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Real Earnings Management and  

Information Asymmetry in the Equity Market 

 

Abstract 

The literature suggests that real earnings management (REM) activities can increase 

adverse selection-risk in capital markets. Due to their opacity and the difficulties in 

understanding their implications, REM strategies may increase the level of information 

asymmetry among investors. This paper examines the association between earnings 

management through real activities manipulation and information asymmetry in the 

equity market. To estimate the level of adverse selection risk we use a comprehensive 

index of information asymmetry measures proposed by the market microstructure 

literature. For a sample of Spanish listed firms, we find that firms’ strategies of 

increasing earnings through REM are associated with higher information asymmetry in 

those firms that meet last year’s earnings. Our findings are consistent with the 

hypothesis that earnings management through real activities manipulation garbles the 

market, enhances private information production, and exacerbates information 

asymmetry in the stock market. 
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1. Introduction  

Earnings management occurs when managers use their discretion in the financial 

reporting process and in structuring transactions to misrepresent the true economic 

performance of the company (Dechow & Skinner, 2000; Healy & Wahlen, 1999). Firms 

can manage earnings through two types of activities: accrual-based activities and real 

activities manipulation. While accrual earnings management implies discretionary 

choices permitted within accounting standards and with no direct cash flow 

consequences, real earnings management (hereinafter REM) involves deviations from 

normal operational practices to manipulate earnings numbers, with direct consequences 

for current and future firm cash flows. In this paper, we are interested in investigating 

the association between REM and the level of information asymmetry in the stock 

market.  

Although earnings management activities may be informative, most research adopts the 

opportunistic perspective, and assumes that managers try to mislead stakeholders. 

According to this view, earnings management reduces earnings quality and garbles the 

information provided by financial statements. Consequently, as Bhattacharya, Desai, & 

Venkataraman (2013) hypothesize, based on the model of Kim & Verrecchia (1994), if 

investors differ in their ability to process earnings related information, then poor 

earnings quality can lead to differentially informed investors, so exacerbating the 

information asymmetry in financial markets. Consistent with this hypothesis, empirical 

evidence shows that accrual based-earnings management is associated with higher 

information asymmetry and reductions in market liquidity, leading to a higher cost of 

capital (e.g. Bhattacharya et al., 2013; Jayaraman, 2008; Rajgopal & Venkatachalam, 

2011). Research has analyzed the association between earnings management (or 

earnings quality) and the firm’s information environment, with the focus mainly on 

accrual-based earnings management. Nevertheless, there is little evidence for the effect 

of REM on the adverse selection problem in financial markets.  

Since earnings management through real activities manipulation distorts earnings and 

cash flows, REM strategies may imply lower earnings quality, as manipulated earnings 

numbers hinder the evaluation and assessment of the true firm’s current performance 

and the expected level of future cash flows by investors. Hence, a positive association of 
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REM with information asymmetry could be expected. Moreover, since REM is less 

subject to external monitoring and scrutiny by board, auditors and regulators than 

accruals earnings management (Cohen & Zarowin, 2010), and its implications for firm 

future performance are not clear (e.g. Graham, Harvey, & Rajgopal, 2005; Gunny, 

2010), it may be difficult to understand by capital markets (Kothari, Mizik, & 

Roychowdhury, 2016) and thus, it may contribute to increase the informational 

asymmetry problem. As Gunny (2010) states, it is complicated to determine whether 

managers use REM opportunistically to the detriment of shareholders or, on the 

contrary, they use REM to signal future performance or to attain benefits that will allow 

the firm to perform better in the future. Hence, REM could increase the uncertainty of 

investors about the distribution of firm’s future cash flows, and, in this case, traders who 

have better information-processing abilities could take advantage of their superior 

assessments of firm performance. In addition, since it is difficult to distinguish sub-

optimal from optimal business decisions, the opacity of REM activities could lead some 

investors to engage in acquisition of private information with the aim of exploiting it 

and obtaining profits from trading on the market. For all these reasons, we expect REM 

strategies to exacerbate information asymmetry among investors in stock markets.  

In order to examine the association between REM and information asymmetry we 

construct a sample of Spanish non-financial listed firms for the period 2001-2008 and 

use different measures of REM based on Roychowdhury (2006). However, since the 

proxies for REM represent abnormal levels of cash flows from operations, production 

costs and discretionary expenses, they may contain noise that is unrelated to managerial 

opportunism and that may be capturing situations other than intentional manipulation 

(e.g., unusual business circumstances). Therefore, the prediction of a positive relation 

between empirical proxies for REM and information asymmetry may not hold in 

general and the sign of this relation could depend on the particular underlying factors 

that determine the values of REM measures in the sample. Hence, we divide our total 

sample into two subsamples based on the incentives to manage earnings. Specifically, 

we examine the association of REM measures and information asymmetry in two 

settings: one where managers are likely to engage in REM activities to meet last year’s 

net income (suspect sample) versus another, delimited by the rest of the sample, where 

deviations from normal activity may be unrelated to opportunistic earnings management 

(non-suspect sample).  
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To capture the extent of information asymmetry among investors we use an adverse 

selection index based on market microstructure measures estimated from high frequency 

data: the bid-ask spread, the illiquidity measure developed in Amihud (2002), price 

impact introduced by Huang & Stoll (1996), the Probability of Informed Trading (PIN) 

of Easley, Nicholas, O'Hara, & Paperman (1996), and the Volume-Synchronized 

Probability of Informed Trading (VPIN) of Easley, López de Prado, & O'Hara (2012). 

Bid-ask spread is a commonly used proxy for information asymmetry as it compensates 

liquidity providers for transacting with better-informed traders and increases with the 

degree of information asymmetry. The measures that capture the price impact of 

transactions ‒ the illiquidity measure of Amihud (2002) and the price impact of Huang 

& Stoll (1996) ‒ are important in describing the arrival of new information to market 

participants. The well-known PIN and the novel VPIN directly infer the presence of 

privately informed traders in the market from the computation of order imbalances 

between buys and sells. Using the index of information asymmetry, we extract the 

common variation in these information asymmetry proxies, so minimizing the 

possibility of their being driven by factors other than adverse selection (e.g. inventory 

costs, transactions costs, monopoly rents, etc.).  

Our findings indicate that for firms which just meet last year’s earnings, that is, firms 

with strong incentives to manage earnings, income increasing REM is associated with 

higher information asymmetry. This is consistent with our prediction that firms that 

incur in REM strategies distort earnings quality and thus, increase adverse selection 

among investors, because in this scenario informed investors can take advantage of their 

private information to assess the implication of REM activities for firm value. On the 

other hand, for firms which do not have incentives to meet last year’s earnings, 

deviations from normal activity are associated with decreasing information asymmetry 

in the market. Thus, our findings show that deviations from normal operations affect the 

level of adverse selection in a contrary manner, depending on the particular underlying 

factors that determine them.   

Our study contributes to the literature in several ways. First, it provides new evidence of 

the association between REM and information asymmetry on the stock market. The 

evidence on this topic is scarce, mixed and focuses exclusively on the US market. To 

the best of our knowledge, ours is the first paper that studies the effect of REM on 
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information asymmetry outside the US. We examine this association for Spain, a 

country with clearly different features from the US, not only in terms of the size and 

liquidity of the stock market, but also of weaker investor protection and lower 

accounting quality (e.g. La Porta, López de Silanes, Shleifer, & Vishny, 1998; Leuz, 

Nanda, & Wysocki, 2003). Nevertheless, both countries show similar levels of REM 

according to the international comparison carried out by Enomoto, Kimura, & 

Yamaguchi (2015). This study examines the differences in earnings management 

strategies across 38 countries, finding that Spain and U.S. show similar levels of REM, 

ranked 17 and 21 out of 38, respectively. Therefore, we think it is interesting to provide 

new evidence on how REM is perceived by investors in a setting where they have more 

incentives to acquire private information than in US.  

Second, this paper extends the recent literature on the market consequences of REM, 

which has shown that REM is positively associated with the cost of equity capital (Kim 

& Sohn, 2013) and the cost of new corporate bonds (Ge & Kim, 2014). Based on the 

well-documented positive association between information asymmetry and the cost of 

capital, both findings can be considered as indirect evidence of REM creating 

information asymmetry in financial markets. Unlike the authors above, we directly test 

the link between REM and information asymmetry. Third, our findings suggest that 

private informed investors produce information in those circumstances where firms 

have incentives to manipulate earnings through REM activities, that is, where earnings 

quality is lower. However, when such incentives are not clear, private informed 

investors do not engage in producing private information, since the benefit from 

producing private information in this context is lower.  

Fourth, since REM affects the quality of earnings reported by firms, our paper also 

extends a large body of research on the economic consequences of earnings quality and 

disclosure quality (e.g. Bhattacharya et al., 2013; Cormier, Houle, & Ledoux, 2013; 

Francis, LaFond, Olsson, & Schipper, 2005). Finally, to the best of our knowledge, this 

is one of the first papers to use a composite index of adverse selection to examine the 

effect of REM on the levels of information asymmetry in the market. Previous studies 

have mainly focused on individual proxies and sometimes on indirect measures of 

information asymmetry, such as the accuracy of financial analysts’ forecasts (García 

Lara, García Osma, & Penalva, 2013) or the cost of capital (Ge & Kim, 2014; Kim & 
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Sohn, 2013). As Bharath, Pasquariello, & Guojun (2009) argue, the use of an index of 

information asymmetry based on market microstructure measures is more desirable than 

using individual proxies proposed by other areas of finance literature (e.g. analyst 

coverage, dispersion of analysts’ forecasts, cost of capital, growth opportunities, 

tangibility of assets), because these measures are often inconsistent, static, persistent, or 

have multiple and ad hoc interpretations. 

The rest of the paper proceeds as follows. Section 2 reviews the related literature and 

develops our testable hypothesis. Section 3 describes the research design, sample, and 

data. Section 4 presents the empirical results and the final section concludes. 

2. Related Literature and Hypothesis Development  

2.1. Real Earnings Management 

Earnings management can be achieved through managerial discretion in the application 

of accounting standards and by changing the timing or structuring of real transactions. 

Traditionally, the extensive earnings management literature has mainly focused on 

accrual-based earnings manipulation (Xu, Taylor, & Dugan, 2007). However, there has 

recently been a growing research interest in the relevance and understanding of how 

firms manage earnings through real activities manipulation and its consequences. 

The survey study conducted by Graham et al. (2005) shows that financial officers of US 

public firms recognize that most earnings management actions are carried out via real 

actions, as opposed to accounting manipulations. They also report that approximately 

80% of more than 400 U.S. firms’ executives surveyed admitted that they would 

decrease discretionary spending (including R&D, maintenance, and advertising 

expenses) and 55.3% said that they would delay a project in order to meet an earnings 

target, both of which are REM decisions. The increased importance of these managerial 

practices is also borne out by prior empirical research, which indicates that REM 

activities have increased steadily over the years, in particular substituting accrual-based 

earnings managements in contexts where managers are more subject to scrutiny and 

control of auditors and institutions. In this sense, Cohen, Dey, & Lys (2008) find for the 

US that the level of accrual-based (real) earnings management decreases (increases) 
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subsequent to the passing of the Sarbanes-Oxley Act (SOX) in 2002. This increase in 

REM practices could be to avoid auditors’ and regulators’ scrutiny. In contrast to 

accrual-based earnings management, where a GAAP framework exists to assess 

deviations from normal practices, real operations belong to the expertise of managers, 

and it is more difficult for outsiders (auditors, regulators, external investors, among 

others) to distinguish suboptimal decisions from optimal ones (Cohen et al., 2008; 

Cohen & Zarowin, 2010; Kothari et al., 2016). 

Earnings management through REM can be defined as actions taken by managers that 

deviate from normal business practices to achieve certain earnings targets such as 

avoiding losses, maintaining or attaining positive growth in earnings, meeting analyst 

earnings forecasts, and smoothing earnings (Roychowdhury, 2006). Firms are found to 

manage earnings through manipulation of various operating and investing activities 

such as (Gunny, 2010; Roychowdhury, 2006): (a) Reducing discretionary expenses, 

including R&D spending and SGA (selling, general, and administrative) expenses, 

which boosts earnings and lowers cash outflows in the current period, but could lead to 

lower future cash flows. (b) Sales manipulation, that is, increasing price discounts 

(cutting prices) or extending more lenient credit terms to boost sales, increasing 

reported earnings and lowering current operating cash flow for a given level of sales. (c) 

Overproduction or increased production in order to report a lower unit cost of goods 

sold, which leads to increased operating margins and hence increased reported earnings. 

(d) Timing the income recognition from the sales of fixed-assets.1 These managerial 

decisions, which imply changes in the underlying business transactions, have different 

features of accrual-earnings management: they are undertaken during the fiscal period 

(Zang, 2012), are hard to detect, since they could be camouflaged as normal activities 

(Kothari et al., 2016), and, fundamentally, they directly affect the firm’s cash flow. 

Moreover, the deviation from normal business practices may impose a real cost on the 

firm, although there is a growing debate in the literature on the effects of REM on firm 

value (Ewert & Wagenhofer, 2005; Roychowdhury, 2006). 

The literature is mixed regarding the effects and implications of REM on future 

performance and the value of the firm. On the one hand, as Roychowdhury (2006) and 
 

1In their review of REM literature, Xu et al. (2007) consider a wider definition of REM strategies by 
including financing transactions. Financing activities include stock repurchases, use of stock options in 
compensation packages, use of financial instruments, and structuring financing transactions. 
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Gunny (2010) assert, REM may be opportunistic and reduce firm value because actions 

taken to boost current-period earnings can have a negative effect on cash flow in future 

periods. In this line, Bhojraj, Hribar, Picconi, & McInnis (2009) provide evidence 

consistent with managers’ undertaking myopic actions to beat benchmarks through 

earnings management. In particular, they find that firms that beat analysts’ forecast by 

cutting discretionary expenditures underperform in the long-term with respect to firms 

that increase discretionary expenditures and miss forecasts. Studies have also found that 

REM around seasoned equity offerings is associated with a subsequent decline in firm 

operating performance (Cohen & Zarowin, 2010) and with negative returns (Kothari et 

al., 2016). The perception of REM as opportunistic could lead credit agencies and 

bondholders to demand a higher risk premium, since the increase of earnings through 

REM is viewed as a factor that increases credit-risk. In this line, Ge & Kim (2014) find 

that sales manipulation and overproduction are associated with higher bond yield 

spreads, and Kim & Sohn (2013) also find a positive association between REM and the 

cost of capital, providing evidence that suggests that this association stems from 

managerial opportunism.  

The opposite view is that earnings management via real activities is not opportunistic, 

but informative: managers engage in real earnings management to attain current-period 

benefits that enable better performance in the future (Bartov, Givoly, & Hayn, 2002; 

Gunny, 2010). Supporting this argument, Gunny (2010) finds that earnings management 

through REM is positively associated with firm future performance, and that those firms 

that engage in real activity manipulation have relatively better subsequent performances 

than firms that do not. In the same line, Zhao, Chen, Zhang, & Davis (2012) find that 

abnormal real activities intended just to meet either zero earnings or the prior year’s 

earnings are associated with better future performance.  

2.2. REM and Information Asymmetry 

According to the microstructure literature, information asymmetry (or adverse selection 

risk) in the stock market arises when there are traders with superior information who try 

to obtain profits by trading on the basis of their informational advantage (e.g. Bagehot, 

1971; Copeland & Galai, 1983; Easley & O’Hara, 1987; Kyle, 1985). In all these 

models there are two types of traders in the market, informed and uninformed, trading 
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an asset of uncertain value. Whereas uninformed traders negotiate in financial markets 

for liquidity reasons and have no special information, informed traders take a position in 

the market based on information about the asset’s true value. The informational 

advantages of informed market participants come from two sources. First, the informed 

investors may have access to private information about firm value that is not accessible 

to uninformed investors (insider trading). Second, traders who have a greater ability to 

process and interpret public information become informed traders because they can 

make superior assessments of the implications of this information for firm performance 

or value (Kim & Verrecchia, 1994). The information asymmetries among market 

participants create an adverse selection problem, which is typically manifested in 

increased trading costs and reduced levels of stock liquidity, because when liquidity 

providers perceive increases in the adverse selection risk, they protect themselves by 

widening the bid-ask spread, thereby reducing liquidity, and increasing the cost of 

capital (e.g. Copeland & Galai, 1983; Easley & O’Hara, 2004; Glosten & Milgrom, 

1985; Kyle, 1985).  

Based on the above, REM has attributes that can exacerbate the information asymmetry 

among investors in financial markets. First, financial executives asked in the 

anonymous survey by Dichev, Graham, Harvey, & Rajgopal (2013) affirmed that REM 

is difficult to detect and understand for analysts and other market participants outside 

the firm. This REM opacity could offer sophisticated investors an opportunity to profit 

from this private information by detecting and analyzing the potential existence of these 

managerial practices, thereby creating information asymmetry. In this sense, some 

research shows evidence that specific sophisticated investors may be interested in and 

concerned about earnings management practices and their implications for the long-term 

value of the firm. Bushee (1998), for example, shows that certain sophisticated 

institutional investors can, by monitoring managers, gather, interpret, and value 

information about managerial investment decisions and R&D spending. 2 

Second, since REM involves management’s attempts to alter reported earnings with the 

aim of misleading some stakeholders, the implications of which on firm value are not 

 
2 Bushee (1998) hypothesizes that the monitor role of institutional investors could affect managerial 
incentives to manipulate R&D to meet earnings targets. In this study, we do not analyze this aspect, as we 
only seek to highlight that sophisticated or informed investors, unlike individual investors, are concerned 
about real activities manipulation and its firm’s value implications.  
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clear, these REM practices may reduce the information content of firm earnings. 

Therefore, earnings manipulation through real activities could impair the market’s 

ability to infer the firm’s future cash flows and could provide the opportunity to obtain 

benefits to traders with higher abilities to process earnings-related information. As a 

consequence, REM could contribute to information asymmetry in the stock markets.  

Nevertheless, the prediction of a positive relation between empirical proxies for REM 

and adverse selection may not hold in general. As the theoretical model developed by 

Zhang (2001) predicts, the level of information asymmetry across firms can be 

positively or negatively related to the firm’s disclosure quality, depending on the factors 

that cause differences between firms.3 Since REM measures could be capturing earnings 

quality or specific business circumstances, the sign of the association between measures 

of REM and information asymmetry may not be the same for different firms. On the 

one hand, consistent with our hypothesis, the informed traders have high incentives to 

produce private information in those settings where managers use REM practices to 

meet an earnings target.. Consequently, we expect to find a positive association between 

REM measures and the level of information asymmetry in the market. On the other 

hand, in those settings where the deviations from normal activities may be just a 

consequence of business circumstances and not of earnings management, the REM 

measures may affect information asymmetry in an opposite way. When empirical 

proxies for REM are less likely to be a proxy for poor earnings quality, the benefit of 

private information production may be lower and, consequently, we expect that 

informed investors will not engage in the production of private information. In addition, 

in this setting, the firm could have higher incentives to publicly disclose more 

information about the underlying business factors. Thus, the effect of private 

information production could be dominated by the effect of firm’s public disclosure 

policy, leading to a reduction of the level of information asymmetry among investors. 

 
3 Zhang (2001) theoretically examines incentives behind public disclosure by the firm and trading by 
informed investors, the interaction between both two forms of information dissemination, and their 
consequences on the extent of information asymmetry among traders. Assuming that the amount of 
private information production by informed traders (public disclosure by the firm) increases (reduces) 
information asymmetry, Zhang’s model derives an equilibrium in which the amount of private 
information production, the level of disclosure, and information asymmetry are all linked to specific 
characteristics of the firm. 
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Although prior literature suggests that earnings quality affects the information 

environment of the firm, most research to date has used accruals-based earnings 

management as a proxy for earnings quality, finding that poor earnings quality is 

significantly associated with higher information asymmetry (Bhattacharya et al., 2013; 

Cormier et al., 2013; Francis et al., 2005). However, to our knowledge, only two papers 

have analyzed the effect of REM on the firm information environment, and they provide 

unclear evidence. For a sample of NYSE firms, Ascioglu, Hedge, Krishnan, & 

McDermott (2012) find mixed results and weak evidence for the association between 

REM and liquidity. Their results depend on the proxies used: a) in some regressions 

they find a significant association between abnormal discretionary expenses and 

liquidity, but with the opposite sign to that expected; b) when they use abnormal cash 

flow, however, the association with liquidity proxies is, overall, not statistically 

significant. 

Likewise, García Lara et al. (2013) provide mixed evidence for the information 

consequences of REM for a sample of US firms. Depending on the proxy used for the 

firm information environment, their findings lead to different conclusions. On the one 

hand, they find no evidence that REM impacts on analysts’ forecast accuracy and 

dispersion. On the other, they report a positive association between REM and stock 

return volatility, which indicates that REM garbles the earnings signal and thus 

increases idiosyncratic volatility. Given these unclear findings regarding the association 

between REM and information asymmetry among market participants, we consider that 

it is still an open empirical question and we provide new evidence in a different context 

to the US market that may shed new light on whether REM is associated with the extent 

of adverse selection among investors in stock markets. Moreover, unlike our paper, the 

two previous papers do not consider the alternative interpretations of REM measures 

and they do not design tests to disentangle the effect of the different underlying factors 

which may influence the relation between empirical proxies for REM and information 

asymmetry. Therefore, our paper provides a more refined analysis of the influence of 

earnings management through real activities on the level of information asymmetry by 

considering the endogenous character of REM measures.  
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3. Research Design and Data 

3.1. Informational Asymmetry Metric 

Market microstructure literature has proposed different measures and procedures to 

capture financial market perception about adverse selection risk, which arises when 

some traders possess private information not currently reflected in stock prices. In 

contrast to the measures introduced by corporate finance, market microstructure exploits 

several sources of information contained in intraday market data to capture the presence 

of traders with better information (informed traders). Nevertheless, in the literature there 

has always been a debate about the appropriateness of each proxy in measuring 

information-based trading. Since information asymmetry is not directly observable, all 

measures available are imperfect proxies for the financial market’s perception of the 

adverse selection between informed and uninformed traders. Thus, to obtain a more 

complete information asymmetry measure, prior studies (e.g. Bharath et al., 2009) use 

principal component analysis to extract the first principal component from individual 

proxies of information asymmetry. In this paper, we create an adverse selection index 

(denoted as ASY hereafter) from five individual measures of information asymmetry 

developed by the market microstructure literature: the relative bid-ask spread, illiquidity 

measure developed in Amihud (2002), price impact, introduced by Huang & Stoll 

(1996), PIN, and VPIN.  

The first and effortless proxy for asymmetric information is the bid-ask spread, a widely 

used measure of trading costs (liquidity). Bid-ask spread incorporates a component 

related to the liquidity providers’ protection from being adversely selected. Glosten & 

Milgrom (1985) and Easley & O’Hara (1992) theoretically show that the mere presence 

of traders with different levels of information is reason enough for the existence of the 

bid-ask spread. We compute the relative quoted spread, RQS, as the difference between 

the bid and ask quotes in time t scaled by the quote mid-point as follows: 

t

tt
t Q

baRQS )( −
=      (1) 
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where at and bt corresponds to the ask and the bid quotes in t. Qt = (at+bt)/2 is the 

quoted midpoint in t, commonly used as a proxy for the efficient price. First, we 

computed RQS on a daily basis by averaging (time-weighted) all the observations 

within the day. After that, we obtained an annual RQS by averaging (equally-weighted) 

daily values. 

Since adverse selection is an important determinant of stock liquidity, we estimate the 

index of illiquidity introduced by Amihud (2002), which is a volume-based liquidity 

indicator and is defined as 

∑
=

=
tD

d dt

dt

t
t V

R
D

AMH
1

1      (2) 

where Rd,t is the return on day d of year t, Vdt is the volume in euros on day d of year t, 

and Dt is the number of days for which data are available in year t. Like Amihud (2002), 

we multiply AMH by 106. Amihud’s illiquidity measure gives the average of the daily 

price impact of the order flow or absolute percentage price change associated with a unit 

of trading volume. When a stock is liquid, large trading volumes provoke small price 

changes. Therefore, higher values of AMH indicate higher price moves in response to 

trading volume, and thus higher stock illiquidity. It is expected that the greater the 

information asymmetry, the worse the stock liquidity, and the higher the AMH value.  

Both bid-ask spread and illiquidity ratio are noisy proxies for asymmetric information 

given that they commonly include other components that are not related to information 

(inventory costs, order processing cost, monopoly rents, etc.), but that they also 

influence stock liquidity. Moreover, the illiquidity index of Amihud (2002) provides a 

rough measure of the price impact. Trades initiated by noise traders lead to transitory 

changes in transaction prices, while information-based trades provoke permanent price 

changes. Thus, Huang & Stoll (1996) introduce the realized spread (or price reversal) 

and the price impact by considering the quote adjustment that takes place a period of 

time after a trade to extract the presence of new information. Price impact (PI) is the 

permanent price change (or information content) of a trade and is defined as  

( ) tttt XQQPI −= ++ ττ     (3) 
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where Qt is the quote midpoint defined previously, Xt is a trade indicator variable taking 

the value -1 if the trade in t is initiated in the sell side and 1 if it is initiated in the buy 

side. Finally, τ is the period of time for prices to fully reflect the information content in 

trade t. Like Huang & Stoll (1996), we set τ equal to 30 minutes. A daily PI is computed 

in trade-time by averaging (volume-weighted) all the trades within the day. Then, we 

obtain an annual value by averaging (equally weighted) all the trading days in the year. 

A large and positive PI indicates a high frequency of information-based trades. 

The fourth measure of information asymmetry considered to compute our index is the 

probability of information-based trading (PIN), a measure that can be included in the 

group of the asymmetric information measures based on the computation of order 

imbalances between buys and sells to extract the information content of the trading 

process. The PIN is a measure based on the theoretical work of Easley & O’Hara (1987, 

1992), with the original PIN model  introduced by Easley et al. (1996). The PIN is the 

unconditional probability that a randomly selected trade originates from an informed 

trader. The PIN is not directly observable but as a function of the theoretical parameters 

of a microstructure model that have to be estimated by numerical maximization of a 

likelihood function. Once the parameters of interest are estimated, the PIN is calculated 

as the ratio of orders from informed traders to the total number of orders. For reasons of 

space, the description of the model and the estimation process of this well-known 

methodology are presented in Appendix A.  

As an update of the PIN model, Easley et al. (2012) have developed a new measure for 

adverse selection risk called Volume-Synchronized Probability of Informed Trading or 

VPIN. The VPIN approach has some practical advantages over the PIN methodology 

that make it particularly attractive for both practitioners and researchers. The main 

advantage is that VPIN does not require the estimation of non-observable parameters 

using optimization or numerical methods, thereby avoiding all the associated 

computational problems and biases. In particular, VPIN measures order flow toxicity, 

which can be considered as a broader concept for adverse selection applied to the 

particular world of liquidity providers in a high frequency trading (HFT) environment. 

However, VPIN can be considered as a more flexible measure of asymmetric 

information that can be applied in a wide range of frameworks by choosing the 

appropriate values of the variables involved in the estimation process (Abad & Yagüe, 
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2012). There are three relevant variables in the VPIN approach: time bar, volume bucket 

and sample length. At bar level, trade flow is split between buys and sells. At bucket 

level, order imbalances are computed. Finally, order imbalances are smoothed in the 

sample length by computing a moving average and the VPIN series is obtained. An 

annual VPIN is computed by averaging all the values of the result VPIN series into the 

year. A brief description of this procedure can be found in Appendix B.  

3.2. REM Measures 

Roychowdhury (2006) develops three measures of real activities manipulation 

(abnormal cash flows, abnormal production costs, and abnormal discretionary expenses) 

to focus on three methods of manipulating real activities in order to manage earnings 

upwards: (1) sales manipulation through increased price discounts or more lenient credit 

terms, to temporarily boosts sales revenues, which will have the effect of unusually low 

cash flow levels from operations; (2) overproduction, to report a lower cost of goods 

sold; and (3) reduction of discretionary expenses. Following previous research on REM 

(Cohen et al., 2008; Cohen & Zarowin, 2010; Ge & Kim, 2014; Kim & Sohn, 2013; 

Roychowdhury, 2006), we employ the three models proposed by Roychowdhury (2006) 

to construct REM measures. We use model (4) to estimate the normal level of cash flow 

from operations: 
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where CFO is cash flow from operations estimated as operating income less total 

accruals, Sales and ∆Sales represents sales and change in sales, respectively. All 

variables, including the intercept, are scaled by lagged total assets (Assets). We also 

include an unscaled intercept (Roychowdhury, 2006).  

We use model (5) to estimate the normal level of production costs: 
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where PROD is production costs defined as the sum of costs of goods sold, which we 

estimate from the profits and losses account, plus the change in inventory in the year. 

The other variables have been defined previously. 

We estimate the normal level of discretionary expenses with model (6): 
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where DISPEX is discretionary expenses and the other variables are calculated as 

defined previously. Since in Spain firms do not usually report advertising or general and 

administrative expenses specifically, we measure DISPEX with the item other operating 

expenses in the profits and losses statement, which includes R&D, advertising, and 

other general expenses. 

We estimate models (4), (5) and (6) cross-sectionally for each year and industry group 

using all the data available on Spanish listed firms in the period. Based on the industry 

classification of the Madrid Stock Exchange, we classify firms into three big industries 

in order to have a minimum of 15 observations for each regression. For every firm-year, 

the residuals of the regressions represent, respectively, the abnormal cash flow from 

operations (ACFO), the abnormal productions costs (APROD), and the abnormal 

discretionary expenses (ADISPEXP). Firms that manage earnings upwards will show 

abnormally low cash flows from operations, and/or abnormally high productions costs, 

and/or abnormally low discretionary expenses (Cohen & Zarowin, 2010). Accordingly, 

for abnormal cash flows and abnormal discretionary expenses, we multiply the residuals 

of models (4) and (6) by (-1), so that higher values of these variables represent greater 

increases of earnings.4 We separately analyze each measure and also define three 

combined measures of REM. Following Cohen & Zarowin (2010), we define REM1 as 

APROD+ADISEXP; and REM2 as ACFO+ADISEXP. Thus, higher values of REM1 and 

REM2 indicate higher probability of real decisions to increase earnings, in particular, 

 
4 Income increasing real earnings management does not always affect cash flows and earnings in the same 
direction (Roychowdhury, 2006) because, whereas price discount and overproduction have a negative 
effect on cash flows, cutting discretionary expenses has a positive effect. Although this has led some 
studies to disregard abnormal cash flows in REM measures, and thus focus only on abnormal production 
costs and abnormal discretionary expenses, other authors include abnormal cash flows in order to take 
into account the possibility of sales manipulation. 
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that the firm is engaged in higher production costs and cutting discretionary expenses 

(REM1), and in sales manipulation and cutting discretionary expenses (REM2). Finally, 

we construct REM3 as an overall measure of REM as ACFO+APROD+ADISEXP (Kim, 

Park, & Wier, 2012; Ge & Kim, 2014).5 

3.3. Incentives to Engage in Earnings Management 

REM measures, as defined in the previous section, are the residuals of the models 

developed by Roychowdhury (2006) to estimate normal levels of cash flow, production 

costs and discretionary expenses. However, the abnormal levels of these measures, apart 

from earnings management activities, could be capturing abnormal situations caused by 

incompetent managers or unusual changes in the business conditions. Prior research 

addresses this concern by analysing REM activities and their effects in settings in which 

earnings management is likely to occur, such as firms that use REM to meet earnings 

benchmarks (Gunny, 2010; Kim & Sohn, 2013; Roychowdhury, 2006; Zang, 2012). To 

avoid the association between proxies for information asymmetry and REM being 

explained by factors unrelated to managerial opportunism, we implement our analyses 

for two different settings: (a) firms with strong incentives to opportunistically manage 

earnings (suspect firms); and (b) the rest of the sample (non-suspect firms). In 

particular, we consider as a sample of suspect firm-year observations those that just 

meet last year’s earnings. For each firm-year, we compute net income on total assets 

and suspect firm-years are those whose change in net income divided by total assets is 

between 0 and 0.01. Thus, in the first scenario we assume that deviations from normal 

operations represent REM decisions, whereas in the second setting these deviations are 

more likely to represent unusual business conditions. 

3.4. Regression Model 

We test the association between REM and the level of information asymmetry between 

traders in the stock market with the following model:  

 
5Note that ACFO and ADISPEXP are the residuals of models (4) and (6) multiplied by (-1), so these are 
the values we add to APROD in REM1, REM2 and REM3. 
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where ASY is our index of information asymmetry and REM corresponds to each of the 

different REM measures described in the previous section. We include variables in the 

regression to control for factors that, according to the previous literature, affect the 

information environment of a firm and that are likely to be associated with information 

asymmetry among investors in the capital markets. These control variables are: 

discretionary accruals (DiscAcc), firm size (Size), return on assets (ROA), trading 

volume (Turnover), stock volatility (Volat), financial analyst following (Analyst) and 

ownership concentration (Own).  

As commented on above, previous studies document that accrual-based earnings 

management and REM can be used as substitutes to manipulate earnings (Cohen et al., 

2008; Cohen & Zarowin, 2010; Zang, 2012) and that earnings quality is associated with 

information asymmetry proxies. Empirical studies, such as Francis et al. (2005) and 

Bhattacharya et al. (2013), use discretionary accruals as a proxy for earnings quality and 

suggest that poor earnings quality enhance information asymmetry among investors. 

This supports the opportunistic view of accrual-based earnings management, which 

assumes that the objective of these accounting practices is to garble the market, 

resulting in an increase in the adverse selection risk. However, some studies support an 

informational view of discretionary accounting choices. According to these studies, if 

investors detect accrual-based earnings management, discretionary accruals might not 

be a noisy signal but could, in contrast, be informative about firm future cash flows. 

This would improve the informativeness of earnings (e.g. Subramanyam, 1996) and, as 

a consequence, more informative financial reporting could minimize the informational 

advantages of informed traders. Therefore, since we control for discretionary accruals, 

DiscAcc, β1 represents the incremental effect on information asymmetry of REM once 

accrual-based earnings management is taken into account. DiscAcc is calculated as the 

value of discretionary accruals estimated by the Jones (1991) model, modified by 

Dechow, Sloan, & Sweeney (1995). 

Market microstructure literature provides extensive empirical evidence of firms’ 

characteristics that are related to the probability of informed trading and, consequently, 
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stock liquidity. In particular, stocks of larger and more profitable firms and stocks with 

larger trading volumes and lower return volatility suffer lower adverse selection 

problems and are more liquid (e.g. Easley et al., 1996; Stoll, 2000; Goh, Lee, Ng, & 

Yong, 2016). This is consistent with the widely known argument that larger and more 

profitable firms, and firms whose stocks are more frequently traded, have richer 

information environment as a consequence of their higher levels of information 

production and publicly available information. Additionally, the positive relation 

between information asymmetry and stock volatility suggests a higher presence of 

informed traders due to the greater profit opportunities in stocks that have higher 

information uncertainty (Bhattacharya et al., 2013). Hence, we include Size, the 

company’s size measured as the natural logarithm of total assets; ROA, defined as 

operating income divided by total assets; Turnover, the logarithm of the average daily 

trading volume in euro scaled by the market value of the firm’s equity at the end of the 

year; and Volat, a proxy for stock return volatility calculated as the standard deviation 

of daily returns. 

Disclosure literature also predicts that the information environment of a firm is affected 

by the activities of producing and disseminating information performed by financial 

analysts following the firm. However, neither theoretical nor empirical studies are 

totally conclusive about the sign of the relation between analyst following and 

information asymmetry. For example, Easley, O’Hara, & Paperman (1998) state that the 

number of analysts following the firm can be either positively or negatively associated 

with the level of disclosure and with the probability of informed trading depending on 

whether financial analysts create new private information or disseminate public 

information among investors. Although it is possible to find some empirical studies that 

provide findings suggesting that the number of analyst following a stock is positively 

correlated with information asymmetry (e.g. Chung, McInish, Wood, & Wyhowski, 

1995), the great majority report that analyst coverage is negatively related to 

information asymmetry (e.g. Easley et al., 1998; Roulstone, 2003). This inverse relation 

supports the argument that more analyst following increases publicly available 

information on the firm, which results in a reduction in the risk of information-based 

trading and an improvement in stock liquidity. Therefore, we include in our model the 

variable Analyst, which represents the natural log of the total number of analysts 

following a firm. 
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In addition, the distribution of private information among investors can be affected by 

the predominance of large shareholders in the firm ownership. For this reason, we 

include ownership concentration, Own, as a control variable measured by the percentage 

of common shares held by the largest five shareholders of the company. A more highly 

concentrated ownership is expected to be positively associated with information 

asymmetry because the larger shareholders are likely to control the firm and therefore to 

have access to, or generate, private information about the firm, so exacerbating adverse 

selection problems in the market (e.g. Heflin & Shaw, 2000).  

Finally, we also include year and industry dummy variables to control for temporal and 

industry effects. 

3.5. Sample and Data 

Our sample is made up of stocks traded on the electronic trading platform of the 

Spanish Stock Exchange, known as the SIBE (Sistema de Interconexión Bursátil 

Español). The SIBE is an order-driven market where liquidity is provided by an open 

limit order book. Trading is continuous from 9:00 a.m. to 5:30 p.m. There are two 

regular call auctions each day: the first determines the opening price (8:30-9:00 a.m.), 

while the second sets the official closing price (5:30-5:35 p.m.). Three basic types of 

orders are allowed: limit orders, market orders, and market-to-limit orders. In the 

continuous session, a trade occurs whenever an incoming order matches one or more 

orders on the opposite side of the limit order book. Orders submitted that are not 

instantaneously executed are stored in the book, waiting for a counterparty, according to 

a strict price-time priority rule. Unexecuted orders can always be cancelled and 

modified. Continuous trading can be temporally interrupted, since a system of stock-

specific intraday price limits and short-lived call auctions is implemented to handle 

unusual volatility levels. In all auctions (open, close and volatility) orders can be 

submitted, modified or cancelled, but no trades occur. 

Trade and quote data for this study come from SM data files provided by the Sociedad 

de Bolsas, S.A. SM files contain detailed time-stamped information about the first level 

of the limit order book for each stock listed on the SIBE. Any trade, order submission 

and cancellation affecting best prices in the book generates a new entry in the file. The 
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distinction between buyer-initiated and seller-initiated trades is straightforward and no 

classification algorithm is needed. Firms’ financial statement data were taken from the 

SABI database, made by Bureau Van Dijk, and from the annual reports at the Spanish 

Securities Market Commission (Comisión Nacional del Mercado de Valores, CNMV). 

Ownership concentration and analysts’ data were collected from Thomson Reuters 

Eikon Datastream. 

Our sample consists of non-financial firms listed on the main segment of the SIBE in 

the period 2001-2008, with full data available for all the period. After applying the 

usual filters to detect and eliminate errors in the preparation of the intraday trading data 

and combining the different databases, we obtain 468 firm-year observations, for which 

we have been able to collect the information asymmetry measures, the complete 

financial-accounting information and data on analyst following and ownership 

concentration.  

4. Results 

4.1. Descriptive Statistics 

Table 1 reports the estimations of normal levels of cash flow from operations, 

production costs and discretionary expenses –models (4), (5), and (6). We estimate 

these models using all the available information for Spanish listed firms during the 

period 2001-2008. The regressions are estimated for industry-year groups with at least 

15 observations. The table reports the mean coefficients across all industry-years and t-

statistics calculated using the standard error of the mean across industry-years, as well 

as the mean R2 across industry-years. We can see that the models explain the real 

operations quite well, and our results are similar to those reported by Roychowdhury 

(2006) for US firms. 

[Table 1 near here] 

Table 2 presents descriptive statistics for the information asymmetry measures (Panel 

A), REM measures (Panel B), and control variables (Panel C). The mean, median, 

standard deviation, 10th percentile and 90th percentile are reported for each. With 
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regard to proxies for information asymmetry, the mean (median) of RQS is 0.6% 

(0.4%). The mean value of AMH in our sample (0.3) is similar to that reported by 

Amihud (2002). The average (median) of price impact measure (PI) is 0.37% (0.30%). 

According to Abad & Yagüe (2012), the PIN and the VPIN show similar mean values of 

around 19% and 20%, respectively. PIN values are also consistent with those reported 

in prior studies that use this information asymmetry proxy (e.g., Brown & Hillegeist, 

2007; Easley, Hvidkjaer, & O’Hara, 2002). The statistical distributions of the above 

measures show that there are clear differences in the degree of asymmetric information 

among firms included in our sample. As discussed in Section 3, in order to isolate the 

common adverse selection component underlying the former proxies, we constructed an 

index of information asymmetry (ASY) by employing principal components analysis 

(PCA) for each firm and year of our sample. The mean of ASY is zero (by construction) 

and its median is -0.40. The first (and only) factor with an eigenvalue greater than one 

explains 64.3% of the variance and each component of ASY enters with a positive sign 

and loadings as follows:  

VPINPINPIAMHRQSASY 484.0459.0477.0257.0511.0 ++++=  (8) 

Therefore, each proxy for information asymmetry plays its role in the index.6 A higher 

value of the index means a higher level of adverse selection. As seen in Table 3, which 

provides the Pearson correlation matrix between the variables used in the study, all the 

information asymmetry proxies are positively correlated with each other, which 

indicates that these measures are likely to be driven by adverse selection, but each 

contains unique information. Moreover, the index is positive and significantly 

correlated with each information asymmetry variable, varying from a correlation of 92% 

between ASY and RQS to a correlation of 46% between ASY and AMH. Additionally, 

correlations between all five proxies for information asymmetry and the index are 

 
6 A potential concern about the use of ASY as proxy for information asymmetry for our sample is that the 
PCA is sensitive to sample size. To check the robustness of the index, we evaluate the performance of the 
PCA by applying computer-based resampling (bootstrap) techniques. Thus, we draw a large number of 
samples (1,000, 5,000, and 10,000) of different sizes –smaller than (234 observations), equal to (468), 
and larger than (1,000) our sample size. We perform PCA analysis to all the samples and compute 
confidence intervals (basic percentile) at the 1% level. We observe that our full-sample estimations for all 
relevant parameters (the eigenvalues and the component weights for the first factor) are always included 
in the bootstrap intervals.  
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generally higher than between them, which suggests that the index is a parsimonious 

way of measuring information asymmetry. 

[Table 2 near here] 

Mean values of ACFO, APROD, ADISPEXP and DiscAcc are very close to zero, as 

expected. Their deviation from zero is due to these variables having been estimated with 

all the available information for listed firms in the period, which is higher than the size 

of our sample. With regard to the control variables (Size, ROA, Turnover, Volat, 

Analysts, and Own), these show a significant level of dispersion in their values, 

reflecting the heterogeneity of our firm-year sample. The correlations between REM 

variables are positive and significant, which means that firms simultaneously use 

different strategies of real activities manipulation to achieve their earnings objectives. 

Firms also simultaneously apply sales manipulation and discretionary accruals strategies 

to manipulate earnings, since ACFO and the REM variables that include ACFO are 

highly and positively correlated with DiscAcc. The positive correlations between Size 

and most of REM variables show that bigger firms are more likely to engage in REM 

activities to increase earnings, and the negative correlations between ROA and REM 

measures suggest that firms with better performance are less prone to managing 

earnings through real activities manipulation. 

[Table 3 near here] 

4.2. Analysis for the Whole Sample 

Table 4 reports the results of model (7) for the different measures of REM in the whole 

sample. Columns (1) to (3) present the results for individual proxies while columns (4) 

to (6) do so for the aggregate measures. Since Table 3 shows high correlations between 

DiscAcc and ACFO and DiscAcc and REM2, models in columns (1) and (5) are 

estimated using orthogonalized variables with respect to DiscAcc, that is, they 

incorporate the residuals of the regression of ACFO on DiscAcc and the residuals of the 

regression of REM2 on DiscAcc, respectively. We report OLS coefficients and t-

statistics (in brackets) based on robust standard errors, which are clustered by firm. 
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-Insert Table 4- 

The results do not show significant associations between REM proxies and information 

asymmetry. These insignificant effects could be explained by the heterogeneity of the 

sample, composed by firms with different incentives to engage in REM activities. Thus, 

the findings for the overall sample could be showing an offset between a positive and a 

negative effect in different scenarios, depending on whether or not there are incentives 

to engage in REM. Neither is accrual-based earnings management significantly 

associated with information asymmetry in the Spanish market. 7 This finding, which is 

not consistent with most of the empirical evidence in the literature, along with the 

findings reported below for the analysis of two subsamples, suggests that, like the REM 

effect on information asymmetry, the effect of accrual-based earnings management may 

depend on the incentives to produce private information in relation to accrual-based 

manipulation of earnings.  

Regarding the other control variables, the signs of their coefficients are as expected 

according to the literature. We find that the stocks of larger and more profitable firms, 

with higher trading volume, and those being followed by more analysts show less 

information asymmetry, whereas firms with more volatile stock returns are associated 

with higher information asymmetry. All these variables are significant at the 1% level in 

all models estimated. The coefficient on Own, as expected, always presents a positive 

sign, but it is not significant.  

4.3. Analysis for the Suspect and Non-Suspect Samples  

In the previous analysis, we have examined the association between REM measures and 

information asymmetry in the whole sample. However, since empirical proxies for 

REM represent abnormal levels of real transactions, they could be capturing the 

consequences of opportunistic managerial practices, but also specific business 

circumstances unrelated to earnings management, such as changes in business or unique 

business models. Consequently, the sign of the association between measures of REM 

 
7The results do not change (the coefficient on discretionary accruals is not significant) if we include the 
absolute value of discretionary accruals, as in Kim et al. (2012).  
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and the level of information asymmetry may depend on these sources of variation 

among firms in a particular sample. 

Hence, in order to extend the understanding of the association between REM practices 

and information asymmetry, we analyse this association in two subsamples: (a) suspect 

sample, that is, firm-years observations with strong incentives to manage earnings in 

order to just meet zero earnings growth (last year’s earnings), and (b) non-suspect 

sample, that is, firm-years observations without incentives to meet this  target. In  

settings where managers have strong incentives to manage earnings and the reason for 

earnings management is well-understood, such as the aim to meet an earnings target 

(Graham et al., 2005), we would expect investors to enhance the private information 

production to increase their trading profits. This would have the effect of raising the 

level of information asymmetry in the market. However, in  settings without incentives 

to engage in earnings management, deviations from normal operations can be attributed 

to other circumstances, rather than the firm’s disclosure quality. Since in this case there 

are fewer incentives to produce private information, we could expect that these 

deviations from normal operations do not create information asymmetry in the market.  

As a preliminary analysis, we compare REM in the suspect sample versus the non-

suspect sample. Following Roychowdhury (2006), we run the following regression: 

 εIndYearSuspectβROAβBTMβSizeββREM
j

j
t

t +++++++= ∑∑ ββ43210   (9) 

where REM corresponds to each of the different REM measures as described 

previously, BTM is the book to market ratio, ROA is operating income divided by total 

assets, and Suspect is a dummy variable that takes the value of 1 if the change in net 

income divided by total assets is between 0 and 0.01, and 0 otherwise. Table 5 displays 

the estimate of the model for the six REM measures. The results in columns 2, 3, 4, and 

6, show that the coefficients on Suspect are positive and significant (at the 10% level, in 

the REM3 model; at the 5% level in the abnormal production costs model; and at the 1% 

level in the abnormal discretionary expenses and REM1 models). This suggests that 

suspect firm-years have higher abnormal production costs and lower discretionary 

expenses than the rest of firms, which is consistent with their engagement in REM 
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activities to meet last year’s earnings. The non-significant coefficients for the abnormal 

cash flow model and for REM2 could be explained by the opposite effect on cash flows 

of cutting discretionary expenses in relation to sales manipulation and increasing 

production costs. 

[Table 5 near here] 

Table 6 reports the results of model (7) for the two subsamples. Panel A corresponds to 

the suspect sample and Panel B to the non-suspect sample. We report OLS coefficients 

and t-statistics (in brackets) based on robust standard errors that are clustered by firm.  

[Table 6 near here] 

In the sample with strong incentives to manage earnings (suspect sample), we find that, 

with the exception of the cash flow model, all coefficients on REM measures are 

positive and significant (at the 5% level, in the abnormal discretionary expenses and 

REM2 models, and at the 1% level in abnormal production costs, REM1 and REM3 

models). These findings are consistent with the hypothesis that managerial opportunism 

to increase earnings through REM creates information asymmetry in the market in those 

contexts where managers have incentives to engage in REM activities, and 

consequently, informed investors also have  incentives to produce private information. 

However, as in the whole sample, the coefficient on DiscAcc is not statistically 

significant. Therefore, the strong and clear effect of REM and the non-significant effect 

of accrual-based earnings management on information asymmetry could be explained 

by the different implications of both types of earnings management. The larger opacity 

and real effects of REM for firm value in comparison to accrual-based management 

may imply a higher marginal benefit for the production of private information. As a 

consequence,  informed traders may have more incentives to produce information about 

REM than in relation to accrual-based management. The signs and significance of the 

other control variables are quite similar to those of the analysis with the whole sample, 

but in the subsample of suspect firms we also find that ROA is not significant, which 

can be explained by its low variability or because earnings numbers are nosier or less 

credible due to the high likelihood of REM in this setting. In contrast, we find a 

significant positive association between ownership concentration and information 
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asymmetry, which is consistent with lower disclosure levels in firms with a 

predominance of large shareholders.  

In the rest of the sample (non-suspect sample), we find that, with the exception of the 

cash flow model, all coefficients on REM measures are significantly negative (at the 

10% level in the abnormal production costs and at the 1% level in abnormal 

discretionary expenses, REM1, REM2 and REM3 models). Thus, in this setting there is a 

negative association between information asymmetry and REM measures after taking 

into account the effect of accrual-based earnings management. This finding suggests 

that when REM measures are not reflecting low earnings quality but change in business, 

the informed traders have fewer incentives to produce private information. Regarding 

the control variables, the coefficient on discretionary accruals (DisAcc) is positive and 

significant at the 1% level in the REM3 model or quite close to being significant at 

conventional levels in the rest of models (with the exception of the cash flow model) at 

two-tail tests. Even if we consider one-tail tests the coefficients on DisAcc are 

significant in all estimations with the exception of the cash flow model. This is 

consistent with previous research, which has found that accruals earnings management 

may create information asymmetry in the market. Finally, the coefficients of the rest of 

control variables show similar signs and significance levels to those presented for the 

whole sample.  

5. Conclusion 

This study examines the consequences of real activities manipulation on information 

asymmetry in Spain. Previous studies have examined this association basically for US 

markets, providing inconclusive evidence. We consider that the analysis of the Spanish 

market may shed new light because it exhibits a weaker investor protection, lower 

accounting quality and stock market liquidity, and higher incentives for investors to 

search for private information than US. We use 468 firm-year observations from 2001 

to 2008 and an information asymmetry index built on microstructure measures such as 

the bid-ask spread, illiquidity measure developed in Amihud (2002), price impact 

introduced by Huang & Stoll (1996), PIN, and VPIN. 
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In line with previous literature, we find that firms with high strong incentives to engage 

in earnings management to just meet last year’s earnings, show higher levels of income 

increasing REM. Overall, our evidence on the association between REM and 

information asymmetry is consistent with the prediction that firms’ strategies of REM 

garble the market and create information asymmetry among traders. Thus, in a setting 

where REM measures are highly likely to indicate low earnings quality (suspect 

sample) we find a significant and positive association between proxies for earnings 

management through real activities manipulation and information asymmetry among 

investors. In contrast, in a setting where the empirical proxies for REM could be 

capturing situations rather related with business circumstances than with earnings 

manipulation, we find that deviations from normal activity are significantly and 

negatively associated with the level of information asymmetry. Thus, we show that the 

private information production and its influence on the level of information asymmetry 

in the market depend on firm’s circumstances.  

Our results have implications for managers, regulators and researchers. Our evidence 

confirms that managers will possibly manipulate earnings with real activities to meet 

earnings benchmarks. We add to the literature that these practices may distort the 

market by creating information asymmetry between traders in those contexts where 

managers have incentives to engage in REM, since it raises the production of private 

information by sophisticated investors. We extend previous research on the economic 

consequences of earnings management in general, and REM in particular, to the study 

of the adverse selection problem in financial markets, where prior literature is scarce 

and focused exclusively on the US market. By examining a direct link between REM 

and information asymmetry, we show that previous findings that associate the 

engagement in REM activities with a higher cost of capital can be explained by the 

increase in information asymmetry produced by REM. Finally, from a methodological 

point of view, this is one of the first papers to use a composite index of adverse 

selection to examine this issue.  
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Appendix A: PIN Model and Estimation 

The PIN model views trading as a game between liquidity providers and traders 
(position takers) that is repeated over trading days. Trades can come from informed or 
uninformed traders. For any given trading day the arrival of buy and sell orders from 
uninformed traders, who are not aware of the new information, is modeled as two 
independent Poisson processes with daily arrival rates εb and εS, respectively. The model 
assumes that information events occur between trading days with probability α. 
Informed traders only trade on days with information events, buying if they have seen 
good news (with probability 1-δ) and selling if they have seen bad news (with 
probability δ). The orders from the informed traders follow a Poisson process with a 
daily arrival rate µ.  

Under this model, the likelihood of observing B buys and S sells on a single trading day 
is  
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where B and S represent total buy trades and sell trades for the day respectively, and θ 
=(α, δ, µ, εb, εs) is the parameter vector. This likelihood function is a mixture of three 
Poisson probabilities, weighted by the probability of having a “good news day” α(1-δ), 
a “bad news day” αδ, and “no-news day” (1-α). Assuming cross-trading day 
independence, the likelihood function across J days is just the product of the daily 
likelihood functions: 

 ( ) ( )∏ == J
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where Bj, and Sj are the numbers of buy and sell trades for day j=1,..., J, and M = [(B1, 
S1),…, (BJ, SJ)] is the data set. Maximization of (2) over θ given the data M yields 
maximum likelihood estimates for the underlying structural parameters of the model (α, 
δ, µ, εb, εs). Once the parameters of interest have been estimated, the Probability of 
Informed Trading, PIN, is calculated as  
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where αµ + εb+ εs is the arrival rate of all orders, αµ is the arrival rate of informed 
orders. The PIN is thus the ratio of orders from informed traders to the total number of 
orders.  

An attractive feature of the PIN methodology is its apparently modest data requirement. 
All that is necessary to estimate the model is the number of buy- and sell-initiated trades 
for each stock and each trading day. However, one shortcoming of the methodology is 
that, although the estimation procedure is straightforward, it often encounters numerical 
problems when performing the estimation in practice, especially with stocks with a huge 
number of trades when the optimization program may clash with computational 
overflow or underflow (floating-point exception) and, as a consequence, it may not be 
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able to obtain an optimal solution. These difficulties in estimating PIN have been 
exacerbated in recent years due to the steady increase in the number of trades which are 
a consequence, among other reasons, of the growth in automated trading and structural 
changes in the market, which have greatly reduced market depth (Aslan, Easley, 
Hvidkjaer, & O'Hara, 2011). We estimate first the PIN model via maximum likelihood 
for each stock and month in each year. The use of one-month transaction data should be 
a wide enough period to produce reliable estimates and allows us to maximize the 
number of estimations (Easley, Kiefer, & O’Hara, 1997) indicate that a 30 trading-day 
window allows sufficient trade observations for the PIN estimation procedure, and 
Akay, Cyree, Griffiths, & Winters (2012) use 20 trading days to estimate PIN finding 
numerical solutions for all their estimations). Finally, we calculate an annual PIN by 
averaging monthly values. We use the optimization algorithm of the Matlab software. 
We run the maximum likelihood function 100 times for each stock in our sample, 
except for several large stocks, for which we increase the iterations to 1000 to ensure 
that a maximum is reached. We follow Yan & Zhang’s (2012) proposal to set initial 
values for the five parameters in the likelihood function. 

 

Appendix B: VPIN Estimation Procedure 

In this appendix we briefly review the three levels in which VPIN calculation takes 
place (for a more accurate description of the procedure, see the original paper of Easley 
et al., 2012).   

(1) Time bars 

The original procedure begins with trade aggregation in timebars. Bar size is the first 
key variable of the VPIN computation process. Easley et al. (2012) initially use 1-
minute time bars. In each time bar, trades are aggregated by adding the volume of all the 
trades in the bar (if any) and by computing the price change for this period of time. 
Afterwards, and in order to take into account trade size, the sample is “expanded” by 
repeating each bar price change a number of times equal to the number of shares traded 
in the bar. Thus, the original raw sample became a sample of one-unit trades, each of 
them associated with the price change of the corresponding bar. 

(2) Volume buckets, bulk classification and order imbalance 

Volume bucket is the second essential variable in VPIN metric. Volume buckets 
represent pieces of homogeneous information content that are used to compute order 
imbalances. In Easley et al. (2012) volume bucket size (VBS) is calculated by dividing 
the average daily volume (in shares) by 50, which is the number of buckets they initially 
consider. Therefore, if we depart from the average daily volume, it is the number of 
buckets which fully determines VBS. Consequently, we consider the number of buckets 
as our second key variable. 

Buckets are filled by adding the volume in consecutive time bars until completing the 
VBS. If the volume of the last time bar needed to complete a bucket is for a size greater 
than required, the excess size is given to the next bucket. In general, a volume bucket 
needs a certain number of time bars to be completed, although it is also possible that the 
volume in one time bar could be enough to fill one (or more) volume buckets. 
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At the same time of bucket completion, time bar volume is classified as buyer- or seller-
initiated in probabilistic terms by employing the Normal distribution. Thus, we label as 
"buy" the volume that results from multiplying the volume bar by the value of the 
normal distribution evaluated in the standardized price change Z (ΔP/σΔP). To 
standardize, we divide the corresponding price change by the standard deviation of all 
price changes for the whole sample. Analogously, we categorize as “sell” the volume 
that results from multiplying the volume bar by the complementary of the normal 
distribution for the buy side, 1-Z (ΔP/σΔP). 

Order imbalance (OI) is then computed for each bucket by simply obtaining the 
absolute value of the difference between buy volume and sell volume in the assigned 
time bars. 

(3) VPIN and sample length 

Finally, in the last step we obtain VPIN values. Here, it is necessary to define a new 
variable: sample length (n). This variable establishes the number of the buckets with 
which VPIN is computed. Following the link established in Easley et al. (2012), 
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where VPIN is simply the average of order imbalances in the sample length, that is, the 
result of dividing the sum of order imbalances for all the buckets in the sample length 
(proxy of the expected trade imbalance) by the product of volume bucket size (VBS) 
multiplied by the sample length (n) (proxy for the expected total number of trades). 
VPIN metric is updated after each volume bucket in a rolling-window process. For 
example, if the sample length is 50, when bucket #51 is filled, we drop bucket #1 and 
we calculate the new VPIN based on buckets #2 to #51. Easley et al. (2012) first 
consider sample length equal to the number of buckets (50), but throughout the paper 
the authors change this variable to 350 or 250, depending on what they want to analyze. 
A sample length of 50 buckets when the number of buckets is also 50 is equivalent to 
obtaining a daily VPIN. A sample length of 250 (350) when the number of buckets is 50 
is equivalent to obtaining a five-day (seven-day) VPIN.  
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Table 1. Estimation of the normal levels of cash flow, production costs and 
discretionary expenses 
 CFOt/At-1  PRODt/At-1  DISEXPt/At-1 
1/At-1 -2.2742**  1.9773  1.1752 
 (-2.01)  (1.12)  (1.44) 
St/At-1 0.1078***  0.7743***   
 (8.04)  (48.44)   

St-1/At-1     0.1426*** 
     (15.77) 
∆St/At-1 0.0941  0.2469***   
 (1.46)  (2.86)   

∆St-1/At-1   -0.0308   
   (-0.46)   

Intercept 0.0208   -0.0508***  0.0444*** 
 (1.58)  (-4.34)  (11.09) 
Ad. R2 0.132  0.911  0.366 
Notes: This table reports OLS coefficients of the regressions (4), (5) and (6). The regressions are estimated for 
industry-year groups with at least 15 observations.  

 εASβASβAACFO tttttttt +∆+++= −−−− )/()/()/1(/ 13121101 αα  

 εASASβASβAAPROD tttttttttt +∆+∆+++= −−−−−− )/()/()/()/1(/ 11413121101 βαα  

 ASβAADISEXP tttttt εαα +++= −−−− )/()/1(/ 1121101  
CFOt is cash flow from operations estimated as operating income less total accruals; PRODt is the production costs; 
DISEXPt is the discretionary expenses. S and ∆S represents sales and change in sales, respectively. All variables, 
including the intercept, are scaled by lagged total assets (At-1). ***, **, * denote significance at the 1%, 5%, and 10% 
(two-tailed) level, respectively. 
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Table 2. Descriptive statistics 
Panel A: Information asymmetry measures  

 #obs. Mean SD 10th perc. Median 90th perc. 
RQS 468 0.0064 0.0061 0.0013 0.0042 0.0143 
AMH 468 0.3020 2.0676 0.0004 0.0090 0.3517 
PI 468 0.0037 0.0027 0.0010 0.0030 0.0073 
PIN 468 0.1890 0.0603 0.1224 0.1787 0.2648 
VPIN 468 0.2048 0.1235 0.0728 0.1740 0.3650 
ASY 468 0.0000 1.7928 -1.9042 -0.3964 2.4342 
Panel B: REM measures  
ACFO 468 0.0022 0.1097 -0.1187 0.0003 0.1321 
APROD 468 -0.0033 0.1013 -0.1260 0.0042 0.0982 
ADISEXP 468 -0.0011 0.0725 -0.0888 0.0061 0.0669 
REM1 468 -0.0045 0.1618 -0.2038 0.0191 0.1486 
REM2 468 0.0011 0.1374 -0.1641 -0.0033 0.1469 
REM3 468 -0.0022 0.2202 -0.2653 0.0058 0.2174 
Panel C: Control variables  
DiscAcc 468 -0.0081 0.0993 -0.1233 -0.0044 0.1026 
Size 468 14.2279 1.7352 12.0895 14.1441 16.6284 
ROA 468 0.0703 0.0626 0.0160 0.0657 0.1323 
Turnover 468 -6.2675 1.0471 -7.5481 -6.2789 -5.1232 
Volat 468 1.8301 0.7641 1.0864 1.6512 2.7705 
Analysts 468 1.9567 0.9570 0.0000 2.1972 3.0910 
Own 468 0.4901 0.2348 0.1549 0.4900 0.7879 
Notes: This table reports descriptive statistics of the variables employed in the present study. RQS is the relative 
quote bid-ask spread; AMH is the illiquidity measure of (2002). PI is the price impact measure proposed by Huang 
and Stoll (1996). PIN is Probability of Informed Trading based on the Easley et al. (1996) model. VPIN is Volume-
Synchronized Probability of Informed Trading developed in Easley et al. (2012). ASY is the composite index of 
information asymmetry based on the before market microstructure measures: RQS, AMH, PI, PIN, and VPIN. ACFO 
is the abnormal level of cash flows according to model (4) multiplied by (-1); APROD is abnormal production costs 
according to model (5); ADISEXP is abnormal discretionary expenses according to model (6) multiplied by (-1); 
REM1, REM2, and REM3 are aggregate measures of real earnings management defined as APROD+ADISEXP, 
ACFO+ADISEXP, and ACFO+APROD+ADISEXP, respectively. DiscAcc is the value of discretionary accruals 
estimated by the Jones (1991) model modified by Dechow et al. (1995). Size is the natural logarithm of total assets. 
ROA is operating income divided by total assets. Turnover is the natural logarithm of the average daily trading 
volume in euro scaled by market value of the firm's equity at the end of the year. Volat is the standard deviation of 
daily returns. Analysts is the natural logarithm of the total number of analysts following a firm. Own is the proportion 
of common shares held by the largest five shareholders.  
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Table 3. Correlation matrices 
Panel A: Measures of information asymmetry 

  RQS AMH PI PIN VPIN ASY 

RQS  1      

AMH   0.306*** 1     

PI  0.920*** 0.218*** 1    

PIN  0.599*** 0.347*** 0.526*** 1   

VPIN  0.700*** 0.310*** 0.594*** 0.766*** 1  

ASY  0.916*** 0.461*** 0.855*** 0.824*** 0.868*** 1 
         

Panel B: Explanatory variables            

 ACFO  APROD ADISEXP REM1 REM2 REM3 DiscAcc Size ROA Turnover Volat Analysts Own 

ACFO  1             

APROD 0.391***  1            

ADISEXP 0.100**  0.728***  1           

REM1 0.289***  0.952***  0.903***  1          

REM2 0.851***  0.696***  0.608***  0.707***  1         

REM3 0.711***  0.894***  0.714***  0.879***  0.944***  1        

DiscAcc 0.708***  0.008 -0.025 -0.006  0.552***  0.348***  1       

Size 0.021  0.168***  0.146***  0.170***  0.094**  0.136***  0.005  1      

ROA -0.347*** -0.515*** -0.113*** -0.373*** -0.336*** -0.447*** 0.119*** -0.009 1     

Turnover 0.132***  0.032 -0.047 -0.001  0.081*  0.065  0.067  0.178*** -0.119***  1    

Volat 0.047 -0.011 -0.108** -0.055 -0.019 -0.017 -0.091** -0.145*** -0.234***  0.416***  1   

Analysts -0.069 -0.059 0.032 -0.023 -0.038 -0.051 0.003 0.635*** 0.265*** 0.275*** -0.147*** 1  

Own -0.054 -0.035 -0.020 -0.031 -0.054 -0.050 -0.078 0.125*** 0.134*** -0.407*** 0.008 0.060 1 
Notes: This table reports the pairwise correlation coefficients between the measures used in the study. RQS is the relative quote bid-ask spread; AMH is the illiquidity measure of Amihud (2002). 
PI is the price impact measure proposed by Huang and Stoll (1996). PIN is Probability of Informed Trading based on the Easley et al. (1996) model. VPIN is Volume-Synchronized Probability 
of Informed Trading developed in Easley et al. (2012). ASY is the composite index of information asymmetry based on the before measures: RQS, AMH, PI, PIN, and VPIN. ACFO is the 
abnormal level of cash flows according to model (5) multiplied by (-1); APROD is abnormal production costs according to model (6); ADISEXP is abnormal discretionary expenses according to 
model (7) multiplied by (-1); REM1, REM2, and REM3 are aggregate measures of real earnings management defined as APROD+ADISEXP, ACFO+ADISEXP, and ACFO+APROD+ADISEXP, 
respectively. DiscAcc is the value of discretionary accruals estimated by the Jones (1991) model modified by Dechow et al. (1995). Size is the natural logarithm of total assets. ROA is operating 
income divided by total assets. Turnover is the natural logarithm of the average daily trading volume in euro scaled by market value of the firm's equity at the end of the year. Volat is the 
standard deviation of daily returns. Analysts is the natural logarithm of the total number of analysts following a firm. Own is the proportion of common shares held by the largest five 
shareholders. ***, **, * denote significance at the 1%, 5%, and 10% (two-tailed) level, respectively. 
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Table 4. Information asymmetry and REM in the whole sample 
 (1)  (2)  (3)  (4)  (5)  (6) 

ACFO 0.046           
 (0.14)           

APROD   -0.076         

   (-0.29)         

ADISEXP     -0.389       

     (-0.94)       

REM1       -0.115     

       (-0.63)     

REM2         -0.172   

         (-0.76)   

REM3           -0.074 

           (-0.57) 

DisAcc 0.063  0.069  0.057  0.068  0.078  0.132 

 (0.66)  (0.73)  (0.62)  (0.72)  (0.82)  (0.86) 

Size -0.202***  -0.202***  -0.202***  -0.201***  -0.203***  -0.202*** 

 (-10.63)  (-10.68)  (-10.87)  (-10.69)  (-11.10)  (-10.90) 

ROA -1.404***  -1.511***  -1.510***  -1.567***  -1.614***  -1.584*** 

 (-3.39)  (-3.43)  (-4.21)  (-3.80)  (-3.88)  (-3.60) 

Turnover -0.223***  -0.223***  -0.225***  -0.224***  -0.223***  -0.223*** 

 (-9.09)  (-8.93)  (-9.25)  (-9.07)  (-8.95)  (-8.94) 

Volat 0.121***  0.120***  0.115***  0.118***  0.118***  0.118*** 

 (4.17)  (4.04)  (3.94)  (3.95)  (3.97)  (3.98) 

Analysts -0.102***  -0.101***  -0.102***  -0.102***  -0.101***  -0.101*** 

 (-3.00)  (-3.07)  (-3.02)  (-3.05)  (-3.06)  (-3.07) 

Own 0.109  0.111  0.111  0.112  0.118  0.114 

 (0.98)  (1.04)  (1.05)  (1.05)  (1.10)  (1.07) 

Intercept 2.435***  2.444***  2.448***  2.446***  2.472***  2.457*** 

 (7.29)  (7.19)  (7.43)  (7.28)  (7.39)  (7.28) 

Year Yes  Yes  Yes  Yes  Yes  Yes 

Ind Yes  Yes  Yes  Yes  Yes  Yes 

Adj. R2 0.861  0.861  0.863  0.862  0.862  0.862 

#obs. 468  468  468  468  468  468 
Notes: This table reports OLS coefficients of our information asymmetry index on real activities manipulation and 
control variables following the regression model: 

 εIndYearOwnβAnalystsβVolatβTurnoverβROAβSizeβDiscAccβREMββASY
j

j
t

t +∑+∑+++++++++= ββ876543210

ASY is the log of 3 plus the composite index of information asymmetry based on the following market microstructure 
measures: RQS, AMH, PI, PIN, and VPIN. REM refers to each of our six proxies of real earnings management: ACFO 
is the abnormal level of cash flows according to model (4) multiplied by (-1); APROD is abnormal production costs 
according to model (5); ADISEXP is abnormal discretionary expenses according to model (6) multiplied by (-1); 
REM1, REM2, and REM3 are aggregate measures of real earnings management defined as APROD+ADISEXP, 
ACFO+ADISEXP, and ACFO+APROD+ADISEXP, respectively. DiscAcc is the value of discretionary accruals 
estimated by the Jones (1991) model modified by Dechow et al. (1995). Size is the natural logarithm of total assets. 
ROA is operating income divided by total assets. Turnover is the natural logarithm of the average daily trading 
volume in euro scaled by market value of the firm's equity at the end of the year. Volat is the standard deviation of 
daily returns. Analysts is the natural logarithm of the total number of analysts following a firm. Own is the proportion 
of common shares held by the largest five shareholders. Year and Ind represent year and industry dummies, 
respectively. ACFO and REM2 are orthogonalized respect to DiscAcc in models (1) and (5). Robust t-statistics 
clustered at the firm level in parentheses. ***, **, * denote significance at the 1%, 5%, and 10% (two-tailed) level, 
respectively. 
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Table 5. Comparison of suspect-firm years with the rest of the sample in relation to 
REM activities 
 ACFO  APROD  ADISEXP  REM1  REM2  REM3 

Size -0.001  0.005  0.001  0.005  -0.001  0.004 
 (-0.29)  (1.11)  (0.13)  (0.64)  (-0.13)  (0.39) 

BTM 0.001  -0.017  -0.015  -0.032  -0.014  -0.031 

 (0.04)  (-1.21)  (-1.48)  (-1.40)  (-0.85)  (-1.05) 

ROA -0.618***  -0.859***  -0.133  -0.992***  -0.751***  -1.610*** 

 (-8.24)  (-7.52)  (-1.33)  (-5.11)  (-5.52)  (-6.99) 

Suspect -0.004  0.037**  0.038***  0.075***  0.034  0.070* 

 (-0.32)  (2.36)  (2.85)  (2.64)  (1.57)  (1.97) 

Intercept 0.067  0.022  0.038  0.060  0.105  0.127 

 (0.89)  (0.31)  (0.57)  (0.46)  (1.02)  (0.77) 

Year Yes  Yes  Yes  Yes  Yes  Yes 

Ind Yes  Yes  Yes  Yes  Yes  Yes 

Adj. R2 0.135  0.402  0.214  0.314  0.190  0.314 

#obs. 468  468  468  468  468  468 
Notes: This table reports OLS coefficients of our REM measures and control variables following the regression 
model: 

 εIndYearSuspectβROAβBTMβSizeββREM
j

j
t

t +++++++= ∑∑ ββ43210
 

REM refers to each of our six proxies of real earnings management: ACFO is the abnormal level of cash flows 
according to model (4) multiplied by (-1); APROD is abnormal production costs according to model (5); ADISEXP is 
abnormal discretionary expenses according to model (6) multiplied by (-1); REM1, REM2, and REM3 are aggregate 
measures of real earnings management defined as APROD+ADISEXP, ACFO+ADISEXP, and 
ACFO+APROD+ADISEXP, respectively. Size is the natural logarithm of total assets. BTM is the book to market 
ratio. ROA is operating income divided by total assets. Suspect is a dummy variable that takes the value of 1 if the 
change in net income divided by total assets is between 0 and 0.01, and 0 otherwise. Year and Ind represent year and 
industry dummies, respectively. Robust t-statistics clustered at the firm level in parentheses. ***, **, * denote 
significance at the 1%, 5%, and 10% (two-tailed) level, respectively. 
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Table 6. Information asymmetry and REM in suspect and non-suspect samples 

Panel A: Suspect sample 

 (1)  (2)  (3)  (4)  (5)  (6) 

ACFO 0.135           
 (0.48)           

APROD   0.611***         

   (3.41)         

ADISEXP     0.531**       

     (2.23)       

REM1       0.322***     

       (2.94)     

REM2         0.239**   

         (2.22)   

REM3           0.213*** 

           (2.86) 

DisAcc -0.147  -0.081  -0.082  -0.073  -0.123  -0.267 

 (-0.80)  (-0.45)  (-0.43)  (-0.40)  (-0.64)  (-1.35) 

Size -0.226***  -0.235***  -0.229***  -0.233***  -0.228***  -0.231*** 

 (-9.11)  (-9.67)  (-9.38)  (-9.57)  (-9.25)  (-9.49) 

ROA -1.049  -0.516  -0.992  -0.720  -0.897  -0.703 

 (-0.99)  (-0.51)  (-0.96)  (-0.70)  (-0.85)  (-0.68) 

Turnover -0.182***  -0.175***  -0.178***  -0.176***  -0.181***  -0.179*** 

 (-5.12)  (-5.08)  (-5.00)  (-5.03)  (-5.11)  (-5.10) 

Volat 0.106***  0.110***  0.120***  0.116***  0.111***  0.112*** 

 (3.10)  (3.58)  (3.53)  (3.67)  (3.40)  (3.57) 

Analysts -0.093**  -0.094***  -0.091**  -0.092**  -0.092**  -0.093** 

 (-2.32)  (-2.57)  (-2.44)  (-2.53)  (-2.36)  (-2.44) 

Own 0.300**  0.268*  0.291**  0.276*  0.284*  0.272* 

 (2.01)  (1.88)  (2.00)  (1.92)  (1.95)  (1.89) 

Intercept 2.926***  3.070***  2.942***  3.013***  2.946***  2.995*** 

 (7.29)  (8.01)  (7.49)  (7.79)  (7.51)  (7.79) 

Year Yes  Yes  Yes  Yes  Yes  Yes 

Ind Yes  Yes  Yes  Yes  Yes  Yes 

Adj. R2 0.911  0.917  0.914  0.916  0.912  0.914 

#obs. 148  148  148  148  148  148 
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Table 6. Continued 
Panel B: Non-suspect sample 

 (1)  (2)  (3)  (4)  (5)  (6) 

ACFO -0.038           
 (-0.09)           

APROD   -0.550*         

   (-1.69)         

ADISEXP     -0.982**       

     (-2.20)       

REM1       -0.428**     

       (-1.99)     

REM2         -0.552**   

         (-2.12)   

REM3           -0.322** 

           (-2.00) 

DisAcc 0.133  0.191  0.165  0.193  0.215  0.464** 

 (0.95)  (1.39)  (1.34)  (1.47)  (1.58)  (2.16) 

Size -0.198***  -0.197***  -0.199***  -0.198***  -0.204***  -0.201*** 

 (-9.23)  (-9.78)  (-10.55)  (-10.12)  (-10.48)  (-10.21) 

ROA -1.468***  -1.899***  -1.526***  -1.835***  -1.946***  -2.005*** 

 (-3.05)  (-3.91)  (-4.14)  (-4.24)  (-4.22)  (-4.10) 

Turnover -0.230***  -0.227***  -0.229***  -0.227***  -0.225***  -0.225*** 

 (-8.42)  (-8.13)  (-8.49)  (-8.32)  (-8.39)  (-8.26) 

Volat 0.126***  0.115***  0.114***  0.112***  0.114***  0.113*** 

 (3.17)  (2.89)  (2.97)  (2.86)  (2.82)  (2.80) 

Analysts -0.106***  -0.109***  -0.109***  -0.109***  -0.104***  -0.106*** 

 (-2.74)  (-2.88)  (-2.87)  (-2.87)  (-2.77)  (-2.84) 

Own 0.049  0.047  0.043  0.045  0.061  0.055 

 (0.38)  (0.38)  (0.35)  (0.37)  (0.50)  (0.45) 

Intercept 2.373***  2.469***  2.473***  2.493***  2.579***  2.553*** 

 (6.11)  (6.29)  (6.78)  (6.59)  (6.90)  (6.63) 

Year Yes  Yes  Yes  Yes  Yes  Yes 

Ind Yes  Yes  Yes  Yes  Yes  Yes 

Adj. R2 0.845  0.849  0.855  0.852  0.850  0.851 

#obs. 320  320  320  320  320  320 
Notes: This table reports OLS coefficients of our information asymmetry index on real activities manipulation and 
control variables following the regression model for

 
the suspect sample (Panel A) and non-suspect sample (Panel B): 

 εIndYearOwnβAnalystsβVolatβTurnoverβROAβSizeβDiscAccβREMββASY
j

j
t

t +∑+∑+++++++++= ββ876543210

ASY is the log of 3 plus the composite index of information asymmetry based on the following market microstructure 
measures: RQS, AMH, PI, PIN, and VPIN. REM refers to each of our six proxies of real earnings management: ACFO 
is the abnormal level of cash flows according to model (4) multiplied by (-1); APROD is abnormal production costs 
according to model (5); ADISEXP is abnormal discretionary expenses according to model (6) multiplied by (-1); 
REM1, REM2, and REM3 are aggregate measures of real earnings management defined as APROD+ADISEXP, 
ACFO+ADISEXP, and ACFO+APROD+ADISEXP, respectively. DiscAcc is the value of discretionary accruals 
estimated by the Jones (1991) model modified by Dechow et al. (1995). Size is the natural logarithm of total assets. 
ROA is operating income divided by total assets. Turnover is the natural logarithm of the average daily trading 
volume in euro scaled by market value of the firm's equity at the end of the year. Volat is the standard deviation of 
daily returns. Analysts is the natural logarithm of the total number of analysts following a firm. Own is the proportion 
of common shares held by the largest five shareholders. Year and Ind represent year and industry dummies, 
respectively. ACFO and REM2 are orthogonalized respect to DiscAcc in models (1) and (5). Robust t-statistics 
clustered at the firm level in parentheses. ***, **, * denote significance at the 1%, 5%, and 10% (two-tailed) level, 
respectively. 


