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Abstract7

This paper1 presents two new direct symbolic-numerical algorithms for the transfor-8

mation of Cartesian coordinates into geodetic coordinates considering the general case of9

a triaxial reference ellipsoid. The problem in both algorithms is reduced to finding a real10

positive root of a sixth degree polynomial. The first approach consists of algebraic ma-11

nipulations of the equations describing the geometry of the problem and the second one12

uses Gröbner bases. In order to perform numerical tests and accurately compare efficiency13

and reliability, our algorithms together with the iterative methods presented by M. Ligas14

(2012) and J. Feltens (2009) have been implemented in C++. The numerical tests have15

been accomplished by considering 10 celestial bodies, referenced in the available litera-16

ture. The obtained results clearly show that our algorithms improve the aforementioned17

iterative methods, in terms of both efficiency and accuracy.18
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1 Introduction21

Transformation between Cartesian and Geodetic coordinates is an important, basic problem22

frequently encountered in Astronomy, Geodesy and Geoinformatics. Both coordinates are de-23

fined with respect to a Cartesian reference system and, in the case of geodetic coordinates,24

an ellipsoid with the center at the origin of the Cartesian reference system is also considered.25

Although computing Cartesian coordinates from geodetic coordinates can be easily performed,26

the inverse transformation is a non-trivial, challenging problem.27

In our opinion, efficient innovative solutions of this problem, as well as another actual chal-28

lenges faced in Geodesy and Geoinformatics reside in the application of algebraic computational29

techniques combined, if necessary, with numerical methods (see, for instance, [1]).30

1First and third authors conceived the presented ideas, developed the theory and the algorithms, carried
out the initial implementation in Maple and performed the initial computations and numerical tests. Second
author carried out the final implementation in C++ and performed the final computations and numerical tests.
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In the particular case of a reference biaxial ellipsoid, numerous solutions have been proposed31

(see, for instance, [7], [10] and [11] for iterative solutions, [22] for perturbation techniques based32

solutions and [3], [12] and [23] for closed form solutions). Interesting solutions have been recently33

developed in [20], [21] and [4].34

Using as geometric model of the Earth a biaxial ellipsoid is barely justified by the com-35

putational simplicity of the approach, the existing standard reference systems (such as WGS36

84) and the small difference between the axes in the equatorial plane (which rounds up to 6937

m). Nevertheless, the triaxiality of the Earth has been studied in many papers during the last38

decades (see for instance [?], [?], [?] and [?]). Moreover, in [?], the authors explicitly state39

(on page 862), refering to the Earth’s shape parameter:“Actually, with respect to the biaxial40

ellipsoid, fitting the triaxial ellipsoid is 65% better.”41

Therefore, the Earth and other celestial bodies (some of them listed in Table 1) can be much42

more appropriately (in terms of accuracy of the geometric model) approximated by triaxial43

ellipsoids. Furthermore, nowadays computational tools allow us to overcome the difficulty of44

working with three different semiaxes.45

Historically, the Earth and celestial bodies with rather small diferences between semiaxes,46

had initially been modelled by spheres, afterwards by biaxial ellipsoids and nowadays the triaxial47

ellipsoid modelling is emerging. In our opinion, it might be just a matter of time until standard48

reference systems have based on triaxial ellipsoid.49

At our best knowledge, the general case of triaxial reference ellipsoid has been considered50

up to the moment only in [8] and [14], both approaches giving iterative solutions. We present51

in this paper two new direct symbolic-numerical algorithms giving closed form solutions, which52

can be applied also to a biaxial reference ellipsoid.53

Therefore, the novelty of our approaches resides in tackling the issue from the symbolic54

perspective, accompanied by better efficiency and accuracy results in comparison with the55

iterative methods developed in [8] and [14], and in using a triaxial reference ellipsoid. The56

symbolic perspective consists in generating some sixth degree polynomials, prove that they57

have only one positive root and afterwards compute them. In the proof of the uniqueness of58

the positive roots, the coefficients of these polynomials are not numerical values, but symbolic,59

generical expressions depending on the semiaxes of the reference ellipsoid and the cartesian60

coordinates of the considered point.61

More concretely, in the algorithm called Cartesian into Geodetic I, described in Section62

3, our closed form solution consists of finding the real positive root of a sixth degree polynomial63

in a variable t. This variable t serves to describe the cartesian coordinates of the given point.64

On the other hand, the algorithm called Cartesian into Geodetic II, described in Section65

4, also consists of finding the real positive root of a sixth degree polynomial but in the variable66

z, which represents the third coordinate of the three-dimensional coordinate system.67

The structure of the paper is as follows: Section 2 introduces some preliminaries and defi-68

nitions. Sections 3 and 4 introduce the results that lead us to the algorithms materialized at69

the end of each section. Each algorithm is based on the numeric computation of the unique70

real positive root of a sixth degree polynomial. Both polynomials are symbolically generated:71

in the first approach by algebraic manipulations of the equations describing the geometry of72

the problem and in the second approach by computing a Gröbner basis. The uniqueness of73

the real positive roots is proven symbolically, by applying Descartes’ rule of signs and study-74

ing the relative positions of several ellipsoids. The algorithm presented in Section 3 computes75

firstly the parametric coordinate (a parameter which serves to describe the cartesian coordi-76

nates) of the given point and secondly the Cartesian coordinates of the corresponding footpoint77
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(the intersection point of the ellipsoidal normal vector passing through the given point and78

the ellipsoid). The algorithm presented in Section 4 computes firstly the z coordinate of the79

corresponding footpoint and secondly its x and y coordinates. The numerical tests performed80

with the celestial bodies listed in Table 1, together with the obtained results, are presented in81

Section 5. In Section 6 we present the main conclusions and further work.82

2 Preliminaries83

Given a point PE on a triaxial ellipsoid, its Cartesian coordinates (XE, YE, ZE) satisfy the
ellipsoid equation

f(X, Y, Z) =
X2

a2x
+
Y 2

a2y
+
Z2

a2z
− 1 = 0

and its geodetic and Cartesian coordinates are related as follows (see [16]):

XE = ν cosϕ cosλ, YE = ν (1− e2e) cosϕ sinλ, ZE = ν (1− e2x) sinϕ,

where ν is equal to the radius of the prime vertical, ν =
ax√

1− e2x sin2 ϕ− e2e cos2 ϕ sin2 λ
, and

the first eccentricities squared are

e2x =
a2x − a2z
a2x

, e2y =
a2y − a2z
a2y

, e2e =
a2x − a2y
a2x

.

Obviously, if latitude ϕ and longitude λ are given, one obtains (XE, YE, ZE) by substitutions.84

Viceversa, if the coordinates (XE, YE, ZE) are given, then85

λ =



arctan

(
1

(1− e2e)
YE
XE

)
, if XE > 0

arctan

(
1

(1− e2e)
YE
XE

)
+ π, if XE < 0

sign(YE)
π

2
, if XE = 0 and YE 6= 0

undefined, if XE = YE = 0

86

ϕ =

arctan

(
(1− e2e)
(1− e2x)

ZE√
(1− e2e)2X2

E + Y 2
E

)
, if XE 6= 0 or YE 6= 0

sign(ZE) π
2
, if XE = YE = 0

87

(1)88

However, suppose now that we have the cartesian coordinates of a point PG and we want to89

compute its geodetic coordinates. In this case, there exists an ellipsoidal height h (see Figure90

1) such that91

XG = (ν + h) cosϕ cosλ, YG = (ν (1− e2e) + h) cosϕ sinλ, ZG = (ν (1− e2x) + h) sinϕ, (2)92

and the point PG will have the same latitude and longitude as the intersection point of the93

ellipsoidal normal vector passing through PG and the ellipsoid. This point will be named the94

footpoint of PG. Hence, obtaining the geodetic coordinate (ϕ, λ, h) from the Cartesian ones95

involves first to compute (XE, YE, ZE), the footpoint of PG, and secondly to apply formulas (1).96
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The problem of computing the footpoint can be considered as the study of the distance97

from a point to an ellipsoid, a classical issue in Geometry, and it is tackled for example in98

[2],[13] and [6] from a less algebraic point of view than ours. Concretely, in [2] the formula (4)99

appears (on pages 112-113), but with practically no considerations about its resolution. [13] is100

interesting as a basic, seminal approach but it seems that the conclusions are drawn without101

much mathematical rigor. [6] is a much more interesting work, Eberly considered a function102

defined by formula (4) in our paper and analitically proved, by a Bolzano type theorem, that103

it had only one root in certain interval.104

Figure 1: Geometry of the problem

3 Computing the footpoint. First approach105

In our computations, we will apply Descartes’ rule of signs, which determines the number of106

positive real roots of a univariate polynomial, and is based on the number of sign changes of107

its real coefficients.108

Theorem 1. [[15] Descartes’ rule] Let f(X) = anX
n + an−1X

n−1 + · · · + a0 be a polynomial109

in R[x], where an and a0 are nonzero. Let v be the number of changes of signs in the sequence110

[an, . . . , a0] of its coefficients and let r be the number of its real positive roots, counted with their111

orders of multiplicity. Then there exists some nonnegative integer m such that r = v − 2m.112

We will apply Descartes’ rule several times across the paper, for polynomials whose number113

of sign changes in its lists of coefficients is equal to 0 or 1, therefore they have no or one114

positive real root, respectively. Analyzing the sign of the coefficients of these polynomials will115

be reduced to studying the relative positions of several ellipsoids. These ellipsoids have the116

same center and each ellipsoid will turn out to be placed inside or outside the others, having117

no intersection points.118

The unique positive real roots of these polynomials will be used to determine the footpoint119

of a given point (see Equations (3) and (8)).120

We assume throughout the paper, for simplicity, that our point PG 6= (0, 0, 0) is situated121

in the first octant and also that ax > ay > az. We define P = (ax − az)(ax + az) > 0, Q =122

(ay − az)(ay + az) > 0 and R = (ax − ay)(ax + ay) > 0.123
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Following [2], [8] and [14], the gradient of f(X, Y, Z) evaluated in the footpoint PE provides a

normal vector to the ellipsoid, ~n = 2

(
XE

a2x
,
YE
a2y
,
ZE
a2z

)
, and a vector connecting point PG and

PE is
~h = (XG −XE, YG − YE, ZG − ZE) = h(cosϕ cosλ, cosϕ sinλ, sinϕ)

with PG = ~h + PE. Both vectors ~h and ~n must be proportional and so, in the general case
|h| > 0, there is a real value t with

t =
XG −XE

XE/a2x
=
YG − YE
YE/a2y

=
ZG − ZE
ZE/a2z

,

and thus124

XE =
a2xXG

t+ a2x
, YE =

a2y YG

t+ a2y
, ZE =

a2z ZG
t+ a2z

(3)125

Since
X2
E

a2x
+
Y 2
E

a2y
+
Z2
E

a2z
= 1, we have126

(axXG)2

(t+ a2x)
2

+
(ay YG)2

(t+ a2y)
2

+
(az ZG)2

(t+ a2z)
2
− 1 = 0. (4)127

The numerator of Equation (4) is the polynomial A(t) = t6+A5t
5+A4t

4+A3t
3+A2t

2+A1t+A0,128

where129

A5 = 2 (a2x + a2y + a2z) > 0,130

A4 = −a2xX2
G − a2yY 2

G − a2zZ2
G + (a2x + a2y + a2z)

2 + 2(a2xa
2
y + a2xa

2
z + a2ya

2
z),131

A3 = −2
(
a2x(a

2
y + a2z)X

2
G + a2y(a

2
x + a2z)Y

2
G + a2z(a

2
x + a2y)Z

2
G−132

−(a2x + a2y + a2z)(a
2
ya

2
z + a2xa

2
y + a2xa

2
z)− a2xa2ya2z

)
,133

A2 = −a2x(a4y + 4a2ya
2
z + a4z)X

2
G − a2y(a4x + 4a2xa

2
z + a4z)Y

2
G − a2z(a4x + 4a2xa

2
y + a4y)Z

2
G +134

+(a2xa
2
y + a2xa

2
z + a2za

2
y)

2 + 2a2xa
2
ya

2
z(a

2
x + a2y + a2z),135

A1 = −2a2xa
2
ya

2
z

(
(a2y + a2z)X

2
G + (a2x + a2z)Y

2
G + (a2x + a2y)Z

2
G − a2xa2y − a2xa2z − a2ya2z

)
,136

A0 = −a2xa2ya2z
(
a2xa

2
yZ

2
G + a2xa

2
zY

2
G + a2ya

2
zX

2
G − a2xa2ya2z

)
.137

138

The variable t can be considered as a parametric coordinate of PG and is positive if the point139

is situated outside the reference ellipsoid, negative if it is situated inside or 0 if it is situated140

on the reference ellipsoid. Obviously, the ellipsoidal heigh h is equal to 0 iff A0 = 0.141

Remark 1. In the particular case of a biaxial reference ellipsoid, when ax = ay, the Equation142

(4) becomes143

(axXG)2 + (ax YG)2

(t+ a2x)
2

+
(az ZG)2

(t+ a2z)
2
− 1 = 0 (5)144

and leads to the fourth degree polynomial α(t) = t4 + α3t
3 + α2t

2 + α1t+ α0 where145

α3 = 2
(
ax

2 + az
2
)
,146

α2 = −ax
2(XG

2 + YG
2)− az

2ZG
2 + (ax

2 + az
2)2 + 2 ax

2az
2,147

α1 = −2 ax
2az

2
(
XG

2 + YG
2 + ZG

2 − ax
2 − az

2
)
,148

α0 = −ax
2az

2
(
az

2XG
2 + az

2YG
2 + ax

2ZG
2 − ax

2az
2
)
.149

150

5



The results obtained in this paper can be established also for the biaxial case. Nevertheless,151

we do not consider of any relevance this particular case: the aforementioned fourth degree152

polynomial has been studied in [12] completely symbolically, by using Sturm–Habicht coefficients153

and subresultants, having led to a close form solution.154

Proposition 3.1. The number of sign changes in [A5, A4, A3, A2, A1, A0] is equal to 1 if the155

point PG is situated outside the reference ellipsoid, or 0 if the point PG is situated inside or on156

the reference ellipsoid.157

Proof. The sign of A0 depends on the sign of the factor

a2xa
2
yZ

2
G + a2xa

2
zY

2
G + a2ya

2
zX

2
G − a2xa2ya2z,

which is the numerator of f(XG, YG, ZG)− 1. The sign of A1 depends on the sign of the factor

(a2y + a2z)X
2
G + (a2x + a2z)Y

2
G + (a2x + a2y)Z

2
G − a2xa2y − a2xa2z − a2ya2z,

which defines the ellipsoid of equation158

e1 : X2
a2y + a2z

a2xa
2
y + a2xa

2
z + a2ya

2
z

+ Y 2 a2x + a2z
a2xa

2
y + a2xa

2
z + a2ya

2
z

+ Z2
a2x + a2y

a2xa
2
y + a2xa

2
z + a2ya

2
z

= 1.159

Since

a2xa
2
y + a2xa

2
z + a2ya

2
z

a2y + a2z
> a2x,

a2xa
2
y + a2xa

2
z + a2ya

2
z

a2x + a2z
> a2y,

a2xa
2
y + a2xa

2
z + a2ya

2
z

a2x + a2y
> a2z,

the original, reference ellipsoid eoriginal is situated inside the ellipsoid e1.160

The coefficient A2 defines the ellipsoid of equation161

e2 : X2
a2x(a

4
y + 4a2ya

2
z + a4z)

(a2xa
2
y + a2xa

2
z + a2za

2
y)

2 + 2a2xa
2
ya

2
z(a

2
x + a2y + a2z)

+162

+Y 2
a2y(a

4
x + 4a2xa

2
z + a4z)

(a2xa
2
y + a2xa

2
z + a2za

2
y)

2 + 2a2xa
2
ya

2
z(a

2
x + a2y + a2z)

+163

+Z2
a2z(a

4
x + 4a2xa

2
y + a4y)

(a2xa
2
y + a2xa

2
z + a2za

2
y)

2 + 2a2xa
2
ya

2
z(a

2
x + a2y + a2z)

= 1.164

The semiaxes of the ellipsoid e2 are bigger than the corresponding semiaxes of the ellipsoid e1,
and in consequence

eoriginal ⊂ e1 ⊂ e2.

The sign of the coefficient A3 depends on a negative factor and on the factor

a2x(a
2
y + a2z)X

2
G + a2y(a

2
x + a2z)Y

2
G + a2z(a

2
x + a2y)Z

2
G − (a2x + a2y + a2z)(a

2
ya

2
z + a2xa

2
y + a2xa

2
z)− a2xa2ya2z.

This factor defines the ellipsoid of equation165

e3 : X2
a2x(a

2
y + a2z)

(a2x + a2y + a2z)(a
2
ya

2
z + a2xa

2
y + a2xa

2
z) + a2xa

2
ya

2
z

+166

+Y 2
a2y(a

2
x + a2z)

(a2x + a2y + a2z)(a
2
ya

2
z + a2xa

2
y + a2xa

2
z) + a2xa

2
ya

2
z

+167

+Z2
a2z(a

2
x + a2y)

(a2x + a2y + a2z)(a
2
ya

2
z + a2xa

2
y + a2xa

2
z) + a2xa

2
ya

2
z

= 1.168
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The semiaxes of the ellipsoid e3 are also bigger than the corresponding semiaxes of the ellipsoid
e2, and in consequence

eoriginal ⊂ e1 ⊂ e2 ⊂ e3.

Finally, the coefficient A4 defines the ellipsoid of equation169

e4 : X2 a2x
(a2x + a2y + a2z)

2 + 2(a2xa
2
y + a2xa

2
z + a2ya

2
z)

+170

+Y 2
a2y

(a2x + a2y + a2z)
2 + 2(a2xa

2
y + a2xa

+
z a

2
ya

2
z)

+171

+Z2 a2z
(a2x + a2y + a2z)

2 + 2(a2xa
2
y + a2xa

2
z + a2ya

2
z)

= 1172

The semiaxes of the ellipsoid e4 are also bigger than the corresponding semiaxes of the ellipsoid
e3, and in consequence

eoriginal ⊂ e1 ⊂ e2 ⊂ e3 ⊂ e4.

Therefore, the signs of the list [A5, A4, A3, A2, A1, A0] must be one of the following (being the173

number of sign changes equal to 1 for an outside point PG and 0 otherwise):174

• [+,+,+,+,+,+] if PG is inside the reference ellipsoid,175

• [+,+,+,+,+, 0] if PG is on the reference ellipsoid,176

• [+,+,+,+,+,−] if PG is outside the reference ellipsoid and inside e1,177

• [+,+,+,+, 0,−] if PG is on e1,178

• [+,+,+,+,−,−] if PG is outside e1 and inside e2,179

• [+,+,+, 0,−,−] if PG is on e2,180

• [+,+,+,−,−,−] if PG is outside e2 and inside e3,181

• [+,+, 0,−,−,−] if PG is on e3,182

• [+,+,−,−,−,−] if PG is outside e3 and inside e4,183

• [+, 0,−,−,−,−] if PG is on e4,184

• [+,−,−,−,−,−] if PG is outside e4.185

186

Consequently if PG is outside the reference ellipsoid, then the polynomial A(t) has a unique187

real positive root. If PG is inside the reference ellipsoid, then the polynomial A(t) has no188

positive real roots. If PG is on the reference ellipsoid, then it has no positive real roots and189

furthermore A(0) = 0.190
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3.1 PG situated inside the ellipsoid191

We will analyze in the following the case of PG being situated inside the ellipsoid. Suppose192

first that ZG > 0. Then ZE > 0 and because of (3), we should have t > −a2z. Therefore, there193

exists k > 0 with t = −a2z + k. That leads us to consider the polynomial Ā(k) = A(−a2z + k),194

whose number of positive real roots is equal to the number of real (negative, since A(t) has no195

positive real roots in this case) roots of A(t) satisfying t > −a2z.196

By applying Descartes’ rule, we will see that Ā(k) has only one positive root. We obtain that197

Ā(k) = k6 + Ā5k
5 + Ā4k

4 + Ā3k
3 + Ā2k

2 + Ā1k + Ā0, where198

Ā5 = 2(P +Q) > 0,199

Ā4 = −a2xX2
G − a2yY 2

G − a2zZ2
G + P 2 +Q2 + 4PQ,200

Ā3 = 2
(
−a2xQX2

G − a2yPY 2
G − a2z(P +Q)Z2

G + PQ(P +Q)
)
,201

Ā2 = −a2xQ2X2
G − a2yP 2Y 2

G − a2z(P 2 +Q2 + 4PQ)Z2
G + P 2Q2,202

Ā1 = −2a2zPQ(P +Q)Z2
G ≤ 0 ,203

Ā0 = −a2zP 2Q2Z2
G ≤ 0 .204

Proposition 3.2. If ZG > 0, the number of sign changes in the list [Ā5, Ā4, Ā3, Ā2, Ā1, Ā0] is205

equal to 1.206

Proof. The coefficient Ā2 defines the ellipsoid ē2,

ē2 : X2 a
2
x

P 2
+ Y 2

a2y
Q2

+ Z2 a
2
z(P

2 +Q2 + 4PQ)

P 2Q2
= 1.

The coefficient Ā3 defines the ellipsoid of equation

ē3 : X2 a2x
P (P +Q)

+ Y 2
a2y

Q(P +Q)
+ Z2 a

2
z

PQ
= 1.

The coefficient Ā4 defines the ellipsoid of equation

ē4 : X2 a2x
P 2 +Q2 + 4PQ

+ Y 2
a2y

P 2 +Q2 + 4PQ
+ Z2 a2z

P 2 +Q2 + 4PQ
= 1.

Since

P 2 < P (P+Q) < P 2+Q2+4PQ, Q2 < Q(P+Q) < P 2+Q2+4PQ,
P 2Q2

P 2 +Q2 + 4PQ
< PQ < P 2+Q2+4PQ,

we have ē2 ⊂ ē3 ⊂ ē4. Therefore, the signs of the list [Ā5, Ā4, Ā3, Ā2, Ā1, Ā0] must be one of the207

following:208

• [+,+,+,+,−,−] if the point PG is inside ē2,209

• [+,+,+, 0,−,−] if the point PG is on ē2,210

• [+,+,+,−,−,−] if the point PG is outside ē2 and inside ē3,211

• [+,+, 0,−,−,−] if the point PG is on ē3,212
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• [+,+,−,−,−,−] if the point PG is outside ē3 and inside ē4,213

• [+, 0,−,−,−,−] if the point PG is on ē4,214

• [+,−,−,−,−,−] if the point PG is outside ē4.215

216

Consequently if PG is situated inside the reference ellipsoid with ZG > 0 then the polynomial217

A(t) has a unique real root satisfying −a2z < t < 0.218

Suppose now that ZG = 0. Then, ϕ = 0 and the footpoint PE is on the ellipse219

X2

a2x
+
Y 2

a2y
= 1. (6)220

Observe that if YG = 0, then λ = 0 and if XG = 0 then λ =
π

2
. Suppose that XG > 0 and

YG > 0. Thus, following the same reasoning as before, we will have

(axXG)2

(t+ a2x)
2

+
(ay YG)2

(t+ a2y)
2
− 1 = 0,

with the numerator equal to ∆(t) = t4 + ∆3t
3 + ∆2t

2 + ∆1t+ ∆0, where221

∆3 = 2
(
a2x + a2y

)
> 0,222

∆2 =
(
a4x + 4 a2xa

2
y + a4y − a2xX2

G − a2yY 2
G

)
,223

∆1 = 2 a2xa
2
y

(
a2x + a2y −X2

G − Y 2
G

)
,224

∆0 = a2xa
2
y

(
a2xa

2
y − a2xY 2

G − a2yX2
G

)
.225

In this case, ∆0 is zero iff the point PG is situated on the ellipse (6), and the number of sign
changes in the list [∆3,∆2,∆1,∆0] is zero for a point PG inside or on the ellipse (6). However,
by the same reasoning as before, t must be bigger than −a2y and if we substitute k− a2y for t in
∆(t), we obtain

∆̄(k) = k4 + ∆̄3k
3 + ∆̄2k

2 + ∆̄1k + ∆̄0,

with226

∆̄3 = 2R > 0, ∆̄2 = R2 − a2xX2
G − a2yY 2

G, ∆̄1 = −2a2yY
2
GR < 0, ∆̄0 = −a2yY 2

GR
2 < 0, (7)227

therefore the number of sign changes in the list [∆̄3, ∆̄2, ∆̄1, ∆̄0] is equal to 1.228

Consequently if PG is situated inside the reference ellipsoid with ZG = 0, XG > 0 and229

YG > 0, then the polynomial ∆(t) has a unique real root satisfying −a2y < t < 0.230

3.2 The algorithm231

All these results lead to the following algorithm.232
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Algorithm Cartesian into Geodetic I

Require: The semiaxes of the triaxial reference ellipsoid.
The Cartesian coordinates (XG, YG, ZG) 6= (0, 0, 0).

Ensure: The geodetic coordinates (ϕ, λ, h).
1: if f(XG, YG, ZG) = 1 then
2: (XG, YG, ZG) = (XE, YE, ZE), (ϕ, λ) are computed from Equalities (1) and h = 0;
3: else
4: if f(XG, YG, ZG) > 1 then
5: evaluate coefficients Ai, i = 0, . . . , 5; {see Proposition 3.1}
6: compute t the unique positive root of A(t);
7: substitute t = t in Equalities (3) for computing (XE, YE, ZE);
8: h = |(XG, YG, ZG)− (XE, YE, ZE)|
9: else

10: if ZG > 0 then
11: evaluate coefficients Āi, i = 0, . . . , 5; {see Proposition 3.2}
12: compute k the unique positive root of Ā(k);
13: substitute t = −a2z + k in Equalities (3) for computing (XE, YE, ZE);
14: h = −|(XG, YG, ZG)− (XE, YE, ZE)|;
15: compute (ϕ, λ) from Equalities (1)
16: else
17: ZE = 0; ϕ = 0;
18: if XG > 0, YG > 0 then
19: evaluate coefficients ∆̄i, i = 0, . . . , 3; {see Equations (7)}
20: compute k the unique positive root of ∆̄(k);
21: substitute t = −a2y + k in Equalities (3) for computing XE and YE;
22: h = −|(XG, YG)− (XE, YE)|;
23: compute λ from Equalities (1)
24: end if
25: if XG = 0 then

26: XE = 0; YE = ay; λ =
π

2
; h = YG − YE

27: end if
28: if YG = 0 then
29: XE = ax; YE = 0; λ = 0; h = XG −XE

30: end if
31: end if
32: end if
33: end if

4 Computing the footpoint. Second approach233

The ideal generated by a family of polynomials is defined to be the set of linear combinations,234

with polynomial coefficients, of these polynomials (see [?] pg.30 for details). If we have a system235

of equations with finitely many solutions, it is well known that a Gröbner basis (see [1] and [?]236

for details) of the ideal generated by the equations of such a system provides another equivalent237

system but in triangular form, which is much easier to solve. We will explore this idea in this238

section.239
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According to Section 3, the cartesian coordinates of the footpoint must satisfy the system
of equations in three unknowns given by:

x2

a2x
+
y2

a2y
+
z2

a2z
= 1,

XG − x
x/a2x

− YG − y
y/a2y

= 0,
XG − x
x/a2x

− ZG − z
z/a2z

= 0,
YG − y
y/a2y

− ZG − z
z/a2z

= 0.

By assuming first that none of three variables is zero, this system is equivalent to the following
one:

S :



a2ya
2
zx

2 + a2xa
2
zy

2 + a2xa
2
yz

2 − a2xa2ya2z = 0,

a2xxy − a2xXGy − a2yxy + a2yYGx = 0,

a2xxz − a2xXGz − a2zxz + a2zZGx = 0,

a2zyz + a2yYGz − a2zZGy − a2yyz = 0.

The system S has finitely many solutions, and so, as mentioned previously, a Gröbner basis of240

the ideal generated by the equations of S provides another equivalent system but in triangular241

form in the variables x, y, z. The univariate equation in z in the Gröbner basis2 is given by242

B(z) = B6z
6 +B5z

5 +B4z
4 +B3z

3 +B2z
2 +B1z +B0, where243

B6 = P 2Q2 > 0,244

B5 = 2 a2zZG PQ (P +Q) ≥ 0,245

B4 = a2z
(
a2xQ

2X2
G + a2yP

2Y 2
G + a2z

(
P 2 +Q2 + 4PQ

)
Z2
G − P 2Q2

)
,246

B3 = 2 a4zZG
(
a2xQX

2
G + a2yP Y

2
G + a2z (P +Q)Z2

G − PQ (P +Q)
)
,247

B2 = a6zZ
2
G

(
a2xX

2
G + a2yY

2
G + a2zZ

2
G − P 2 −Q2 − 4PQ

)
,248

B1 = −2 a8z Z
3
G (P +Q) ≤ 0,249

B0 = −a10z Z4
G ≤ 0 .250

Therefore, the positive root of B(z) will be the coordinate ZE required.251

Proposition 4.1. The number of sign changes in the list [B6, B5, B4, B3, B2, B1, B0] is equal252

to 1 if ZG > 0.253

Proof. The signs of B2, B3 and B4 are determined by the ellipsoids ē4, ē3 and ē2, respectively,254

introduced in the proof of Proposition 3.2. Since ē2 ⊂ ē3 ⊂ ē4, if ZG > 0 the signs of the list255

[B6, B5, B4, B3, B2, B1, B0] must be one of the following:256

• [+,+,−,−,−,−,−] if PG is inside ē2,257

• [+,+, 0,−,−,−,−] if PG is on ē2,258

• [+,+,+,−,−,−,−] if PG is outside ē2 and inside ē3,259

• [+,+,+, 0,−,−,−] if PG is on ē3,260

• [+,+,+,+,−,−,−] if PG is outside ē3 and inside ē4,261

• [+,+,+,+, 0,−,−] if PG is on ē4,262

2The Gröbner basis using the lexicographical order with y > x > z (see [?] pg.56 for details), computed
with Maple 2017 is available at http://dx.doi.org/10.17632/xw5ws5gz8x.1.
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• [+,+,+,+,+,−,−] if PG is outside ē4.263

264

Consequently, if ZG > 0, B(z) has only one real positive root, which is equal to ZE. Moreover,
the polynomials

B2(x, z) =
(
Pz + a2zZG

)
x− a2xXGz, B3(y, z) =

(
Qz + a2zZG

)
y − a2yYGz,

part of the Gröbner basis, provide the coordinates XE and YE:265

XE =
a2xXGZE

(PZE + a2zZG)
, YE =

a2yYGZE

(QZE + a2zZG)
. (8)266

On the other hand, if ZG = 0 then ZE = 0 and we obtain a new system

a2xy
2 + a2yx

2 − a2xa2y = 0, (a2x − a2y)xy − a2xXGy + a2yYGx = 0,

whose Gröbner basis3 contains the polynomials267

G1(y) = R2y4 + 2a2yRYGy
3 − a2y

(
R2 − a2xX2

G − a2yY 2
G

)
y2 − 2a4yRYGy − a6yY 2

G, (9)268

G2(x, y) =
(
Ry + a2yYG

)
x− a2xXGy,

which provide the coordinates YE and XE. As the coefficients in y4 and y3 of G1(y) are positive269

and the coefficient in y and the independent one are negative, the number of changes of signs270

in the list of coefficients of G1(y) is equal to 1. Consequently, G1(y) has a unique real positive271

root.272

Finally, if both ZG = 0 and YG = 0 (unusual in practice) then ϕ = λ = 0.273

3Available at http://dx.doi.org/10.17632/xw5ws5gz8x.1
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Algorithm Cartesian into Geodetic II

Require: The semiaxes of the triaxial reference ellipsoid.
The Cartesian coordinates (XG, YG, ZG) 6= (0, 0, 0).

Ensure: The geodetic coordinates (ϕ, λ, h).
1: if ZG 6= 0 then
2: evaluate the coefficients Bi, i = 0, . . . , 6; {see Proposition 4.1}
3: compute ZE the unique positive root of B(z);
4: compute XE and YE from Equalities (8);
5: compute (ϕ, λ) from Equalities (1)
6: else
7: ZE = 0; ϕ = 0;
8: if YG 6= 0, then
9: evaluate the coefficients of the polynomial G1(y); {see Equations (9)}

10: compute YE the unique positive root of G1(y);
11: compute XE the unique real root of G2(x, YE);
12: compute λ from Equalities (1)
13: else
14: YE = 0; XE = ax; λ = 0
15: end if
16: end if
17: if f(XG, YG, ZG) ≥ 1 then
18: h = |(XG, YG, ZG)− (XE, YE, ZE)|
19: else
20: h = −|(XG, YG, ZG)− (XE, YE, ZE)|
21: end if

5 Numerical tests274

Our algorithms have been initially implemented in the Scientific Computing System Maple275

2017. We have implemented also the methods presented in [8] and [14], in order to accurately276

compare the results (maximum errors and running times). This initial study showed that the277

best running times and the best mean values of the maximum deviations were obtained with278

the algorithms Cartesian into Geodetic I and Cartesian into Geodetic II. Neverthe-279

less, the CPU times obtained in Maple were high (as other formula processing systems, Maple280

runs in the interpreter mode, and therefore, it runs slow).281

For this reason, the definitive implementation of the aforementioned algorithms has been282

performed in a compiler-type programing language, specifically in C++. The definitive CPU283

running times, in C++, differ in an order of magnitude 3 from the initial ones, in Maple. The284

results have been obtained working with double precision, on an Intel(R) Core(TM) i7-7700K285

CPU @ 4.20 GHz x 8 processor with 62,8GB of RAM.286

The considered celestial bodies, together with their shape parameters (ax, ay and az respec-287

tively) (see [14], [17], [18], [19], [24]) are as follows:288
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Celestial body ax ay az

Ariel 581.1 577.9 577.7

Earth 6378.173435 6378.1039 6356.7544

Enceladus 256.6 251.4 248.3

Europa 1564.13 1561.23 1560.93

Io 1829.4 1819.3 1815.7

Mars 3394.6 3393.3 3376.3

Mimas 207.4 196.8 190.6

Miranda 240.4 234.2 232.9

Moon 1735.55 1735.324 1734.898

Tethys 535.6 528.2 525.8

Table 1: Semiaxes (in km) of the considered celestial bodies

Following [14], we consider the points in the first octant defined by the geodetic coordinates289

(ϕi, λj, hk), where ϕi =
iπ

720
radians, i = 1 . . . 359, λj =

jπ

720
radians, j = 1 . . . 359, hk = kaz290

km, k ∈ {0,± 1

50
,± 1

25
,± 1

15
,± 1

10
}. For each point, we compute its Cartesian coordinates from291

(2) and apply the corresponding algorithm for computing its geodetic coordinates, comparing292

the obtained values with the initial ones. We have excluded from the points considered for293

the numerical tests the following cases: ϕ0 = 0, in which case ZG = 0 and XGYG > 0 and294

Case 3 of Ligas’ method can’t be applied, as the Jacobian is singular; ϕ360 = π
2
, in which case295

XG = YG = 0 and the longitude is undefined (see [16]); λ0 = 0, in which case YG = 0 and296

XG > 0 and Case 2 of Ligas’ method can’t be applied; and λ360 = π
2
, in which case XG = 0297

and YG > 0 and Case 1 of Ligas’ method can’t be applied. Therefore, we considered, for each298

algorithm and each celestial body, 359 latitudes, 359 longitudes and 9 heights along the normal,299

i.e. a total of 1159929 different points. The averaged CPU times are computed by applying300

the corresponding algorithm once to all these points, and including the computation of the301

maximum errors.302

The following tables present the maximum differences in absolute value between the real,303

known geodetic coordinates and the computed ones, on a base-10 log scale, together with the304

mean CPU running times in seconds. A logaritmic scale is a nonlinear scale often used when305

analyzing a very wide or narrow range of positive quantities. In the following tables, in the306

second, third and fourth columns, instead of displaying the maximum errors as ε = 10a, where307

a is some negative real number, we display log10(ε) = a.308
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Celestial body Max. err. λ Max. err. ϕ Max. err. h Time

Ariel -18.789 / -18.664 -18.664 / -18.664 -15.634 / -15.400 1.179343 / 1.093714

Earth -18.664 / -18.664 -18.664 / -18.664 -14.700 / -14.500 1.191914 / 1.093113

Enceladus -18.420 / -15.940 -18.311 / -17.885 -14.512 / -11.873 1.296452 / 1.190336

Europa -18.664 / -18.664 -18.567 / -18.664 -15.244 / -12.768 1.182543 / 1.092273

Io -18.789 / -18.664 -18.664 / -18.664 -15.277 / -14.767 1.183251 / 1.092522

Mars -18.664 / -18.567 -18.664 / -18.664 -15.000 / -14.816 1.228557 / 1.103634

Mimas -17.698 / -18.664 -17.550 / -18.664 -14.142 / -15.559 1.166641 / 1.152859

Miranda -18.266 / -15.793 -18.186 / -17.862 -14.426 / -11.873 1.166864 / 1.107854

Moon -18.789 / -18.664 -18.664 / -18.664 -15.244 / -15.045 1.180139 / 1.093541

Tethys -18.664 / -17.311 -18.664 / -18.664 -15.371 / -12.331 1.175097 / 1.196335

Mean values -18.540 / -17.959 -18.460 / -18.506 -14.955 / -13.893 1.1950801 / 1.1216181

Table 2: Results obtained by applying the algorithms Cartesian into Geodetic I / Cartesian

into Geodetic II implemented in C++

Celestial body Max. err. λ Max. err. ϕ Max. err. h Time

Ariel -17.775 / -17.664 / -18.488 -18.337 / -18.789 / -18.664 -13.664 / -13.662 / -13.663 1.270501 / 1.281323 / 1.270980

Earth -18.789 / -18.789 / -18.789 -18.664 / -18.664 / -18.789 -14.552 / -14.627 / -14.612 1.275257 / 1.274793 / 1.270144

Enceladus -14.804 / -15.169 / -17.580 -17.145 / -17.139 / -17.146 -13.305 / -13.304 / -13.299 1.279295 / 1.271683 / 1.270610

Europa -18.789 / -18.789 / -18.789 -18.664 / -18.664 / -18.664 -14.084 / -14.084 / -14.083 1.268811 / 1.298762 / 1.322419

Io -17.446 / -17.488 / -18.789 -18.664 / -18.664 / -18.664 -14.148 / -14.148 / -14.151 1.271437 / 1.271444 / 1.271251

Mars -18.789 / -18.789 / -18.789 -18.664 / -18.664 / -18.664 -14.372 / -14.366 / -14.372 1.269966 / 1.277228 / 1.273551

Mimas -16.583 / -14.260 / -16.780 -16.851 / -16.786 / -16.851 -13.185 / -13.186 / -13.183 1.348541 / 1.340201 / 1.340244

Miranda -14.625 / -15.225 / -17.534 -17.257 / -17.257 / -17.257 -13.274 / -13.272 / -13.270 1.270835 / 1.273983 / 1.272070

Moon -18.789 / -18.789 / -18.789 -18.664 / -18.664 / -18.664 -14.123 / -14.122 /-14.122 1.238008 / 1.240675 /1.245733

Tethys -15.733 / -16.062 / -17.886 -17.972 / -18.187 / -18.664 -13.627 / -13.625 /-13.624 1.273102 / 1.277854 / 1.273062

Mean values -17.212 / -17.102 / -18.221 -18.088 / -18.148 / -18.203 -13.833 / -13.840 / -13.838 1.276575 / 1.280795 / 1.281006

Table 3: Results obtained by applying Case 1 / Case 2 / Case 3 of Ligas’ method implemented
in C++
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Celestial body Max. err. λ Max. err. ϕ Max. err. h Time

Ariel -9.148 / -9.151 / -9.193 -11.515 /-11.533 /-11.470 -8.757 /-8.784 /-8.760 1.397315 /1.391594 / 1.359541

Earth -12.760 / -12.902 /-12.898 -12.768 /-12.788 /-12.782 -9.011 /-9.034 /-9.029 1.381216 /1.363576 /1.366670

Enceladus -8.062 /-8.243 /-8.216 -10.414 /-10.609 /-10.333 -8.020 /-8.221 /-7.992 1.623761 /1.531733 /1.587326

Europa -10.044 /-10.112 /-10.062 -12.478 /-12.479 /-12.378 -9.214 /-9.256 /-9.242 1.161976 /1.158426 /1.170673

Io -9.555 /-9.697 /-9.637 -11.882 /-12.027 /-11.868 -8.650 /-8.782 /-8.723 1.429542 /1.403343 /1.415738

Mars -10.673 /-11.691 /-11.723 -12.302 /-12.346 /-12.325 -8.793 /-8.820 /-8.976 1.413745 /1.376237 /1.392895

Mimas -7.592 /-7.812 /-7.709 -9.965 /-10.162 /-9.758 -7.633 /-7.826 /-7.560 1.951112 /1.740943 /1.858730

Miranda -8.031 /-8.128 /-8.070 -10.394 /-10.498 /-10.325 -8.036 /-8.117 /-8.008 1.600380 /1.574738 /1.638333

Moon -12.961 /-11.250 /-11.259 -13.227 /-13.864 /-13.228 -10.212 /-10.412 /-10.213 1.222829 /1.220730 /1.229268

Tethys -8.616 /-8.721 /-8.738 -10.961 /-11.110 /-10.921 -8.265 /-8.386 /-8.675 1.533092 /1.498667 /1.534345

Mean values -9.744 / -9.771 / -9.751 -11.591 / -11.742 / -11.539 -8.659 / -8.764 / -7.113 1.471497 / 1.425999 / 1.455352

Table 4: Results obtained by applying Case 1 / Case 2 / Case 3 of Feltens’ method implemented
in C++

In all the considered case studies, the best and second best running times are obtained with309

the algorithms Cartesian into Geodetic II and Cartesian into Geodetic I. Moreover,310

the best and second best mean values of the maximum deviations obtained in the 10 case311

studies correspond to our algorithms, except for the second best mean value of the maximum312

deviation of the longitude (which corresponds to the Case 3 of Feltens’ method). The three313

best results are presented in the following table:314

Position Max. err. λ Max. err. ϕ Max. err. h Time

Best result Cartesian into Geodetic I Cartesian into Geodetic II Cartesian into Geodetic I Cartesian into Geodetic II

Second best result Case 3 of Feltens’ method Cartesian into Geodetic I Cartesian into Geodetic II Cartesian into Geodetic I

Third best result Cartesian into Geodetic II Case 3 of Feltens’ method Case 2 of Feltens’ method Case 2 of Feltens’ method

Table 5: Ranking of the three best results in computing the mean values of the maximum
deviations and CPU running times

These results show that our approaches improve the methods presented in [8] and [14], in315

terms of both efficiency and accuracy.316

6 Conclusions and further work317

We have presented two efficient algorithms for the transformation of Cartesian coordinates into318

geodetic coordinates, for a triaxial reference ellipsoid. Each algorithm is based on the numeric319

computation of the unique real positive root of a degree 6 polynomial, symbolically generated.320

One of the main topics of our further work consists in studying the case of the hyperboloidal321

coordinates considered for triaxial reference hyperboloids and providing a similar approach for322

the transformation of the cartesian coordinates. From the geometric and algebraic points of323
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view, both problems are closely related. This problem hasn’t been tackled before and further-324

more there are very few approaches for the biaxial case (see [5] for a closed form solution and325

[9] for a iterative solution).326
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