforest areas have been shown to support more bird species than agricultural landscapes (Sekercioglu, 393 

2012). This pattern is explained by the high food availability (both fleshy fruits and insects) and complex 394 

vegetation of mature forests (Waltert et al., 2004), factors which promote the occurrence of high diversity 395 

of insectivorous and frugivorous bird species. Moreover, mature forests and tree plantations provide 396 

suitable sites for nesting and roosting, as well as microclimatic refugia for several bird species 397 

(Sekercioglu, 2007). Therefore, within-pond heterogeneity and land-uses patterns may act synergistically 398 

in favour of drinking troughs for promoting the use by high terrestrial bird diversity, but further studies 399 

are needed to assess this relationship. The lower bird richness recorded at cattle ponds may be explained 400 

by the fact that cereal farming was the dominant land use type around these ponds, thus promoting the 401 

occurrence of a species-poor and highly specialized community dominated by granivorous birds such as 402 

larks or sparrows (Mahiga et al., 2019; Vaccaro et al., 2019). This pattern is attributed to the great 403 
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amounts of weed seeds and other food-grain resources provided by cereal crops for granivorous species 404 

(Ndang’ang’a et al., 2013). Moreover, cattle ponds often show a non-vegetated open pond shoreline, thus 405 

precluding pond use by foliage gleaners, as highlighted by the fact that species from Sylviidae and 406 

Phylloscopidae families were poorly detected (or even undetected) at cattle ponds (Fig. S1, Supporting 407 

Information). 408 

 409 

Understanding how species richness differs among pond types can provide useful information for 410 

improving the effectiveness of management strategies; for instance, by prioritizing conservation actions in 411 

those kinds of pond supporting greater species diversity or those considered to have a rarity value. Global 412 

conservation priorities are frequently based on bird endemisms or taxonomic uniqueness (among others) 413 

rather than species diversity, since richness is generally driven by common and widespread species 414 

(Brooks et al., 2006). In our case, drinking troughs were visited by a visibly higher number of bird species 415 

than the other pond types, pointing to their greater potential for maintaining more diverse bird 416 

communities. Interestingly, however, cattle ponds were visited by more exclusive species than the other 417 

two pond types and most observations corresponded with species of conservation concern or threatened 418 

taxa, such as calandra lark (Melanocorypha calandra L., 1766), greater short-toed lark (Calandrella 419 

brachydactyla Leisler, 1814), lesser kestrel (Falco naumanni Fleischer, 1818) and black-bellied 420 

sandgrouse (Pterocles orientalis (L., 1758)), all listed in the European Birds Directive (2009/14/CE), and 421 

the locally endangered lesser short-toed lark (Alaudala rufescens (Veillot, 1820)) (Robledano, 2006). This 422 

can be explained by the fact that cattle ponds are placed in steppe areas, which are considered among the 423 

most threatened habitats in Europe, and leading to the poor conservation status of steppe birds (Burfield, 424 

2005; Traba & Morales, 2019). Therefore, pond conservation and management priorities must consider 425 

the importance of these small isolated habitats for supporting both bird richness and threatened species 426 

(Davies et al., 2016; Lewis-Phillips et al., 2019a), and ensure the long-term protection of most species-427 

rich pond sites, but especially those that contribute to protecting threatened species. This conservation 428 

goal can only be attained through the promotion of different pond types at regional scale (Oertli, 2018; 429 

Zamora-Marín et al., 2021a), ensuring the continued presence of a wide variety of ponds with different 430 

features that provide complementary ecological services. In this context, the potential role of some 431 

management practices for game species (i.e. providing water points) should be considered because they 432 

may also benefit threatened bird species (Estrada et al., 2015). In addition to the contributions of ponds to 433 
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biodiversity, their social and cultural values cannot be overlooked because of most traditional ponds in 434 

the study area appear in association to livestock trials, which promote also landscape connectivity for 435 

wildlife.  436 

 437 

Here, EH was measured as the evenness of four types of land use in a 1-km radius around ponds. As 438 

expected, EH showed a positive relation with bird richness. EH has been shown to be among the main 439 

drivers of species richness for different biotic groups around the world (Qian & Kissling, 2010; Stein et 440 

al., 2014), with particularly positive effects in the case of bird diversity (Lorenzón et al., 2016; Hung-441 

ming et al., 2020). This general pattern is related to the niche-based hypothesis, which states that different 442 

species are associated with different habitat types (Hutchings et al., 2000). In our study, some habitat 443 

specialist species were related to large habitat patches dominated by a single type of land use (e. g. 444 

Periparus ater (L. 1758) and Regulus ignicapilla (Temminck, 1820)in woodlands; Melanocorypha 445 

calandra and Alaudala rufescens in grasslands). Thus, a high EH around the study ponds indicates a 446 

balanced proportion of the four land use types, which can promote the occurrence of high number of 447 

habitat-specialist species when required habitat appears in a sufficiently large extension. However, other 448 

ecological processes may also contribute to the high species richness as a result of the selection of 449 

heterogeneous sites by individual species. For instance, some bird species show wide ecological 450 

requirements and often need to use different habitat types simultaneously in order to meet their daily 451 

requirements and tasks (i.e. roosting, feeding or nesting) (Camacho et al., 2014). This relationship stems 452 

from the fact that a combination of habitat types can provide more resources for wildlife (Tews et al., 453 

2004) from different origins, thus complementing each other and allowing the coexistence of a wide 454 

variety of species.  455 

Finally, no clear effects of mean annual precipitation were observed on bird species richness. This 456 

ambiguous relationship between precipitation and bird richness was also seem in an earlier study in the 457 

same region (Jiménez-Franco et al., 2019). However, precipitation has been widely shown to positively 458 

influence bird richness in many places in the world (Cueto & De Casenave, 1999; Qian & Kissling, 2010; 459 

Duclos et al., 2019), mainly through the increase in plant diversity, which ultimately implies more food 460 

resources for birds (Rompré et al., 2007). Climate predictors of species richness are often believed to be 461 

stronger at broader spatial scales (Field et al., 2009), so the relatively small size of our study area might 462 

be masking the true effects of precipitation on bird richness. Indeed, the above-mentioned studies 463 
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supporting the precipitation-richness relationship were conducted in large regions (often at country or 464 

continental scale).  465 

 466 

In this study, we have applied a hierarchical approach, which is considered particularly useful for diverse 467 

communities (Zipkin et al., 2010). This multi-species occupancy model integrates information from all 468 

the sites surveyed, while accounting for the imperfect detection of species. This yields species-specific 469 

occupancy probabilities, thus providing valuable information for monitoring program design. Similarly, 470 

the model provides estimates of true species richness for each sampling site, enabling inferences about 471 

richness distribution to be made for different habitat types. Indeed, the accurate estimation of total species 472 

richness is considered to be extremely important for making conservation, management and policy 473 

decisions (Guillera-Arroita et al., 2019). As recently reported, the potential contribution of farm ponds to 474 

terrestrial wildlife has been greatly undervalued in conservation and management strategies (Lewis-475 

Phillips et al., 2019b). Even though small waterbodies are believed to provide key ecological services to 476 

terrestrial biodiversity (Céréghino et al., 2014; Biggs et al., 2016), the contribution of these isolated 477 

freshwater habitats to several non-aquatic animal groups remains largely unexplored and these cross-478 

system services have been rarely addressed in pond literature. According to our results, small ponds can 479 

provide important ecological services for terrestrial bird communities, in addition to their role in 480 

supporting freshwater biodiversity (Oertli, 2018). Two thirds of the breeding bird species inhabiting the 481 

study area were observed using ponds. Thus, since birds are involved in several key services like pest 482 

control, pollination and seed dispersal (Sekercioglu, 2006), small ponds can really act as critical habitats 483 

at landscape scale for bird conservation and ecosystem functioning. Indeed, the installation of artificial 484 

drinking troughs has been proven as a successful management tool for promoting the frugivore-mediated 485 

restoration of old fields (e.g. abandoned lands) by attracting terrestrial birds in semiarid regions (García-486 

Castellanos et al., 2016; Martínez-López et al., 2019). The study ponds were visited by a representative 487 

set of the local breeding bird communities inhabiting the landscape where the ponds were sited, 488 

highlighting the potential of these small isolated freshwater habitats to provide services for terrestrial 489 

birds, mainly related to drinking water provision or bath-related plumage care. These findings should 490 

provide information on pond management strategies to effectively protect the ecological integrity of these 491 

small isolated freshwater habitats, especially bearing in mind the wide variety of ecological services they 492 

provide. Further studies are needed to explore the contribution of small ponds to the local bird species 493 
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pool with a focus on assessing their importance at community level, as well as to quantify and assess the 494 

ecological services they provide for terrestrial birds.  495 
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Fig. 1 Map of the study area and the location of the surveyed ponds. Coordinates are indicated as UTM 833 

30S (metres). Elevation data and outline maps were obtained from public national data sources 834 

(https://www.ign.es/web/cbg-area-cartografia). A representative picture of each pond type is provided 835 

below: a) artificial pool; b) cattle pond; and c) drinking trough. Photo credits: José Manuel Zamora. 836 
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Fig. 2 Comparison of observed and estimated number of bird species in 39 ponds in the province of 840 

Murcia, south-eastern Spain. Vertical lines represent 95% credible intervals. 841 
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Fig. 3 Boxplots of estimated bird richness associated to the three investigated pond types in the 845 

province of Murcia, south-eastern Spain.  846 
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Fig. 4 Relationship between the estimated number of bird species and the environmental heterogeneity 850 

variable (EH) in 39 ponds in the province of Murcia, south-eastern Spain. Vertical lines represent 95% 851 

credible intervals. The curve represents a cubic smoothing spline fitted to the data to show the general 852 

trend. Note that low EH values indicate high environmental heterogeneity. 853 
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Fig. 5 Relationship between the estimated number of bird species and the mean annual precipitation in 857 

39 ponds in the province of Murcia, south-eastern Spain. Vertical lines represent 95% credible intervals. 858 

The curve represents a cubic smoothing spline fitted to the data to show the general trend. 859 
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