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Abstract

Summary: TomoEED is an optimized software tool for fast feature-preserving noise filtering of large

3D tomographic volumes on CPUs and GPUs. The tool is based on the anisotropic nonlinear diffu-

sion method. It has been developed with special emphasis in the reduction of the computational

demands by using different strategies, from the algorithmic to the high performance computing per-

spectives. TomoEED manages to filter large volumes in a matter of minutes in standard computers.

Availability and implementation: TomoEED has been developed in C. It is available for Linux plat-

forms at http://www.cnb.csic.es/%7ejjfernandez/tomoeed.

Contact: gmartin@ual.es or jj.fernandez@csic.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Electron tomography (ET) is an important imaging technique in

molecular and cellular biology. ET allows three-dimensional (3D)

analysis of the subcellular architecture at the nanometer scale (Lucic

et al., 2013). Nevertheless, interpretation of tomographic volumes is

often hampered by the typically low signal-to-noise ratio (SNR), es-

pecially under cryogenic conditions. Thus, noise reduction is usually

applied as a post-processing step (Fernandez, 2012), or even during

3D reconstruction (Chen et al., 2016). Similar filtering needs arise in

other 3D electron microscopy techniques for visualization of subcel-

lular organization (Peddie and Collinson, 2014).

Anisotropic non-linear diffusion (AND) is currently the predominant

technique in ET owing to its abilities to filter noise with feature preserva-

tion (Fernandez and Li, 2003; Frangakis and Hegerl, 2001). It sets the

strength and direction of the filtering according to the local structure

around each voxel, as estimated by eigen-analysis of the structure tensor:
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with rI ¼ Ix; Iy; Iz
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being the gradient vector of the volume I and

VQVT denoting the eigen-decomposition of J.

AND follows the diffusion equation, It ¼ div D � rIð Þ, where It

denotes the derivative with respect to the time and div is the diver-

gence operator (Supplementary Material). The 3�3 matrix D is the

diffusion tensor and tunes the filtering according to the local struc-

ture. D is built from the eigenvectors vi of the structure tensor

(Equation 1) and its eigenvalues ki (ranking in [0, 1]) define the

strength of the smoothing along the corresponding direction vi.

D Jð Þ ¼ VLVT ¼ v1 v2 v3½ � �
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For edge preservation, the smoothing along the maximum

density variation direction (v1) is set as a monotonically decreasing

function of the gradient. Typically, k1 ¼ 1:0� exp ð�3:31488=

jrIj=Kð Þ8Þ, where the parameter K acts as a gradient threshold that

defines edges. By contrast, k2 ¼ k3 ¼ 1 to highly filter along the two

directions with minimum change.

AND is, however, computationally expensive in terms of proc-

essing time and memory consumption, which hampers application
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to large volumes. Its parallelization is not straightforward due to the

dependent stencils involved in the iterative process. Here, we intro-

duce TomoEED, a tool for AND of 3D volumes that has been opti-

mized for execution on standard computers, with reduced memory

demands and response time. A GPU version is also included for com-

puters with NVIDIA graphics cards.

2 Implementation

2.1 Fast eigen-analysis of the structure tensors
AND involves massive diagonalization of symmetric 3�3 matrices

associated to the eigen-analysis of the structure tensor J

(Equations 1 and 2). This operation is required for all voxels in the

volume and as many times as iterations. Standard routines for ma-

trix diagonalization are based on the accurate iterative Jacobi algo-

rithm and are designed mainly for large matrices (Press et al., 2002).

Nevertheless, diagonalization of 3�3 matrices can be performed

much more efficiently by means of non-iterative analytical calcula-

tions, at the expense of limited numerical accuracy (Kopp, 2008).

TomoEED makes use of direct analytical calculation of the eigensys-

tems to reduce processing time without practical influence in the

denoised results. Further details are in Supplementary Material.

2.2 High performance computing in TomoEED
AND is a memory-bound application. Typical memory requirements

in standard implementations amount to eight copies of the volume.

This is to hold the input/output volumes and the six components of

the symmetric tensor J (Equation 1), which are also shared (overrid-

den) by D (Equation 2)).

TomoEED implements an efficient scheme where only one copy

of the volume is held in memory and it is gradually updated by

Z-planes during the iterative process. An auxiliary sliding window is

used to maintain the data needed for the calculation of current

Z plane: neighbouring Z-planes and their tensors (Supplementary

Fig. S1). This optimized implementation allows making the most of

the memory hierarchy and enables denoising of huge datasets in

computers with modest amounts of memory.

To exploit the power of modern multicore computers,

TomoEED runs in multithreaded mode. Here, the calculation of the

current Z-plane is distributed among the threads running in parallel.

Each thread processes one subset of Y-rows (Supplementary Figs S1

and S2), which involves the calculation of J and D followed by the

iteration of the diffusion equation, with thread synchronizations in-

between, for all Y-rows in their subset.

TomoEED is well suited to GPU processing as each voxel can be

processed independently (with synchronization points between

iterations). A CUDA-based implementation is included that maps

each voxel to a GPU thread for a massively parallel execution.

Additionally, it restructures the layout of J and D to increase mem-

ory performance on these architectures.

2.3 Automated parameter tuning
The main parameter in AND, K, acts as a threshold on the gradient.

Voxels with higher gradient are considered edges to be preserved,

thereby decreasing the filtering along the first eigen-direction. This

parameter is dataset-dependent, its tuning is not trivial and it is

usually set by trial-and-error. TomoEED adopts strategies for its

automated, time-varying setup based on the average gradient of the

whole 3D volume or a noise subregion. They facilitate user

operation by providing acceptable denoised solutions from which

manual refinement can follow (Fernandez et al., 2007).

3 Illustrative results

To illustrate the performance of TomoEED, we have applied it to data-

sets from different volume electron microscopy disciplines where noise

filtering is needed (Supplementary Material). Significant noise reduction

and preservation of the main structural biological features are observed.

We have also analyzed the processing time, scalability and mem-

ory consumption with datasets of different cubic sizes (256, 384, 460,

512 and 640) on a computer with two octo-core processors Intel

Xeon E5-2650 v2 and a NVIDIA GPU Tesla K80. Supplementary

Tables S1 and S2 presents a full report of the results. Table 1 summa-

rizes the results. The processing times from 10 iterations of AND

obtained with TomoEED using analytical matrix diagonalization

with 1 thread (1T), 16 threads (16T) and on the GPU are presented.

For comparison, the results using the Jacobi algorithm optimized for

3�3 matrices with 1 thread are included. It can be observed that the

analytical diagonalization accelerates the computation in a factor

around 1.8�with respect to the Jacobi algorithm. The multithreaded

execution on the 16-core machine further reduces the processing time

and achieves a final speedup factor in the range 16–21�, with higher

values for larger volumes. This translates into computing times much

lower than a minute for all datasets. The GPU version achieves out-

standing speedup factors (33–50�), with times lower than 20s. For

comparison with standard programs, we applied AND within IMOD

(Kremer et al., 1996) and demonstrated that TomoEED is much

faster, especially with analytical diagonalization, and requires 8� less

memory (Supplementary Table S3).

The limited accuracy of the analytical diagonalization does not

produce noticeable visual differences in the denoised solutions. For

quantitative assessment, the relative error between the solutions

obtained with the accurate Jacobi algorithm and the analytical strat-

egy was computed, and it turned out to be negligible (Supplementary

Table S4). Moreover, SNR and sharpness of the denoised solutions

confirmed that there are no practical differences between the two

diagonalization strategies (Supplementary Table S5).

4 Conclusion

TomoEED is a powerful and efficient software tool for fast feature-

preserving noise reduction in different volume electron microscopy

disciplines. It is based upon anisotropic non-linear diffusion. Its

mechanisms for automated parameter setup simplify user operation.

Its optimized implementation enables its application to large data-

sets on standard computers, with reduced turnaround times and

memory demands.

Table 1. Processing time (s), speedup factors and memory con-

sumption (GB)

Dataset Jacobi Analytic Speedup Memory

size 1T 1T 16T GPU 1T 16T GPU consum.

256 60.50 33.96 3.78 1.83 1.78 15.99 33.05 0.07

384 205.00 113.89 10.77 4.72 1.80 19.04 43.36 0.23

460 356.33 199.00 18.77 7.65 1.79 18.98 46.57 0.39

512 498.46 275.61 24.18 9.79 1.81 20.61 50.90 0.53

640 961.34 530.20 45.23 19.11 1.81 21.65 50.31 1.02
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