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We provide a method to compute the topology of the image of a parametric curve 
under a birational mapping of the plane. The method proceeds by exploiting as much as 
possible the initial parametrization in order to reduce the computational cost. The self-
intersections of the image curve are derived from points in the image where the inverse 
of the birational mapping is not defined. In order to compute these points, we prove a 
result characterizing birational planar mappings, together with an algorithm to compute 
the inverse of a birational mapping. We apply the method when the original curve is 
rational, in which case the image of the curve is also rational but with a higher degree, 
and when the original curve is an exp-log-arctan function. In this last case the image is 
a non-rational curve admitting an analytic parametrization, a problem not treated in the 
literature so far.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In the context of Computational Algebraic Algebra, the computation of the topology of a curve is the computation of a 
graph isotopic to the curve, therefore showing its main topological features. This problem, both for planar and space curves, 
has received continued attention for more than thirty years: from seminal papers like Arnon and MacCallum (1988); El 
Kahoui and González-Vega (1996); González-Vega and Necula (2002); Hong (1996) to more recent algorithms like Berberich 
et al. (2013); Diatta et al. (2022), the problem has been addressed by many authors, many of which appear in the bibliogra-
phies of Berberich et al. (2013); Diatta et al. (2022). Furthermore, typically the algorithms for solving this problem require 
to isolate roots of univariate polynomials and of bivariate polynomial systems, which has stimulated greatly the research on 
these fundamental questions.

The same problem for parametric curves has not received so much attention, and up to our knowledge there are only 
two main references: Alcázar and Díaz Toca (2010) and Katsamaki et al. (2020), which improves on the algorithm in Alcázar 
and Díaz Toca (2010). A potential explanation for this lack of references is the fact that visualizing a parametric curve is 
certainly easier, from a computational point of view, compared to the implicit case: while in the implicit case one needs to 
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compute the values of the polynomial defining the curve on a grid (Mudiyanselage et al., 2022), in the parametric case it 
suffices to evaluate the components of the parametrization on a real interval.

However, and this is when the algorithms to compute the topology are useful, on the one hand visualizing the curve 
requires to know in advance a box defining the region of the plane where the curve is to be plotted: in the parametric case, 
this box is deduced from a real interval where the parameter should take values in order to reproduce the main features 
of the curve. On the other hand, the plotting of the curve can be tricky sometimes, and its topological behavior may not 
be easily readable from the plotting. In the case of parametric curves, this can happen, although not only, when the real 
interval to plot the curve contains values generating a branch at infinity of the curve.

In this paper the objective is not the computation of the topology of a rational curve, that can be efficiently done with the 
algorithm in Katsamaki et al. (2020), but of the topology of the curve resulting after applying a birational transformation 
of the plane to a given parametric curve. Easy examples of these transformations are affine, projective or Möbius planar 
transformations, but birational planar mappings can be much more complicated. In Algebraic Geometry these mappings 
commonly receive the name of Cremona transformations (Hudson and Reid, 2011), and are known to be generated from 
projective linear transformations and standard quadratic transformations. In general, applying these mappings increases the 
degree and the coefficient size of the original parametrization, and as a consequence the parametrization of the image 
curve can be much bigger. Roughly, if we consider a parametrization of degree n, i.e. n is the biggest power appearing in 
the numerators and denominators of the parametrization, and a birational planar mapping of degree N , then after applying 
the birational mapping the image parametrization has degree O(Nn). This results in higher computation times or even the 
failure of the machine to compute the topology.

For these reasons, in this paper we present an alternative algorithm to compute the topology of such an image, which 
exploits as much as possible the original parametrization together with the equations of the birational mapping.

Our strategy is as follows. Computing the topology requires finding first the vertices of a graph isotopic to the curve, 
that must be connected afterwards. In the case of parametric curves, the most difficult part is finding the vertices. Among 
the vertices we have singularities and ramification points, i.e. points where the tangent is vertical, plus other points that 
are easier to find. In our case, we avoid using the parametrization obtained after the birational mapping to compute the 
singularities of the image, which is the most costly part, and the ramification points of the image. In particular, we use 
the inverse of the birational mapping, computed by means of an algorithm also provided in this paper, to find the self-
intersections of the image curve. The main idea to do this, inspired by Alcázar et al. (2020), is that the inverse of the 
birational mapping is not defined at the self-intersections of the image curve which do not come from self-intersections of 
the original curve: therefore, computing the parameter values where this happens provides a superset for the parameter 
values generating self-intersections of the image. For finding the remaining vertices of the graph we are looking for, i.e. 
vertices which are neither singularities nor ramification points of the image, that do not require so much computation 
effort, we use the parametrization of the image.

We apply our ideas when the original curve is rational, in which case the image curve is also rational, and also when 
the original curve has the form y = f (t) where f (t) is an exp-log-arctan function (Strzebónski, 2012). These functions 
are analytic functions in a closed class having finitely many real roots (Strzebónski, 2012). After applying a birational planar 
mapping to such a curve we get a parametric, not rational curve. Thus, our algorithm can also serve to compute the topology 
of non-algebraic curves defined by analytic parametrizations whenever they can be written this way, i.e. as the composition 
of a birational mapping and an analytic function of the considered kind. This enlarges the class of curves whose topology 
we can compute, which in the literature reduces so far to algebraic curves, either parametrically or implicitly defined. The 
topology of curves y = f (t) is very simple; thus, our algorithm just needs to compute the potential changes in the topology 
of y = f (t) introduced by the birational mapping (e.g. self-intersections, branches at infinity, etc.)

The complexity of the algorithm in Katsamaki et al. (2020), which assumes that the coefficients of the parametrization 
are rational numbers, is thoroughly analyzed in Katsamaki et al. (2020), and yields complexity bounds analogous to the best 
complexity bounds known for implicit curves. We do not provide here a complexity analysis of our algorithm, and at the 
present stage it is not clear if such an analysis would provide a bound different from Katsamaki et al. (2020). However, in 
practice, the fact of working with curves of smaller degrees and coefficients can make a difference. In this paper we provide 
several examples of curves whose topology cannot be computed with the current implementation of Alcázar and Díaz Toca 
(2010) and Katsamaki et al. (2020), but can, however, be computed with our algorithm very quickly. For curves involving 
exp-log-arctan functions, complexity results are very difficult to obtain and so far, up to our knowledge, there have been no 
contributions in this direction.

The structure of this paper is the following. We motivate the problem in Section 2, where we also provide some back-
ground, as well as the general strategy to solve it. Section 3 is devoted to developing an algorithm, using resultants, to 
compute the inverse of a planar birational mapping. The method to solve the problem is given in Section 4, where we also 
provide examples, first for the case when the original curve is rational, and then for graphs of exp-log-arctan functions, 
carried out with Maple 2021, and, in the case of exp-log-arctan functions, also with the help of Mathematica; the im-
plementation for the rational case can be downloaded from Toca (2022). We close with our conclusion in Section 5, where 
we also suggest several problems to continue the same line of research. The proofs of the results in Section 3 are given in 
Appendix A, so as to improve the readability of the paper. Details on the curves used in our experimentation are provided 
in Appendix B.
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Fig. 1. Curve corresponding to Eq. (1).

Acknowledgments: We thank the reviewers of the paper for their comments, which helped to improve the previous version 
of the paper.

2. Motivation of the problem, preliminaries and strategy

2.1. Motivation

Consider the rational planar curve C ⊂ R2 (an offset of the cardioid curve) defined by means of the parametrization 
x(t) = (x(t), y(t)), where

x(t) = 6t8 − 756t6 + 3456t5 − 31104t3 + 61236t2 − 39366

t8 + 36t6 + 486t4 + 2961t2 + 6561
,

y(t) = −18t(6t6 − 16t5 − 126t4 + 864t3 − 1134t2 − 1296t + 4374)

t8 + 36t6 + 486t4 + 2961t2 + 6561
,

(1)

which is depicted in Fig. 1, taken from Alcázar and Díaz Toca (2010). Since the highest power of the parameter t appearing 
in the numerators and denominators of x(t), y(t) is 8, we will say that this parametrization has degree 8. Furthermore, the 
biggest coefficient appears in the numerator of y(t) and is equal to 78732, so the maximum of the absolute values of the 
coefficients is ≈ 2τ with τ = 17, i.e. the bitsize of the coefficients in x(t) is bounded by τ = 17.

Now consider the planar mapping � :R2 →R2, where � = φ ◦ ψ , with

φ(x, y) =
(

x

x2 + y2
,

y

x2 + y2

)
, ψ(x, y) =

(
x + y + 1

x
,

x − y

x

)
.

Here one can recognize the composition of a projective linear transformation, ψ , and an inversion from the origin, φ. Since 
both φ, ψ are birational, � is also a birational transformation of the plane of degree two, i.e.

�(x, y) =
(

x(x + y + 1)

2x2 + 2y2 + 2x + 2y + 1
,

(x − y)x

2x2 + 2y2 + 2x + 2y + 1

)
. (2)

The image �(C) of C under the birational mapping � is an also rational curve defined by a parametrization y(t)
of degree 16, where the biggest coefficient is 8401649184 ≈ 233, i.e. both the degree and the bitsize have doubled after 
applying �. Thus, if we want to compute a picture similar to Fig. 1 using algorithms like Alcázar and Díaz Toca (2010); 
Katsamaki et al. (2020), we have to work with a parametrization of high degree and high coefficients, which results in 
a more expensive computational cost. In fact, the available implementation of the algorithm in Katsamaki et al. (2020)
could not compute the topology of �(C) after 60 seconds, when we stopped the computation, with the machine used in 
the experimentation of this paper (iMac, chip M1 Apple, CPU with 8 kernels, GPU with 4 kernels, neural engine with 16 
kernels, 16 Gbytes of memory). The analysis of the topology of �(C) will be carried out in Section 4 (see Example 1).

Our goal in this paper is to provide an algorithm to compute the topology of the image �(C) of a parametric planar curve 
C , properly parametrized (i.e. generically injective) by x(t) = (x(t), y(t)), under a birational planar mapping � : R2 → R2, 
3
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Fig. 2. Graphs associated to the cubic cusp, and the three-leaved rose.

reducing the use of the parametrization y(t) = �(x(t)) to the minimum and using instead the information provided by 
the mapping � itself, and the original parametrization x(t). We will consider rational parametrizations and also certain 
non-rational parametrizations. In the next subsections we recall how to capture the topology of a rational curve, we address 
non-rational curves of a special type, and we finally present the overall strategy.

2.2. Topology of a planar rational curve

The topology of a planar rational curve C is represented by means of a graph GC , isotopic to the curve. Assuming that C
is given by means of a proper rational parametrization, the vertices of GC are:

(i) The ramification points of C , i.e. the points where x′(t) = 0.
(ii) The singular points of C , which include two different types of points: the local singularities, corresponding to the points 

where x′(t) = y′(t) = 0 (for instance, cusps), and the self-intersections of the curve, corresponding to the points where 
x(t) = x(s) with t �= s.

(iii) The point p∞ = limt→∞x(t), when it is affine, which can be a point of C not reached by any affine value of t .
(iv) Endpoints for non-bounded branches of C , if any, including branches corresponding to vertical asymptotes, which must 

be computed as well.
(v) The points of C lying in the vertical lines defined by the points in (i-iv); this is not essential to compute the graph, 

but it guarantees that the edges of the resulting graph intersect only at self-intersections, and helps to get a better 
understanding, from GC , of the topology of C .

Furthermore, two vertices of GC are connected by an edge of GC whenever there is a branch of C connecting the points 
of C giving rise to the vertices. In order to draw the graph, one computes the t-values t1, . . . , tp generating the vertices, 
plus the points x(ti) = (x(ti), y(ti)), with i ∈ {1, . . . , p}, themselves. We also include as vertices of GC the points of C lying 
on each vertical line x = x(ti) in order to improve the appearance of the graph. Although not always necessary, one can 
also add as vertices the points of C lying in vertical lines in between two consecutive verticals x = x(ti), again to provide 
some more detail on how the curve looks like. After computing the vertices, one has a box B ⊂ R2 (called a characteristic 
box in Katsamaki et al. (2020), since it captures the topological features of C) which represents the topology of C ∩ B and 
corresponds to the points of x(t) with t ∈ I , where I ⊂ R is an interval containing the values ti , i = 1, . . . , p. Finally, the 
vertices are connected according to the order in the ti , i.e. if the t-values of the vertices are

−∞ < t1 < · · · < tp < +∞,

we connect each x(ti) with x(ti+1).
We provide two examples of graphs in Fig. 2, corresponding to the cubic cusp, that is parametrized by x(t) = (t2, t3), 

and the three-leaved rose, parametrized by

x(t) =
(

t(t2 − 3)

t4 + 2t2 + 1
,

t2(t2 − 3)

t4 + 2t2 + 1

)
.

In Fig. 2 we have labeled the vertices of each graph according to the type of vertex (i − v), from the enumeration before. 
Furthermore, the vertices labeled with (�) are additional vertices, not essential to compute the graph, which are provided 
to improve its appearance and correspond to points of the curve in between two vertical lines defined by vertices (i − v). 
The plottings of the curves, computed with Maple’s command plot_real_curve, are provided in Fig. 3.
4
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Fig. 3. Plottings of the cubic cusp and the three-leaved rose.

2.3. Topology of a planar non-rational curve

In this paper we will also consider curves C of the type y = f (t), where f (t) is an exp-log-arctan function. An exp-
log-arctan function f (t) is, quoting (Strzebónski, 2012), the smallest set of partial real functions containing exp, log, arctan, the 
identity function and the constant functions that is closed under addition, multiplication and composition of functions.

One can see that the set of these functions contains the rational functions, as well as radical functions, inverses of 
trigonometric functions, hyperbolic functions and inverses of hyperbolic functions (see also Strzebónski, 2012), and is closed 
under differentiation. Furthermore, again quoting (Strzebónski, 2012), the domain of an exp-log-arctan function consists of a 
finite number of open, possibly unbounded, intervals and an exp-log-arctan function has a finite number of real roots. Algorithms to 
compute the domain and the real roots of these functions exist, and are implemented, for instance, in Mathematica. The 
computer algebra system Maple also has some commands for computing with analytic functions, but some functionalities 
are still missing.

So we will also consider the case of a curve C parametrized by x(t) = (t, f (t)), with f (t) an exp-log-arctan function, and 
its image �(C) under a birational planar mapping �. Thus, �(C) is parametrized by y(t) = �(t, f (t)), whose components 
are rational functions of t, f (t). Here t ∈ D( f ), where D( f ) is the domain of f (t). The only difference with respect to 
Subsection 2.2 is that here D( f ) is not necessarily equal to R minus a finite set of points; otherwise, it can be a finite 
union of intervals, so the images for the extremes of these intervals must be also included as vertices of the graph.

2.4. Strategy

In order to compute the graph G�(C) one needs to determine the vertices and edges of this graph. For the rational case, 
the complexity analysis (cf. Katsamaki et al., 2020) shows that the bottleneck of the computation is the computation of 
singularities, both local and global, i.e. self-intersections. Thus our strategy will be:

(1) Compute the ramification points and the singularities of �(C) making use of the original parametrization x(t), and the 
birational planar mapping � itself, i.e. without making use of the parametrization y(t) of �(C). In more detail:
– For ramification points and local singularities, we will use the Jacobian of � (see Section 4).
– For self-intersections, we will make use of both the self-intersections of the original curve and the inverse �−1 of 

� (see Section 3 and Section 4), taking advantage of the fact that at the self-intersections of �(C) which are not 
the image of a self-intersection of C , the inverse �−1 is not defined; we will also take into account that these 
singularities can be generated by branches at infinity, or base points of � belonging to C .

(2) For the rest of the computation, we will use y(t) = �(x(t)).

Since each vertex is generated by some t-value(s), connecting the vertices comes for free by just following the t-values 
generating the vertices in increasing order.

3. Inverse of a birational planar transformation

Let � :R2 →R2 be the rational mapping

�(x, y) = (u, v) = (�1(x, y),�2(x, y)) =
(

A(x, y)

B(x, y)
,

C(x, y)

D(x, y)

)
, (3)

with A, B and C, D relatively prime. We say that � is birational if it has a rational inverse �−1,
5
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�−1(u, v) = (x, y) = (�−1
1 (u, v),�−1

2 (u, v)) =
(

M(u, v)

N(u, v)
,

P (u, v)

Q (u, v)

)
. (4)

Remark 1.

(i) �−1 exists and is affine for (u, v) ∈ C2\M, where M is an at most 1-dimensional subset of C2 defined by N(u, v) ·
Q (u, v) = 0. That is, there is an at most 1-dimensional subset of points of C2 where the inverse is not defined or is 
not an affine point. In particular, the equality � ◦ �−1 = �−1 ◦ � = idC2 holds over all the complex plane with the 
exception of an at most 1-dimensional subset.

(ii) A point (x0, y0) such that A(x0, y0) = B(x0, y0) = 0 (resp. C(x0, y0) = D(x0, y0)) is called a base point of �1(x, y) (resp. 
�2(x, y)). Since A, B and C, D are relatively prime, the number of base points of either �i is finite. A base point of �
is a point which is a base point of both �1, �2. Although � is not defined at base points of �1, �2, sometimes we will 
write �(x0, y0) = (u0, v0) at a base point (x0, y0) of �i to mean that the limit of �(x, y) for (x, y) → (x0, y0) along 
some path exists, and is equal to (u0, v0).

(iii) A birational mapping � can map a whole curve to a point; for instance, �(x, y) = (x, xy) maps the line x = 0 to 
the origin. However, the number of curves where this happens must be finite. The reason is that by definition, � is 
birational if and only if �−1 is birational; then we just apply observation (i) to the inverse of �−1, which is �. Notice 
that this is not true if the mapping is not birational. For instance, �(x, y) = (x + y, (x + y)2) maps every line x + y = k, 
with k a constant, to the point (k, k2); in fact, this mapping maps the whole plane to a curve, namely a parabola.

(iv) If some �i is constant then � cannot be birational, because �−1 is only defined over a line. Also, if both �i depend 
just on x or just on y then � cannot be birational either, because �−1 is only defined over a curve. Thus, we will 
assume that � is not that way.

Our goal in this section is to provide an algorithm to compute �−1. There are certainly different alternatives to perform 
this computation, all of them based on elimination. For instance, Gröbner bases can be used. Also, one can see �(x, y)

as a proper parametrization of a plane, for instance the plane z = 0, and then apply the algorithm in Pérez-Díaz et al. 
(2002) to invert the parametrization. The algorithm in Pérez-Díaz et al. (2002) uses resultants, so it is more efficient than 
the one using Gröbner bases. However, the algorithm in Pérez-Díaz et al. (2002) is essentially devised for more complicated 
surfaces, other than planes, involves computations over the field of rational functions of the surface, and may require a linear 
change of coordinates to satisfy certain hypotheses. Thus, here we will present an approach, which certainly resembles that 
of Pérez-Díaz et al. (2002) although adapted to our case, to solve the problem also using resultants, whose structure is 
described. The proofs of the results in this section are provided in Appendix A so as to improve the readability of the paper.

For now we will assume that both �i depend on x and y; we will treat the case when at least one �i depends on just 
one variable at the end of the section. Now, let

F1(x, y, u) = uB(x, y) − A(x, y), F2(x, y, v) = v D(x, y) − C(x, y).

Also, let I = 〈F1, F2〉 be the ideal in C[x, y, u, v] generated by F1, F2, and let U = V(I) ⊂ C4 the variety of the ideal I , 
consisting of the (x0, y0, u0, v0) ∈ C4 such that F1(x0, y0, u0) = F2(x0, y0, v0) = 0. Then U is the union of four different 
sets:

(1) The points (x0, y0, u0, v0) ∈ U such that B(x0, y0) �= 0 and D(x0, y0) �= 0. Thus, here (x0, y0) is not a base point of 
either �i . These points satisfy that �(x0, y0) = (u0, v0). We represent the set consisting of these points by U1.

(2) The points (x0, y0, u0, v0) ∈ U with A(x0, y0) = B(x0, y0) = 0 and D(x0, y0) �= 0. Thus, (x0, y0) is a base point of �1
but not of �2. Here v0 = �2(x0, y0), and u0 can take any value in C, so the set of these points, which we denote by 
U2, corresponds to a 1-dimensional component of U .

(3) The points (x0, y0, u0, v0) ∈ U with C(x0, y0) = D(x0, y0) = 0 and B(x0, y0) �= 0. Thus, (x0, y0) is a base point of �2 but 
not of �1. Here, u0 = �1(x0, y0) and v0 can take any value in C, so the set of these points, which we denote by U3, 
also corresponds to a 1-dimensional component of U .

(4) The points (x0, y0, u0, v0) ∈ U with A(x0, y0) = B(x0, y0) = C(x0, y0) = D(x0, y0) = 0. Here (x0, y0) is a base point of 
both �1, �2 and (u0, v0) can take any value in C2. Thus, the set of these points, which we denote by U4, corresponds 
to a 2-dimensional component of U .

Therefore, we have

U = U1 ∪ U2 ∪ U3 ∪ U4. (5)

Additionally, let

ξ1(x, u, v) = Resy(F1, F2), ξ2(y, u, v) = Resx(F1, F2). (6)

Since by hypothesis A, B and C, D are relatively prime, so are F1, F2, and therefore ξ1, ξ2 are not identically zero.
6
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Let V(ξ1), V(ξ2) be the varieties in C3 defined by ξ1, ξ2. These varieties are non-empty because U1 �= ∅ and, by Lemma 
7.3.2 of Mishra (1993), if (x0, y0, u0, v0) ∈ U1 then (x0, u0, v0) ∈ V(ξ1) and (y0, u0, v0) ∈ V(ξ2). As a consequence, ξ1, ξ2 are 
not constant polynomials.

In order to clarify the relationship between V(ξ1), V(ξ2) and U , we need to introduce some more notation. Let

h1 = h1(x, u) = lcy(F1), h2 = h2(x, v) = lcy(F2),

j1 = j1(y, u) = lcx(F1), j2 = j2(y, v) = lcx(F2),
(7)

be the leader coefficients of F1, F2 with respect to y, x. Notice that gcd(h1, h2) (resp. gcd( j1, j2)) is either 1 or a univariate 
polynomial α(x) (resp. β(y)). Furthermore, let V(h1, h2) (resp. V( j1, j2)) be the variety in C3 consisting of the points where 
both h1, h2 (resp. j1, j2) vanish. Observe that V(h1, h2) is empty iff some hi is constant; if V(h1, h2) is not empty, V(h1, h2)

consists of the union of 2-dimensional components corresponding to the planes x = xi defined by the roots of α(x) and 
another component, if any, V�(h1, h2), of dimension at most 1. Similarly for V( j1, j2). Moreover, the following result, which 
essentially follows from Extension Theorem, see Corollary 7, Chapter 3, Section 6 of Cox et al. (1992), holds.

Proposition 1. The following statements hold:

(1) If (x0, u0, v0) ∈ C3 is a zero of ξ1(x, u, v) satisfying that (x0, u0, v0) /∈ V(h1, h2), then there exists y0 ∈ C such that 
(x0, y0, u0, v0) ∈ U .

(2) If (y0, u0, v0) ∈ C3 is a zero of ξ2(y, u, v) satisfying that (y0, u0, v0) /∈ V( j1, j2), then there exists x0 ∈ C such that 
(x0, y0, u0, v0) ∈ U .

Proposition 1 is essential to prove the following results on the structure of ξ1(x, u, v) and ξ2(y, u, v). In order to examine 
this structure, let us write

ξ1(x, u, v) = V 1(x) · V 2(u) · V 3(v) · V 4(x, u) · V 5(x, v) · V 6(u, v) · V 7(x, u, v), (8)

where V 4 (resp. V 5 and V 6) explicitly depends on both x, u (resp. x, v and u, v), and V 7 explicitly depends on the three 
variables x, u, v . We assume here that V 4, V 5, V 6 do not have univariate factors, and that V 7 does not have univariate or 
bivariate factors. Similarly, we write

ξ2(y, u, v) = W1(y) · W2(u) · W3(v) · W4(y, u) · W5(y, v) · W6(u, v) · W7(x, u, v), (9)

The next lemma, proven in Appendix A, sheds some light on some of the roots of V 1(x) and W1(y).

Lemma 2. If x0 (resp. y0) is either a root of α(x) (resp. β(y)) or the x-coordinate (resp. the y-coordinate) of a base point of both 
�1, �2 , then V 1(x0) = 0 (resp. W1(y0) = 0).

Moreover, we have the following three lemmas, whose proofs can also be found in Appendix A.

Lemma 3. Under our assumptions, V 2, V 3 (resp. W2, W3) must be constant and nonzero.

Lemma 4. Under our assumptions, V 4, V 5 (resp. W4, W5) must be constant and nonzero.

The previous lemmata do not require that � is birational. The next two, however, do require it.

Lemma 5. Under our assumptions, if � is birational then V 6 (resp. W6) must be constant and nonzero.

Lemma 6. Under our assumptions, if � is birational then V 7 (resp. W7) cannot be constant.

Finally, we arrive at the following theorem, also proven in Appendix A, which allows us both to check whether or not �
is birational, and to compute �−1 in the affirmative case. Here we denote the square-free parts of V 7, W7 by V̂ 7, ̂W7.

Theorem 7. Assume that no �i is constant, or depends just on x or just on y. The mapping � is birational if and only if

ξ1(x, u, v) = V 1(x)V 7(x, u, v), ξ2(y, u, v) = W1(y)W7(y, u, v), (10)

where ̂V 7, ̂W7 are powers of a linear polynomial in x, y respectively, i.e.

V̂ 7(x, u, v) = xN(u, v) − M(u, v), Ŵ7(y, u, v) = y Q (u, v) − P (u, v). (11)

Furthermore, if � is birational then
7
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(
M(u, v)

N(u, v)
,

P (u, v)

Q (u, v)

)

is the inverse �−1.

Notice that V 1, W1 can be computed as

V 1 = Contentv(Contentu(ξ1)), W1 = Contentv(Contentu(ξ2)). (12)

Thus, we get the algorithm Inverse to check the birationality and compute the inverse of a mapping �(x, y).

Algorithm 1 Inverse.
Require: A mapping �(x, y) = (�1(x, y), �2(x, y)), where each �i is not constant and depends both on x and y.
Ensure: Whether or not �(x, y) is birational, and the inverse mapping �−1(u, v) in the affirmative case.
1: Compute the resultants ξ1(x, u, v), ξ2(y, u, v) in Eq. (6).
2: Compute V 1(x), W1(y) by means of Eq. (12)
3: Compute the factor V 7(x, u, v) by dividing V 1(x) out of ξ1(x, u, v), and its square-free part V̂ 7(x, u, v).
4: Compute the factor W7(y, u, v) by dividing W1(y) out of ξ2(y, u, v), and its square-free part Ŵ7(y, u, v).
5: if V̂ 7(x, u, v) is linear in x and Ŵ7(y, u, v) is linear in y then
6: Solve V̂ 7(x, u, v) = 0 for x, and solve Ŵ7(y, u, v) = 0 for y.
7: return The mapping is birational, plus the inverse �−1(u, v), whose components are the two expressions computed in the step before.
8: else
9: return The mapping is not birational.

10: end if

Finally, we consider the case where some of component of � depends only on one variable. Thus, let us assume that 
one of the �i depends just on one variable, say �1(x, y) = �1(x). Since �−1 ◦ � is the identity, �−1

1 only depends on u, 
and therefore � defines a birational transformation of the real line. As a consequence, � must be a Möbius transformation, 
i.e.

�1(x) = αx + β

γ x + δ
, αδ − βγ �= 0.

Notice that in order to find �−1
2 , the only possibility is that F2 is linear in y. Thus, whenever one of the components 

depends on just one variable, say x, such component must be a Möbius transformation, and the other component must be 
a rational function in x, y where the numerator and the denominator have degree at most one in y.

3.1. Birationality of a rational map on a curve

Now we consider a curve C defined by a parametrization x(t) = (x(t), y(t)), and we wonder when the restriction �|C , 
� being a birational planar mapping, is birational itself. This happens when:

(i) � is defined at almost all points of C , i.e. with the exception of finitely points of C .
(ii) The inverse �−1 is defined at almost all points of �(C).

In order to check (i), we just need to verify whether or not some denominator in Eq. (3), i.e. B(x, y) or D(x, y), entirely 
vanishes when substituting x := x(t), y := y(t). To check (ii), we do the same with y(t) = �(x(t)) and Eq. (4), i.e. we check 
whether N(u, v) or Q (u, v) entirely vanishes when substituting u, v by the components of y(t).

In particular, if �|C is birational then no branch of C collapses to a point when � is applied, and no branch of �(C)

collapses to a point when �−1 is applied. In the rest of the paper, we will restrict ourselves to this case.

4. Computation of the topology of �(C)

4.1. Rational curves

Let C ⊂R2 be a rational curve, defined by means of a rational parametrization

x(t) = (X(t), Y (t)) =
(

x(t)

w(t)
,

y(t)

w(t)

)
(13)

where gcd(x(t), y(t), w(t)) = 1. Furthermore, let � :R2 →R2 as in Eq. (3) be a birational planar mapping.
In order to find the topology of �(C) we must find the points enumerated in Subsection 2.2. Before that, observe that 

the Jacobian matrix of �, J� , maps tangent vectors to C onto tangent vectors to �(C). Thus, if x′(t) is well-defined and 
J�(x(t)) denotes the Jacobian matrix of � at the point p = x(t), applying the Chain rule we have that
8
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J�(x(t)) · x′(t) (14)

is tangent to �(C) at the point �(p).
Now we can list the points of �(C) that we must compute. In fact, from Subsection 2.4 what we really need are the 

t-parameters of the points of C giving rise to the points and branches we are going to enumerate. Joining these points 
is, unlike the implicit case, easy: once the t-parameters of these points are known, we connect them by increasing t , 
as explained in Subsection 2.2. To this list of points we need to add the points generated in �(C) by base points of �
belonging to C , which we will discuss later.

(1) Ramification points of �(C): they correspond to points where the first component of the vector in Eq. (14) vanishes.
(2) Local singularities of �(C): they correspond to points where the vector in Eq. (14) is entirely zero.
(3) Self-intersections of �(C): they correspond to either the images under � of the self-intersections of C , which can be 

computed from the parametrization x(t), or to the points generated by t-values for which �−1 cannot be found. From 
Eq. (3) and Eq. (4), such t-values are among the roots of

N(�(x(t)))Q (�(x(t))). (15)

(4) Points not reached by the parametrization: here we must compute

limt→∞�(x(t)).

If p∞ is affine and � is well defined at p∞ , by the continuity of � the above limit is equal to �(p∞). This point can 
be either a regular point or a singularity of �(C).

(5) Non-bounded branches of �(C): they correspond to the t-values such that some denominator of �(x(t)) is zero.

Furthermore, if C contains points which are base of points of �, their behavior must be analyzed. If P = x(t0) is such a 
point, then this amounts to studying

limt→t0�(x(t)).

If this limit is a real point, then it is added as a vertex of the graph of �(C). If the limit is ±∞, then we have a branch of 
�(C) at infinity.

The following example, where we complete the study of the curve that served us to motivate the problem in Section 2.1, 
illustrates these ideas.

Example 1. Let us consider the curve C parametrized as in Eq. (1), and the mapping � : R2 → R2 in Eq. (2). The inverse 
�−1 is, using the algorithm in Section 3,

�−1(u, v) =
(

− u2 + v2

2u2 + 2v2 − u − v
,− u2 + v2 − v

2u2 + 2v2 − u − v

)
.

Thus, according to the notation in Eq. (4),

N(u, v) = Q (u, v) = 2u2 + 2v2 − u − v. (16)

Next, ramification and local singularities of �(C) generated by points of C , leaving aside points of C which are base points 
of �, are generated by t-values which are roots of the first component of Eq. (14). In our case, these t-values, rounded to 
three significant digits, are

−56.426, −10.006, −4.855, −2.584, −1.319,

−0.496, 0.246, 1.605, 4.646, 11.047.
(17)

The self-intersections of �(C), leaving aside points of C which are base points of �, are generated by t-values which are 
roots of Eq. (15), with the N, Q in Eq. (16), and the x(t) in Eq. (1). The list of these t-values, rounded to three significant 
digits, is:

−12.951,−3.,−0.695,1.162,3.,7.745 (18)

Denoting the two self-intersections of C (see Fig. 1) by p1, p2, where p1 has a positive y-coordinate and p2 has a negative 
y-coordinate (the x-coordinate of both p1, p2 is zero), one can see that the first and third elements in Eq. (18) generate p1, 
while the fourth and sixth elements in Eq. (18) generate p2.

There is a point of C not generated by x(t), i.e. corresponding to t = ±∞, namely p∞ = (6, 0). This point generates the 

point �(p∞) =
(

42

85
,

36

85

)
, belonging to �(C). Finally, � has one base point, namely 

(
−1

2
,−1

2

)
, but this point does not 

belong to C .
9
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Fig. 4. Image of the curve in Eq. (1) under the birational mapping in Eq. (2). (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Table 1
Rational curves.

Ex. dx τx d� dy τy Time

2 4 7 8 32 56 0.993
3 3 1 10 22 7 1.396
4 8 5 2 16 10 4.629
5 4 7 8 24 46 0.296
6 6 18 8 32 102 1.992
7 8 5 2 16 12 2.999

Therefore, we include as vertices of the graph associated with �(C) the points �(x(ti)) where ti appears in Eq. (17) and 
Eq. (18), plus the point �(p∞). These points are connected by edges by increasing t , taking into account that the points 
generated by the smallest and highest t-values in Eq. (17) or Eq. (18) must also be connected with �(p∞). Some extra 
vertices are computed to improve the appearance of the graph, which is shown in Fig. 4. We plot in blue the vertices of 
the graph corresponding to singularities and ramification points of �(C), as well as �(p∞). Here one can see that all the 
points of C on the line x = 0, in particular both self-intersections of C , are mapped to the unique self-intersection of �(C), 
at the origin. The whole computation took 1.252 seconds in the machine specified in Subsection 2.1.

We provide now six more examples computed with our method, implemented in the computer algebra system Maple 
2021. The information on these examples is summarized in Table 1, where we show, in order, the number of each example, 
the degree dx of the parametrization x(t) of C , an upper bound τx on the bitsizes of the coefficients in x(t), the degree d�

of the birational mapping �, the degree d y of the parametrization y(t) = �(x(t)), an upper bound τy on the bitsizes of the 
coefficients in y(t), and the timing, in seconds, for computing the topology of the curve defined by y(t) using our method; 
the details on the curves appear in Appendix B. In Table 1 we can see that the degree of the original parametrization has 
a direct influence on the timing, even more than the degree of the birational mapping. The outputs for these examples can 
be found in Fig. 5. We plot in blue the vertices of the graphs corresponding to singularities and ramification points of the 
image of the curve under the considered birational mapping, as well as �(p∞), when p∞, �(p∞) are affine. In all the cases 
the execution of the algorithm in Katsamaki et al. (2020) to directly compute the topology of the curve defined by y(t) was 
stopped after 60 seconds, as it also happened with Example 1, without obtaining an output.

We would like to end this section by mentioning that the implementation can be downloaded from Toca (2022). The
Maple procedure that a user must use to obtain the graph is called grafo and, at the beginning of the file, the input 
parameters are described in detail.

4.2. Non-rational curves

Here we consider curves C ⊂ R2 of the type y = f (t) where f (t) is an exp-log-arctan function, and we address the 
topology of �(C), where � is a birational transformation of the plane. Therefore, �(C) is a non-algebraic, parametric curve 
parametrized by y(t) = �(t, f (t)). The strategy for these curves is the same strategy of Subsection 4.1. However, here the 
domain of t is the domain of the function f , which needs to be computed. In order to do this we used Mathematica, 
10
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Fig. 5. Examples of the algorithm for rational curves: upper row Ex. 2 (left), detail of Ex. 2 (middle), Ex. 3 (right); medium row Ex. 4 (left), Ex. 5 (middle), 
detail of Ex. 5 (right); bottom row Ex. 6 (left), detail of Ex. 6 (middle), Ex. 7 (right).

since Maple still does not have a command to find the domain. Additionally, we used the Maple’s command RootFind-
ing[Analytic] to compute the (finitely many) roots of exp-log-arctan functions. However, this command requires to 
know an interval to look for these roots, which must be found by the user in advance, for instance plotting the function. An 
alternative method is, again, using Mathematica, where there is a similar command to compute the roots of an analytic 
function that does not require any interval.

In Fig. 6 we provide six examples of these curves, which were computed using both Maple and Mathematica (for the 
domains and the roots of the functions); the details can be found in Appendix B. All these curves are images of y = f i(t), 
with

f1(t) = et, f2(t) = t3 − et

log(t)

under different birational mappings. Since the resulting curves are not algebraic, here we observe topologies that cannot 
arise in the algebraic realm. That is the case of the first and last examples, where we have points where the plot abruptly 
ends, and also points (in fact, self-intersections of the image) with two “coming” branches and just one “leaving” branch.
11
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Fig. 6. Examples of the algorithm for non-rational curves: upper row Ex. 8 (left), Ex. 9 (right); medium row Ex. 10 (left), Ex. 11 (right); bottom row Ex. 12 
(left), Ex. 13 (right).

5. Conclusion and further work

We have addressed the computation of the topology of the image of a parametric curve under a birational transformation 
of the plane. The initial curve can be either a rational curve, in which case the image is also rational, or an exp-log-arctan 
function, in which case the image is not rational. Although the first case can also be approached with existing algorithms, 
the performance of these algorithms can be either slower, or just non-successful. The key idea is to exploit as much as 
possible the parametrization of the initial curve, and use the inverse of the birational transformation to compute the self-
intersections of the image, which is the most costly part in any algorithm to compute the topology.

An interesting question, not addressed in this paper, is the computation of the topology of the image of a given curve 
under a transformation which is not birational on the whole plane, but is birational on the curve. However, the difficulty in 
this case is how to efficiently compute the inverse of the restriction to the curve.
12
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Another natural continuation of the research in this paper is to address implicit planar curves. This problem seems 
to admit a similar analysis although the analysis of certain points, e.g. base points, may require to use Puiseux series. 
Other directions are the generalization of the results to 3D curves, which in turn requires to address the computation of 
the inverse of a transformation in three variables, and the computation of the intersection of an implicit surface and a 
parametric surface, that in the generic case can be approached, again, as the three dimensional image of a planar curve 
under a birational map.
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Appendix A. Proof of the results in Section 3

Here we provide the proofs of the lemmas and theorems in Section 3. We begin with Lemma 2.

Proof of Lemma 2. We prove it for V 1(x); for W1(y), the proof is analogous. By the Sylvester form of the resultant, α(x)
divides V 1(x), so any root of α(x) is also a root of V 1(x). Now if x0 is the x-coordinate of a base point (x0, y0) of both 
�1, �2, then F1(x0, y0, u) = F2(x0, y0, v) = 0 for any (u, v) ∈C2. By well-known properties of the resultant Mishra (1993), 
(x0, u, v) is a zero of ξ1 for any (u, v) ∈C2, so V 1(x0) = 0. �

Now we prove Lemma 3.

Proof of Lemma 3. We prove the result for V 2(u); for V 3(v), W2(u), W3(v) the proofs are analogous. Assume by contra-
diction that V 2(u) is not a constant polynomial, and let u0 ∈C satisfy that V 2(u0) = 0. Additionally, let (x0, v0) ∈C2 such 
that:

(i) x0 is not either a root of V 1(x) or the x-coordinate of a base point of some �i ; notice that almost all x0 satisfy this 
because under our assumptions, the number of base points of each �i is finite.

(ii) The image of x = x0 under the mapping �, that we denote by Cx0 and is defined by �(x0, y) (i.e. is a rational curve) is 
not the line u = u0. Notice that since �1 is not a constant, � cannot contract the whole plane onto the line u = u0, so 
almost all x0 satisfy this.

(iii) (u0, v0) /∈ Cx0 . Again, since �(x0, y) is not the line u = u0, almost all v0 satisfy this.
(iv) (x0, u0, v0) /∈ V(h1, h2); notice that for a given u0 there are always infinitely many (x0, v0) such that V 1(x0) �= 0 and 

(x0, u0, v0) /∈ V(h1, h2).

Since V 2(u0) = 0, the point (x0, u0, v0) is a zero of ξ1. Thus, by Proposition 1 there exists y0 ∈C such that (x0, y0, u0, v0) ∈
U . Since x0 is not the x-coordinate of a base point of some �i , (x0, y0, u0, v0) does not belong to either U2, or U3, or U4, 
so (x0, y0, u0, v0) ∈ U1. But this cannot happen either because (u0, v0) /∈ Cx0 , and therefore we cannot have �(x0, y0) =
(u0, v0), which is the condition satisfied by the points in U1. Thus, we reach a contradiction, so the lemma is proven. �

In order to prove Lemma 4 we need a preliminary result.

Lemma 8. Let �(x, y) be a mapping as in Eq. (3), not necessarily birational, with A(x, y), B(x, y) and C(x, y), D(x, y) relatively 
prime polynomials, such that neither A/B nor C/D are constant or depend on just one variable.

(1) There are just finitely many (x0, u0) ∈C2 such that �1(x0, y) − u0 is identically zero.
(2) There are just finitely many (x0, v0) ∈C2 such that �2(x0, y) − v0 is identically zero.

Proof. We will prove (1); the proof of (2) is analogous. We prove it by contradiction. Assume that (1) is not true, so that 
there are infinitely many (x0, u0) such that �1(x0, y) − u0 is identically zero. Notice that this last condition implies that 
F1(x0, y, u0) = 0 for all y. Now let us write
13
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F1(x, y, u) = an(x, u)yn + an−1(x, u)yn−1 + · · · + a0(x, u).

Since A, B depend explicitly on y, we have that n ≥ 1. If there are infinitely many (x0, u0) with F1(x0, y, u0) = 0, the 
curves in the (x, u) plane defined by ai(x, u) = 0 have infinitely many points in common. Thus, all the ai(x, u) must have a 
nontrivial common factor �(x, u), which is also a factor of F1(x, y, u). Since F1(x, y, u) = uB(x, y) − A(x, y), either A(x, y)

is identically zero, which is excluded by hypothesis, or there exists a common factor of B(x, y) and A(x, y). However, this 
cannot happen either because by hypothesis A, B are relatively prime. Thus, we get a contradiction, so (1) is true. �

Now we can prove Lemma 4.

Proof of Lemma 4. We prove the result for V 4(x, u); for V 5(x, v), W4(y, u), W5(y, v) the proofs are analogous. Assume 
that V 4(x, u) is not constant, and let (x0, u0) ∈C2 with V 4(x0, u0) = 0 such that:

(i) x0 is not either a root of V 1(x), or the x-coordinate of a base point of some �i ; notice that almost all x0 satisfy this, 
because by hypothesis V 4(x, u) does not have univariate factors.

(ii) �1(x0, y) − u0 is not identically zero; observe that by Lemma 8, almost all (x0, u0) satisfy this.

Additionally, let v0 ∈C such that

(a) (u0, v0) /∈ Cx0 , where Cx0 is the curve in the (u, v) plane (maybe a line at infinity) defined by �(x0, y). Notice that since 
�1(x0, y) − u0 is not identically zero, Cx0 is not the line u = u0, so almost all v0 satisfy this.

(b) (x0, u0, v0) /∈ V(h1, h2): since V 1(x0) �= 0 almost all v0 satisfy (x0, u0, v0) /∈ V(h1, h2).

Since V 4(x0, u0) = 0, the point (x0, u0, v0) is a zero of ξ1, and by Proposition 1 there must exist y0 ∈ C such that 
(x0, y0, u0, v0) ∈ U . However, arguing as in the proof of Lemma 3, we conclude that there does not exist k ∈ {1, 2, 3, 4}
with (x0, y0, u0, v0) ∈ Uk , which is a contradiction. �

Now let us prove Lemma 5.

Proof of Lemma 5. We prove the result for V 6(u, v); for W6(u, v) the proof is analogous. Assume that V 6(u, v) is not 
constant, and let (u0, v0) ∈ C2. Furthermore, let x0 ∈ C which is not either a root of V 1(x) or the x-coordinate of a base 
point of some �i , and such that (x0, u0, v0) /∈ V(h1, h2); notice that almost all values of x0 satisfy this. Since V 6(u0, v0) =
0, the point (x0, u0, v0) is a zero of ξ1. Thus, since (x0, u0, v0) /∈ V(h1, h2), by Proposition 1 there must exist y0 ∈ C
such that (x0, y0, u0, v0) ∈ U . Since U = U1 ∪ U2 ∪ U3 ∪ U4 and x0 is not the x-coordinate of a base point of some �i , 
(x0, y0, u0, v0) ∈ U1, i.e. �(x0, y0) = (u0, v0). However, keeping our choice of (u0, v0), we reach the same conclusion for 
any other x�

0 fulfilling the same conditions as x0. Thus, we conclude that there exists a curve C0 such that �(C0) = {(u0, v0)}, 
so C0 collapses to the point (u0, v0) when � is applied. Taking any other point (u�

0, v
�
0) ∈C2 with V 6(u�

0, v
�
0) = 0, we also 

deduce that there exists a curve C�
0 such that �(C�

0) = {(u�
0, v

�
0)}. Since the curve defined by V 6(u, v) = 0 in the (u, v) plane 

contains infinitely many points, we conclude that there are infinitely many curves collapsing to a point when � is applied. 
However, if � is birational, this is impossible (see statement (iii) in Remark 1). �

Notice that Lemma 5 does require the mapping � to be birational: for instance, the mapping �(x, y) = (x + y, (x + y)2), 
which is not birational, satisfies that ξ1(x, u, v) = v − u2. In fact, as observed in Remark 1, this mapping contracts infinitely 
many lines to points of the plane (compare with the final argument in the proof of Lemma 5). We proceed now with 
Lemma 6.

Proof of Lemma 6. We prove the result for V 7; similarly for W7. Assume by contradiction that V 7 is constant. By Lemma 3, 
Lemma 4 and Lemma 5, ξ1(x, u, v) = V 1(x). Now let x0 satisfy that: (i) V 1(x0) �= 0; (ii) x − x0 is not a factor of either 
B(x, y) or D(x, y). Also, let (u0, v0) be a point of the rational curve in the (u, v) plane defined by �(x0, y), and let y0 such 
that �(x0, y0) = (u0, v0). Then (x0, y0, u0, v0) ∈ U , and therefore ξ1(x0) = 0. But this cannot happen because V 1(x0) �= 0 by 
hypothesis. �

Finally we can prove Theorem 7.

Proof of Theorem 7. (⇒) The structure of ξ1, ξ2 in Eq. (10) is a consequence of the lemmata previously proven in this 
appendix. Thus, let us see that V̂ 7, ̂W7 are linear in x, y respectively. We prove it for V̂ 7; for Ŵ7 the proof is analogous. Let 
(u0, v0) ∈C2 satisfy the following conditions:

(1) �−1 is defined at (u0, v0), so that (u0, v0) is the image under � of just one point (x0, y0). That is, �(x0, y0) = (u0, v0)

and �−1(u0, v0) = (x0, y0).
14
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(2) (u0, v0) does not belong to any curve V̂ 7(x̄, u, v) = 0, defined in the (u, v) plane, with x̄ a root of V 1(x), or the x-
coordinate of a base point of some �i .

(3) The polynomial V̂ 7(x, u0, v0) is square-free.
(4) The leading coefficient of V̂ 7(x, u, v) with respect to x does not vanish at (u0, v0).
(5) (u0, v0) does not belong to the projection onto the (u, v) plane of the component V�

1(h1, h2) of V(h1, h2) of dimension 
at most 1.

Observe that almost all points (u0, v0) satisfy these conditions, i.e. there is at most a 1-dimensional set of points in the 
(u, v) plane not satisfying conditions (1-5).

Consider now γ (x) = V̂ 7(x, u0, v0). First, notice that deg(γ (x)) ≥ 1. Indeed, because of condition (1) there exists (x0, y0)

such that �(x0, y0) = (u0, v0), so (x0, y0, u0, v0) ∈ U , and therefore ξ1(x0, u0, v0) = 0. Since from condition (2) we have 
V 1(x0) �= 0, we deduce that x0 is a root of γ (x), and hence deg(γ (x)) ≥ 1.

Let us see that, in fact, deg(γ (x)) = 1. Since x0 is not a multiple root of γ (x) because of condition (3), if deg(γ (x)) > 1
then there must exist another root x1 of γ (x), so (x1, u0, v0) is also a zero of ξ1. By conditions (2) and (5) (x1, u0, v0) /∈
V(h1, h2), so by Proposition 1 there exists y1 such that (x1, y1, u0, v0) ∈ U . Additionally, again by condition (2) we 
have (x1, y1, u0, v0) ∈ U1, i.e. �(x1, y1) = (u0, v0). However, because of condition (1) this implies that x0 = x1. Hence, 
deg(γ (x)) = 1.

Finally, by condition (4), the degree of V̂ 7(x, u, v) in x is equal to deg(γ (x)), so we deduce that V̂ 7(x, u, v) is linear in x.
(⇐) Since V 7, W7 are powers of linear polynomials in x, y, we can solve x, y in terms of u, v to get

x = f1(u, v) = M(u, v)

N(u, v)
, y = f2(u, v) = P (u, v)

Q (u, v)
),

where f1(u, v) and f2(u, v) are rational functions. For a generic choice of (u, v), the points(
M(u, v)

N(u, v)
, u, v

)
,

(
P (u, v)

Q (u, v)
, u, v

)
are zeroes of ξ1, ξ2, respectively, and are lifted, by Proposition 1, to points in U belonging to U1. Thus, (u, v) is the image 
of (x, y) = ( f1(u, v), f2(u, v)) under �, so ( f1(u, v), f2(u, v)) is the inverse �−1 of �. Since � has a rational inverse, � is 
birational. �
Appendix B. Details on the curves used in Section 4

In this appendix we provide more information on the rational and non-rational curves appearing in Fig. 5 and Fig. 6.

Rational curves: (Fig. 5 in Subsection 4.1).

Example 2:

x(t) =
(

−40 t2 + 20 + 130 t4

3
,32 t − 136 t3

3

)
, �(x, y) = (�1(x, y),�2(x, y)),

�1(x, y) = −x2 − y2 − 2x

x2 + y2 − x
,

�2(x, y) = x8 + 4x6 y2 + 6x4 y4 + 4x2 y6 + y8 − x5 y − 2x3 y3 − xy5 + x4 − 2x3 y

(2x6 + 6x4 y2 + 6x2 y4 + 2y6 − 2x5 − 4x3 y2 − 2xy4 + x2 y)(x2 + y2)
.

Example 3:

x(t) = (t2, t3), �(x, y) =
(

A(x, y)

B(x, y)
,

C(x, y)

D(x, y)

)
,

A(x, y) = −x10 − 9 + (4y + 2)x9 − 4(y + 1/2)2x8 + (−2y − 8)x7 + (7y2 + 16y + 22)x6+
(−8y2 − 38y − 20)x5 + (−y2 + 64y + 2)x4 + (−2y2 − 42y − 16)x3 + (−y2 + 8y + 35)x2+
(−6y − 6)x,

B(x, y) = 9 + x10 + (−4y − 2)x9 + 4(y + 1/2)2x8 + (2y + 8)x7 + (5y2 − 16y − 22)x6+
(−4y2 − 10y + 20)x5 + (y2 + 32y + 46)x4 + (2y2 − 6y − 128)x3 + (y2 − 8y + 109)x2+
(6y − 42)x,

C(x, y) = −6 + 2x10 + (−8y − 4)x9 + (8y2 + 12y + 2)x8 + (−8y2 − 4y + 8)x7+
(18y2 − 12y − 20)x6 + (−4y2 − 36y + 16)x5 + (2y2 + 28y + 68)x4 + (36y − 136)x3+
2(y − 5)2x2 + (4y + 20)x,
15
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D(x, y) = 9 + x10 + (−4y − 2)x9 + 4(y + 1/2)2x8 + (2y + 8)x7 + (5y2 − 16y − 22)x6+
(−4y2 − 10y + 20)x5 + (y2 + 32y + 46)x4 + (2y2 − 6y − 128)x3 + (y2 − 8y + 109)x2+
(6y − 42)x.

Example 4:

x(t) = (t8 − 8t6 + 20t4 − 16t2 + 2, t7 − 7t5 + 14t3 − 7t),

�(x, y) =
(

(x + y + 1)x

2x2 + 2y2 + 2x + 2y + 1
,

(x − y)x

2x2 + 2y2 + 2x + 2y + 1

)
.

Example 5:

x(t) =
(

18 t4 + 21 t3 − 7 t − 2

18 t4 + 48 t3 + 64 t2 + 40 t + 9
,

36 t4 + 84 t3 + 73 t2 + 28 t + 4

18 t4 + 48 t3 + 64 t2 + 40 t + 9

)
,

�(x, y) = (�1(x, y),�2(x, y)),

�1(x, y) = −x2 − y2 − 2x

x2 + y2 − x
,

�2(x, y) = x8 + 4x6 y2 + 6x4 y4 + 4x2 y6 + y8 − x5 y − 2x3 y3 − xy5 + x4 − 2x3 y

(2x6 + 6x4 y2 + 6x2 y4 + 2y6 − 2x5 − 4x3 y2 − 2xy4 + x2 y)(x2 + y2)
.

Example 6:

x(t) = (x(t), y(t)) ,�(x, y) = (�1(x, y),�2(x, y))

x(t) =
(
14520t5 − 34100t4 + 25200t3 − 6200t2 + 600t − 20

)
t

226981t6 − 133956t5 + 37515t4 − 6120t3 + 615t2 − 36t + 1
,

y(t) = −
(
79200t4 − 112800t3 + 38200t2 − 4800t + 200

)
t2

226981t6 − 133956t5 + 37515t4 − 6120t3 + 615t2 − 36t + 1
,

�1(x, y) = 3x2 + 3y2 + 2x − 5

4x − 4
, �2(x, y) = C(x, y)

D(x, y)
,

C(x, y) = −x8 − 4x6 y2 − 6x4 y4 − 4x2 y6 − y8 + 6x6 y + 18x4 y3 + 18x2 y5 + 6y7 − 20x6+
20x5 y − 36x4 y2 + 40x3 y3 − 12x2 y4 + 20xy5 + 4y6 + 48x5 + 2x4 y + 96x3 y2 − 36x2 y3+
48xy4 − 38y5 + 2x4 − 72x3 y − 12x2 y2 − 120xy3 − 30y4 − 32x3 − 86x2 y − 96xy2+
98y3 − 68x2 + 244xy + 52y2 + 112x − 114y − 41,

D(x, y) = (
x2 + y2 − 2x + 1

) (
4x5 − 2x4 y + 8x3 y2 − 4x2 y3 + 40x3 + 24xy2 − 2y5 − 20x4+

4xy4 − 8x3 y − 24x2 y2 − 8xy3 − 4y4 + 4x2 y + 12y3 − 40x2 + 24xy − 8y2 + 20x − 18y − 4
)

Example 7:

x(t) = (t8 − 8t6 + 20t4 − 16t2 + 2, t7 − 7t5 + 14t3 − 7t),

�(x, y) =
( −x2 − y2 + 2x + 4y − 1

5x2 + 5y2 + 2x − 4y + 1
,

2x2 + 4x + 2(y − 1)2

5x2 + 5y2 + 2x − 4y + 1

)
.

Non-rational curves: (Fig. 6 in Subsection 4.2).

Example 8:

x(t) = (
t, et) , �(x, y) =

(
(x + y + 1)x

2x2 + 2y2 + 2x + 2y + 1
,

(x − y)x

2x2 + 2y2 + 2x + 2y + 1

)
.

Example 9:

x(t) =
(

t,
t3 − et

log(t)

)
, �(x, y) =

(
(x + y + 1)x

2x2 + 2y2 + 2x + 2y + 1
,

(x − y)x

2x2 + 2y2 + 2x + 2y + 1

)
.

Example 10:

x(t) = (
t, et) , �(x, y) = (�1(x, y),�2(x, y)),

�1(x, y) = −x2 − y2 − 2x
2 2

,

x + y − x

16
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�2(x, y) = x8 + 4x6 y2 + 6x4 y4 + 4x2 y6 + y8 − x5 y − 2x3 y3 − xy5 + x4 − 2x3 y

(2x6 + 6x4 y2 + 6x2 y4 + 2y6 − 2x5 − 4x3 y2 − 2xy4 + x2 y)(x2 + y2)
.

Example 11:

x(t) =
(

t,
t3 − et

log(t)

)
, �(x, y) = (�1(x, y),�2(x, y)),

�1(x, y) = −x2 − y2 − 2x

x2 + y2 − x
,

�2(x, y) = x8 + 4x6 y2 + 6x4 y4 + 4x2 y6 + y8 − x5 y − 2x3 y3 − xy5 + x4 − 2x3 y

(2x6 + 6x4 y2 + 6x2 y4 + 2y6 − 2x5 − 4x3 y2 − 2xy4 + x2 y)(x2 + y2)
.

Example 12:

x(t) = (
t, et) , �(x, y) =

(
1 + 4(x − 1)

(x − 1)2 + y2
,

4y

(x − 1)2 + y2

)
.

Example 13:

x(t) =
(

t,
t3 − et

log(t)

)
, �(x, y) =

(
1 + 4(x − 1)

(x − 1)2 + y2
,

4y

(x − 1)2 + y2

)
.
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