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RESUMEN

El propósito de esta tesis es proporcionar una revisión exhaustiva, desde una per-
spectiva tanto teórica como práctica, de la utilidad que el Aprendizaje Automático (ML)
aporta a la disciplina financiera de la Gestión de Activos. En años recientes, el mundo
de la Gestión de Activos ha presenciado una transformación notable con la integración de
tecnologías de vanguardia. Entre estos avances, la aplicación de Machine Learning (ML)
destaca como una herramienta que ha transformado la toma de decisiones de inversión,
capacitando a los gestores de activos para tomar decisiones de inversión más informadas y
basadas en datos. La tesis realiza contribuciones en dos áreas principales. En primer lugar,
proporciona una revisión global exhaustiva del estado del arte en cuanto a la contribución
del ML a la Gestión de Activos. Buscando un equilibrio entre Finanzas, Estadística y
Computación, la revisión intenta mejorar el análisis de la literatura reciente, a fin de que
investigadores y profesionales puedan explorar sin fisuras sus áreas de interés.

De acuerdo al análisis realizado, la economía financiera tradicional no tiene respues-
tas perfectas para todos los obstáculos y desafíos de la disciplina. En este contexto, las
técnicas de ML han encontrado un excelente terreno fértil para desarrollar todas sus po-
tencialidades. La teoría financiera, el comportamiento de los mercados, las fuentes de
datos en constante aumento y la innovación computacional son necesarios para una buena
predicción y fijación de precios. Al combinar el conjunto de herramientas más completo,
se pueden crear modelos computacionales realistas. Este objetivo se puede lograr uti-
lizando tanto la econometría financiera como las técnicas de ML. Según diversos autores,
las herramientas de ML proporcionan la capacidad de hacer predicciones más precisas al
ser capaces de modelizar datos que no se comportan de forma lineal, comprender la inter-
acción compleja entre variables y permitir el uso de conjuntos ingentes de datos no estruc-
turados. Las herramientas de econometría financiera, de forma complementaria, pueden
seguir siendo fundamentales a la hora de responder preguntas relacionadas con la infer-
encia estadística, para describir las relaciones que existen entre las variables relevantes en
finanzas; cuando se aplican correctamente, el papel de las herramientas tradicionales no
disminuye con la introducción de ML.

De acuerdo a nuestra revisión, los algoritmos de ML se emplean muy usualmente
para la predicción de precios y el diseño de estrategias de trading en los mercados fi-
nancieros. Se pueden establecer, a grandes rasgos, tres tipos diferentes de aplicaciones.
El primer tipo de aplicación pronostica los precios o rendimientos futuros de los activos.
Generalmente, se utilizan algoritmos de Support Vector Regression (SVR) y Neural Net-
works (NNs) en este tipo de estrategias. El alto número de aplicaciones de modelos Long-
short Term Memory (LSTM) es especialmente notable cuando entran en juego series tem-
porales. La desventaja de esta estrategia es que tiene una alta tasa de error debido a la
dificultad de predecir los valores futuros de los activos basados en datos erráticos de los
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mercados financieros. El segundo tipo de aplicación utiliza algoritmos como Support
Vector Machine (SVM) y Decision Trees (DTs). Estos enfoques generalmente tienen una
precisión significativa en el pronóstico, pero esto no siempre implica alta rentabilidad.
Por ejemplo, un modelo puede anticipar pequeñas ganancias correctamente pero prever
pérdidas masivas de manera incorrecta, lo que resulta en un riesgo sustancial a la baja. La
optimización basada en reglas es el tercer tipo. Su objetivo es encontrar el mejor indicador
de trading y combinaciones de parámetros (por ejemplo, indicadores técnicos, indicadores
fundamentales e indicadores macroeconómicos). Los algoritmos de optimización que se
han explorado incluyen Gaussian Process (GP) y Reinforcement Learning (RL). En re-
sumen, las conclusiones de la literatura financiera más reciente indica que los algoritmos
de ML superan claramente los enfoques tradicionales de la econometría, sobre todo en el
ajuste de la predicción. Tanto los métodos clásicos como modernos de ML se han apli-
cado con éxito. Sin embargo, en el otro lado de la balanza, se puede decir que el panorama
es extremadamente diverso en términos de datos y métodos aplicados, lo que sugiere una
falta de benchmarks, metodologías y marcos comunes.

Relacionado con lo anterior, en la tesis se han identificado los siguientes desafíos y
oportunidades para la investigación futura: 1) Conjuntos de datos estándar: El campo de
ML aplicado a Finanzas se caracteriza por una falta de conjuntos de datos estandarizados
que puedan ser reutilizados por la comunidad. Por lo tanto, crear una base de datos es-
tándar (completa y lo suficientemente amplia) que pueda ser reutilizada por la comunidad
de investigación es una necesidad para futuros trabajos. 2) Reproducibilidad: No se ha
establecido una metodología o marco común para el entrenamiento y la evaluación de
métodos. Esto perjudica la reproducibilidad, ya que la mayoría de los métodos analizados
son difíciles, si no imposibles, de comparar entre sí (a menos que se vuelvan a implemen-
tar específicamente para cada escenario). Además, casi ningún artículo incluye códigos o
datos a los que puedan acceder otros investigadores. Establecer un marco de reproducibil-
idad para la investigación de ML en la gestión de activos es un ámbito de trabajo de alto
impacto para mejorar la calidad y el ritmo de trabajo de la comunidad investigadora. 3)
Datos multimodales: La mayoría de los métodos se centran en analizar datos financieros
numéricos para generar predicciones. Analizar fuentes de información alternativas como
noticias, redes sociales, sentimientos y contenido generado por usuarios puede propor-
cionar pistas útiles para las decisiones financieras. Actualmente, pocos trabajos utilizan
esas fuentes de datos. El desafío de combinar todas esas fuentes multimodales y múltiples
arquitecturas podría traer consigo alcanzar nuevos niveles de precisión en la predicción.
4) Arquitecturas heterogéneas: Debido al estado de inmadurez en el que se encuentra el
ML financiero en la actualidad (en comparación con otras técnicas más establecidas como
el procesamiento de imágenes o el Natural Language Processing (NLP)), aún no se han
establecido arquitecturas claras para el procesamiento de datos financieros. Existe una
amplia variedad de artículos que generan nuevos modelos y pocos que se basan en bases
sólidas para mejorarlos. Encontrar los patrones comunes y unificar esas diversas arqui-
tecturas podría tener un efecto beneficioso para la comunidad y su adopción generalizada
en la industria (de manera similar a cómo otras redes, como UNet o ResNet, se han con-
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vertido en el estándar de facto para muchas aplicaciones de procesamiento de imágenes).
5) Trading algorítmico. Desde una perspectiva académica, esta área está relativamente
desconectada del marco teórico sobre la fijación de precios de activos y la inversión en
valor, que ha tenido un papel central en la economía financiera durante las últimas cinco
décadas. Sin embargo, a cambio, y precisamente debido a esta característica (dependen-
cia exclusiva de los datos de precios), es la disciplina financiera que puede maximizar
las contribuciones de las aplicaciones de ML. Se puede encontrar un desafío futuro en la
posibilidad de combinar ambos aspectos, profundizando en los algoritmos de trading con
una mayor relevancia en el uso de los fundamentos financieros.

En la segunda parte de la tesis, se lleva a cabo una aplicación práctica de diversas
herramientas de ML en la Gestión de Activos, buscando evidencia empírica de su utilidad
para mejorar los resultados obtenidos por enfoques tradicionales como la econometría.
La primera sección empírica aborda el problema más general dentro de la disciplina de
Gestión de Activos, la predicción de precios. A pesar de las limitaciones que la Hipótesis
de Eficiencia (EMH) impone en cuanto a la predicción de precios de activos financieros, se
aplican los algoritmos de ML más innovadores, específicamente las Gated Recurrent Unit
Networks (GRUs), a los últimos 33 años de precios diarios del índice S&P 500, previa-
mente procesados con un innovador algoritmo de descomposición de señales para series
no estacionarias (Empirical Mode Decomposition (EMD)). Los resultados son promete-
dores, ya que el modelo propuesto EMD-IGRU muestra un nivel notable de precisión
en la predicción de movimientos direccionales de precios de acciones. La Directional
Accuracy (DA) asciende al 75,15% cuando se prueba en escenarios reales de trading.

En el segundo ejercicio, la tesis aborda otra estrategia de predicción de precios muy
conocida entre los gestores de activos, llamada estrategia de pares o arbitraje estadístico.
El experimento examina la viabilidad de utilizar técnicas de aprenizaje no supervisado
para encontrar posibles pares de acciones que incorporar a una cartera long-short. Además
del uso de autoencoders para la reducción de dimensionalidad, se propone aplicar un en-
foque específico de clustering para datos de series temporales, llamado k-means cluster-
ing con Dynamic Time Warping (DTW). Utilizando datos mensuales desde 2010 para los
componentes individuales del índice S&P 500, el modelo propuesto logra un rendimiento
total del 89% en 8 años, con una DA del 63% y un Sharpe Ratio (SR) de 2,658. En
comparación con los dos benchmarks seleccionados, el índice S&P 500 y una estrategia
short-term reversal, el modelo propuesto es el que ofrece un mejor rendimiento.

Finalmente, el tercer ejercicio se centra en los modelos de tres y cinco factores de
Fama y French, quizás los modelos de valoración de activos más seguidos por la comu-
nidad científica en los últimos años. En este caso, la propuesta es más metodológica que
empírica, ya que la tesis sugiere un método de estimación alternativa de estos modelos a
través del uso de algoritmos de ML. Para ser más específicos, se aplica una combinación
de Support Vector Regression (SVR) y Grid Search (GS) con Cross Validation (CV) de 10
capas para pronosticar rendimientos mensuales en cinco industrias del índice S&P 500,
utilizando los modelos de tres y cinco factores de Fama y French. El modelo propuesto
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GS-CV-SVR arroja coeficientes de correlación fuera de muestra entre 92-97% para los
diferentes sectores, lo que supone una ganancia de precisión notable en la predicción en
comparación con el método de optimización OLS convencional.

Como líneas de investigación futura, la tesis propone las siguientes: 1) En la estrategia
de predicción direccional de precios, la efectividad del modelo propuesto (EMD-IGRU)
se podría mejorar seleccionando algoritmos alternativos de ML para las diversas Intrinsic
Mode Functions (IMF) obtenidas de la descomposición de las series de precios. Podría
ser una línea de investigación futura el uso de métodos alternativos de descomposición
de señales como la Transformación de Fourier y Discrete Wavelet Transform (DWT).
Se puede explorar el efecto de diferentes conjuntos alternativos de indicadores técni-
cos para encontrar el mejor conjunto para la previsión de IMFs. Por último, se podría
aplicar el modelo en mercados internacionales alternativos, para comprobar si los resulta-
dos obtenidos pueden generalizarse y/o si el nivel de eficiencia del mercado es un factor
crucial para el rendimiento del modelo. Como modelos de referencia alternativos, se
podrían usar modelos más avanzados como los ARCH o GARCH. 2) En la estrategia
de trading de pares, una mejora lógica consistiría en utilizar algoritmos de Supervised
Learning (SL) para prever los rendimientos futuros de los pares de acciones selecciona-
dos por los métodos de clasificación y agrupamiento k-means y Density-based Spatial
Clustering of Applications with Noise (DBSCAN) de la familia de UL. Recurrent Neu-
ral Network (RNN), LSTM o GRUs pueden considerarse como técnicas potenciales para
mejorar el procedimiento del sistema de trading. Se puede explorar el efecto de difer-
entes conjuntos alternativos de indicadores financieros. Se pueden utilizar técnicas de
clasificación alternativas para encontrar mejores enfoques y un rendimiento más brillante.
Podría utilizarse una técnica adicional de agrupación jerárquica, como Agglomerative
Clustering. De manera similar a los ejercicios anteriores, sería interesante probar si los
resultados obtenidos pueden generalizarse a otros mercados diferentes al norteamericano.
3) En la propuesta de estimación de los modelos de Fama y French por SVR, se podrían
utilizar algoritmos de SL de ML alternativos para lograr mejores resultados de precisión
en la predicción. Por ejemplo, NN, regresión LASSO, regresión DT, modelo K-Nearest
Neighbor (KNN) y regresión de Ridge. Como en ejercicios anteriores, sería interesante
probar si los resultados obtenidos pueden generalizarse a otros mercados internacionales
distintos al S&P 500. La estimación de los modelos se ha realizado solo en su dimensión
de series temporales. Sería interesante para investigaciones futuras aplicar esta propuesta
a datos transversales, siguiendo los procedimientos originales de los autores.

Por último, y como propuestas futuras a nivel general, el autor de la tesis se compro-
mete a realizar en el futuro contribuciones empíricas en una de las áreas más relevantes
de la Gestión de Activos, la Gestión de Carteras. En una línea estrechamente relacionada,
esta tesis se ha abstenido, por falta de tiempo y recursos, de realizar contribuciones con el
uso de algoritmos del paradigma de Aprendizaje reforzado (RL). Teniendo en cuenta que
el área de Gestión de Carteras es quizás donde las contribuciones de RL son particular-
mente adecuadas, ambas futuras líneas de investigación quedan perfectamente alineadas.
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ABSTRACT

The purpose of this thesis is to provide a comprehensive review, from both theoretical
and practical perspectives, of the usefulness that ML brings to the financial discipline of
asset management. In recent years, the world of asset management has witnessed a re-
markable transformation with the integration of cutting-edge technologies. Among these
advancements, the application of ML stands out as a revolutionary tool that has revolu-
tionized how investment decisions are made, empowering asset managers to make more
informed and data-driven investment choices. The thesis makes significant contributions
in two main areas. Firstly, it provides a comprehensive global review of the state of the art
regarding the contribution of ML in the field of asset management. By striking a balance
between finance, statistics, and computational fields, our review enhances the analysis
of recent literature, ensuring that researchers and practitioners can explore their areas of
interest without encountering gaps. Secondly, the thesis focuses on the practical applica-
tion of ML tools to typical asset management topics. It seeks to find empirical evidence
of the usefulness of ML techniques in enhancing the results of traditional econometrics
approaches. The first empirical section addresses the most general problem within the dis-
cipline of asset management: price forecasting. Despite the limitations that the Efficient
Market Hypothesis (EMH) imposes on financial markets regarding the prediction of fi-
nancial assets prices, we apply the most innovative ML algorithms, specifically GRUs,
to the last 33 years of S&P 500 daily prices, previously preprocessed with an innovative
decomposition signal algorithm for non-stationary series (EMD). The results are quite
promising, as our Hybrid model with Empirical Mode Decomposition and Individual
Gated Recurrent Unit Network (EMD-IGRU), according to the statistical standards, ex-
hibits a reasonable level of accuracy in predicting stock prices and directional movements.
The Directional Accuracy (DA) rises to 75.15% in the case of the best model. Moreover,
it also demonstrates to be effective in predicting actual profits in real-world scenarios. In
the second empirical exercise, the thesis faces another price forecasting topic, very well-
known between asset managers, called pairs trading strategy or statistical arbitrage. The
second experiment of the thesis looks at the viability of using UL techniques of ML to
find possible stock pairs for a long-short portfolio. Besides using autoencoders for dimen-
sionality reduction, we propose to apply a specific clustering approach to time series data,
called k-means clustering with Dynamic Time Warping (DTW). As an additional contri-
bution, we suggest using financial data (firm characteristics) as complementary features
in the pairs selection. Using monthly data since 2010 for the individual constituents of the
US index S&P 500, the proposed model achieves a total return of 89% in 8 years, with a
DA of 63%, a Sharpe Ratio (SR) of 2.658, and a Calmar Ratio (CR) of 0.678. In compar-
ison with the two benchmarks selected, the market and the short-term reversal strategy,
our model is the best in terms of total return, but also in terms of the different trading
performance measures, mainly SR figures. Finally, the third exercise is focused on the
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three- and five-factor models from Fama and French, maybe the most reproduced asset
pricing models in recent years. In this case, the proposal is more methodological than
empirical, because we suggest an alternative estimation method of these models through
the use of ML algorithms. To be more specific, we apply a combination of Support Vec-
tor Regression (SVR) and mixed Grid Search (GS) with 10-fold Cross Validation (CV)
optimization to forecast monthly returns in five industries of US S&P 500 using the three
and five factors presented by Fama and French. The proposed hybrid GS-CV-SVR model
produce out-of-sample (testing data sets) correlation coefficients between 92-97% for the
different sectors, except for the health sector with a 81%. The findings show that the pre-
diction accuracy gain is quite notable when compared to the conventional Ordinary Least
Squares (OLS) optimization method used in the original work of Fama-French and the
traditional approach of the literature globally inspired in them.
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1. INTRODUCTION

During the last seventy years, financial economists over the world have dedicated great
efforts to model and forecast the stock returns, trying to understand the patterns behind
them. This has been the greatest challenge of the research focused on Asset Management
over the last decades. As [Cochrane, 2011] brilliantly exposed, "...in the beginning, there
was chaos; practitioners thought one only needed to be clever to earn high returns. Then
came the CAPM. Every clever strategy to deliver high average returns ended up deliv-
ering high market betas as well. Then anomalies erupted, and there was chaos again.
The “value effect” was the most prominent anomaly". In the last ten years, the incredi-
bly huge amount of anomalies found have driven the academic professionals to call the
phenomenon as "factor zoo".

In contrast to this ‘anomaly-challenging’ branch of literature, a growing amount of
work indicates remarkable investment performance based on signals generated by various
ML methods. With the recent advancement in financial technology (Fintech), there is an
increasing trend of employing ML technologies to find new signals on price movements
and build investment systems that can beat human fund managers from a practical invest-
ment management point of view. ML routines in academic research have been implicitly
motivated by the American Finance Association (AFA) presidential address of [Cochrane,
2011]. This academically reputed author suggested that, in the presence of a large num-
ber of noisy and highly correlated return predictors, there is a need for other methods
beyond cross-sectional regressions and portfolio sorts. Indeed, ML uses "regularization"
approaches to choose models, moderate over-fitting biases, find complicated patterns and
hidden linkages, and handle high-dimensional predictor sets and more flexible functional
forms ([Gu et al., 2020b]).

Several studies have highlighted the benefits of integrating ML into asset management
practices. For instance, a research paper by [Wang et al., 2020] demonstrates how ML
algorithms can outperform traditional approaches in forecasting stock returns and iden-
tifying profitable trading opportunities. These algorithms can analyze vast amounts of
historical market data and identify hidden patterns, allowing portfolio managers to make
informed decisions and potentially generate higher returns. The flexibility and adaptabil-
ity of ML models have been a focal point in academic research. As highlighted in a study
by [Bao et al., 2017], ML algorithms can adjust their strategies in response to changing
market conditions, enhancing their resilience and robustness. This adaptability is par-
ticularly crucial in volatile markets, where traditional models may struggle to capture
complex patterns. Furthermore, the integration of ML in asset management has led to the
development of personalized investment solutions. By incorporating individual investor
preferences and risk profiles, ML algorithms can tailor investment portfolios to meet the
specific needs of clients ([López de Prado, 2016]). This customization not only improves
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client satisfaction but also increases the potential for long-term wealth accumulation.

To illustrate the gap that still exists between academic finance and the financial in-
dustry, with regards to the interest of the academic finance community for ML tech-
niques, [Huck, 2019] carries out a very interesting experiment using the academic papers
database. Until 2017, the search for "machine learning" via the Ebsco database, produces
no reference at all in "The Journal of Finance", the leading academic finance journal, and
only one reference in "The Journal of Financial Economics". In the last four years, the
interest of academic finance for ML techniques has grown, due to the movement initiated
by econometricians and statiscians.

As [Heaton et al., 2017] points out, the main difference between the use of ML tools
in finance and other areas of science is that, in finance, "the emphasis is not in replicating
tasks that humans already do well. Unlike recognizing an image or responding appro-
priately to verbal requests, humans have no innate ability to, for example, select a stock
that is likely to perform well in some future period". For this reason, the usefulness of
ML tools for financial purposes should be searched somewhere else. Specifically, they
are extremely powerful in selection problems since, at their basis, they are the best and
most rapid way to compute any function mapping data, and that is what returns, prices,
economic data, accounting data, etc. are.

1.1. Main contributions

The purpose of this thesis is to provide a comprehensive review, from both theoretical and
practical perspectives, of the usefulness that ML brings to the financial discipline of asset
management. As previously mentioned, in recent years, the world of asset management
has witnessed a remarkable transformation with the integration of cutting-edge technolo-
gies. Among these advancements, the application of ML stands out as a revolutionary
tool that has revolutionized how investment decisions are made. ML, a subset of artificial
intelligence, has the ability to analyze vast amounts of data and extract valuable insights,
empowering asset managers to make more informed and data-driven investment choices.

The thesis makes significant contributions in two main areas. Firstly, it provides a
comprehensive global review of the state of the art regarding the contribution of ML in
the field of asset management. This review addresses a relatively understated field in
the existing literature, despite the growing relevance of this financial discipline in the
banking industry in recent years. By striking a balance between finance, statistics, and
computational fields, our review enhances the analysis of recent literature, ensuring that
researchers and practitioners can explore their areas of interest without encountering gaps.
The scope of our review spans all topics in asset management, encompassing price fore-
casting, algorithmic trading, asset pricing and portfolio management.

Secondly, the thesis focuses on the practical application of ML tools to typical asset
management topics. It seeks to find empirical evidence of the usefulness of ML tech-
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niques in enhancing the results of traditional econometrics approaches. By applying ML
tools to various asset management aspects, we aim to shed light on how these advanced
techniques can optimize decision-making processes and improve investment outcomes.
In this sense, the aim of the empirical section of this thesis is to present representative
examples of how ML can help to better understand the behavior of certain markets, more
accurately predict the behavior of their prices, better capture the structure of certain invest-
ment strategies, or significantly improve the predictive capacity of multi-factor models of
financial asset valuation. Throughout the entire empirical process, we will try to bring our
results closer to the financial world. Despite the fact that ML tools are primarily designed
to improve model prediction capability, and to enhance data interpretability does not be
considered as a goal by itself, we will make an effort to convey to the reader the economic
and financial interpretation of the obtained outcomes. While predictive accuracy remains
a primary goal, it is not the sole focus. In the realm of finance, being able to explain the
economic and financial implications of predictions, along with their deviations, is often
just as crucial as making accurate predictions.

Through these contributions, the thesis strives to bridge the gap between theoretical
understanding and practical implementation in the domain of asset management. By ex-
ploring the potential of ML and its real-world applications, this work aims to provide
valuable insights to both academia and industry, fostering a deeper understanding of the
potential benefits of incorporating ML into traditional finance and investment practices.
Last but not least, a suitable way to summarize the objective of this thesis is that it aims
to be a work that, despite containing advanced technical tools typically employed by en-
gineers or mathematicians, can also be beneficial to economists and finance specialists.
The thesis seeks to help them grasp the immense relevance that the utilization of these
new technologies can have in their work, which has traditionally been distant from the
realm of big data and emerging technologies, or at most, only acquainted with traditional
statistical and econometric tools.

1.2. Outline

The thesis is organized as follows. In Chapter 2, we expose the methodology and ter-
minology to be used in the rest of the thesis, as well as a review of the basic theoretical
background about asset management and ML techniques. In Chapter 3, we provide a
detailed description of the current state of the art in the application of ML tools to asset
management, using a double outlook to classify the recent literature: the financial field of
application and the ML empirical approach used. In Chapter 4 we show the results of our
methodological contribution in the application of ML tools to financial applications in the
area of asset management. Chapter 5 will be dedicated to the final remarks, conclusions
and future lines of research.
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2. THEORETICAL BACKGROUND

2.1. Introduction

This section includes all the methodology and terminology to be used in the rest of the
thesis. ML applications in finance is a field that can be included in the discipline of quan-
titative finance. On the one hand, it includes a review of the basic financial theoretical
background, from the definitions of the different financial disciplines to the empirical as-
set pricing models, passing by the well-known theoretical asset pricing models as Capital
Asset Pricing Model (CAPM), APT, and so forth. On the other hand, this section in-
troduces the main theoretical principles about ML, mainly those connected with asset
and portfolio management in a wide sense. Finally, it includes a review and description
of the main indicators of performance used in the literature of ML applications to asset
management, very related to reproducibility issues.

2.2. Financial Background

According to [Snow, 2020], the asset management discipline can be divided "into four
streams: portfolio construction, risk management, capital management, infrastructure and
deployment, and sales and marketing". We will focus our work on the first stream, portfo-
lio construction, which is intimately tied with the investment process. Portfolio construc-
tion is divided, in turn, into four areas: price forecasting, event prediction, value investing
and weight optimization. ML techniques have different approaches for each one of these
streams.

The first three areas can be included in the field of trading strategies, but they differ in
the type of data used and the outcome they are trying to predict. Price strategies include
technical analysis, macro global and statistical arbitrage (also called pairs trading), and the
price plays a starring and lonely role. Right in the opposite corner, we can place value
investing strategies, where the relationship between value and price is what generates
the investment opportunities. Examples of these types of strategies are risk parity, factor
investing, and fundamental investing. Finally, event strategies can be considered as part of
a relatively new stream: an event-driven strategy refers to an investment strategy in which
an investor attempts to profit from a stock mispricing that may occur during or after a
corporate event. The theoretical basis of all of them, one way or another, can be found
in the Asset Pricing theory, although in the case of price strategies, the relevance of the
concept of value decays notably.

The fourth area, weight optimization, can be considered independently from the other
three areas. It comprises the use of mathematical or statistical techniques to solve op-
timization and simulation problems in finance, like optimal execution, position sizing,
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and portfolio optimization.

Due to the extreme complexity and variety of disciplines included in the term of as-
set management, we have decided to define our own structure of disciplines to face the
gathering, processing, classification and analysis of recent literature regarding ML tech-
niques. We will divide the asset management disciplines into three main streams: value
investing and price forecasting, as trading strategies topics, and portfolio management as
an independent area which involves optimization. Value investing will comprise all the
disciplines which use asset pricing models to select the most valuable assets to invest in.
The most relevant and recent example of this type of discipline is factor investing. Price
forecasting, on the other hand, will comprise all the financial areas focused on the best
prediction of asset prices. We will open a special category in Chapter 3 for algorithmic
trading, the most relevant area of price strategies in recent literature. Lastly, following the
proposal from [Snow, 2020], weight optimization will be defined as an independent disci-
pline that, for our purposes, will be categorized as portfolio management. As the initiated
reader will have guessed, price forecasting and portfolio management are intimately con-
nected since the predictions obtained from the first one improve the optimization solutions
of the second one.

In short, these will be the three financial disciplines that will be used in the rest of the
thesis:

1. Value/factor investing. Investment strategies which use asset pricing models to se-
lect the most valuable assets to invest in.

2. Price forecasting. Investment strategies focused on the best prediction of asset
prices. Algorithmic trading can be considered as a special case of price strategy.

3. Portfolio management. Mathematical and statistical techniques which solve opti-
mization and simulation problems in investment management.

2.2.1. Value/Factor Investing

Over the past three decades, hundreds of financial research articles have been dedicated
to the study of asset pricing models with a dual purpose: on the one hand, analyze the
behavior of asset prices and, on the other hand, try to find variables that contain informa-
tion about them. The advances in financial research about asset pricing and quantitative
methods about factor investing have been crucial for the exceptional development of the
asset management industry in general and the enhancement of the investment processes,
specifically.

Throughout this section, we will analyze both theoretical and empirical models. This
body of knowledge is usually applied to cross-sectional data, that is, data from different
financial assets at the same period of time. When this occurs, we will use the sub-index i.
When we apply the models to data which vary over time, that is, time series data, we will
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use the sub-index t. The coexistence of both dimensions, cross-section and time-series, is
traditionally solved in Econometrics through panel data methodology but, specifically in
factor investing, this double dimension is faced through the methodology of [Fama and
Macbeth, 1973].

Stochastic Discount Factor (SDF) as general source of asset pricing models

Regardless of the type of asset pricing models we use, all of them can be deduced from
the general Stochastic Discount Factor (SDF) Model, also known as the Euler Equation.
The SDF, also denominated as the pricing kernel, allows one to relate the current price
of an asset to its future payoffs. The roots of this type of representation are based on the
Arrow–Debreu model of general equilibrium, and its application to option pricing ([Cox
and Ross, 1976] and [Ross, 1978]), along with the Asset Pricing Theory (APT) of [Ross,
1976].

What we will see in the next sections is how every single model used in asset pricing
can be derived from this SDF model. First of all, we will deduce the way how the risk pre-
mium of an asset can be explained in terms of the covariance with the SDF. Secondly, we
will demonstrate how the SDF model may be transformed into a factor model, or a linear
function of specific risk factors, which offers variable discounts on uncertain payoffs de-
pending on different states of the world [Peñaranda and Sentana, 2010]. Finally, we will
describe the various theoretical models that can derived from the seminal consumption-
based model and, finally, the empirical model contributions that have been made in the
last decades to try to explain the existence of certain anomalies in asset pricing.

This representation’s foundations are found in the Arrow-Debreu general equilibrium
model and its application to option pricing [Cox and Ross, 1976] [Ross, 1978], along
with the APT of Ross [Ross, 1976]. In [Hansen and Richard, 1987], the authors de-
veloped the discrete-time approach, highlighting the distinction between conditional and
unconditional expectations. Finally, [Cochrane, 2000] restated all the contributions to
asset pricing theory within this framework.

Using the same notations as [Cochrane, 2000], Xt+1 will represent an asset pay-off at
date t + 1, Pt the asset price at date t, and mt+1 the SDF at date t + 1. The fundamental
equality states that:

Pt = Et(mt+1Xt+1) (2.1)

where:

mt+1 = f (data, parameters) (2.2)

Equation 2.1 indicates that the asset price is equal to the conditional expected value
of the future payoffmultiplied by the SDF, which is a random variable whose realizations
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are always greater than zero. The expected price can be understood, hence, as a weighted
average of future payoffs in different states of the economy, where each state has a proba-
bility of occurrence defined by its SDF. Consequently, the SDF is simply a discount factor
that transforms expected payoffs tomorrow into value today, but in a world of uncertainty;
if there is no uncertainty or if investors are risk-neutral, the SDF is merely a constant that
transforms expected payoffs tomorrow into value today.1

In intuitive terms, therefore, if the SDF, mt+1, is small in a certain state of the world,
then investors in this state attribute little value to the payoff received, which will cause the
price to fall.

The major contributions of the stochastic discount factor approach are its simplicity
and universality. Instead of using three apparently different theories for different types
of assets, for example bonds, stocks, and derivatives, now we can consider them as just
special cases of the same theory.

If we rewrite the equation introducing the concept of return Rt+1, this mechanism will
be arguably clearer:

Rt+1 =
Xt+1 − Pt

Pt
=

Xt+1

Pt
− 1 (2.3)

Now, using Equation (2.1) we can introduce the statistical decomposition of covari-
ance in Equation (2.3):

Et[Rt+1] =
1

Et[mt+1]
− 1 −

1
Et[mt+1]

Cov[mt+1, Xt+1] (2.4)

If we assume that the expected value of mt+1 is positive, then the expected return of
assets that covaries positively with SDF will be lower than the expected return of assets
whose returns has a negative covariance. In the next chapter we will explain the economic
meaning of this result in terms of wealth and intertemporal substitution of consumption.

If we consider the existence of a risk-free asset, that is, an asset whose payoff at date
t + 1 is certainly known as of date t, Equation 2.4 can be expressed in an alternative form
including the expected excess return. If we apply Equation 2.4 to the risk-free asset, the
covariance does not apply, so that the certain rate of return, Rd

t , satisfies:

Et[Rt+1] = Rd
t =

1
Et[mt+1]

− 1 (2.5)

1The term "stochastic discount factor" is used because m generalizes standard discount factor ideas. If
there is no uncertainty, we may use the conventional present value formula to describe prices:

Pt =
1

1 + Rd
t

Xt+1

where Rd
t is the risk-free rate, the return of a discount bond with an unique and riskless payoff of 1 in the

period t + 1.
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If we define the risk premium of an asset as the expected return minus the risk-free
rate, that is, the excess of return that an investor is demanding to invest in an asset which
is not free of risk, we can re-arrange Equation 2.4. Subtracting Rd

t from both sides of
Equation 2.4, we get that the expected excess return of the asset, µ̃t, is:

µ̃t = Et[Rt+1] − Rd
t = −

Cov[mt+1,Rt+1]
Et[mt+1]

(2.6)

This expression in Equation 2.6 can be applied to any asset. In short, it means that
only when the expected returns are negatively correlated with the SDF, that asset will earn
a positive risk premium. In the next section, by suggesting a natural interpretation for the
stochastic discount factor in a consumption-based model, we can add more understand-
able interpretation to these results.

The SDF in a Consumption-Based Model

We can find several ways to reach Equations 2.1 or 2.4. Basically, it will depend on the
interpretation that we make about the SDF.

The consumption-based asset pricing model, which enables direct translation of the
SDF architecture, derives the SDF from the optimality conditions for a single agent. The
very well-known Consumption-based Capital Asset Pricing Model (CCAPM) [Breeden,
1979] (see section 2.2.1) can be regarded as an equilibrium version with multiple investors
of this seminal consumption-based model.

The primary hypothesis is that an investor chooses what asset portfolio to hold along
with how much money to save and spend, according to [Cochrane, 2000]. The solution to
the problem’s first-order criteria is the simplest fundamental pricing equation, which spec-
ifies that the price should be equal to the predicted discounted return with the discount rate
being the investor’s marginal utility. The marginal utility gain of selling the investment
and spending the proceeds at some point in the future should be equal to the marginal util-
ity loss of consuming a little less today and investing the difference. The investor should
increase their investment in the asset if the price does not match this requirement.

An investor’s first order conditions give the basic consumption-based model, in which
the pricing kernel or SDF can be expressed as:

mt+1 = δ
u′(ct+1)
u′(ct)

(2.7)

where ct denotes the level of consumption in period t, u the utility function and δ the
elasticity of intertemporal substitution of consumption. The investor selects his consump-
tion strategy to maximize expected utility while staying within a budget constraint, and
the program’s optimality condition asserts that at the optimum, Equation 2.4 holds with
the SDF.
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Using the definition of covariance cov(m, X) = E(mX) − E(m)E(X), we can rewrite
Equation 2.1 as:

Pt = Et(mt+1)Et(Xt+1) + cov(mt+1, Xt+1) (2.8)

Substituting Equation 2.5 for the risk-free asset, we obtain:

Pt =
Et(mt+1)
1 + Rd

t
+ cov(mt+1, Xt+1) (2.9)

The formula for discounted present value is the first term in Equation 2.9. In the
absence of risk, this is how the price of an asset would be determined. A risk adjustment is
the second component. In a manner substantially similar to that described in the preceding
section, an asset’s price is increased (and its expected return is decreased) when the payoff
covaries positively with the discount factor, and vice versa.

Now it is time to introduce the concept of consumption. To understand the risk adjust-
ment, let us substitute back for mt+1 in terms of consumption in Equation 2.7, to obtain:

Pt =
Et(Xt+1)
1 + Rd

t
+

cov(δu′(ct+1), Xt+1)
u′(ct)

(2.10)

Marginal utility u′(c) declines as c rises. Thus, the price of any asset will be low-
ered if its payoff covaries positively with consumption, and vice versa. What is the rea-
son for such a behaviour like that? Investors dislike consumption unpredictability. Your
consumption stream will become more volatile if you invest in an asset whose payment
covaries favorably with consumption, such as one that pays out well when you are al-
ready affluent and badly when you are already poor. You will demand a more appealing
price (cheap price) in order to purchase such an asset. The scenario will be precisely
the opposite if you purchase an item whose expected return is inversely correlated with
consumption since it contributes to smoothing consumption and hence has a higher value
than its expected return may suggest. A great example of this sort of product is insurance.
When wealth and consumption would otherwise be low, insurance pays handsomely. Be-
cause of this, even if the cost of insurance is more than the projected payout discounted
at the risk-free rate, you are delighted to keep insurance.

Similarly, we can rewrite Equation 2.6 to introduce consumption in the expression of
the expected excess return of an asset:

µ̃t = Et[Rt+1] − Rd
t = −

Cov[u′(ct+1),Rt+1]
Et[u′(ct+1)]

(2.11)

The expected return on each asset is equal to the risk-free rate plus an additional risk
adjustment. How does it run? Consumption is more volatile when an asset’s returns are
strongly correlated with it, hence it needs to be priced more attractively (or guarantee
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higher predicted returns) to make up for the increased risk. In contrast, investments like
insurance that have a negative correlation to consumption can have expected returns that
are lower than the risk-free rate or even negative (net) expected returns.

Understanding how to convert this marginal utility for consumption into observable
indicators is the key to understanding the various asset pricing models. Consumption may
be a helpful signal since it decreases when marginal utility is high and increases when it is
low, but there must be others. For instance, the CAPM [Sharpe, 1964], the all-time most
common asset pricing model, offers the following argument: consumption is also low and
marginal utility is high when the investor’s other assets have performed badly. As a result,
we may anticipate that prices for assets that correlate favorably with a significant index,
such a market portfolio, would be cheap and that predicted returns will be high.

Finding meaningful indicators for marginal utility, items against which to compute a
covariance in order to estimate the risk-adjustment for prices, is the goal of the remaining
asset pricing models.

Risk premia and Systematic Risk

If we make a distinction between systematic and idiosyncratic risks, Equation 2.6 has an
important implication. This "systematic component" of the risk 2 is defined, in the SDF
model, as the orthogonal projection (projm) of the return on the SDF. In the SDF model,
the "idiosyncratic component" (ϵt+1) 3 is defined as the residual of this projection in this
general model, resulting in the following decomposition for the realized return:

Rt+1 = projm[Rt+1] + ϵt+1 (2.12)

with ϵt+1 being uncorrelated from mt+1, and the orthogonal projection being given by:

projm[Rt+1] =
Covt[mt+1,Rt+1]

Vt[mt+1]
mt+1 (2.13)

Applying the last expression to Equation 2.6:

µ̃t = −Cov[mt+1, projm[Rt+1]] (2.14)

As a result, the idiosyncratic component ϵt+1 does not contain any risk premium, and
the risk premium only comes from the systematic component of the return that is precisely

2In financial terms, the systematic risk is the component of the total risk which is associated with the
market and not the individual assets we want to price or invest in and, therefore, cannot be diversifiable.

3The idiosyncratic or non-systematic risk is the component of risk that can be associated with the specific
factors or characteristics of each security, and is independent of the global factors of markets and economy.
This type of risk can be diversified, reduced or controlled adequately through what is called in finance a
"diversification strategy".
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linked to the SDF. In other words, the risk premium is determined by the systematic
risk of the asset as described with regard to the SDF, not the overall risk. In particular,
regardless of the size of the overall risk, an asset whose return is uncorrelated from the
SDF takes no risk premium.

Theoretical Factor Models

In this section we will demonstrate how the SDF model can be translated into a factor
model, that is, a linear function of some risk factors, which discounts uncertain payoffs
differently across different states of the world. Factor models correct the limitations of
the unobservable SDF and the restrictions of a consumption-based approach bearing in
mind that consumption is a macroeconomic aggregate that is provided with lags and is
continuously revised.

The Equation 2.6 can be re-expressed, for the asset i as:

Et[Ri] = Rd
t +

(︄
Cov[m,Ri]

Var[m]

)︄ (︄
−Var[m]

Et[m]

)︄
(2.15)

or, what is equivalent,

Et[Ri] = Rd
t + βi,mλm (2.16)

where βi,m is the regression coefficient of the return Ri on m. This is a beta pricing
model, the most popular form of representation of asset pricing models in financial lit-
erature. It states that in a regression of returns on the discount factor, predicted returns
on assets i = 1, 2, ...N should be proportional to their betas. Keep in mind that while the
coefficient βi,m changes from asset to asset, the coefficient λm is the same for all assets i.
It is common to understand the λm as the risk premium and the βi,m as the amount of risk
present in each asset.

Definition of a Factor Model. Equivalence between SDF representation and Beta
representation A factor model suggests the existence of a scalar a and a Kx1 vector b
for a Kx1 vector of factor values, such that the quantity described by:

m = a + bT
i fi i = 1, 2, ...,K (2.17)

is an SDF. A factor fk that has a non-zero loading bk is known as "pricing factor".

In [Cochrane, 2000], the author demonstrated that formulating a factor model in terms
of the SDF is equal to a "beta representation" of expected returns, which is more common
across different factor model formulations.

12



Let us assume that f is Kx1 random vector. Thus, a scalar a and a Kx1 vector b exist
such that Equation 2.17 prices all assets if, and only if, a scalar k and a K x 1 vector Λ
exist such that for each asset i, the expected return is:

E[Ri] = κ + ΛT
i βi i = 1, 2, ...,K (2.18)

where the Kx1 vector βi is the vector of multivariate regression coefficients of Ri on f
with a constant.

It can be proved that the equations that allow the translation between Equation 2.6 and
Equation 2.18, that is, the equations which allow to switch between SDF models and beta
models are:

κ =
1

E[m]
− 1 (2.19)

ΛT
i = −

1
E[m]

Cov[m, fi] (2.20)

a =
1

1 + κ
(1 + ΛT

i Σ
−1
f µ f ) (2.21)

bi =
−1

1 + κ
Σ−1

f Λi (2.22)

where Σ f and µ f are the vector of expected outcomes for the factors and the covariance
matrix, respectively. Note that κ equals Rd

t if a risk-free asset exists. In the static CAPM,
κ can be thought of as the return on a zero-beta portfolio.

As [Cochrane, 2000] explains in his book, "b j (vector b) coefficients asks whether
factor j helps to price assets given the other factors. b j gives the multiple regression
coefficient of m on f j given the other factors. On the contrary, λ j (components of vector
Λ) asks whether factor j is priced, or whether its factor-mimicking portfolio carries a
positive risk premium". λ j gives the single regression coefficient of m on f j. Therefore,
when factors are correlated between them, one should test b j = 0 to see whether to include
a factor j given the other factors rather than test λ j = 0. Multiple authors consider that,
when we are able to find a factor whose risk premium is non zero (λ j = 0), we can call it a
"priced factor" or characteristic and, when we are able to find a factor that has a non-zero
coefficient b j, we can call it a "pricing factor".

Because it illustrates the magnitudes and signs of anticipated risk premiums for certain
components, Equation 2.18 is useful. Understanding of Equation 2.6 is similar to this one
in most cases. The model posits that the factor beta is associated with a positive risk
premium if a risk factor f is negatively correlated with the SDF m. Since the largest
payoffs occur when the value of payoffs is low, a component that is inversely correlated
to marginal utility should have a positive premium. As a result, even if the actual value is
low, the expected return is considerable. When there is a positive covariance, the opposite
happens. Assets with a positive beta on the factor have a payout distribution that is "better"
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than risk free when the factor is high and payoffs are highly valued. As a result, the
predicted returns on such assets might be lower than those of risk-free assets, and the
expected return premium is negative.

When confronted with a factor model, a fundamental question arises: which are the
genuine pricing factors? We will go over the two sorts of theoretical factor models that
can be used to solve the prior question: equilibrium models (CAPM, Intertemporal Capital
Asset Pricing Model (ICAPM), CCAPM) make assumptions about investors’ preferences
and derive a beta representation of expected returns of the form of Equation 2.17, while
APT highlights the relevance of factors to explain returns from a statistical perspective.

Static CAPM The CAPM of [Sharpe, 1964] and [Lintner, 1965] is an equilibrium
model in which the excess return on the market portfolio is the only pricing component.
As a result, the model predicts that every asset’s projected excess return is proportionate
to its market beta.

The CAPM is built on [Markowitz, 1952] foundational work on mean-variance effi-
cient portfolio creation. It essentially makes five different types of assumptions:

1. Investors are risk-averse.

2. Investors maximize the utility of terminal wealth.

3. Investors make their investment decisions on the basis of risk and return relation-
ship.

4. Investors have similar expectations of risk and return.

5. Investors have identical time horizon.

6. Investors have free access to all available information.

7. Investors have identical time horizon.

8. There is risk-free asset and there is no restriction on borrowing and lending at the
risk free rate.

9. Frictionless markets: there are no taxes and transaction costs.

10. There is total availability of assets and they are marketable and divisible.

Under these assumptions, the expected return on an asset is given by:

E[Ri,t] = Rd
t + β

m
i (E[Rm

t ] − Rd
t ) (2.23)

Rd
t being the risk-free rate, Rm

t the return on the market portfolio and βm
i the beta of the

asset i with respect to the market.
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If this model correctly reflects the reality, the excess return of a portfolio or asset
which is not related to the market return and is persistent over time should be explained
by randomness (ϵ) or investment skill (constant α not included in the equation above).

As we have explained before, this model implies the existence of an SDF given by:

m = a + bT
i fi i = 1, 2, ...,K (2.24)

where the factor is the centered excess market return,

f = Rm
t − Rd

t − µ̃m

Intertemporal CAPM By allowing for various time horizons and preferences among
investors, ICAPM [Merton, 1973] relaxes some assumptions of the static CAPM. Asset
risk premia are linear functions of the market beta and other betas in terms of factors. As
a result, the market factor is really not the exclusive determinant of pricing any longer.

The primary assumptions of the ICAPM mean some relaxation of the original frame-
work in CAPM and may be summarized as follows:

1. Short sales and leverage, in particular, are permitted.

2. Investor expectations homogeneity: investors have similar ideas about the distribu-
tion of asset returns, but they have a wider range of perspectives and preferences.

3. Dynamic portfolios: Portfolios can be rebalanced on a regular basis (this assump-
tion is linked to that of frictionless markets). This is the primary distinction between
Static CAPM and Dynamic CAPM.

Under the previous assumptions, the expected excess return on asset i can be written
as:

µi,t − Rd
t = β

m
i,t(µ

m
t − Rd

t ) +
K−1∑︂
k=1

βk
i,t(µ

k
X,t − Rd

t ) (2.25)

where µm
t is the expected return on the market portfolio, µk

X,t is the expected return on
the portfolio that maximizes the squared correlation with the k-th state variable.

These k portfolios are called hedging portfolios because they hedge each one of the
k state variables. The ICAPM has the form of a factor model in which the K factors are
the market premium in one hand, and a kind of K − 1 "mutual funds", in the other hand,
according to Equation 2.25, committed to hedging against changes in investing prospects
that are not beneficial. The predicted excess returns on these hedging strategies are the
factor risk premia.
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Consumption-based CAPM The ICAPM in its seminal form calls for determining the
variables that influence the opportunity set’s evolution. In [Breeden, 1979], the author in-
troduces a Consumption-Based CAPM (CCAPM) that substitutes the multiple betas in the
decomposition of expected returns by a single beta, which reflects changes in aggregate
consumption. The assumptions are the same as in Merton’s ICAPM.

[Breeden, 1979] shows that expected excess returns are given by:

µi,t − Rd
t =
µC

t − Rd
t

βC
C,t

βC
i,t i = 1, 2, ...,N (2.26)

where βC
i,t is the beta of asset i with respect to aggregate consumption C, βC

C,t is the
beta of the portfolio that maximizes the squared correlation with changes in aggregate
consumption, and µC

t is the expected return on this portfolio.

Arbitrage Pricing Theory APT [Ross, 1976], along with CAPM is one of the two
most influential theories on asset pricing. The APT varies from the acCAPM in that its
assumptions are less restrictive. It offers an explanatory asset return model as opposed
to a statistical one. Instead of the corresponding "market portfolio", it is suggested that
each investor picks their own portfolio with their own set of betas. The securities market
line indicates a single-factor model of asset price, with beta exposed to changes in market
value, which in some ways makes the CAPM a special example of the APT.

In other words, the CAPM, but also the ICAPM, represent the SDF as an affine com-
bination of factors. The APT, on the other hand, concentrates on return factor decomposi-
tion. A statistical description of asset returns as linear combinations of K common factors
and a random disturbance serves as its foundation.

If xi indicates the pay-off of an asset, then we have:

Xi = E[Xi] + βT
i f + ϵi, i = 1, 2, ...,N (2.27)

where the idiosyncratic return is uncorrelated from the factors. Such a decomposi-
tion of factors is always satisfied since it is always possible to make a regression for a
payoff on a given set of factors. Statistically, it is necessary to assume that there is not
autocorrelation in the residuals ϵi across assets.

Empirical Factor Models

The model formulations explained above are able to express, under some conditions, the
expected return of an asset as a linear function of the market return and a series of fac-
tors. When we have considered the marginal utility of consumption, we have supposed
an approximation to the revisions in market expectations; when we have considered the
absence of arbitrage, this has been implied a decomposition of the expected returns.
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Given the CCAPM and the likelihood that consumption growth would be linked to
macroeconomic fundamentals, it seems logical to look for the variables among macroe-
conomic data. According to APT, it seems convenient to look for asset pricing factors
that explain a considerable amount of the time variation in individual returns, taking the
premise that asset pricing factors should explain common variance in returns a step fur-
ther.

Therefore, the expression derived from these theoretical models, in which the expected
excess return of an asset is a linear function of the market return and a series of factors,
regarding macroeconomic conditions, can be considered as the foundation for an entire
empirical financial literature dedicated to explaining asset returns as linear combinations
of factors, the well-known multifactorial asset valuation models.

Early work on the Sharpe-Lintner CAPM tended to be broadly supportive. In 1970s,
the classic studies of [Black et al., 1972] and [Fama and Macbeth, 1973], found that,
empirically, the high-beta stocks tended to have higher average returns than low-beta
stocks and that the relation was roughly linear. During 1980s and 1990s, researchers
began to look at other characteristics of stocks besides their betas. All those deviations
from the original CAPM were called “anomalies”, due to the fact that there did not exist
any kind of theoretical model able to explain the existence of those kind of factors. For
example, [Banz, 1981] reported the size effect, according to which small stocks had higher
returns not explained by the CAPM. In [Fama and French, 1992], the authors drew further
attention by classifying equities according to their size and beta, and demonstrating that
high-beta stocks had no greater returns than low-beta stocks of the same size. [Basu,
1983] discovered a value effect, which is explained by the fact that market returns can be
forecast by multiples of market price to accounting metrics like earnings or book value.

Empirically, all these anomalies may be explained more efficiently utilizing multi-
factor models in which the factors are chosen based on empirical evidence rather than
theoretical support. The core aim of factor models is to understand the drivers of asset
prices. In the following lines, after introducing the usual procedure of estimation of all
these models, we will make a brief review of the main contributions from the empirical
factor models literature over the last three decades. But, contrary to the usual review
across the different models and authors, we will make the revision using a different crite-
ria: the main factors that has been progressively introduced in the literature and has been
empirically tested as relevant across regions. We will focus our review on equities.

Two-pass Regression Procedure and Mimicking Portfolios As it was aforementioned,
Equation 2.27, which represents the model that explains the expected returns of an asset
as a linear combination of factors, needs to converge into an empirical estimation of all
the parameters involved in the model. With N assets and K factors, there are NxK betas
and K factor premia to estimate. The constant α is not always to be estimate: it will de-
pend on the existence or not of the risk-free asset. If it exists, that α will be equivalent to
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the risk-free rate; otherwise, this constant must be considered as an unknown parameter.

The approach to obtain the NxK betas and the K factor premia was primarily intro-
duced by [Fama and Macbeth, 1973]. This approach consists of running two series of
regressions:

1. Run N time-series regressions of returns on factors to obtain NxK estimations for
the β:

Ri,t = ci +

K∑︂
k=1

βi,k fk,t + ϵi,t, t = 1, 2, ...,T (2.28)

2. Run a cross-sectional regression of expected returns on betas previously obtained
(one average beta by each asset i) to get K estimates for the risk premia factors λ:

E[Ri] = γ +
K∑︂

k=1

βi,kλk + ηi, i = 1, 2, ...,N (2.29)

where γ is a constant and ηi is the error term associated to asset i.

From a statistical standpoint, there are some risks associated with the use of estimates
of β instead of true betas. The main risk has to do with the bias we can find in the OLS
estimates if the errors η are correlated with the regressors β.

The solution addressed by [Fama and Macbeth, 1973] has been embraced by hundreds
of researchers since then. The proposal consists of grouping stocks in portfolios and esti-
mating, instead of stock betas, portfolio betas. The idea behind this original suggestion is:
because measurement mistakes tend to counterbalance across equities, portfolio estimates
are more unbiased than individual estimates.

The other reason to use portfolios instead of individual stocks is that, most of times,
factors are unobservable or immeasurable. For this reason, it appears the concept of
"mimicking portfolios". A factor mimicking portfolio is a collection of assets designed
to replicate the performance of a backdrop factor. When the factor’s realizations are not
returns, this design is typically favored over utilizing it directly. When we adopt this
method to reduce noise in our asset pricing model (see for example [Vassalou et al., 2004]
for generating replicating portfolios based on the macroeconomic factors), we only use
the data recorded in the economic variables that is relevant for asset returns. A mimicking
portfolio may also represent an unobservable factor when stock sensitivity to the factor
are considered to be disclosed by certain business features. A particularly well-known
illustration of this problem is given in the three-factor model by [Fama and French, 1992],
where characteristics like company size or book-to-market ratio are meant to show how
exposed a business is to various latent distress causes (coefficient β).

Suppose portfolio contains shares α1, ..., α j with
∑︁
αJ

j = 1. The sensitivity of this
portfolio with respect to factor fk is:
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γk =
∑︂

j

α jβ jk

The idiosyncratic risk of portfolio is ν =
∑︁

j α jϵ j, and hence:

σ2(ν) =
∑︂

j

α2
jσ(ϵ j),

A portfolio is only sensitive to factor k0 (and idiosyncratic risks) if for each k ≠ k0„
γk =

∑︁
α jβ jk = 0, and γk0 =

∑︁
α jβ jk0 ≠ 0.

If a portfolio has the lowest idiosyncratic risk among portfolios that are just sensitive
to k0, it mimics that factor.

Size factor The empirical evidence that small-cap equities perform better than large-cap
equities is known as size effect. [Van Dijk, 2011] made an extensive survey of 30 years of
research in equity returns. As he recognizes, this additional factor in CAPM was primarily
introduced by [Fama and French, 1992] with their 3-factor model, and since then, "there
has been a vigorous debate on whether the size premium is a compensation for systematic
risk." According to this research, there has been in recent years some divergence between
the theoretical approach, which has been able to assess that size effect arises endogenously
as a result of systematic risk, and the empirical approach, where recent studies assert that
the size effect has progressively disappeared after the early 1980s.

Although there were several authors in 1980s who refer to this statistical anomaly (for
example, [Banz, 1981]), it is not until 1992 with the seminal work from Fama and French
that this effect is introduced in an empirical factor model. According to these authors,
size is a stronger discriminating characteristic than market beta for predicted returns in
the cross-section, and there is no substantial beta effect after correcting for size. It was,
until that moment, the most serious threat to the CAPM. Making regressions in the Fama
and MacBeth way, they demonstrated that, for the case of American stocks, the slope
between returns and size was significantly negative over long periods and that the beta
effect was not robust to a size control.

As in the rest of factors, we can find two types of explanation for the existence of
the size effect: risk-based explanations and behavioural explanations. Small size compa-
nies, according to some researchers (for instance [Fama and French, 1992], outperform
large size equities because there is a larger exposition to systematic risk. According to
this outlook, small caps are more susceptible than large caps to have extensive periods
of decreased earnings, which is a risk element that should be compensated. Finally, an-
other line of thinking relates the size effect to firm default risk, since the excess return
of small firms would be justified by their higher financial distress. In the second case,
we can find the proposal by [Banz, 1981], who claims that the size impact is caused by
a lack of knowledge on small companies. Other similar explanations involve the degree
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of confidence from investors or the lag in the formation of prices upon the arrival of new
information about firms.

The size factor is represented as the excess return of small caps over large caps. [Fama
and French, 1992] introduced a "Small-Minus-Big"(SMB) portfolio, which is a zero-
investment portfolio built as the difference between the average return on three small-
cap portfolios and that on three large-cap portfolios, which has been ordered, previously,
according to the book-to-market ratio (Value, Neutral and Growth).

This previous filter is defining the third factor, "High-Minus-Low"(HML) of their
model, which is another zero-investment portfolio built as the difference between the aver-
age return on two value stock portfolios and that on two growth stock portfolio, according
to the size quantiles (Big and Small).

The 3-factor model by [Fama and French, 1992] was expressed as follows:

E[Ri,t] = Rd
t + β

m
i (E[Rm

t ] − Rd
t ) + βS MB

i S MBt + β
HML
i HMLt + ϵi,t (2.30)

Rd
t being the risk-free rate, Rm

t the return on the market portfolio, βm
i the beta of the

asset i with respect to the market factor, βS MB
i the beta of the asset i with respect to the

size factor, and βHML
i the beta of the asset i with respect to the value factor that will be

developed shortly.

The size impact is both a priced and a priced component, according to a significant
number of academics who have looked for evidence over the past three decades (see
section 2.2.1). One may assume that the size factor will be higher in "good" world states
where the marginal utility of consuming is lower since the asset pricing theory based on
the SDF requires that a factor bears a positive premium if and only if it has a negative
correlation with the SDF.

Most of them, as in the case of [Vassalou et al., 2004] find the factor premium to be
negative (the opposite sign to expected) but not significant 4, although the coefficient or
loading 5 of the size factor in the SDF is significant. Therefore, it means that the size
factor is a "pricing factor" because is relevant for the asset pricing, but not a "priced
factor" because it does not command a significant premium.

More recently, some papers check how compatible is the SMB factor with the theo-
retical models. [Pukthuanthong and Roll, 2019] explain how the value factor is linked
to the major components of the covariance matrix of returns, satisfying the APT model’s
requirements.

Value factor The concept of "value" and the methodology of value investing are ex-
tremely popular since the seminal works of [Graham and Dodd, 1934]. Generally speak-

4λk = 0 in Equation 2.16 and S MB = 0 in Equation 2.30
5βk

i in Equation 2.25 and βS MB
i in Equation 2.30
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ing, a stock can be considered as "value" if it is undervalued according to fundamental
analysis measures. The broadly accepted measure in factor investing to make a distinc-
tion between "value" stocks and their contrary, "growth" stocks, is the book-to-market
ratio (BE/ME). When this measure is low, the stock can be considered as "inexpensive"
from a fundamental point of view, and vice versa, for the case of "expensive" stocks.

Although there exists some previous empirical evidence about the relationship be-
tween expected returns and book-to-market ratios, as in [Stattman, 1980], it is not until
the omnipresent work from [Fama and French, 1992] when this value effect is included in
an asset pricing model in the CAPM way. In their study, the value effect associated with
the factor HML defined in the previous section (Equation 2.28) turns out to be stronger
than the size effect connected with the SMB factor.

Numerous publications published over the last thirty years have thoroughly examined
the robustness of the value impact across different geographic areas and time intervals.
For example, [Liew and Vassalou, 2000] discovered that value equities outperform growth
stocks in several developed nations, but [Vassalou et al., 2004] discovered that this behav-
ior is not uniformly strong in every segment of the stock market. Other authors have
recommended using more sophisticated value measurements. For example, [Basu, 1977]
demonstrates that in the 1960s, low P/E 6 portfolios outperformed high P/E portfolios,
and [Basu, 1983] shows that this effect persists after controlling for business size.

As for the case of the size effect, there exist risk-based and behavioral explanations
for the value effect. In the first case, the systematic risk factor associated to value stocks
could be related to financial distress, as it is indicated in most of the articles about this
issue. That is the case of [Vassalou et al., 2004]. With respect to the rational explanations,
the justifications for a value premium have to do with the excess of optimism of investors
regarding stocks that have performed well in the recent past, and vice versa. For instance,
in [Lakonishok et al., 1994], the explanations arise from the rejection that investor feel
for the least appealing stocks, which have done poorly in the past. That provokes a drop
in their prices and increases, subsequently, their expected returns.

Finally, there are numerous research that deal with the existence of the value factor.
The HML portfolio, like the value effect, is designed to be a mimicking portfolio for
an unobservable factor, whose exposure is proxied by the BE/ME ratio. According to
[Liew and Vassalou, 2000], the HML factor is favorably associated with GDP growth
predictions, supporting the idea that this portfolio has a positive risk premium since it
outperforms in good times. Recent additions by [Gerakos et al., 2013] raised doubts on
the employment of the HML component, claiming that it satisfies both the conditions of
a priced and an unpriced factor, resulting in the 3-factor model’s illusory success.

6The price-to-earnings ratio (P/E ratio) is a valuation measure that compares the current share price of a
company to its earnings per share (EPS). The price-to-earnings ratio, also known as the earnings multiple,
is a ratio that compares a stock’s price to its earnings and can be used to determine relative valuation. In
general, and under certain assumptions, a low P/E ratio suggests stock undervaluation, and vice versa.
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Momentum factor Beyond the size and value factors, the momentum factor is the most
prevalent factor in the literature. Momentum can be defined as the rate of acceleration
of a security’s price, and simply, it refers to the inertia of a price trend to continue either
rising or falling for a particular length of time. The trading strategies related to this effect,
also called "trend following", seek to capitalize on momentum to enter a trend as it is
picking up steam. In statistical terms, the momentum effect characterizes by the existence
of serial autocorrelation.

The validity of the random walk hypothesis and, as a result, the unpredictability of
asset returns (see next section 2.2.2) were early concerns for jobs that faced the existence
of momentum effect in stock prices. An example of this kind of approach, which uses
time series data, is [Lo and MacKinlay, 1988]. From the perspective of cross-sectional
data, we can find [Jegadeesh, 1990], where authors examine the performance of stock
selection techniques based on prior monthly returns. Despite the fact that this anomaly
was discovered after the size and value effects, institutional investors have a long and
reliable history with the momentum approach [Asness et al., 2014].

The studies by [Jegadeesh and Titman, 1993] can maybe considered as seminal in the
finding of strong evidence in favor of the momentum effect for intermediate horizons.
They introduced the term "relative strength strategies" for currency-neutral strategies that
buy the best-performing stocks over the past 3 to 12 months and sell the worst-performing
stocks.

The paper by [Carhart, 1997] can be considered as the study which, in the last years,
has received more acknowledgement from the investment industry. The author provides
evidence in this research, which focuses on the mutual fund business, that strong previous
performance does not necessarily imply future returns, but that the contrary might be true
(if the performance is based on loading up on specific risk factors). This paper presents
a four-factor model with the 3 factors from [Fama and French, 1992] plus a new factor
which represents the momentum effect:

E[Ri,t] = Rd
t + β

m
i (E[Rm

t ] − Rd
t ) + βS MB

i S MBt + β
HML
i HMLt + β

WML
i WMLt + ϵi,t (2.31)

βWML
i being the beta of the asset i with respect to the momentum factor. The WML

factor is defined as the excess return of an equally-weighted portfolio for the 30% past
year winners over an identical portfolio of the 30% past year losers ("Winners-Minus-
Losers".

After adjusting for the remainder of the risk variables, this article indicates that fund
performance has very little consistency. Its findings do not support the presence of pro-
fessional or knowledgeable mutual fund portfolio managers, since the only substantial
persistence not explained is focused in substantial underperformance by the worst-return
mutual funds.

Regarding the justification of the momentum anomaly, we can find again papers in
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the two usual ways: risk premium and behavioral explanations. In the first category, we
can find [Jegadeesh and Titman, 1993], who discover a positive autocorrelation of the
idiosyncratic component of returns that cannot be explained by size and value effects,
and [Fama and French, 1996], who confess that the short-term persistence of returns is
the "main embarrassment" for their three-factor model. In the second category, the main
explanation used is the gradual diffusion of information in prices. For instance, [Hong and
Stein, 1999] present a model that forecasts the phenomenon of over and under-reaction in
the process of investment.

As for the size and the value factors, [Pukthuanthong and Roll, 2019] describe sta-
tistical tests to find the compatibility of momentum effect with the ICAPM and the APT
models. The results suggest that, unlike size and value factors, the momentum factor does
not seem a priced factor in the sense of ICAPM.

Profitability and Investment factors Following the release of the five-factor model
[Fama and French, 2015], these two components have lately gained a lot of traction in
stock investment techniques. This model was expressed as follows:

E[Ri,t] = Rd
t + β

m
i (E[Rm

t ] − Rd
t ) + βS MB

i S MBt+

+ βHML
i HMLt + β

RMW
i RMWt + β

CMA
i CMAt + ϵi,t (2.32)

βRMW
i being the beta of asset i with respect to the profitability factor, and βCMA

i the beta of
asset i with respect to the investment factor.

The procedure to estimate these factors is similar to previous factors in [Fama and
French, 1992]. Stocks are first sorted according to a measure of profitability or invest-
ment. The profitability factor is the excess return of robust profitability stocks over weak
profitability ones ("Robust-Minus-Weak" or RMW factor) while in the case of the in-
vestment factor, it is defined as the excess return of high investment stocks over low
investment ones ("Conservative-Minus-Aggressive" or CMA factor). The authors choose
as measures the operating profit after interest expenses and the growth of total assets,
respectively.

Empirical evidence about these two types of effects can be found in earlier papers in
1990s. For instance, [Lakonishok et al., 1994] examined a company’s historical profitabil-
ity as a way to determine its "value" based on the book-to-market ratio, in the sense that
stocks with a discrete path of sales growth can be considered as value stocks, unlike the
stocks with a brilliant path of sales growth in the past, that can be considered as growth
stocks. Bearing in mind that the former ones are less appealing, the intuition says that
investors will pay less for them, which rises their subsequent expected returns. Exactly
the opposite with the growth stocks, that will have lower expected returns. More recent
papers, as in the case of [Novy-Marx, 2013], discover empirical evidence showing that
lucrative companies perform better than less profitable ones (as determined by the gross
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profits-to-assets ratio). Other studies like [Hou and Zhang, 2015] show that Return on Eq-
uity (ROE) is a good measure to test the existence of the profitability factor, in the sense
that a strategy that buys stocks with high ROE and sells stocks with low ROE generates
significant extraordinary returns.

[Hou and Zhang, 2015] also describe how using several sorts in the definition of fac-
tors may help decrease correlation, and how a model that incorporates the market factor,
a size factor, and profitability and investment factors can price a large cross section of test
portfolios appropriately.

2.2.2. Price Forecasting

Introduction

Price forecasting is a financial discipline dedicated to predicting the future price of an
asset using market data and its transformations. Examples of this type of strategy include
trend trading strategies, which involve taking a position in an asset only after detecting
changes in trends, as well as statistical arbitrage, where one looks for mispricing between
assets by identifying relationships or potential anomalies that are expected to return to
normal. Algorithmic Trading, which has become increasingly popular in recent years,
can be considered part of trend-following methods and therefore connected with price
forecasting approaches.

In this discipline, asset prices play a central and lonely role, while asset pricing models
and economic/financial fundamentals stay in a very secondary term. Sometimes, the aca-
demic approach to price forecasting has not considered risk-related issues or, directly, has
not been interested in finding explanatory variables of risk, except for the best prediction
of prices. Shortly, the studies have been more interested in the predicting power of model-
ing than in the explanatory power and economic meaning of the variables included in the
model. In the case of technical and trend strategies, the main theoretical topic has to do
with the accomplishment of EMH that we will expose in the next few lines. Although sta-
tistical arbitrage strategies are also very related to EMH and autocorrelation issues, they
are connected, to some extent, to theoretical issues previously explained in the Value In-
vesting section, related to asset pricing and anomaly-seeking. In this sense, in the second
section of this chapter, we will talk about the theoretical basis of one of the most followed
strategies in statistical arbitrage, the pairs-trading strategy, which will play a central role
in the empirical part of this thesis.

Regardless of the type of approach, time-series data analysis is prevalent in this finan-
cial discipline, unlike the previous one, value investing, in which cross-sectional data was
clearly predominant.
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Efficient Market Hypothesis (EMH)

The EMH states that asset prices always reflect all available information. A direct impli-
cation is that it is impossible to “beat the market” consistently on a risk-adjusted basis,
since market prices should only react to new information, which can be considered as a
crucial implication for the asset management industry, mainly in the case of price forecast-
ing. The EMH is linked to the random walk theory, which defends that the best prediction
for tomorrow’s price is the current price.

The validity of the random walk hypothesis and, as a result, the unpredictability of
asset returns were early concerns for jobs that faced the existence of the momentum effect
in stock prices (see previous section). An example of this kind of approach, which uses
time-series data, is [Lo and MacKinlay, 1988]. From the perspective of cross-sectional
data, we can find [Jegadeesh, 1990], where authors examine the performance of stock
selection techniques based on prior monthly returns. Despite the fact that this anomaly
was discovered after the size and value effects, already exposed in previous section, insti-
tutional investors have a long and reliable history with the momentum approach [Asness
et al., 2014].

The fundamental model of asset pricing, the SDF model, may explain how efficient
markets are (or are not) connected to random walk theory. This model, as mentioned
in the preceding section, makes mathematical predictions about a stock’s price assuming
that there is no arbitrage, that is, assuming that there is no risk-free way to successfully
trade. Formally, if arbitrage is impossible, the model predicts that a stock’s price will be
the discounted value of its future price. We may rewrite the Equation 2.1 if we imagine we
live in a world without dividends or, to be more limiting, if we assume we are functioning
in the short term and no dividend is paid:

Pt = Et(mt+1Pt+1) (2.33)

Note that this equation does not generally imply a random walk. However, if we
assume the SDF is constant 7, we have:

Pt = mEt(Pt+1) (2.34)

Taking logs and assuming that Jensen’s inequality term is negligible, we have:

log Pt = log m + Et(log Pt+1) (2.35)

which implies that the log of stock prices follows a random walk (with a drift).

Regardless the type of asset pricing model we use, the EMH will be satisfied only
under some restrictive assumptions. As [Cochrane, 2000] points out, “...if investors are

7In the consumption-based model already described, it means that investors are risk neutral, i.e., u(c) is
linear or there is no variation in consumption, and we are in short time horizons where δ is close to one.
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risk-neutral, returns are unpredictable, and prices follow martingales (random walk pro-
cess). In general, prices scaled by marginal utility are martingales, and returns can be
predictable if investors are risk averse and if the conditional second moments of returns
and discount factors vary over time. This is more plausible at long horizons”.

As [Timmermann and Granger, 2004] points out, “The EMH is a backbreaker for
forecasters”, because in its crudest form it effectively says that returns from speculative
assets are unforecastable. That may appear to be the conclusion of the narrative from an
intellectual standpoint. Despite the strength of the argument, it does not appear to be fully
compelling to many forecasters. The reason is that, despite its simplicity, the EMH is
surprisingly difficult to test and considerable care has to be exercised in empirical tests.

EMH and stationarity of time series The EMH is based on the idea that market prices
fully reflect all available information at any given time. If the EMH holds, then the price
of an asset should reflect its true underlying value, making it impossible to consistently
achieve above-average returns through trading. The EMH is usually tested using time
series analysis techniques, and one of the key assumptions of these techniques is the
stationarity of the data.

Stationarity is a key property of time series data that is often used in financial model-
ing. A stationary time series is one where the mean, variance, and autocorrelation struc-
ture do not change over time. This is important in finance because many models, such
as the CAPM and the Black-Scholes option pricing model, assume that returns are sta-
tionary. However, the EMH suggests that stock prices follow a random walk process,
which implies that they are non-stationary. As a result, researchers have used statistical
tests such as the Augmented Dickey-Fuller Test (ADF) test to determine whether stock
prices are stationary or not. If stock prices were stationary, it would suggest that the mar-
ket is inefficient, and that there may be opportunities for investors to profit by exploiting
predictable patterns in the data (see [Lee et al., 2010]).

Augmented Dickey-Fuller Test This test is particularly suitable for evaluating station-
arity since it falls under the category of unit root tests. The Dickey-Fuller (DF) test in-
volves a time series of ρ values calculated using Equation 2.36, where Yt represents the
value of the time series at time t, XT

t represents exogenous variables, ϵt denotes white
noise, and ρ and δ represent estimated parameters.

Yt = ρYt−1 + XT
t δ + ϵt, t = 1, 2, ...,T (2.36)

The stationarity of a series Y can be determined by the value of ρ calculated by Equa-
tion 2.36. If |ρ| > 1, Y is a non-stationary series, whereas if |ρ| < 1, Y is a stationary series.
Therefore, the stationarity hypothesis can be confirmed by verifying if the absolute value
of the total ρ is less than 1.
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The ADF test extends the DF test equation to incorporate higher-order autoregressive
processes into the model. The ADF equation, which incorporates a higher-order regres-
sive process into the model compared to the DF equation, can be computed as 2.37.

∆Yt = αYt−1 + XT
t δ + β1∆Yt−1 + β2∆Yt−2 + ... + βp∆Yt−p + υt, t = 1, 2, ...,T (2.37)

After obtaining the t-ratio, it is used to test the null hypothesis (non-stationarity) as
in the DF test. The null hypothesis assumes the presence of a unit root, that is, α = ρ-1.
If the calculated p-value from Equation 2.37 is greater than the significance level and the
statistical test value is greater than the critical value, then the null hypothesis is rejected.
Consequently, the series is considered non-stationary.

Pairs trading and the mean-reverting processes

Pairs trading is a popular quantitative technique utilized by hedge funds and investment
banks to capitalize on financial markets that are out of balance. Although it may not
seem as an investment strategy to be properly categorized under the heading of price
forecasting, it fully falls under it. The difference is that, unlike pure price prediction
strategies, pairs trading models the distance between the prices of two financial assets,
considering that if they have maintained a close relationship in the past, any deviation
that occurs will be temporary and exploitable in the future from an investment perspective.
This type of investment strategy has traditionally been addressed through the concepts of
cointegration and mean reversion.

During this strategy, two assets that typically move in the same direction and have a
long-term relationship are identified. Assuming that the spread between the two assets
is mean-reverting, deviations from the mean can be taken advantage of by taking a short
position in the overvalued asset and a long position in the undervalued asset. If the spread
eventually converges back to its mean, the investor can close both positions to make a
profit.

Pairs trading is considered a financial markets anomaly that can challenge the weak
efficiency hypothesis because it only utilizes past prices of stocks to achieve returns above
the risk-adjusted return. In more recent research, it is already considered an anomaly in
itself [Jacobs and Weber, 2015], but in previous studies it has been well framed within
anomalies caused by the violation of the law of one price [Gatev et al., 2006] or with
contrarian or mean-reverting strategies [Herlemont, 2004].

Two stocks that have the same expected returns in any state of nature should have the
same price according to the law of one price. If not, a situation of arbitrage would arise,
that is, the possibility of obtaining a return without assuming risk. The basic concept of
riskless arbitrage implies the possibility of replicating the cash flows of a financial asset
by a combination of financial assets, in such a way that the price of the combination is
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similar to that of the original financial asset [Burguess, 2003]. The pairs trading strategy
assumes that the chosen pairs maintain a similar relative price. When a divergence occurs,
it can be assumed that it is a violation of the law of one price and that this strategy is a way
to test this violation [Gatev et al., 2006]. A similar argument is the assumption that the
parallel movement of two stocks is based on the theory of arbitrage, which, as mentioned,
implies that the stocks are exposed to the same risk factors and that the idiosyncratic factor
is zero on average and that therefore they should maintain their relative price relationship.
If, at some point, this relationship provided by the APT is broken, it is expected that it
will be restored in the medium term [Vidyamurthy, 2004].

The mean reversion of expected stock returns has been studied for decades, starting
in the 80s when it was argued that "incremental increases in expected stock returns are
compensated for by immediate falls in current stock prices ... resulting in the presence of
a short-term component of reversal" [Fama and French, 1988]. And further on: "Stock re-
turns exhibit positive short-term autocorrelation and negative long-term autocorrelation"
[Poterba and Summers, 1988].

In the strategy of pairs trading, it is assumed that the tendency of reversal to the av-
erage price or return of shares is not that of price or return of stocks, but the relationship
between two stocks, measured as the difference or ratio of their normalized prices. It is
considered, therefore, a contrarian strategy. The difference with strategies purely of value,
in which one expects the price to revert to its intrinsic value according to the valuation
model used, is that in pairs trading the values of the two stocks are compensated, allow-
ing simultaneous over valuation or under valuation of both, but maintaining relative value
between the titles.

The justification for this anomaly has been reasoned from Behavioral finance with
the arguments of over/under reaction, slow learning, anchorages or irrational valuation,
among others. From traditional finance, justification has also been given for the reversal
to the average price of shares by the reversal to the average return [Spierdijk and Bikker,
2012].

[Krauss et al., 2017] classify pairs trading strategies into three groups. The most main-
stream approach is the co-integration approach, which involves co-integration test from
[Engle and Granger, 1987]. Co-integration is a concept closely related to stationarity in
time series analysis. When two or more non-stationary time series have a long-term re-
lationship, they are said to be co-integrated. In statistical terms, it means that both series
have the same integration order or, what is similar, they need the same number of differen-
tiations to become stationary. This implies that they are not independent and any shock to
one of the series is transmitted to the others. The second method is the distance approach,
which pinpoints pairs of co-moving individuals using a specific distance measure. [Gatev
et al., 2006] utilize the Euclidean squared distance between the normalized prices of secu-
rities to identify pairs and form a long-short portfolio. The final approach to pairs trading
is the time-series approach. [Elliott et al., 2005] propose another time-series approach for
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pairs trading based on the mean-reverting Gaussian Markov chain, but no backtesting is
conducted on any market. More recently, ML techniques are being used to improve all
the phases of the pairs trading strategies, as we will see in the empirical chapter of this
thesis (chapter 4).

2.2.3. Portfolio Management

Portfolio management is the financial discipline where the basic goal is to establish the
optimal weight of each asset by simultaneously maximizing expected return and minimiz-
ing risk. Better portfolio optimization models have a more efficient frontier, which can
help investors get a greater expected return while taking the same risk. As a result, devel-
oping a more efficient portfolio optimization model has become a hot issue in the field of
investment management. The main framework which can be considered as a foundation
of portfolio management is the seminal work from [Markowitz, 1952], also known as the
modern portfolio theory.

The modern portfolio theory (MPT), often known by its mathematical translation as
mean-variance optimization (MVO), is a mathematical framework for constructing an as-
set portfolio that maximizes expected return for a given degree of risk. It is a formalization
and extension of the concept of diversification in investment, which holds that having a
variety of financial assets is less hazardous than owning only one. Its basic concept is that
an asset’s risk and return should not be assessed by itself, but rather on how it adds to the
overall risk and return of a portfolio. The volatility of asset prices, measured in terms of
standard deviation of returns, is used as a risk proxy.

For a portfolio consisting of m assets with expected returns µi, let wi be the weight of
the portfolio’s value invested in asset i such that

∑︁m
i=1 wi = 1, and let w = (w1, ...,wm)T ,

µ = (µ1, ..., µm), 1 = (1, ..., 1)T . The portfolio return has mean wTµ and variance wT ∑︁
w,

where
∑︁

is the covariance matrix of the asset returns; see [Lai and Xing, 2008]. Given
a target value µ∗ for the mean return of a portfolio, Markowitz characterizes an efficient
portfolio by its weight vector we f f that solves the optimization problem:

we f f = arg minwwT
∑︂

w

subject to : wTµ = µ∗, wT 1 = 1, w ⩾ 0 (2.38)

If portfolio return variance, rather than standard deviation, were plotted horizontally,
the inverse of the slope of the frontier would be q at the point on the frontier where the
inverse of the slope of the frontier would be q. On q, the entire frontier is parametric.
[Markowitz, 1952] developed a specific procedure for solving the above problem, called
the critical line algorithm, that can handle additional linear constraints, upper and lower
bounds on assets, and which has been proven to work with a semi-positive definite co-
variance matrix.
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2.3. Machine Learning Background

As we have previously described, since the financial crisis of 2008, many quantitative
asset pricing models have failed and, within the value investing discipline, many conven-
tional factors have become unprofitable [Feng et al., 2019]. As a result, relevant market
players are seeking for alternatives to standard asset pricing, price forecasting and stock-
picking methods.

Many practitioners started building hand-crafted models that can dynamically learn
from past data, as popular quantitative elements have become less credible. For many
years, investors have relied on econometric approaches, but only a handful have had suc-
cess using dynamic models based only on these techniques. This might be due to various
factors: (1) inherent noise in financial data, (2) the fact that factors can be multicolin-
ear, and (3) that connections between variables and returns can be changeable, non-linear,
and contextual. These properties make estimating any dynamic connections between pos-
sible predictors and expected returns problematic for traditional models.

Given those limitations of hand-crafted methods, the use of ML techniques that au-
tomatically learn the best features from data has become widespread to avoid them. [Gu
et al., 2020a] made the effort to concentrate all the elements involved in the ML techniques
to give a context-specific definition of ML: “A diverse collection of high-dimensional
models for statistical prediction, combined with so-called regularization methods for mo-
del selection and the mitigation of overfitting, and efficient algorithms for searching
among a vast number of potential model specifications”.

These kind of methods have proven to be extremely successful in other disciplines
(like image processing or NLP). Part of that success is due to their ability to general-
ize to unseen data, learn from noisy distributions, and automatically learn features for
complex data. In other words, they excel in those areas where classical domain-specific
approaches crafted by experts have found limitations. This meteoric rising of ML ap-
plications is mainly due to the fact that, over the last decade, a series of enhancements
have enabled recent advances in practical ML and unlocked its utility: increased com-
puting power, increased data availability, and novel optimization techniques and architec-
tural breakthroughs.

The most promising ML applications in finance are on the buy-side, focusing on find-
ing predictive signal among the noise and capturing alphas 8. Some example applica-
tions are: time-series forecasting, market segmentation, regime-switching detection and,
of course, asset management, which is the main issue of this thesis.

Nevertheless, as [Arnott et al., 2019] points out, it is important to bear in mind the
very special characteristic of financial markets, since they reflect the actions of people,

8The alpha component is, according with the different factor models we have exposed, the independent
term which is not associated with any factor of risk and, supposedly, can be associated with the skill of the
investors to find extra returns in the securities they invest in.
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which may be influenced by others’ actions and by the findings of past research. Un-
like other scientific disciplines, research can influence future actions of economic agents.
In many respects, the problems that ML faces are just a continuation of the long-standing
concerns that quantitative finance experts have always confronted. While investors must
exercise caution, perhaps even more caution than in previous implementations of quanti-
tative methods, these new tools have a wide range of financial applications.

ML has been successfully applied to virtually any existing scenario where data are
available and useful information can be learned from it. However, different techniques
must be applied depending on the problem at hand. There are three main paradigms
which are characterized by the nature of the problem: SL, UL and RL, which will be
analyzed in the three next sections. In the last section, we will introduce the basics of two
techniques that can be considered as crucial in the data analysis and ML pipeline, aimed
at preparing the data for effective analysis and model building: Data Preprocessing and
EMD.

2.3.1. Supervised Learning

The dataset D contains samples xi together with their expected outputs yi, such as a dog
image together with its label “dog”, so D = {(x1, y1), ..., (xn, yn)}. Therefore, a function
f maps each sample to its output f (xi) = yi. The goal of supervised learning is to find
the best function approximation g ≈ f that meets two important criteria: (1) minimizes
the difference between known samples g(xi) ∼ f (xi) = yi, and (2) generalizes properly to
samples xo which are not part of D.

The following are the the most prominent classical supervised learning methods em-
ployed in finance:

• Least Squares [Levenberg, 1944]: A method typically employed to find a linear
regression by finding the best fit in the least squares framework, that is, minimizing
the sum of squared residuals.

• LASSO [Tibshirani, 1996]: A form of linear regression that is characterized for
using shrinkage. This means that LASSO performs L1 regularization to penalize
the absolute value of the magnitude of the coefficients. As a result, typically a sparse
set of coefficients is produced by helping reduce overfitting and model complexity.
Ridge regression works in a similar fashion but by enforcing L2 penalties, which
does not produce sparse models.

• Regression Trees [Elith et al., 2008]: A decision tree is an ML architecture that
uses a flowchart-like structure to arrive to infer a result by taking tests over in-
put variables. Each node of the tree is a test on an input variable and depending
on the outcome, the flow continues in one branch of the tree or another until the
flow reaches the leaves where final outputs are given. Regression trees are just an
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extension of decision trees where the target value to predict takes the form of a
continuous value.

• Random Forest [Breiman, 2001]: A classification or regression method that works
by constructing multiple decision trees at training times. That multitude of trees
constitutes an ensemble to produce a final prediction (e.g., in the case of classifica-
tion by voting and in the case of regression by averaging the outputs of all trees).

• Support Vector Machines [Cortes and Vapnik, 1995]: Binary classifiers that map
the training samples to points in another space to maximize the gap between the
two categories. They can also perform non-linear classification using specific ker-
nels which map those inputs to high-dimensional feature spaces where non-linear
decision boundaries can be tackled. Intuitively, an SVM finds a hyperplane that
optimally separates the decision boundary by maximizing the distance between one
class and another. They can also be used for regression with the appropriate modi-
fications (namely, SVRs).

Apart from the classical algorithms, we also briefly explain the modern architectures
that are more popular mainly due to the advent of deep learning:

• Neural Networks (NNs) are the most basic architecture, usually composed of in-
dividual perceptrons which are arranged into multiple layers—usually with non-
linear activation functions interleaved—of varying width. A perceptron [Rosen-
blatt, 1958] is a function f that maps an input x to generate an output z in the
following way:

z = f (x) = σ(wx + b), (2.39)

where w is a vector of weights, b is a bias, and σ is an activation function.

In its most simple form, the activation function is just a threshold and the perceptron
is just a binary classifier. Note that the bias simply shifts the decision boundary
away from the origin. Single-layer perceptrons can be combined together to form
a Multi-layer Perceptron (MLP). This architecture is usually composed of three
layers: the input layer as before, a hidden layer, and an output one. The input
layer remains as before, but the hidden and output ones can be composed by an
arbitrary number of nodes (also named neurons). Each of those nodes is a single-
layer perceptron that uses a non-linear activation function. Deep Neural Network
(NN) (also called fully connected networks) often refer to MLPs with more hidden
layers l. In this general case, the output of a certain neuron i of a layer l can be
defined as follows:

zl
i = σ

l(wl
i ∗ zl−1 + bl

i) (2.40)

Vanilla NNs are capable of learning any non-linear function (they are universal
approximators) given enough network complexity, but they face a number of chal-
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lenges: (1) due to their fully connected nature, they require a huge number of pa-
rameters, (2) are usually harder to train, (3) they lose spatial information of the
input, and (4) there is no built-in mechanism for capturing sequential data.

• Convolutional Neural Networks (CNNs) [LeCun et al., 1998] uses learnable ker-
nel filters to extract relevant features from the inputs by applying the convolution
operation with them. They are especially useful with structured data and in those
cases where spatial information is important. Typically, they are currently applied
to process 2D images (although a convolution can be applied to any dimensional-
ity). For instance, for the 1D case, we can formulate the output of a single neuron
in a CNN as follows:

zl
i = σ

∑︂
k

wl
kxl−1

i−k , (2.41)

where wl
k is a vector of weights, also named the kernel, with k elements. This

kernel is convoluted over the adequate portion of the input xi−k and passed through
a non-linear activation function to compute the output of that neuron. As we can
observe, a CNN shares this kernel across the whole layer and, by doing so, it does
not fully connect each neuron from the previous layer to the next ones. Furthermore,
each layer can have more than one kernel; each one is convoluted individually to
produce a separate output. These outputs are often referred to as feature maps and
are stacked to form a multi-channeled output.

With regards to fully connected NNs, they sport some advantages: (1) as we men-
tioned, by convolving the input with filters of predefined size instead of being fully
connected, they capture spatial features, and (2) by not being fully connected,
but instead sharing kernel weights across the whole input, they require way less
parameters and thus are easier to train and less prone to overfitting.

• Recurrent Neural Networks (RNNs) are specifically designed to deal with sequence
data and learn from temporal information. Although internally they can be shaped
either as traditional NNs or CNNs, they usually add recurrent connections in their
layers, which helps take into account the state from previous sequence elements
or temporal instants. They therefore can capture sequential information and share
parameters across different timesteps (in a similar fashion as CNNs do spatially).

Typically, the most general topology is a fully recurrent RNN where the outputs
of all neurons are connected to the inputs of all for them. Each one multiplies the
current inputs and previous outputs through an activation function. Other relevant
topologies are Gated Recurrent Unit Network (GRU) and the widely spread Long-
short Term Memory (LSTM).

GRUs [Cho et al., 2014] features two gating mechanisms: update and reset. The up-
date gate is responsible for determining the amount of previous information that
will flow to the next step. The reset gate decides which information from the past
timestep to neglect for the current state.
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LSTMs [Hochreiter and Schmidhuber, 1997] features three gating mechanisms: in-
put, output, and forget. This triple gate system allows the architecture to model
long- and short-term dependencies properly.

As a matter of fact, all vanilla RNNs, GRUs, or LSTMs are able to model arbitrary
time dependencies. The problem is, however, computational and numerical: due to
the nature of the training process, the required gradients to learn can easily explode
(turn to infinity) or vanish (go to zero) preventing any learning. GRUs are a step
forward in comparison with vanilla RNNs and the additional gates from LSTMs
help even more to control the information flow to avoid those problems.

2.3.2. Unsupervised Learning

The dataset D contains samples xi without their expected outputs, such as, a set of images
of dogs, cats, and mouses but without labels whatsoever, so D = {x0, ..., xn}. In this
case, we do not know how f behaves, and therefore we cannot learn the output mapping
f (xi) = yi. Given this setting, the goal of unsupervised learning is to learn a function g
that finds patterns or trends in the dataset. For instance, g could be a function that clusters
samples in D based on their similarity according to certain features.

Here, we describe the most common unsupervised learning methods, which are often
employed as pre-processing steps:

• k-Means Clustering: Usually employed as a pre-processing technique to reduce the
number of data points by summarizing them according to their mean expectations.
In other words, it takes a number of samples (n) and aims to partition them in some
sets (k, where k < n) so that the variance within each cluster is minimized. The most
common algorithm is the iterative or naïve k-means [Lloyd, 1982]. In the second
experiment of this thesis, focused on pairs trading, this will be one of the techniques
employed to generate pairs of stocks.

• Principal Components Analysis (PCA) [Pearson, 1901]: Another common pre-
processing technique to reduce the number of features while preserving their vari-
ance. It does so by computing the principal components of the input data and then
using them to perform a change of basis.

It is important to remark Generative Adversarial Networks (GANs) [Creswell et al.,
2018]: An architecture in which two networks (generator and discriminator) compete
(adversarial); the goal of the generator is to produce samples able to fool the discriminator
whilst the discriminator’s role is to detect false examples from the generator. In other
words, given a training set, this architecture is able to generate new data that statistically
resembles the originally provided. Although initially proposed as a form of generative
model for Unsupervised Learning, it has now impacted all paradigms.
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2.3.3. Reinforcement Learning

The dataset D does not even exist beforehand, but new samples xi arrive or are generated
on the fly, such as, the current state of a chess board in a match after a movement has
been performed. A function g which produces an output zi given a sample and modifies
the current state to produce another sample xi+1. At any state or at certain times, we can
measure how good this g is behaving according to a predefined criteria. The goal is to
learn a g that will maximize (or minimize) such criteria.

RL can be typically subdivided into two main categories [Sutton and Barto, 2018]:
model-based and model-free. The first builds an internal model of the possible states,
transitions, and outcomes in the environment; the latter does not use any model but rather
learns actions/transitions directly from experience at the expense of statistical efficiency.

As we will review later, the most common reinforcement learning algorithm for fi-
nance is Q-learning [Watkins and Dayan, 1992] and its deep counterpart Deep
Q-learning [Hester et al., 2018]. Q-learning learns a so-called quality or action-value
function, which describes how good is it to take a particular action in a determined state.
To do so, a table of state-action pairs is kept; this table assigns a scalar reward that defines
the quality of the action at a given state. During training, actions are performed either
randomly or by looking at the best one in the table. By analyizing the reward after each
action, the state-action table can be updated based on the old reward values and the new
ones. Deep Q-learning keeps the same procedure, but makes use of deep neural networks
to represent the state-action table; it is typically applied in problems in which the option
space is so big that defining a state-action table would be too complex and computation-
ally expensive.

Another successful trend of RL is Recurrent Reinforcement Learning (RRL) [Li et al.,
2015]. RRL combines Supervised Learning with Reinforcement Learning typically by
employing a RNN to learn the representation of hidden states for the RL algorithm, which
is normally a deep Q-learning network to obtain the policy that maximizes the reward.

2.3.4. Preprocessing and Feature engineering

Preprocessing and feature engineering are crucial steps in the data analysis and ML
pipeline, aimed at preparing the data for effective analysis and model building. These
steps involve various techniques and methods to clean, transform, and extract relevant
features from the raw data, which can significantly impact the performance and accuracy
of the models.

Preprocessing involves cleaning and preparing the data before it is used for analysis
or modeling. This step typically includes handling missing values, dealing with outliers,
normalizing or scaling the data, and addressing any data quality issues. Missing values
can be imputed or removed, outliers can be detected and treated, and data quality issues
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such as inconsistencies or errors can be addressed to ensure that the data is reliable and
accurate for analysis. Proper preprocessing can help to reduce noise in the data and ensure
that the data is in a suitable format for further analysis or modeling.

Feature engineering involves extracting relevant features or variables from the raw
data that can be used as inputs for ML models. This step aims to identify the most in-
formative and discriminative features that can capture the underlying patterns in the data.
Feature engineering can involve various techniques, such as dimensionality reduction,
feature selection, and feature extraction. Dimensionality reduction techniques, such as
PCA, can reduce the number of features while retaining the most important information
in the data, but may be also accomplished using autoencoders. While autoencoders, a
class of NN design, need huge datasets and a lot of computer resources, PCA is a uni-
versal ML technique. Large and non-linear data are amenable to autoencoders. Feature
selection techniques, such as Recursive Feature Elimination (RFE), can identify the most
important features based on their contribution to the model’s performance. Feature ex-
traction techniques, such as extracting statistical or domain-specific features, can create
new features from the existing data that may provide additional insights for modeling.

Effective preprocessing and feature engineering are essential for improving the perfor-
mance and interpretability of ML models. Properly cleaned and transformed data with rel-
evant features can help to reduce noise, improve model stability, and enhance the model’s
ability to capture underlying patterns in the data. Additionally, feature engineering can
also lead to more interpretable models by selecting or creating features that are meaning-
ful and interpretable in the context of the problem domain.

It’s important to note that preprocessing and feature engineering are iterative processes
that may require experimentation and fine-tuning. Different techniques and methods may
be applied to different datasets or problem domains, and the effectiveness of these steps
may depend on the specific characteristics of the data and the modeling objectives. Care-
ful consideration of the data and domain knowledge is necessary to ensure that the pre-
processing and feature engineering steps are appropriate for the specific problem at hand
and can lead to meaningful and accurate results in the subsequent analysis or modeling
stages.

Empirical Mode Decomposition (EMD)

EMD is a data-driven signal processing technique that was introduced by [Huang et al.,
1998] as a method for analyzing non-linear and non-stationary data. EMD has gained
significant attention in various fields, including finance, due to its ability to adaptively
decompose signals into intrinsic mode functions (IMFs) that capture the underlying os-
cillatory patterns of the data.

The fundamental concept of EMD is to decompose a signal into a finite set of IMFs,
which are functions that have specific time scales of oscillations. These IMFs are ex-
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tracted directly from the data itself without relying on any predefined basis functions
or mathematical assumptions. The decomposition process is performed in a data-driven
manner, with IMFs extracted through a series of iterative sifting steps that isolate different
frequency bands present in the data.

One of the key advantages of EMD is its ability to handle non-linear and non-stationary
data, which are common characteristics of financial time series data. Financial markets are
known to exhibit complex and dynamic patterns that change over time, making traditional
linear methods inadequate. EMD can effectively capture the local oscillatory patterns and
nonlinearities present in financial data, making it suitable for financial market forecasting.

EMD also has the property of providing a complete decomposition of a signal, mean-
ing that the original signal can be exactly reconstructed by summing all the IMFs and a
residual component. This property allows for a detailed analysis of the different frequency
bands present in the data, which can provide insights into the underlying dynamics of fi-
nancial markets.

Furthermore, EMD does not require any assumptions about the data distribution, mak-
ing it a non-parametric method that can be applied to a wide range of financial data with-
out the need for complex model assumptions. This flexibility makes EMD particularly
useful for analyzing financial time series data, which often exhibit complex and changing
dynamics that may not be fully captured by traditional parametric methods.

Despite its advantages, EMD also has some limitations, including the potential for
mode mixing, which is the phenomenon where different frequency bands may be mixed
together in a single IMF. This can occur when the data contains overlapping frequency
bands that cannot be fully separated by the sifting process. Additionally, the EMD process
can be computationally intensive and may require careful parameter selection to obtain
accurate results.

In conclusion, while EMD is not classified as a ML algorithm, it can be combined with
ML techniques to enhance predictive modeling or forecasting. For example, EMD can be
used as a preprocessing step to decompose a financial time series data into IMFs, which
can then be used as input features for ML models. This combination of EMD with ML
can leverage the strengths of both approaches, with EMD extracting intrinsic oscillatory
components from the data, and ML algorithms learning patterns from the decomposed
IMFs for prediction or classification tasks.

2.4. Performance Criteria

As we will see in Section 4, about Methods, one of the most interesting areas of analysis
has to do with the degree of heterogeneity of the performance criteria measures used by
researchers in the last five years. The utilization of different measures of return has coex-
isted with diverse measures of dispersion or volatility and, in some other cases, with ratios
of joint measure of risk adjusted return. This is one of the reasons why the reproducibility
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of this type of research might be questioned. In the next lines we will make a review and
description of the main indicators of performance used in the literature of ML applica-
tions to asset management: returns, risk/returns ratios, goodness of fit/prediction, risk of
loss measures, statistical significance, and accuracy of predictions.

2.4.1. Returns

Average returns appear as the first type of performance measure. Depending on the data
frequency, we can find daily, monthly and annual returns as measures of profitability of
the different investment strategies the authors propose using ML applications.

• As summary measure of return we can define the annualized rate of return as the
Compounded Annual Growth Rate (CAGR) of the portfolio value between two
periods separated n years:

CAGR =
[︃Pt+n

Pt

]︃(1/n)

− 1 (2.42)

Pt being the investment value in period t and n the number of years between the two
periods we want to compare.

• Sometimes, the returns are measured in terms of Excess Returns. That means that
the portfolio return is measured in terms of comparison with the risk-free asset or,
in general, a benchmark asset that is used as reference. The arithmetic excess return
can be expressed as follows:

RE
A = Rp − Rb (2.43)

where Rp is the portfolio return and Rb the benchmark return. We can also define
the excess return as a geometric measure:

RE
G =

Rp + 1

Rb + 1
− 1 (2.44)

2.4.2. Risk/Return Ratios

In many cases, the authors who propose new ML techniques in order to find a better fitting
or prediction capacity in financial strategies have opted by considering the risk involved
in achieving certain returns. Since the 1960s, investors and researchers have known how
to quantify and measure risk with the variability of returns, basically using ratios, but no
single measure actually looked at both risk and return together.

• The most popular ratio to measure portfolio performance is the SR. Conceived by
Bill Sharpe, this measure closely follows his work on the CAPM and, by extension,
uses total risk to compare portfolios to the Capital Market Line (CML). It compares
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the portfolio return with the risk involved in achieving this return, in form of total
risk, measured through the return standard deviation, as follows:

SR =
Rp − Rb

σp
(2.45)

σp being the standard deviation of portfolio returns.

• Differential Return (DR), by contrast, results in an excess return for the portfolio
manager that considers risk in the form of standard deviation (the variability of past
returns). It is a sort of a modified Sharpe ratio. Here is the formula:

DR = Rp −

[︃Rb − RFR
σRb

∗ σp

]︃
− RFR (2.46)

where RFR is the risk-free rate of return.

• When we use the systematic risk measured by the CAPM, instead of total risk, we
are referring to Treynor Ratio (TR):

TR =
Rp − Rb

βp
(2.47)

where βp is the covariance between portfolio returns and market returns according
to CAPM.

• We can find another very popular ratio, the CR, which can be defined as the ratio
between the CAGR and its Maximum Drawdown (MDD) which, at the same time,
measures the maximum observed loss from a peak to a trough of a portfolio, before
a new peak is attained, and can be considered as an indicator of a downside risk
over a specified time period.

CR =
CAGR
MDD

(2.48)

A very similar approach is achieved by the Sterling Ratio (STR) and the Sortino
Ratio (SNR).

• Finally, the Certainty Equivalent Return (CEQ) considers the risk-free return for an
investor with quadratic utility and risk aversion parameter λ compared to the risky
portfolio and is given by the following equation:

CEQ = (µ − RFR) −
λ

2
σ2 (2.49)

2.4.3. Goodness of Fit/Prediction

The statistical goodness of fit of a model defines how well it fits a collection of data. The
disparity between actual values and predicted values under the model in issue is often
summarized by goodness of fit measures. Very similarly, goodness of prediction refers
to discrepancy between observed values and the values predicted by the model. Every
goodness of fit statistic can be defined/used for prediction purposes, and vice versa.
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• For linear regression models, R-squared is a goodness-of-fit metric. This statistic
shows the percentage of variance in the dependent variable that the independent
factors account for when taken jointly. The strength of the link between your model
and the dependent variable is measured by R-squared, which is defined between 0
and 1. It can be calculated as follows:

R2 = 1 −
∑︁

i(yi − yî)2∑︁
i(yi − ȳ)2 (2.50)

where yi is the actual i-observation of dependent variable y, yî its estimated value,
and ȳ its mean value. When the estimated values are substituted by the predicted
ones, we are talking about Out-of-the-Sample R Squared (OOS R2), a measure of
goodness of prediction.

• Mean Absolute Percentage Error (MAPE) is one of the most commonly used perfor-
mance indicators to measure forecast accuracy. It can be defined as the sum of the
individual absolute errors divided by the observed value (each period separately).
It is the average of the percentage errors.

MAPE =
1
n

n∑︂
i=1

⃓⃓⃓⃓⃓
yi − yî

yi

⃓⃓⃓⃓⃓
(2.51)

where n is the number of forecast periods. It is a quite well-known indicator among
researchers, despite being a poor accuracy indicator. As it can be seen in the for-
mula, MAPE divides each error individually by the observed value, so it is skewed.

• Mean Absolute Error (MAE) is a very useful performance indicator to measure
forecast accuracy. As the name implies, it is the mean of the absolute error.

MAE =
1
n

n∑︂
i=1

|yi − yî| (2.52)

It solves the problem of skewness of the previous indicator but, in return, it is not
scaled, so it depends on the magnitude of the dependent variable.

• Root Mean Squared Error (RMSE) is a frequently used measure of the differences
between values (sample or population values) predicted by a model or an estimator
and the values observed.

RMSE =

⌜⎷
1
n

n∑︂
i=1

(yi − yî)2 (2.53)

The RMSE serves to aggregate the magnitudes of the errors in predictions for var-
ious data points into a single measure of predictive power. RMSE is a measure of
accuracy, to compare forecasting errors of different models for a particular dataset
and not between datasets, as it is scale-dependent. Actually, many algorithms (es-
pecially for ML) are based on the Mean Squared Error (MSE), which is directly
related to RMSE.

MSE =
1
n

n∑︂
i=1

(yi − yî)2 (2.54)
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2.4.4. Risk of Loss Measures

Risk of loss measures are typically used by firms and regulators in the financial industry
to gauge the amount of assets needed to cover possible losses. But they are also very com-
mon in financial research to compare the risk associated with market and credit positions,
mainly in the Risk Management discipline.

• Value at Risk (VaR) is a metric for calculating investment risk. It calculates how
much a set of assets would lose (with a specified probability) in a specific time
period, such as a day, under typical market conditions. According to [Abad et al.,
2014], the VaR is thus a conditional quantile of the asset return loss distribution. Let
r1, r2, r3, ..., rn be identically distributed independent random variables represent-
ing the financial returns. Use F(r) to denote the cumulative distribution function,
F(r) = Pr(rt < r | Ωt−1) conditionally on the information set Ωt−1 that is available
at time t − 1. Assume that rt follows the stochastic process:

rt = µ + ϵt

ϵt = ztσt zt ∼ iid(0, 1) (2.55)

where σ2
t = E(z2

t | Ωt−1) and zt has the conditional distribution function G(z), G(z) =
Pr(zt < z | Ωt−1). The VaR with a given probability α ∈ (0, 1), denoted by VaR(α),
is defined as the α quantile of the probability distribution of financial returns:

F(VaR(α)) = Pr(rt < VaR(α)) = α or

VaR(α) = in f (v | Pr(rt ≤ v) = α) (2.56)

This quantile can be estimated in two different ways: (1) inverting the distribu-
tion function of financial returns, F(r) and (2) inverting the distribution function of
innovations G(z), in which case is also necessary to estimate σ2

t .

VaR(α) = F−1(α) = µ + σtG−1(α) (2.57)

• Conditional Value at Risk (CVaR), also known as Expected Shortfall (ES), is a risk
measure derived from the previous one. The ES at the α% level is the expected
return on the portfolio in the worst α% of cases. ES is an alternative to VaR that is
more sensitive to the shape of the tail of the loss distribution.

The estimation of risk measures has recently gained a lot of attention, partly because of
the backtesting issues of VaR and CVaR related to elicitability. As [Pitera and Schmidt,
2018] mention, "once the parameters of a model need to be estimated, one has to take
additional care when estimating risks". The typical estimations approaches, very often,
introduce a bias which leads to a systematic underestimation of risk.
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2.4.5. Statistical Significance

Many times, researchers are interested in checking whether the variables, factors or char-
acteristics included in the models they propose are statistically significant. In order to
achieve this result, they make the usual statistical hypothesis tests based in the t-student
distribution. According to this, t-student statistic and p-value are the two most common
measures to check the statistical significance.

A result has statistical significance in hypothesis testing when it is extremely im-
probable to have occurred given the null hypothesis. The significance level of the study
rejecting the null hypothesis, represented by α, is the probability of the study rejecting the
null hypothesis if this is true.

• Most times, hypothesis testing of statistical significance can be run using a t-student
distribution. The t-statistic can be expressed this way:

t =
X − µ
σ̂/
√

n
(2.58)

where X is the sample mean from a sample x1, x2, . . . , xn, of size n, σ̂ is the estimate
of the standard deviation of the population, and µ is the population mean. When the
t-statistic value is higher, in absolute value, than the critical value of the t-student
distribution given a significance level α, the null hypothesis can be rejected, and it
can be affirmed than the coefficient or loading is statistically significant, and the
variable, factor or characteristic can be considered as relevant.

• The p-value in hypothesis significance testing is the probability of getting test find-
ings that are at least as extreme as the actual results, assuming that the null hy-
pothesis is valid. A tiny p-value indicates that under the null hypothesis, such an
extreme observed result would be very implausible. P-values of statistical tests are
commonly reported in academic articles in a variety of quantitative domains.

p-value = Pr(T ≥ t|H0) (2.59)

for a one-sided left-tail test, being H0 the null hypothesis. In a formal significance
test, the null hypothesis H0 is rejected if the p-value is less than a predefined thresh-
old value α, which is referred to as the significance level. The meaning is equivalent
to that in which the t-student statistic is higher than the critical value at a given sig-
nificance level.

2.4.6. Accuracy of Predictions

In the case of price forecasting and algorithmic trading techniques, performance of the
selected classifiers is evaluated using different evaluation metrics. Since the problem is a
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multi-class classification problem and the distribution of classes is not uniform, therefore
it is very common to use accuracy primary classification metrics, namely, precision, recall,
and the F-measure.

• Accuracy is a classification metric for evaluating classifiers and can be expressed
as:

Accuracy =
# correct predictions
Total # predictions

(2.60)

• Precision is the skill of the model to classify samples accurately and can be calcu-
lated as follows:

Precision =
TP

TP + FP
(2.61)

where TP is the true-positive rate and FP is the false-positive rate of the algorithm.

• Recall shows the skill of the model to classify the maximum possible samples,
and is represented by the following equation:

Recall =
TP

TP + FN
(2.62)

where FN is the false-negative rate of the algorithm.

• F-measure describes both precision and recall and can be represented as follows:

F-measure = 2 ·
Precision · Recall
Precision + Recall

(2.63)
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3. RELATED WORKS

3.1. Methodology

The revision of literature has been made classifying the papers according to four financial
areas. The three first areas are the financial disciplines we have used in previous sections:
asset pricing/value investing, price forecasting and portfolio management. The fourth one,
algorithmic trading, might be classified, from a conceptual point of view, as an interme-
diate discipline between portfolio management—since it can be considered as an special
type of trading strategy and price forecasting—as this trading strategy has as priority goal
to forecast the future direction of prices. Nevertheless, the growing relevance of this new
discipline, not only at a practitioner level, but also between the researchers, has driven to
consider it as an independent area. Given its special characteristics, as we will expose in
Section 3.3, this application field can be considered as one of the most promising financial
areas to be supported by ML applications.

However, the usual order we follow in the theoretical background chapter (Chapter
2) is going to be slightly altered in this chapter to adapt to the nature of the empirical
testing exercises that will be shown in the Chapter of Methods (Chapter 4). Therefore,
we will start with the review of papers related to Price Forecasting, with a special section
dedicated to those focused on Pairs Trading strategy. Next comes Algorithmic Trading
discipline, very related to this latter one. Following that, we will cover Value/Factor
Investing, and Portfolio Management papers. Finally, we will include a very short section
with a summary of review papers focused in the four disciplines previously analyzed.

To identify relevant journal articles dealing with ML applications in the four asset
management disciplines mentioned above, we followed a search process in EBSCOhost,
Google Scholar, Science Direct, SpringerLink and Wiley Online Library databases for the
period of 2017–2022 using combinations of keywords “machine learning”, “deep learn-
ing”, “neural networks”, “asset management”, “portfolio management”, “asset pricing”,
“asset returns”, “stocks”, “finance”, “price forecasting”, and “algorithmic trading”. The
range of our survey spanned not only journals and conferences, but also masters and PhD
theses, book chapters and arXiv papers. Nevertheless, when the number of papers was
sufficiently large in some of the financial areas under study, a filter of impact index was
applied, and only journals in the first two quartiles were considered. Furthermore, we only
chose the articles that were written in English. After searching through the databases, we
reached a list of around 139 identified papers.

After this first preselection, each paper was assessed on quality. This was achieved
by using a variety of quality indicators as the citation count and the impact factor of the
journal. The arXiv and SSRN databases were also searched to ensure that the most up-
to-date research papers were included in the sample. After this second filter we reached a
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list of 97 identified journals (see Table 3.1). Finally, and after the assessment of each one
of the papers, we focused our research and commentaries in a final number of 79 articles,
also summarized in the different tables throughout the chapter.

Table 3.1: Recurring themes and reference count from the literature review.

Themes References
Price Forecasting 31
Algorithmic Trading 17
Value Investing 18
Portfolio Management 31
TOTAL 97

3.2. Price Forecasting

Return and price forecasting play a main role in modern portfolio theory, in asset pric-
ing models and, from a practical point of view, in the asset management industry. As it
was pointed out by [Gu et al., 2020b], because the primary objective of asset pricing is
to understand the behavior of risk premiums, return prediction is economically signifi-
cant. In academic finance, the terms expected return and risk premium have been usually
interchanged.

As [Henrique et al., 2019] pointed out, the challenge of predicting asset prices and
the search for models and profitable systems is still attractive for both the academia and
the financial professionals despite the strong presence of the efficient market hypothesis
(EMH) by [Malkiel and Fama, 1970], which defends that most of the financial asset prices
follow, statistically, a random walk process, and therefore are almost unpredictable (see
section 2.2.2).

The recent literature facing the use of ML techniques has been summarized in Ta-
ble 3.2 and can be divided, roughly, into two levels. In the first level, the new ML
technology has been applied to enhance forecasts made using traditional inputs, such
as fundamental accounting data, macroeconomic data, or technical indicators. In other
words, improving the results of econometric and time-series analysis using fundamental
and technical approaches. In the second level, ML has been used to extract new inputs
form alternative data, such as sentiments from news data.

Within the first category, we can cite [Kumar et al., 2018], where the authors anal-
ysed various SL techniques for stock market prediction. Specifically, they consider SVM,
Random Forest (RF), KNN, Naive Bayesian Classifier (NV), and Softmax. Five models
were developed and their performances compared in predicting stock market trends. Ac-
cording to their results, the RF algorithm performed the best for large datasets, while NV
showed the best performance for small datasets. Moreover, they found that the reduction
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of technical indicators reduces the accuracy of each algorithm.

[Lee and Kang, 2020] proposed a novel method for training NNs to forecast the future
prices of stock indexes. The main contribution of their work is to use only the data of in-
dividual companies -instead of index data- to obtain sufficient amount of data for training
NN for the prediction of stock indexes. Their experiments, focused on S&P 500, show
that NN trained this way outperform NN trained on stock index data. Specifically, they
obtain a 5-16% annual return before transaction costs during the period 2006-18.

To evaluate the predictive capacity of certain popular technical indicators in the tech-
nological NASDAQ index, in [Cervelló-Royo and Guijarro, 2020] the authors compared
the performance of four ML algorithms: RF, Deep Feedforward Neural Network (DFNN),
Gradient Boosted Regression Tree (GBRT) and Generalized Linear Model (GLM). The re-
sults show that the RF algorithm beats the other ML algorithms, forecasting the market
trend 10 days ahead with an average accuracy level of 80%.

[Nabipour et al., 2020] seeked the reduction of risk in trend prediction using ML and
Deep Learning (DL) techniques, and applying 11 ML algorithms to data from the Tehran
stock exchange. They used DT, RF, Adaptive Boosting (AB), eXtreme Gradient Boosting
(EGB), SVM, NV, KNN, Logistic Regression (LR) and Artificial Neural Network (ANN)
as ML algorithms and RNN and LSTM as DL ones. The analysis findings show that RNN
and LSTM beat other prediction models for continuous data by a significant margin.

[Zhong and Enke, 2019] focused their analysis on daily stock market returns, specif-
ically in the SPDR S&P ETF prices. To anticipate the daily direction of future stock
market index returns, Deep Neural Networks (DNNs) and ANNs were applied to the full
preprocessed but untransformed dataset, as well as two datasets transformed through prin-
cipal component analysis (PCA). The simulation findings demonstrate that DNNs with
two PCA-represented datasets, as well as numerous other hybrid ML methods, have con-
siderably greater classification accuracy than those with the full untransformed dataset.

[Shen and Shafiq, 2020] propose a solution for the Chinese stock market prices pre-
diction which consists of a feature engineering along with a fine-tuned system based on
a LSTM model. The feature engineering applied are the Feature Expansion (FE) ap-
proaches with RFE, followed by PCA. This proposed solution outperforms the ML and
DL-based models in similar previous works.

In [Nikou et al., 2019], the authors want to examine how well ML models can forecast
the daily close price data of the iShares MSCI United Kingdom ETF. Four models of ML
algorithms are used in the prediction process. The results indicate that the RNN and
LSTM DL methods are better in prediction than the other ML methods, and the SVM
method is in the next rank with respect to ANN and RF methods.
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Table 3.2: Selection of papers for price forecasting. Mean Absolute Error (MAE), Mean Standard Er-
ror (MSE), Maximum Drawdown (MDD), Directional Accuracy (DA), Mean Absolute Percentage Error
(MAPE).

Author Target Market Method
Performance
criteria

[Kumar et al., 2018] Selected Indian stocks
SVM, RF, KNN, NB,
Softmax

Accuracy, F-measure

[Lee and Kang, 2020] S&P 500 stocks MLP, CNN Total return, MDD
[Cervelló-Royo and Gui-
jarro, 2020]

Nasdaq 100 stocks GBM, RF, CNN Average accuracy ratio

[Nabipour et al., 2020] Selected Indian stocks
DT, RF, KNN, LR, ANN,
RNN, LSTM

Accuracy, F-measure

[Zhong and Enke, 2019] S&P 500 ETFs DNN, FFNN MSE
[Shen and Shafiq, 2020] Selected Chinese stocks CNN, LSTM Overall accuracy

[Nikou et al., 2019] iShares MSCI UK ETFs
ANN, SVM, RF, RNN,
LSTM

MAE, MSE, RMSE

[Minh et al., 2018] S&P 500 index RNN, TGRU, LSTM Overall accuracy
[Ding et al., 2015] S&P 500 index WB+CNN Total return
[Nava et al., 2018] S&P 500 index EMD+SVR MAE

[Akiyoshi, 2020] S&P 500 index EMD+ANN,SVM
MAPE, DA, Sharpe ratio,
MDD

[Srijiranon et al., 2022] Thailand index PCA+EMD+LSTM F1-Score, DA
[Shi and Zhuang, 2019] Hong Kong index SVM, ANN MAPE

[Khan et al., 2020a] Selected US stocks
GNB, SVM, LR, MLP,
KNN, GBM, RF

Accuracy, precision, re-
call, F-measure

[Sarmento and Horta,
2020]

Commodity-linked ETFs OPTICS, LSTM Sharpe ratio, MDD

[Krauss, 2017] S&P 500 constituents DNN, GBRT, RF
Sharpe ratio, Calmar
ratio, MDD, VaR

[Kim and Kim, 2019] S&P 500 constituents Deep Q-Network
Sharpe ratio, Calmar
ratio, MDD

[Han et al., 2021] Selected US stocks
k-means, DBSCAN, Ag-
glomerative Clustering

Sharpe ratio, Calmar
ratio, MDD

[Nava et al., 2018] provide a multistep-ahead forecasting approach that combines
SVR with EMD. This approach is founded on the notion that the forecasting work is
made simpler by using the time series that have been deconstructed using EMD as an
input for SVR. The results of this technique are evaluated in comparison to benchmark
models that are often cited in the literature. The findings show that the EMD and SVR
combination can forecast the S&P 500 Index from 30 seconds to 25 minutes in advance,
greatly outperforming benchmark models. Long-term horizons are better predicted by
the low-frequency components, whereas short-term horizons are better predicted by the
high-frequency components.

The S&P 500 Index prices were also predicted using ANN and SVM algorithms in the
study by [Akiyoshi, 2020], and the predictive models were evaluated using three metrics:
MAPE, DA, and trading simulation, which can be considered the real contribution of this
work. The outcome revealed that SVM performed better than ANN in each of the five
predictions. But, curiously, the trading simulation revealed that ANN and SVM did not

48



reliably anticipate profits, which raises the possibility that they may not be appropriate for
doing so in the real world.

An in-depth analysis of the most recent soft computing techniques is provided in the
work by [Shi and Zhuang, 2019]. The samples are used to estimate the values of two
representative indices and one stock on the Hong Kong market using a variety of ML
models, including single and hybrid models. Different models’ prediction abilities are
assessed and contrasted. Investigated are the effects of the training sample size and stock
patterns (namely momentum and mean reversion) on model prediction. The results show
that models built on ANNs have the best prediction accuracy. It was also discovered that
the pattern and volatility of equities should be considered while determining the ideal
training sample size. When stocks show a transition between mean reversion and mo-
mentum trend, there might be significant forecast mistakes.

Within the second category, we can cite [Minh et al., 2018]. This study is focused on
the financial news as potential factor which causes fluctuations in stock prices. The main
contribution of the paper is to propose a novel framework to forecast directions of stock
prices by using both financial news and sentiment dictionary, specifically a novel two-
stream GRU and Stock2Vec, a sentiment word embedding trained on financial news
dataset.

[Ding et al., 2015] suggested a DL method for event-driven stock market prediction.
Events are first retrieved from news content and represented as dense vectors using an
Neural Tensor Network (NTN). Second, a Deep Convolutional Neural Network (DCNN)
is utilized to predict both short- and long-term effects of events on stock price fluctu-
ations. When compared to state-of-the-art baseline approaches, experimental findings
demonstrate that their model can enhance S&P 500 index prediction and individual stock
prediction by nearly 6%.

[Khan et al., 2020a] utilized algorithms to examine the influence of social media and
financial news data on stock market forecast accuracy over a ten-day period. To increase
prediction performance and quality, feature selection and spam tweets reduction are car-
ried out on the data sets. Finally, DL is implemented to achieve maximum prediction ac-
curacy, and certain classifiers are ensembled. The highest forecast accuracies of 80.53%
percent and 75.16%, respectively, were reached utilizing social media and financial news,
according to their findings. RF classifier is found to be consistent and highest accuracy of
83.22% is achieved by its ensemble.

Similarly, [Khan et al., 2020b] sought to know whether public opinion and political
environment in Pakistan on any given day may influence stock market patterns in indi-
vidual firms or the whole market. Ten ML algorithms were applied to the final datasets
to predict the stock market future trend. The experimental findings suggest that the senti-
ment feature increases ML algorithm prediction accuracy by 0–3%, whereas the political
situation feature improves algorithm prediction accuracy by around 20%. The Sequential
Minimal Optimization (SMO) algorithm was identified to have the best performance.
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To anticipate the closing price of the Thai stock market one step ahead of time, a hy-
brid prediction model called PCA-EMD-LSTM that combines PCA, EMD, and LSTM
was developed by [Srijiranon et al., 2022]. Based on financial and economic news uti-
lizing FinBERT, news sentiment analysis was also used in this study to enhance the per-
formance of the proposed framework. Data on the Thai stock market’s price acquired
between 2018 and 2022 was evaluated, and a number of statistical indicators served as the
assessment criterion. The collected findings demonstrated that, when compared to stan-
dard approaches for forecasting stock market price, the suggested framework produced
the best results. Adopting news sentiment analysis can also improve the performance of
the initial LSTM model.

With the work by [Han et al., 2021] we initiate the review of Price Forecasting studies
focused in the popular trading strategy of pairs trading, also known as statistical arbitrage.
As we explained in Section 2.2.2, although it may not seem like an investment strategy
that can be categorized under the heading of price forecasting, it fully falls under it. The
difference is that, unlike pure price prediction strategies, pairs trading models the distance
between the prices of two financial assets, considering that if they have maintained a close
relationship in the past, any deviation that occurs will be temporary and exploitable in the
future from an investment perspective. In their study, [Han et al., 2021] select stock pairs
by combining firm characteristics as well as price information, in contrast to typical pairs
trading algorithms that identify pairs based on return time series. Firm characteristics are
made public in order to give crucial details for pair identification and significantly raise
the effectiveness of the trading method for pairs. The long-short portfolio created using
the agglomerative clustering generates a statistically significant annualized mean return
of 24.8% and a Sharpe ratio of 2.69 when applied to the US stock market from January
1980 to December 2020. After taking transaction costs into consideration, the technique
is still profitable.

In [Sarmento and Horta, 2020], the authors propose the use of UL algorithm called
OPTICS in order to find profitable pairs. The findings show that the recommended strat-
egy can perform better than the typical pairs search techniques, with an average portfolio
Sharpe ratio of 3.79 as opposed to 3.58 and 2.59 achieved by conventional methods. They
also present a forecasting-based trading approach that can reduce the times of portfolio
drop by 75%. But doing so results in a decline in total profitability. An LSTM, an LSTM
Encoder-Decoder, and an Autorregressive Integrated Moving Average (ARIMA) model
are used to evaluate the suggested approach. The results of this study are simulated using
5-min price data from a collection of 208 commodity-linked ETFs during various time
periods between January 2009 and December 2018, accounting for transaction expenses.

In the same context of statistical arbitrage, the paper by [Krauss, 2017] implements
and evaluates the performance of DNNs, GBRTs, RFs, and various ensembles of these
approaches. After removing survivor bias, each model is trained using lagged returns for
all stocks in the S&P 500. Daily one-day-ahead trading signals were created from 1992
to 2015 based on the chance that a stock will outperform the overall market. The center
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of the ranking, which is less clear, is censored by converting the greatest k probability
into long positions and the lowest k probabilities into short positions. Empirical results
are encouraging. Out-of-sample returns greater than 0.45% are produced using a straight-
forward, equal-weighted ensemble (ENS1) composed of one DNN, one GBRT, and one
RF.

Finally, we can refer to the work by [Kim and Kim, 2019], who investigated how
Deep Reinforcement Learning (DRL) —particularly with the deep Q-network— may be
used in a Pairs Trading scenario and found that the outcomes were good when compared
to more conventional approaches. The S&P 500 Index stocks that integrate the pairs are
chosen using a traditional cointegration test.

3.3. Algorithmic Trading

It is not easy to classify this discipline. Although it might be classified within one of
the areas aforementioned, mainly price forecasting, we have thought that it has some
characteristics that may justify to be defined into an independent category.

Algorithmic Trading can be defined as “buy-sell decisions made solely by algorithmic
models”, as cited in [Ozbayoglu et al., 2020]. These decisions can be based on some
simple rules, mathematical models, optimized processes or, as in the case of ML and DL,
highly complex function approximation techniques. Market making, inter-market spread-
ing, arbitrage, and pure speculation such as trend following are examples of methods
employed in algorithmic trading. Many fall into the category of high-frequency trading
(HFT), which is characterized by high turnover and high order-to-trade ratios.

In the case of trend-following methods, many times algorithmic trading applications
are connected to price forecasting methods. Consequently, most price forecasting models
that generate buy-sell signals based on their forecast are likewise classified as algo-trading
systems. Obviously, we will refrain from analyzing those papers focused on price fore-
casting again. However, most of times algo-trading is coupled with technical analysis,
which means that, from a conceptual point of view, this discipline is poorly connected
with finance theory and financial economics. Nonetheless, and given the great symbiosis
between algorithmic systems and ML techniques, we will make a very brief review of
the most interesting papers within this emerging and very popular field among financial
market practitioners. This review has been condensed in Table 3.3.

[Sezer et al., 2017] proposed a stock trading system based on optimized technical
analysis parameters for creating buy-sell points using genetic algorithms. The optimized
parameters were then used to a Deep Multi-layer Perceptron (DMLP) for buy-sell-hold
predictions. Daily prices of Dow 30 stocks were used. The results show that this method
enhances the stock trading performance.

[Troiano et al., 2018] employed a LSTM based on market indicators, in particular,
the Moving Average Convergence and Divergence (MACD) signals, to forecast the trend
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Table 3.3: Selection of papers for algorithmic trading.

Author Target Market Method
Performance
criteria

[Sezer et al., 2017] Dow 30 stocks MLP-ANN Overall accuracy
[Troiano et al., 2018] Dow 30 stocks LSTM Overall accuracy

[Sirignano and Cont,
2018]

Selected US stocks LSTM Overall accuracy

[Tsantekidis et al.,
2017c]

Selected Finnish stocks CNNs Recall, precision, F1

[Sezer and Ozbayoglu,
2018]

World ETFs CNNs Annualized returns

[Niño et al., 2018] Selected US stocks CNNs Directional accuracy
[Tsantekidis et al.,
2017b]

Selected Finnish stocks LSTM Recall, precision, F1

of the Dow 30 stocks’ daily prices. Using also LSTM, [Sirignano and Cont, 2018] pro-
posed a novel method that used limit order book flow and history information for the
determination of the stock movements. The same approach can be found in [Tsantekidis
et al., 2017c].

Due to their effectiveness in image classification problems, several research papers
have focused on using CNNs-based models. To do so, however, the financial input data
have to be converted into images, which demands some creative preprocessing. It is
the case of [Sezer and Ozbayoglu, 2018], who presented a new method for converting
financial time-series data containing technical analysis indicator outputs to 2-dimensional
images and classifying these images using CNNs to derive trading signals. Using the
Limit Order Book Data and transaction data, [Niño et al., 2018] encoded financial time-
series into an image-like representation, and get a very good performance in terms of
directional accuracy. [Tsantekidis et al., 2017b] proposed a novel method that uses the
last 100 entries form the limit order book to create a 2-dimensional image for the stock
price prediction.

3.4. Value/Factor Investing

This financial area is very wide and can be considered as the starting point for the rest
of interest areas within the asset management discipline. We will consider in this section
papers and works regarding the search and location of factors, characteristics, patterns in
securities prices which allow the investor to understand the drivers of asset prices, the way
the expected returns compensate the assumption of risks, and how to outperform the mar-
ket. The selection has been summarized in Table 3.4. The logic behind value/factor
investing, in general, is that a firm’s financial performance is influenced by fundamen-
tals/factors, whether latent and unobservable or connected to fundamental characteristics.

Despite being a decades-old academic topic, value/factor investing has gained pop-
ularity in line with the emergence of equity traded funds (ETFs) as investment vectors.
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In the decade of 2010, both gained traction. The mutually advantageous feedback loop
between practical financial engineering and academic research has encouraged both sides,
which is not surprising.

Nevertheless, in the realm of traditional quantitative techniques, researchers have de-
veloped in recent years more sophisticated approaches to organize the so-called “factor
zoo” and, more crucially, to detect false anomalies and evaluate alternative asset pricing
model specifications due to the ever-increasing number of factors and their relevance in
asset management. Hundreds of possible candidates have emerged from the search for
factors that explain the cross-section of expected stock returns, as noted by [Cochrane,
2011] and more recently by the references [Harvey and Liu, 2019], [David McLean and
Pontiff, 2016], and [Hou et al., 2017].

For instance, [Harvey and Liu, 2019] used bootstrap on orthogonalized factors in their
regressions to solve the problem of correlations among predictors. [Fama and French,
2018] compared asset pricing models through squared maximum Sharpe ratios, whilst
[Giglio and Xiu, 2019] estimated factor risk premia using a three-pass method based on
principal component analysis. It is obvious that there does not exist an infallible method,
but the majority of new contributions in the field are interested in the search for robustness.

In all the previous cases, the decomposition of returns has been made using linear
factor models, of course because of its simple interpretation. Nevertheless, beyond the
problem of robustness of the estimations, there has been an eternal debate about whether
firms returns are explained by their exposure to macroeconomic factors or simply by their
intrinsic characteristics. Characteristics, rather than factor loadings, explain a higher share
of variation in predicted returns, according to [Chordia et al., 2019]. On the other hand,
adopting a theoretical model in which certain agents’ needs are sentiment-driven, [Kozak
et al., 2018] reconciles factor-based theories of risk premia.

In all this immense sea of different approaches to the factor investing discipline,
and given the exponential increase in data availability, ML techniques make their appear-
ance with the aim to help avoid the mentioned limitations of classical approaches. As we
mentioned in Chapter 2, the work from [Gu et al., 2020b] provided a detailed descrip-
tion of ML tools for empirical asset pricing and give their justification for the growing
role of ML in financial research. They perform a comparative analysis of ML methods
for “the canonical problem of empirical asset pricing: measuring asset risk premiums”.
The methods they compare are, between others, generalized linear models, dimension re-
duction tools, Boosted Regression Trees (BRTs), and RFs. In comparison with standard
forecasting approaches, they discover that ML tools increase the description of predicted
returns. They also highlight that all ML techniques agree on a limited set of main predic-
tive signals, which include variants on momentum, liquidity, and volatility, and that BRT
and NN are the top performing techniques. These findings suggest that enhanced risk
premium measurement by ML can simplify the examination of asset pricing economic
mechanisms and ML is a viable technique for new financial technology.
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Table 3.4: Selection of papers for value/factor investing. Mean Absolute Percentage Error (MAPE), Out-
of-the-Sample (OOS), Mean Standard Error (MSE), and Maximum Drawdown (MDD).

Author Target Market Method
Performance
criteria

[Tobek and Hronec,
2020]

NYSE, Amex and NAS-
DAQ common stocks

WLS, PWLS, RF, GBRT,
NN

Average return, Sharpe
ratio, MDD

[Giglio and Xiu, 2019]
US stocks, T-bonds, C-
Bonds and currencies

PCA R Squared, p-value

[Kelly et al., 2018] World stocks IPCA R Squared, p-value
[Moritz and Zimmer-
mann, 2016]

US stocks DT
Excess returns, R
Squared, MSE

[Kozak et al., 2019] US stocks
Bayesian and Lasso Re-
gressions

OOS R2, Sharpe ratio

[Messmer, 2017] US stocks DFNN Sharpe ratio

[Feng et al., 2018a]
NYSE, Amex and NAS-
DAQ common stocks

DFNN Sharpe ratio

[Chen et al., 2020] US stocks DFNN, LSTM, GAN Sharpe ratio

[Feng et al., 2018b]
NYSE, Amex and NAS-
DAQ common stocks

TensorFlow, SGD, AD MSE, R Squared

[Simonian et al., 2019] US stocks RF, ARL
R Squared, Annual re-
turn, Sharpe ratio

[Sun, 2020] NYSE common stocks
Ordered-Weighted
LASSO

SR, Mean returns

[Freyberger et al., 2020]
NYSE, Amex and NAS-
DAQ common stocks

LASSO Sharpe ratio

[Lu et al., 2019] Chinese stocks NN, MLP
Average return, Sharpe
ratio

[Feng and He, 2019] US stocks Bayesian Hierarchical OOS R2
[Feng et al., 2020] US stocks DS LASSO SR, Mean returns, t-stat
[Sugitomo and Minami,
2018]

TOPIX 500 stocks SVM, GBRT and NN
Average return, Sharpe
ratio, RMSE

[Avramov et al., 2020] US stocks NN3, FFN, LSTM, GAN
Average return, Sharpe
ratio

[Aw et al., 2019] US stocks NNs
Average return, Sharpe
ratio

[Gogas et al., 2018]
NYSE, Amex and NAS-
DAQ common stocks

SVR R Squared, MAPE

The review of specific papers about application of ML techniques to Asset Pricing
could start with the contribution mentioned above of [Giglio and Xiu, 2019]. The authors
use PCA to solve the problem of bias in the estimation of linear asset pricing models
when some priced factors are omitted. They show that in a linear factor model, the risk
premium of a factor may be identified independently of the rotation of the other control
factors as long as they all cover the actual factor space.

In a similar way, [Kelly et al., 2018] presented the Instrumented PCA, a new cross-
sectional modeling technique for equity returns that accounts for latent factors and time-
varying loadings by incorporating observable features that instrument for the unobserv-
able dynamic loadings. In this sense, if IPCA tool identifies the corresponding latent
factors, that will mean that the relationship between characteristics and expected returns
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is due to risk compensation. The other way round, if no such factors exist, the character-
istic effect will be compensation without risk or “anomaly”.

The closest work in methodology and application of ML techniques to [Gu et al.,
2020b] comes from [Tobek and Hronec, 2020]. The authors look at out-of-sample re-
turns on over a hundred equities anomalies that have been recorded in scholarly literature.
They then demonstrate that ML approaches that combine all anomalies into a single mis-
pricing signal are valuable all around the world and can persist in a liquid universe of
stocks. Among others, the techniques used are Weighted Least Squares (WLS), Penalized
Weighted Least Squares (PWLS), RFs, GBRTs and NNs.

[Moritz and Zimmermann, 2016] also used an ML approach to look at the cross-
section of stock returns. In the context of portfolio sorting, they utilize tree-based models
to link information from previous returns to future returns. The authors demonstrate that
the traditional linear Fama–MacBeth framework does not take use of all of the data’s
significant information, and that their ML approach is more robust.

There are two aforementioned contributions which deserve additional analysis. In
[Kozak et al., 2018], the authors contribute with their study to the everlasting fight be-
tween factors and characteristics, on the one hand, and risk and behavioral explanations
to mispricing, on the other hand. They point out that traditional factor models’ efforts
to summarize the cross-section of stock returns using a sparse number of characteristic-
based factors was futile. Moreover, there is just not enough redundancy across the large
variety of potential predictors for such a basic model to price the cross-section appropri-
ately. As a result, a SDF model requires a large number of characteristic-based factors
to be loaded. ML techniques, and more specifically, the unsupervised statistical tech-
nique PCA, helps in this process, which might be useful in future study on the economic
interpretation of the SDF. In [Kozak et al., 2019], the authors’ method achieves robust
out-of-sample performance by imposing an economically motivated prior on SDF coef-
ficients that shrinks contributions of low-variance principal components of the candidate
characteristics-based factors. In other words, if the characteristics based models doesn’t
work well with a very low number of factors, a SDF formed from a small number of
principal components performs well.

Without a doubt, the most frequent technique of ML in the literature are NNs. A first
example of this kind of approach can be found in [Messmer, 2017]. Based on a very large
set of firm characteristics, they use DL techniques to predict the US cross-section of stock
returns. Specifically, they train a deep NN and, after applying a network optimization
strategy, he finds that deep NN learned long-short portfolios can generate attractive risk-
adjusted returns in comparison with a linear model. This result highlights the relevance
of non-linearities in the relationship between firm characteristics and expected returns.
In the same line of study using DL techniques, [Feng et al., 2018b] designed a deep NN
with the aim to minimize pricing errors. As inputs they use firm characteristics, they
generate risk factors as intermediate features, and finally fit the cross-sectional returns as
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outputs. Another example of deep NN can be found in [Chen et al., 2020], where the
authors combine three different deep neural network structures in a novel way: a NN
to capture non-linearities, a recurrent LSTM network to find a small set of economic
state processes, and a GAN to identify the portfolio strategies with the most unexplained
pricing information estimate. The primary contributions of this study include the use of
the fundamental non-arbitrage condition as a criteria function, the use of an adversarial
technique to design the most informative test assets, and the extraction of economic states
from a large number of macroeconomic time-series.

The procedure of sorting securities, based on firm characteristics, very usual in factor
investing literature, is the starting point of the work by [Feng et al., 2018a], which uses
multi-layer deep networks to augment traditional long-short factor models.

Another notable architectures are RFs, which are one of the most used classical tech-
niques of ML in recent years. For instance, [Simonian et al., 2019] showed how to use RFs
to produce factor frameworks that improve upon more traditional models in terms of their
ability to account for non-linearities and interaction effects among variables, as well as
their higher explanatory power. In combination with Association Rule Learning (ARL),
they are able to produce viable trading strategies.

[Sun, 2020] proposed a new ML method, the Ordered and Weighted LASSO (OWL),
which circumvents complications from correlations between the different factors in the
traditional approach. This method can identify and group correlated factors while shrink-
ing off redundant ones. Using Monte Carlo simulations, he shows that OWL outperforms
Least Absolute Shrinkage and Selection Operator (LASSO), specially when factors are
highly correlated.

Very similarly, [Freyberger et al., 2020] suggested a non-parametric approach for
determining which features give incremental information for the cross-section of ex-
pected returns. They select features and evaluate how they impact expected returns non-
parametrically using the adaptive group LASSO. This technique can manage a high num-
ber of factors, has a flexible form, and is not affected by outliers.

[Lu et al., 2019] tried to extract factors according to the definition from Barra team
in MSCI company. They utilize Smart Beta Index technique to construct factor indexes
to reflect performance and style on the market they analyze, and they bring NNs into
the work of cross-section factor integration. Doing so, their experimental results show
that the index that compiled based on factors integration by NNs, specifically with MLP,
exhibits better profitability and stability.

In [Feng and He, 2019], we can find a Bayesian Hierarchical (BH) approach. This
market-timing method uses heterogeneous time-varying coefficients driven by lagging
fundamental factors to jointly estimate conditional expected returns and residual covari-
ance matrix, allowing for estimation risk in portfolio analysis. The BH approach also
allows to model different assets separately while sharing information across assets. Ac-
cording to the authors’ conclusions, the BH approach outperforms alternative methods in
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terms of prediction for the US market. At the same time, they were able to identify the
most important factors in the past decade: size, investment and short-term reversal.

The authors of [Feng et al., 2020] offered a selection methodology to systematically
assess each new factor’s contribution to asset pricing beyond what a high-dimensional
collection of current factors explains. To evaluate the contribution of a component to
explaining asset prices in a high-dimensional context, they offer combined cross-sectional
asset pricing regressions with the double-selection LASSO of [Belloni et al., 2014]). This
model selection phase closely resembles the existing literature’s strategy to dealing with
the proliferation of asset price factors (e.g., [Kozak et al., 2018]): to take a large set of
factors, to apply some dimension-reduction method (LASSO, Elastic Net (EN), PCA,
etc.), and to interpret the resulting low-dimensional model as the SDF.

[Sugitomo and Minami, 2018] used a multi-factor model of Fama–French type as a
starting point to test if the ML techniques are able to enhance portfolio performance.
Specifically, they used a typical method, consisting of SVM, GBRT and NN, and ver-
ified the effectiveness and applicability of nonlinear methods in practical operation by
comparing it with conventional linear models.

[Avramov et al., 2020] investigated if ML techniques can remove acceptable economic
constraints in empirical finance, which is a largely uncharted field. They investigated
whether signals generated by ML procedures can withstand economic constraints both
in the cross-section and the time-series. For instance, in the cross-section, they remove
microcaps and distressed forms, and in the time-series, they look at the sensitivity of in-
vestment payoffs to market conditions with less arbitrage opportunities. They concentrate
on two DL approaches that perform well with financial data in order to do this job. They
first implement NNs with three hidden layers, and then, they incorporate non-arbitrage
conditions into multiple connected NNs, including vanilla NNs, LSTMs, and GANs.

A ML factor model using NNs is developed by [Aw et al., 2019]. This model delivers
a superior in-sample performance, but a mediocre out-of-sample performance versus a
conventional factor model. The reason they point out for this underperformance is that
the market noise during the training period overwhelmed the non-linear association un-
covered in the ML process. Nevertheless, they defend that the rationality behind investor
behaviour explains the ultimate success of new ML techniques in asset management.

In [Gogas et al., 2018], the methodological approach used is SVR, a direct extension
of SVM and the objective, to evaluate the effectiveness of four of the most popular models
in asset pricing theory, the CAPM, the APT and the three- and five-factor models from
Fama and French. They observe large improvements in comparison to the traditional
linear regression in terms of the main measures of goodness of fit: R-squared-adjusted
and MAPE.
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3.5. Portfolio Management

Making decisions about asset allocation is a key component of portfolio management be-
cause it allows you to build a portfolio with specified risk and return characteristics. By
doing basic analysis using quantitative or textual data analysis and developing new in-
vesting strategies, ML approaches can be used to improve this process. ML can assist in
addressing the drawbacks of conventional portfolio development methods. Particularly,
ML can produce more precise estimations of asset returns and risks and solve portfo-
lio optimization issues with complicated restrictions, resulting in portfolios that perform
better outside of samples than traditional methods.

In portfolio management, the concept of diversification is extremely relevant, as we
can find in [Markowitz, 1952]. Additionally, very related to diversification, we find the
concept of assets correlation. [Goetzmann and Kumar, 2008] argues that while investors
are aware of the benefits of diversity, they build portfolios without properly taking the cor-
relations into account. This is the fundamental reason why, while recent and sophisticated
portfolio optimization approaches perform well in-sample, they typically perform poorly
out-of-sample. For instance, [DeMiguel et al., 2009] proves that equal-weighted alloca-
tion, which assigns equal weight to each asset, outperforms the whole range of frequently
used portfolio optimization strategies. In the end, every optimization model requires the
inversion of a positive-definite covariance matrix, which results in errors of such size that
the benefits of diversification are completely neutralized. At this point, ML has an impor-
tant role to play with regard to the simplification of the problem. The selection of papers
on ML for portfolio management has been summarized in Table 3.5.

[Ban et al., 2018] adapted two ML methods with regularization for portfolio optimiza-
tion. The objective of this technique, known with the acronym Performance-based Reg-
ularization (PBR), is to restrict the sample variances of the estimated portfolio risk and
return, guiding the solution towards one with less estimation error in the performance.
The results show how this technique outperforms all other benchmarks in a proportion of
two out of three using Fama–French datasets.

[Rasekhschaffe and Jones, 2019] explains some of the fundamental ideas behind ML
and offer a simple example of how investors may use ML approaches to estimate cross-
section stock returns while avoiding overfitting. Moreover, in order to demonstrate the
benefits of ML techniques to make accurate forecasts, they emphasize the importance of
mixing forecasts from several algorithms and training periods for diversification. GBRT,
SVM, AB, DNN are some examples of the algorithms used. They demonstrate that,
with sensible feature engineering and forecast combinations, ML algorithms can produce
results that dramatically exceed those derived from simple linear techniques, such as OLS.

Very similarly, [Huck, 2019] presents a summary of the main techniques that can be
implemented to manage a long-short portfolio. He uses three different types of ML tools:
Deep Belief Networks (DBNs), RF y EN regression, because they are all able to perform
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classification tasks as demanded by the trading system he designs. After developing sev-
eral independent statistical arbitrage strategies based on these three ML methods, the arti-
cle describes how adding predictors is not a guarantee to increase the performance of the
portfolios. Among the tools considered, the RF seems to generate the best performance
portfolios.

In [Huotari et al., 2020], the main goal was to look at how modern ML analytics
can help portfolio management, specifically by using an ANN-based system to automat-
ically detect market anomalies using technical analysis and exploiting them to maximize
portfolio returns by realizing excess returns. They used the Ensemble of Identical Inde-
pendent Evaluators (EIIE) architecture described by [Jiang et al., 2017] on a sample of
415 stocks from the S&P 500 Index and incorporated selected performance indicators for
stock performance in the analysis. They used RL to create an ANN-based deep-learning
(multi-layer ANN) agent model for portfolio management (trading model) for this study.
A reward function drove the agent model, and the objective was to maximize predicted
rewards over time.

[Krauss et al., 2017] implemented and analyzed the effectiveness of several ML meth-
ods in the context of statistical arbitrage. Specifically, they used DNNs, GBRTs, RFs
and, finally, a combination of them all. Each model was trained on lagged returns of all
stocks in the S&P 500, after elimination of survivor bias. The database is comprised of
daily data. The empirical findings show that a simple ensemble of the three techniques
produces a significant excess of out-of-sample returns.

[Park et al., 2020] proposed a novel long-only portfolio trading strategy in which an
intelligent agent is trained to identify an optimal trading action by using Deep Q-learning,
on of the most popular DRL methods. Compared with the stochastic programming-based
models (Monte Carlo simulations) and heuristic methods (technical analysis), the authors
defend that the proposed model, using daily data for two different portfolio cases which
comprises Exchange Traded Funds (ETFs) from the US stock market, is a superior trading
strategy relative to benchmark strategies.

[Heaton et al., 2017] presented a four-step algorithm for model construction and
validation with special emphasis on building deep portfolios. In particular, they intro-
duced DL hierarchical decision models and provided a smart indexing example by auto-
encoding the IBB biotechnology index.

[Yun et al., 2020] proposed a two-stage DL framework for portfolio management,
which uses LSTM for the prediction model, in addition to a cost function that addresses
both absolute and relative return. The proposed methods are evaluated with an ETF
dataset, and the empirical results show that the DL two-stage methods outperform or-
dinary DL models.
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Table 3.5: Selection of papers for portfolio management. Value at Risk (VaR), Conditional Value at Risk
(CVaR), Maximum Drawdown (MDD), Certainty Equivalent Return (CEQ), Mean Absolute Percentage
Error (MAPE), Mean Absolute Error (MAE), Out-of-the-Sample (OOS), Mean Standard Error (MSE),
Maximum Drawdown (MDD).

Author Target Market Method
Performance
criteria

[Ban et al., 2018]
NYSE, Amex and NAS-
DAQ common stocks

PBR Sharpe ratio, Turnover

[Rasekhschaffe and
Jones, 2019]

Stocks from 22 countries GBRT, SVM, AB, DNN Excess return, Alpha

[Huck, 2019] US Stocks DFN, RF, EN
VaR, Sharpe ratio, Max.
Drawdown

[Huotari et al., 2020] S&P 500 stocks ANN, EIIE Sharpe ratio, p-value

[Krauss et al., 2017] S&P 500 stocks DNN, GBRT, RF
Return distribution, VaR,
Calmar ratio

[Park et al., 2020] US and Korean ETFs
LSTM, DNN, Q-
Learning

Cum. return, Sharpe ra-
tio, Turnover

[Heaton et al., 2017] IBB Index Autoencoders Validation error
[López de Prado, 2016] Monte Carlo simulations HRP OOS variance
[Yun et al., 2020] World ETFs PCA, LSTM IR, MDD, VaR, CVaR
[Raffinot, 2017] S&P 500 stocks HRP IR, Sharpe ratio, MDD
[Jain and Jain, 2019] NIFTY 50 index HRP CVaR, Sharpe Ratio
[Tristan and Chin Sin,
2021]

Singapore Index AHC-DTW clustering
Cum. Return, Sharpe
ratio

[Konstantinov et al.,
2020]

World Assets NN, LASSO regressions Sharpe ratio, MDD, CEQ

[Xue et al., 2018] Shanghai ETFs FFN, IMK-ELN MAP, MDD, Sharpe ratio

[Wang et al., 2020]
UK Stock Exchange 100
Index

LSTM+MVO
MSE, RMSE, MAPE,
MAE, R2

[Ta et al., 2020] S&P 500 stocks LSTM+MVO Sharpe ratio
[Lee et al., 2019] World equity indices SVM Directional accuracy

[Song et al., 2017] Selected US Stocks
ListNet and RankNet
(NN)

Sharpe ratio

[Vo et al., 2019] S&P 500 stocks LSTM+MVO MAE, RMSE

[Ma et al., 2020]
China Securities 100
Index

DMLP, LSTM, CNN MAE, MSE, MDD

[Ma et al., 2021]
China Securities 100
Index

DMLP, LSTM, CNN,
SVR, RF

MAE, MSE, MDD

[Almahdi and Yang,
2017]

US and World ETFs RRL
Sharpe ratio, Calmar
ratio, Sterling ratio

[Aboussalah and Lee,
2020]

Selected US Stocks SDDRRL Total return

[Paiva et al., 2019] Ibovespa stocks SVM
Average return,
st.deviation

In [López de Prado, 2016], we can find a very complete definition and explanation of
hierarchical methods, that address the main pitfalls of the Critical Line Algorithm (CLA),
the classical quadratic optimization procedure specifically designed by Markowitz in 1954
for inequality-constrained portfolio optimization problems, which was, at the time, a bril-
liant solution to the generic-purpose quadratic programming models that did not guarantee
a correct solution after a known number of iterations. In particular, the author presented
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the Hierarchical Risk Parity (HRP) method, which is based on graph theory and ML tech-
niques, and used the information in the covariance matrix without requiring its inversion
or positive definitiveness. The reason is that this new approach replaces the covariance
structure with a tree structure. By using Monte Carlo simulations, the author demon-
strates that, despite the CLA method delivering the minimum-variance portfolio, the HRP
produces lower out-of-sample variance portfolios.

[Raffinot, 2017] proposes a hierarchical clustering-based asset allocation method,
which uses graph theory and ML techniques, in a very similar way to [López de Prado,
2016]. Complete Linkage (CL), Average Linkage (AL) and Directed Bubble Hierarchi-
cal Tree (DBHT) are among the hierarchical clustering approaches described and tested,
using three empirical datasets from US Stock Market. AL and DBHT prove to be the best
clustering methods, and the clustered portfolios to achieve statistically better risk-adjusted
performance than commonly used portfolio optimization techniques.

In [Jain and Jain, 2019] we can find research which is also focused on the out-of-
sample performance of the portfolios, because it aims to test if there are any covariance
matrix forecasting techniques that outperform both traditional risk-based and ML-based
portfolios (such as HRP introduced by [López de Prado, 2016]) empirically. According
to their results, HRP is less sensitive to bad specifications of covariance than minimum
variance or maximum diversification portfolios, while it is less robust than an inverse
volatility weighted portfolio. The authors used daily prices from the individual stocks
comprising the NIFTY 50 from the Indian stock market.

The approach is very similar in [Tristan and Chin Sin, 2021], because it aimed to use
unsupervised time-series clustering-based ML techniques to diversify portfolios and over-
come the varied outcomes of industry diversification. Specifically, they used shape-based
clustering approach for diversification, the Agglomerative Hierarchical Clustering algo-
rithm (AHC-DTW), applied to the daily prices of the top 82 stocks listed in the Singapore
equity market, and was demonstrated to clearly outperform industry diversification.

Another example of the use of hierarchical-based techniques is the work by [Kon-
stantinov et al., 2020], that might be placed in an intermediate point between the financial
areas of factor investing and portfolio management. The aim of their work is to approach
and compare factor and asset allocation portfolios using both traditional and alternative
allocation techniques, considering centrality and hierarchical-based networks, specifically
LASSO. The monthly data used comes from the US stock market.

[Xue et al., 2018] developed Incremental Multiple Kernel Extreme Learning Ma-
chine (IMK-ELM), which aims to enhance the efficiency of previous algorithms to make
classification tasks in robo-advisors services. Specifically, the novel algorithm is able to
handle heterogeneous customer information sets. The empirical results, reached through
simulation, show that IMK-ELM outperforms other generic classification methods.

[Wang et al., 2020] suggested a hybrid approach consisting of LSTM networks and a
Mean-variance Optimization (MVO) model for optimum portfolio construction in combi-
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nation with asset preselection, in which long-term dependencies of financial time-series
data may be represented. In this sense, the empirical results show how LSTM clearly
outperforms other ML techniques, such as SVM, RF and common DNNs. In the second
stage, after selecting asset with higher returns according to that ML technique, the MVO
model is applied for portfolio optimization. The monthly data used comes from the UK
Stock Exchange 100 Index.

[Ta et al., 2020] implemented ML techniques at a double level. First, they use LSTM,
an special type of RNN, to forecast stock direction based on historical data. In the second
level, and in order to build an efficient portfolio, they make use of multiple optimization
techniques, including Equal-weighted modeling (EQ), Monte Carlo simulation (MCS)
and MVO. The results show that the LSTM prediction model works efficiently by ob-
taining high accuracy from stock prediction, and generating portfolios which outperform
those obtained using alternative techniques as LR or SVM. The data used in this work
are the 10-year daily historical stock prices of 500 large-cap stocks listed on the America
Stock Exchange S&P 500.

The approach in [Lee et al., 2019] is very similar to those aforementioned in the sense
of using a double-scale framework. In this case, the first level of the trading strategy is
based on the effect and usefulness of networks indicators. Using a Vector Autorregression
model (VAR) model, they forecasted global and regional stock markets’ directions. Once
these trend predictions were defined, they were used as inputs for determining portfolio
strategies via several ML techniques, such as LR, SVM, and RFs. The research data are
daily stock index prices from 10 different countries over a period of 22 years. The empir-
ical results show that the prediction accuracy and profit performances are enhanced with
network indicators, and that the SVM approach displays the best performances.

[Song et al., 2017] focused their attention on the area of investors’ sentiment. In par-
ticular, they showed that learning-to-rank algorithms are effective in producing reliable
rankings of the best and worst performing stocks and, according to them, they are able to
implement outperforming portfolio strategies which produce risk-adjusted returns supe-
rior to the benchmark. The algorithms used with weekly prices and financial news from
US Stock market are called RankNet and ListNet, which are SL approaches that rely on
NNs and Gradient Descent Optimization (GDO) techniques.

The work by [Vo et al., 2019] enters into the emerging field of Socially Responsible
Investments (SRIs). The authors defend that traditional optimization methods for port-
folio management are inadequate for this kind of investments, so they propose a new
model called Deep Responsible Investment Portfolio (DRIP) that contains a multivari-
ate bidirectional LSTM neural network to predict stock returns for the construction of
a SRI portfolio using the MVO model. For the empirical application, they used daily
closing prices of all individual stocks contained in the S&P 500 from the past 30 years.
The portfolios obtained using this method had a high degree of accuracy and achieved
much higher Environmental, Social and Governance (ESG) ratings compared with stan-
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dard MVO models.

[Ma et al., 2020] used the most common DL techniques to build prediction-based port-
folio optimization models. These models start by using DNNs to forecast each stock’s fu-
ture performance. The risk of each stock is then calculated using DNNs predictive errors.
Following that, portfolio optimization models are constructed by combining predicted
returns and semi-absolute deviation of prediction errors. These models are contrasted
against three equal-weighted portfolios, with stocks picked by DMLP, LSTM, and CNN,
respectively. Additionally, two SVR-based portfolio models are utilized as benchmarks.
As experimental data, this article uses component stocks of the China Securities 100 in-
dex in the Chinese stock market. The prediction-based portfolio model based on DMLP
performs the best among these models.

The approach is very similar in [Ma et al., 2021], where the authors propose two ML
models, specifically RF and SVR, and three DL models, in particular DMLP, LSTM,
and CNN, for stock preselection before portfolio construction. Therefore, they incor-
porates those results in advancing MVO models. As benchmarks, they utilize portfolio
models with ARIMA predictions. Once evaluated the models with daily data from the
Chinese Stock market index, the results show that portfolio models with RF predictions
are the best among the set of models used.

[Almahdi and Yang, 2017] applied RRL techniques to build an optimal variable weight
portfolio allocation. For this purpose, they propose a RRL with a coherent risk adjusted
performance objective function, based on the expected maximum drawdown, the Calmar
ratio. They use as dataset five asset portfolios built with five of the most commonly traded
ETFs. The maximized function using this method yields superior return performance than
other techniques proposed in the existing literature.

Similarly, using RRL techniques, [Aboussalah and Lee, 2020] aimed to enter into
the field of continuous action and multi-dimensional state spaces, and, hence, they pro-
pose the called Stacked Deep Dynamic Recurrent Reinforcement Learning (SDDRRL)
to build a real-time optimal portfolio. As performance metric, they use the Sharpe ratio.
The model was trained and tested with daily data from the S&P 500 index, and the results
showed that their model outperforms three different benchmarks, including MVO model.

In [Paiva et al., 2019], again, the two-pass methodology is applied to get a portfolio se-
lection model. First, they apply a ML technique to make stock price predictions, the SVR
method. After that, they use the traditional scope of MVO for portfolio construction.
They compare the results of this method with benchmarks of the Ibovespa index, and the
results are favourable for the proposed technique.

3.6. Review papers

In this section, we will review the recent literature that, in form of survey papers, anal-
yse the recent contributions regarding ML applications to finance in general (General
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Surveys) and, later, to specific areas of finance regarding asset management: price fore-
casting, value/factor investing and portfolio management.

Finance is an extremely diverse field in Economics, that includes so diverse disciplines
as Asset and Portfolio Management, Risk Assessment, Fraud Detection or Financial Reg-
ulation, among many others. The use of ML techniques in all these fields, in the recent
years, has been increasingly relevant.

In the sample selected in this work, spanning the last five years, we have been able to
find fifteen papers, as it is shown in Table 3.6. From general to specific, the compilation
papers adopting the scope of general applications of ML to finance, in its widest extension,
is relatively popular, with four papers in the last five years. Among the specific review
papers, which are focused on some of the application areas of finance, the discipline
related to price forecasting and time-series prediction counts for more than a half of the
total, with eight papers. We can also find one general review about asset pricing and value
investing. And finally, the asset and portfolio management discipline and its applications
has a main role in two papers of revision, one of them exclusively focused on online
portfolio selection. In most cases (12 out of 15), as it can be seen in the second column,
the publishing journals were computer science outlets.

Table 3.6: List of review articles in the last five years, both general and specific financial areas. General
Survey (GS), Price Forecasting (PF), Asset Pricing (AP), Portfolio Management (PM), Stock Market (SM),
Exchange Rates forecasting (FX), Interest Rate forecasting (IR), Criptocurrencies (CC), Commodity Prices
(CP), Derivatives (DV), Real Estate (RE). Applied Soft Computing Journal (1), Expert Systems with Ap-
plications (2), Artificial Intelligence Review (3), Frontiers of Business Research in China (4), International
Journal of Electricity and Computer Engineering (5), International Journal on Emerging Technologies (6),
Financial Markets and Portfolio Management (7), ACM Computing Surveys (8), ICEFR 2019 (9). (∗) for
financial journals or conferences.

Author Journal/Venue Period Citations References Area Market

[Ozbayoglu et al., 2020] 1 2014-2018 44 196 GS SM, CC, DV
[Huang et al., 2020] 4 * 2014-2018 13 51 GS SM, FX, CP
[Tkáč and Verner, 2016] 1 1994-2015 184 425 GS SM, FX, IR, DV
[Cavalcante et al., 2016] 2 2009-2015 282 144 GS SM, FX, DV
[Sezer et al., 2020] 1 2005-2019 162 216 PF SM, FX, CP
[Henrique et al., 2019] 2 1991-2017 101 98 PF SM
[Bustos and Pomares-Quimbaya, 2020] 2 2014-2018 24 87 PF SM
[Kamley et al., 2016] 5 2000-2015 13 68 PF SM
[Jiang, 2021] 2 2017-2019 39 234 PF SM
[Nti et al., 2019] 3 2017-2019 36 207 PF SM
[Xing et al., 2018] 3 1998-2016 157 153 PF SM
[Durairaj and Mohan, 2019] 6 1999-2019 15 46 PF SM, FX, IR, DV
[Weigand, 2019] 7 * 1994-2018 8 49 AP SM, IR, DV, RE
[Emerson et al., 2019] 9 * 2015-2018 1 81 PM SM
[Li and Hoi, 2014] 8 1991-2013 137 246 PM SM

3.7. Datasets

According to [Arnott et al., 2019], one crucial limitation of ML applications in finance
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involves data availability. On the one hand, it has been hard to find standardized data
sources for finance. On the other hand, deep ML methods usually require large datasets
where complex patterns can be extracted while avoiding overfitting [LeCun et al., 2015];
those kind of datasets are hard to generate in finance. Therefore, data plays a key role in
any ML application to asset management.

The work on asset management papers related to ML techniques may be categorized
based on the kind of inputs used. A significant number of the articles examined employ
structured type inputs, for which processing techniques already exist and the relevance
of which has been thoroughly researched. The more current ones permit the usage of
unstructured data, which is more difficult to analyse and extract valuable data from. In this
section, we review both sources of data.

3.7.1. Structured Data

When we talk about structured data we are referring to data which is organized and fits
tidily into spreadsheets and relational databases. This kind of data is quantitative and is
often displayed as numbers, dates, values, and strings. It is usually stored in rows and
columns.

Most of the articles revised in this thesis use this type of structure in their information,
which is usually open and prepared for API programming interfaces. The most common
is the time series of historical prices, with different frequencies. The preferred periodicity
is monthly, but in other cases we can find yearly or daily data. In the case of algorithmic
trading, most of High Frequency Trading (HFT) models use intraday data.

Stock Values

Generally, this information is public and free and can be downloaded from the pages
of the stock markets. Besides, some companies like Bloomberg and Reuters provide
paid services with additional information related to stock prices. In some articles, daily
stock information is used, which consists of opening price, closing price, maximum and
minimum, as well as the volume of transactions or negotiation. In the case of intraday
information, it is very usual to find data related to bid-ask spread.

Macroeconomic Indicators and Financial Information

Taking into account that a large list of papers are focused on asset pricing and factor
investing, it is very usual to use corporate information from financial reports to estimate
the fair value of the stock. These financial reports are the balance sheet, the income
statement and the cash flow statement. Related to them, we can find calculated indicators
called financial ratios, which summarize the company’s financial and economic situation
numerically. Some of these ratios are Debt to Equity, Price to Earnings or Enterprise
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Value to Operating Earnings (EBITDA). This information is usually provided by private
companies like Bloomberg, Factset or Thomson Reuters.

Many times, fundamental analysis uses macroeconomic indicators to understand how
the stock prices are correlated to changes in variables outside the company. Firstly, be-
cause depending on the health of a country’s economy, one can estimate the earnings
growth of a company, and secondly, because the consumption is on the basis of the major-
ity of asset pricing models. These economic indicators are usually free and published by
governments and public institutions. However, they have an important pitfall: their low
frequency and the relevant lag with regard to the current prices.

Technical Indicators

This category of data is very focused on algorithmic trading, since they are useful for
predicting the stock market direction. Technical indicators are not based on economic
or financial models. Traders that utilize technical analysis use heuristic or pattern-based
signals generated by the price, volume, and/or open interest of a security or contract.
Technical analysts utilize indicators to forecast future price changes by evaluating previ-
ous data.

There are two types of technical indicators: trend indicators and oscillators. The for-
mer ones are focused on identifying movement directions, and the latter ones on finding
the turning points in the time-series.

All of then can be calculated using the information of prices obtained in the first
section, or directly downloaded from the same information sources. Bloomberg is the
main source for this type of data.

3.7.2. Unstructured Data

Unstructured data, unlike structured ones, have no predefined construction or systemati-
zation. It comes in text form, audio, images, videos and can be challenging to analyze.

The utilization of unstructured data increases the complexity of stock market forecast-
ing, but at the same time opens a whole new world of possibilities. In order to be utilized
as an input for the model, this data must be preprocessed and transformed to categori-
cal or numerical data. Text mining algorithms, which extract news segments or views
from social networks and may create numerical representations, are required for textual
unstructured inputs.

The news analysis is usually taken from media sources, but sometimes from the same
company. In the case of social networks, we are talking about a very new, challenging and
complex world. In this case, the main problem is the enormous volume of information as
well as the computational challenges.

66



News feeds, social media, earnings call transcripts, multiple CRM platforms, email,
call notes, and other unstructured data sources are common in finance. The attractive-
ness and added value come from a substantially better information base, which includes
unstructured data for decision-making that is both relevant and timely.

3.7.3. Analysis

In order to get a more complete perspective about the type of datasets which are used in the
research about ML applied to finance, we have selected a small sample of articles within
the three areas of research we have used in previous sections. To obtain this sample, we
have applied a double filter: firstly, to be published in a Q1-Q2 journal, and, secondly,
to be classified in the first quartile in terms of number of citations.

Value/Factor Investing

In this particular field of financial research, it is very common to use public and shared
datasets, many times constructed, updated and fed by the own authors. The most usual
data frequency is monthly.

• [Kozak et al., 2018]. The methodology used is a very good example of how this
type of datasets can be a good way to generate results that can be globally inter-
preted. In this work, the authors use, firstly, the 5×5 size and book-to-market (B/M)
sorted portfolios of [Fama and French, 1993]. Secondly, they use 15 anomaly long-
short strategies defined as in [Novy-Marx and Velikov, 2016] and the underlying 30
portfolios from the long and short sides of these strategies. These two datasets are
available in two websites fed by the own authors, with the aim to contribute to future
and reproducible research. In the first case, datasets are provided by the Kenneth
French’s website, which provides downloadable and updated files of Fama/French
factors from 1926. In the second case, the author shares the datasets used in his
2016 article. The French’s webpage can be considered as one of the best examples
of publicly available databases that has become as meeting point of asset pricing
researchers.

• [Feng et al., 2020]. In this paper we can find another excellent example of how us-
ing publicly available datasets from other authors. In their article, the authors firstly
download all workhorse factors in the U.S. equity market from Ken French’s data
library. Then they add several published factors directly from the authors’ web-
sites, including liquidity from [Pastor and Stambaugh, 2003] (Stambaugh’s web-
site), the q-factors from [Hou and Zhang, 2015], and the intermediary asset pricing
factors from [He et al., 2016]. In addition to these 15 publicly available factors, they
follow [Fama and French, 1993] to construct 135 long-short value-weighted port-
folios as factor proxies, using firm characteristics surveyed in [Hou et al., 2017]
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and [Green et al., 2016].

• [Gu et al., 2020a]. Another example of academic database, but in this case ac-
cessible by subscription, is the Center for Research in Security Prices (CRSP) of
US Stock Databases, an affiliate of University of Chicago, which contain daily
and monthly market and corporate action data for over 32,000 active and inac-
tive securities with primary listings on the NYSE, NYSE American and NASDAQ.
The research-quality data created by this transformational project spawned a vast
amount of scholarly research from several generations of academics. Today, nearly
500 leading academic institutions in 35 countries rely on CRSP data for academic
research and to support classroom instructions. The CRSP value-weighted index is
one of the most usual equity market benchmarks used in financial research.

Portfolio Management

After analyzing the most cited papers within this discipline, we can conclude that, in most
of cases, the datasets are composed exclusively by price data. Just in some cases financial
data or news can be found in the articles researched. Sometimes, the closing price is
joined by other indicators of prices, as maximum, minimum or opening price. Most times,
the assets utilized are stock indices constituents and, eventually, ETF prices. The data
sources are Datastream, Bloomberg and, in some specific cases, Ken French’s website.

• [Heaton et al., 2017]. Weekly returns data for the components of the biotechnology
IBB index in the period 2012–2016. They train the learner without knowledge of
the actual component weights. Their goal is to find a selection of investments that
outperforms the official index.

• [Krauss et al., 2017]. Monthly and daily returns data for the components of S&P
500 in the period 1989–2015. The data source is the Thomson Reuters Datastream.
The goal was to build portfolios following a statistical arbitrage strategy with better
performance than the benchmark index.

• [Ban et al., 2018]. Ken French’s website mentioned in the section of asset pricing.
They collect monthly excess returns for three different data sets, composed of 5, 10
and 49 industry portfolios, in the period 1994–2013.

• [Almahdi and Yang, 2017]. A five-asset portfolio using five of the most commonly
traded ETFs from different asset categories. They extract the weekly closing prices
for each of the five assets from Yahoo Finance website, for the period 2011–2015.

• [Lee et al., 2019]. Data over a period of 22 years from 1995 to 2016, sourced from
Thomson Reuters Datastream database. The dataset is composed by weekly closing
prices of 10 global equity indices.
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• [Paiva et al., 2019]. Opening, closing, maximum and minimum daily prices of
the components of the Brazilian index Ibovespa, from 2001 to 2016. They were
sourced from the Bloomberg terminal.

Price Forecasting

In this third discipline, the datasets used in the most cited articles are quite diverse, de-
pending on the methodology implemented.

• [Nikou et al., 2019]. In some cases, historical closing prices are the only reference,
where the data used include the daily closing price of iShares MSCI UK ETF, also
collected from the Yahoo Finance site.

• [Zhong and Enke, 2019]. In other cases we can find financial and economic factors
-as in asset pricing models-. In this paper, the dataset includes the daily direction
(up or down) of the closing price of the SPDR S&P 500 ETF as the output, along
with 60 financial and economic factors as input features. The daily data is collected
from 2518 trading days from June 2003. The data sources are public and free (e.g.,
finance.yahoo.com).

• [Khan et al., 2020a]. Lastly, we can find some examples of financial news and
social media data, perfect examples of unstructured data. The source of stock his-
torical daily prices is the same, Yahoo Finance, but the downloaded data have seven
features, from date to closing price, passing by traded volume. Given the methodol-
ogy used in the article, financial news data are also needed, as well as social media
data. In the first case, the authors have used Business Insider because it contains
a collection of stock market related news from the most famous world news web-
sites, such as Reuters, Financial Times, and so forth. In the second case, they have
utilized Twitter API, implemented in Python, to download desired tweets.
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4. METHODS

4.1. Proposal

Despite the extensive use of ML tools, its application in financial markets remains re-
strained due to specific issues. Primarily, data from financial markets has a low signal-
to-noise ratio, making it difficult for ML to differentiate signal from noise. Consequently,
models are prone to overfitting. To address this, ML algorithms must be finely tuned with
methods such as cross-validation.

In addition, financial markets are not static. Rather, they are in a constant state of
evolution. As an example, two decades ago, most stock exchanges in the U.S. were
operated by human traders in trading floors; now, most exchanges are electronic. Thus,
market conditions of past decades are not a reliable representation of current markets.
Consequently, from a data science point of view, the historical data available for predicting
future market dynamics is restricted to the recent past.

Lastly, a challenge that is specific to financial markets is the self-correcting mecha-
nism. As practitioners who make predictions in the markets are usually market partici-
pants themselves, they can capitalize on predictable signals and thereby reduce or com-
pletely eliminate them. This is termed "alpha decay." As a result, financial markets are
highly efficient, thus making it hard to predict future prices and anomalies are generally
very subtle and hard to detect.

Despite these challenges, there are still areas in finance where ML is applied consis-
tently. In the preceding sections, we have thoroughly examined ML techniques applied,
mainly from the academic perspective, to each discipline involved in asset management.
The objective of this empirical chapter is to show some illustrative examples of ML ap-
plications in relevant areas of asset management, to present representative cases of how
ML can help to better understand the behavior of certain markets, more accurately predict
the behavior of their prices, better capture the structure of certain investment strategies,
or significantly improve the predictive capacity of multi-factor models of financial asset
valuation.

In this sense, the first empirical section will address the most general problem within
the discipline of asset management, price forecasting. Despite the limitations that the
EMH imposes on financial markets regarding the prediction of first-order moments in the
prices of financial assets, related to the preeminence of a random walk in their generation
process, a significant part of the existing literature on ML applied to finance rests on price
forecasting. We will try to check the veracity of this hypothesis in the most developed and
potentially most efficient financial market, the US stock market. We will apply the most
innovative ML algorithms, from the family of SL, to the daily data of the S&P 500, with
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the aim of verifying the goodness of prediction through various alternative adjustment
measures.

In the second section, we will address the empirical testing of one of the most suc-
cessful investment strategies in financial markets in recent years, the pairs trading strategy.
This strategy can be included within the discipline of price forecasting, specifically within
the so-called statistical arbitrage. Unlike pure price prediction strategies, the pairs trading
models the distance between the prices of two financial assets, considering that if they
have kept a close relationship in the past, any deviation that occurs will be temporary and
susceptible to be exploited from the point of view of investment. In this testing section
we will use ML algorithms, but in a different way. Specifically, we will carry out specific
algorithms from the family of UL techniques, to identify and build pairs of values. Unlike
most contributions, which opt for technical indicators as the only way of classification,
we will opt for introducing classification tools that take into account financial character-
istics of the companies, with the idea that these fundamental characteristics can amplify
and guarantee greater consistency in the co-integration of the selected values, and greater
success in whatever trading strategy can be selected later. The sample will be monthly
data from US stock market.

Connected to the above, the third example of empirical testing will be focused on
factor investing models. As we have demonstrated in previous sections, factor models
have supposed a real revolution in recent years in terms of explaining which factors or
characteristics explain the differences in returns between different assets, different invest-
ment portfolios. Among all of them, the three- ([Fama and French, 1993]) and five-factor
([Fama and French, 2015]) models are the most widely used, and have served as a starting
point for an entire line of research in this branch of asset management. Far from enter-
ing into the established battle in recent years to find new explanatory factors, in our data
experiment we will try to demonstrate how the use of ML algorithms can consistently im-
prove the predictive capacity of Fama and French models, approached from a traditional
econometric perspective. For this purpose, we will use monthly data from five different
sectors of the US stock market, and the already known 5 factors of the Fama and French
models, published in the Kenneth French website.

4.2. Empirical Results

4.2.1. Price Forecasting

Introduction

The stock market is a lucrative investment arena, where predicting stock movements can
lead to arbitrage and profit opportunities. Price forecasting is the primary goal of every
single investor or asset manager. While the Efficient Market Hypothesis (EMH) suggests
that stock prices reflect all available information and are unforeseeable (in other words,
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the behavior of stock prices can be described as a random walk, implying that their move-
ments are inherently unpredictable), evidence from various studies shows that the market
is not completely efficient, especially with the use of computational intelligence technolo-
gies. Those techniques, collectively known as soft computing ([Devendra, 2008]), such
as fuzzy systems, NN, ML, and probabilistic reasoning, utilize the concept of accommo-
dating imprecision, uncertainty, and partial truth in order to systematically and flexibly
address real-world problems through progressive and adaptive approaches. Additionally,
they have been successfully applied in various fields and can be used to exploit market
inefficiencies. Specifically, the ML architecture used in this first empirical approach has
been Gated Recurrent Unit Network (GRU) Networks.

Traditional econometric models, such as ARIMA models and other more sophisti-
cated, as the Autorregressive Conditional Heteroskedasticity (ARCH) models, may not be
suitable for predicting stock prices as they are designed for linear and stationary processes,
while stock prices are inherently nonlinear, non-stationary, and volatile. ML approaches,
which are part of soft computing, have gained popularity as they can automatically adapt
to data without prior statistical assumptions. However, the misuse of ML can lead to dis-
appointment, and back-testing protocols have been proposed to ensure proper application
in quantitative finance.

Another challenge in stock price prediction is multi-scaling, where statistical prop-
erties of time-series change with time horizons. Signal decomposition tools, such as
Discrete Wavelet Transform (DWT) ([Huang et al., 1998]), borrowed from electrical en-
gineering, have been used to address this challenge. In recent years, Empirical Mode
Decomposition (EMD) (see section 2.3.4) has been recognized as an effective method for
enhancing financial market forecasting ([Nava et al., 2018]). EMD decomposes the signal
into a finite set of nearly orthogonal oscillating components, called IMFs, which are lo-
cally stationary and associated with characteristic time-scales and -horizons. This allows
for a granular detrending procedure and improved forecasting accuracy.

Technical indicators are frequently used as features in ML algorithms to forecast stock
prices. For instance, [Tsantekidis et al., 2017a] show that the use of technical indicators, in
addition to historical price data, improves the accuracy of stock price forecasts. Technical
indicators are derived from the price and volume of the asset being analyzed and are
used to identify trends, momentum, and other patterns that can help predict future price
movements. Examples of technical indicators commonly used in financial forecasting
include moving averages, relative strength index (RSI), and stochastic oscillators. The use
of technical indicators has been shown to improve the accuracy of stock price forecasts
compared to models based solely on historical price data.

The proposed research introduces a hybrid framework that combines EMD and GRU
Networks to forecast the closing price of two stock market indices one step ahead. We
have chosen S&P 500 as the main exponent of efficient financial markets and a represen-
tative of a less potentially efficient market as the Spanish Ibex 35, in order to check if the
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ML proposed architecture has different degrees of accuracy depending on the levels of
efficiency and stationarity. The framework consists of sequential experiments. Initially,
GRU is applied to the original series of S&P 500 and Ibex 35 in order to get familiar with
them. Progressively, several improvements are introduced hoping to enhance the pre-
diction accuracy. Firstly, EMD is utilized to eliminate the non-stationarity of the series
and decompose the closing price of the stock market into several Intrinsic Mode Func-
tions (IMF). GRU is then employed to forecast them as a whole, in a second experiment,
and individually, in the third one. Afterwards, ten selected technical indicators are intro-
duced as additional features in order to check if this supplementary information improves
the prediction accuracy of the model. In the last three experiments, the prediction values
of each IMF are combined to obtain the final closing price of the stock market. The pre-
diction model is then evaluated using different metrics (including and innovative model of
trading simulation) and compared to some benchmark univariate models as ARIMA (see
[Shi and Zhuang, 2019]).

Main contributions

• Hybrid framekork. A hybrid framework that combines EMD and GRU Networks to
forecast the closing price of stock market indices. EMD is utilized to eliminate the
non-stationarity of the series and GRUs to forecast efficiently the closing prices.

• Technical indicators. Its use has been shown to improve the accuracy of stock price
forecasts compared to models based solely on historical price data.

• Optimized for different time windows. Thanks to the power of data mining and
the versatility of ML algorithms, the training and validation windows have been
optimized, aiming to find the best temporal prediction window while controlling
the possibility of overfitting.

• Multiple accuracy measures. The prediction model is evaluated using different met-
rics and compared to several benchmark univariate models as ARIMA. After run-
ning all the scheduled experiments, the best model of all, using classical perfor-
mance measures, will be finally tested using a trading simulation model.

Research Data

This research utilized 33 years of daily data on the S&P 500 and Ibex 35 stock indices
from March 1990 to March 2023, specifically data of closing, high and low prices by
session. The data was obtained from Factset and Yahoo Finance, two of the most relevant
financial data providers.

Table 4.1 displays the statistical analysis of the closing price of the two analyzed stock
markets, presenting information such as the amount of data included in the closing index,
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as well as the minimum, maximum, mean, standard deviation, and p-value resulting from
the ADF test. The ADF test has been computed using the R Extensions module for SPSS
Statistics. The results show a notable difference between the maximum and minimum
values for both indices, and the closing prices exhibited high volatility, as evidenced by
the large standard deviation. The proposed framework utilizes the ADF test to determine
the stationary or nonstationary nature of time series data. As shown in Table 4.1, if the
ADF test’s p-value exceeds the 0.05 threshold and fails to reject the null hypothesis, it
suggests that the dataset is highly volatile and non-stationary. Therefore, both datasets
are suitable for use with the EMD method, which is an effective technique for analyzing
non-linear and non-stationary time series.

Table 4.1: Descriptive statistics of the closing prices. ADF is the Augmented Dickey-Fuller Test for Sta-
tionarity of time series.

Statistic Indicators S&P 500 Ibex 35
Count 8,334 8,334
Average 1,520.71 8,157.60
Minimum 295.46 1,873.58
Maximum 4,796.56 15,945.70
Standard deviation 1,012.23 3,119,97
ADF Test (p-value) 0.810 0.541

Table 4.2: Technical indicators and their formulas. Ct is the closing price, Ht and Lt are the high and low
prices at time t, HH14 and LL14 mean highest high and lowest low in the last 14 days, respectively, RS is
average gain of last 14 trading days divided by average loss of last 14 trading days, EMA is Exponential
Moving Average, SMA is Simple Moving Average, and Mt : Ht + Lt +Ct/3, being Dt the mean deviation.

Name of Indicators Formulas

Simple 10-day moving average (SMA10) Ct+Ct−1+...+Ct−10
10

Weighted 10-day moving average ((n)×Ct+(n−1)×Ct−1+...+C10)
(n+(n−1)+...+1)

10-day Momentum Ct−Ct−10
Ct−10

Stochastic K% Ct−LL14
HH14−LL14

× 100

Stochastic D% Kt%+Kt−1%+Kt−2%
3

RSI (Relative Strength Index) 100 − 100
1+RS

MACD EMA12 − EMA26

Larry William’s R% HH14−Ct
HH14−LL14

× 100

A/D Oscillator A
Dt−1
+

(Ct−Lt)−(Ht−Ct))
Ht−Lt

CCI (Commodity Channel Index) Mt−SMA20
0.015Dt
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Additionally, the collected data was pre-processed to generate ten technical financial
indicators that were used as input into some of the ML models. These technical indicators
were computed using the formulas given in Table 4.2. Finally, it is worth noting that 80%
and 20% of the data was allocated for training and testing, respectively.

Evaluation methods

This project assesses prediction models using three evaluation metrics inspired by the
work of [Xing et al., 2018], including closeness, accuracy, and trading simulation. The
introduction of this third evaluation metric can be considered as one of the main contri-
butions of this empirical approach, since this measure can provide a more realistic and
comprehensive evaluation of a a price forecasting tool in the trading strategy’s perfor-
mance.

Additionally, since the time series used in the project are seemingly non-stationary, it
is introduced the ADF test. The ADF test is a statistical significance test used to determine
whether a time series is stationary or non-stationary (see section 2.2.2).

Closeness In section 2.4.3 the main measures of Goodness of Fit (synonim to Close-
ness) were presented. In this project the measure selected has been the MAPE, defined as
the mean of absolute percentage errors showed in Equation 4.1.

MAPE =
1
n

n∑︂
i=1

⃓⃓⃓⃓⃓
Actual − Forecast

Actual

⃓⃓⃓⃓⃓
(4.1)

Directional accuracy The second metric assessed is the DA, which gauges the per-
formance of prediction models by determining if the chosen stock price will increase or
decrease. In the section 2.4.6 the main metrics related to the accuracy of predictions were
presented. The directional accuracy presented here is evaluated using four criteria: true
positive (TP), false positive (FP), true negative (TN), and false negative (FN). TP denotes
the instances where a prediction model correctly guesses a positive movement in the stock
price, while TN refers to the situations where the model accurately forecasts a negative
change. Conversely, FP indicates situations where the model incorrectly forecasts an in-
crease in the stock price, when it actually drops. FN is when the model incorrectly predicts
a decrease in the stock price, but it goes up instead. The directional accuracy is computed
using Equation 4.2.

Dir. Accuracy =
TP + TN

TP + FP + TN + FN
(4.2)

Trading simulation The third measurement was not presented in the theoretical back-
ground in Chapter 2 because it cannot be considered as a truly performance measure from
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an academic point of view. This is the reason why it will not be used in the central em-
pirical phases of this project, and only as an extension of the experiments driven in this
research. Specifically, it is based in trading simulation results by stock predictive models.
Although an algorithm may be highly accurate in its predictions, this does not mean that
it will be successful in generating profits. To know for sure whether a model is viable in a
real-world situation, it is necessary to run simulations and tests on the model to evaluate
its efficacy. Based on that, after running all the scheduled experiments, the best model of
all, using classical performance measures, will be finally tested using a trading simulation
model.

System architecture

This section describes the two algorithms used in this project and the proposed integrated
prediction model that combines them to improve prediction effectiveness and reduce com-
putational complexity. These two algorithms are: firstly, EMD, which is a pre-processing
algorithm that decomposes the signal into a finite set of nearly orthogonal oscillating
components, called IMFs, which are locally stationary and associated with characteristic
time-scales and -horizons. And, secondly, GRU, a ML algorithm which is a type of RNN
that is designed to address the vanishing gradient problem in traditional RNNs. Similar
to other RNNs, GRUs use feedback loops to process sequential data, but they incorporate
gating mechanisms that allow them to selectively retain or forget information over time.

Empirical Mode Decomposition (EMD) Originally proposed by [Huang et al., 1998],
EMD is a signal processing technique which breaks down a signal into IMFs and a resid-
ual component while still operating in the time domain. This makes it a good substitute
for other analytical techniques like the Fourier Transformation and the DWT. EMD is fre-
quently used in non-linear and non-stationary scenarios and is particularly effective when
evaluating natural signals.

The complexity of the original signal is divided into a series of IMFs with amplitude
and a residual difference during the decomposition phase of EMD. The IMFs meets the
following two criteria:

• They only have one extreme between zero crossings, which means there can only
be a difference of 1 between maxima and minima.

• the mean of the wave of IMFs is zero.

This decomposition technique helps reveal the underlying structure of the signal, mak-
ing it easier to analyze and predict.

The EMD algorithm performs signal decomposition by sifting the signal into a series
of IMFs. This process can be illustrated using the following algorithm, as shown in Figure
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4.1, taken from [Srijiranon et al., 2022]. First, a data set x(t) is decomposed into IMFs
xn(t) and a residual r(t), which can be expressed as a sum of IMFs and the residual, as
shown in Equation 4.3.

x(t) =
∑︂

n

xn(t) + r(t) (4.3)

Figure 4.1: A flowchart of shifting processes.

Gated Recurrent Unit Network (GRU) GRUs were introduced in Section 2.3.1 as a
special type of RNN. The outstanding new algorithm from the DL family, GRUs [Cho
et al., 2014], has two gating mechanisms: update and reset. The quantity of prior infor-
mation that will flow to the following phase is decided by the update gate. The reset gate
determines which prior timestep information to ignore for the present state. The GRU is
like a LSTM with a forget gate, but has fewer parameters than LSTM, as it lacks an out-
put gate. This results in a generally faster computing architecture. It was discovered that
GRUs performed similarly to LSTM on a few polyphonic music modeling, speech signal
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modeling, and NLP tasks. The GRUs have demonstrated that gating is effective overall,
although it is impossible to say for sure which of the two gating units was superior.

A GRU, which is derived from the LSTM architecture, incorporates an update gate
and a reset gate, combining the functionalities of the input gate and forget gate in LSTM
(see Figure 4.2). Update gates (zt), reset gates (rt), and current memory contents (ĥt)
make up an GRU unit. The GRU’s last memory is where the output (ht) is kept. The
percentage of the input (xt) and preceding output (ht−1) that is sent to the following cell
is determined by the update gate, which is controlled by the weight (Wz). The amount
of prior information to be forgotten is set by the reset gate. The weight (W), which
determines the next iteration, guarantees that only pertinent information is transmitted to
that iteration. The following equations regulate the primary operations of an GRU:

zt = σ(Wz · [ht−1, xt]) (4.4)

rt = σ(Wz · [ht−1, xt]) (4.5)

ht̂ = tanh(W[rt · ht−1, xt]) (4.6)

ht = (1 − zt) · ht−1 + zt · ht (4.7)

where zt and rt are intermediate values obtained from the update and reset gates, re-
spectively; tanh is hyperbolic tangent function; σ is the sigmoid function.

Figure 4.2: Simplified LSTM and GRU diagrams.

Prediction Model In order to understand the framework architecture, Figure 4.3 depicts
one of the possible integrated prediction models that combines EMD and GRU, as well
as technical indicators as additional features, to improve prediction effectiveness and re-
duce computational complexity. This model has named as Experiment 4 in the sequential
framework defined in this project. The model comprises three main steps:
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Figure 4.3: System architecture. Experiment 4. The process of the prediction model.

• First, the original stock closing price time series is divided into numerous indepen-
dent intrinsic mode function (IMFs) components and one residual component using
the EMD method. This phase makes it easier to analyze each IMF component using
GRU as a prediction model.

• Secondly, the technical indicators are integrated into the model as input features.
The GRU model is then employed as the prediction tool for each IMF component.
Notably, the GRU is trained separately for each IMF component, with special tuning
of network parameters, epochs, and batch sizes for each IMF. The architecture itself
is also optimized. This feature distinguishes the hybrid EMD-GRU model from a
single GRU model.

• Thirdly, each predicted IMF component is combined to obtain the final predicted
stock closing price after obtaining the predicted results of the IMFs. Finally, the per-
formance metrics are used to compare the results of the proposed model with those
of other models. Overall, the proposed integrated prediction model that combines
EMD and GRU models offers promising results in terms of prediction effectiveness
and computational complexity reduction.
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Experimental Methods and Results

The effectiveness of the proposed framework for predicting the closing price of the stock
market in US and Spain was evaluated in this section, which is divided into different
sub-sections, according to the sequential experiments carried out. The first subsection
presents the results of the simplest model, a GRU applied directly to the data of S&P 500
and Ibex 35. In next sub-sections, several improvements will be introduced sequentially,
in order to find the best prediction model, as the EMD to avoid absence of stationarity in
the series, optimized GRUs for each IMF of the decomposed series, or technical indicators
as additional information features. The last sub-section presents the comparison results
between the different models presented.

The framework consisted of multiple processes in both feature engineering and predic-
tion modeling, so a set of sensitivity experiments was conducted to validate the proposed
model’s efficacy in each process. The goal is to assess whether the suggested model
can significantly outperform cutting-edge stock price time series modeling approaches
in terms of prediction outputs. The proposed model was validated using various com-
binations of EMD, GRU, and financial variables from a number of perspectives. Table
4.3 provides the experimental design. For simplicity reasons, and once that it has been
proved in the first two experiments that S&P 500 prices is the series with the greatest
issues in terms of stationarity and, therefore, modeling, the remaining experiments have
been focused on American stock prices. The time window which has been used by the
GRU algorithms has been 10 days back and 1-day ahead. This window will be optimized
in Experiment 5.

• Experiment 1 applies GRU algorithm to the original series of S&P 500 and Ibex 35,
in order to get familiar with both financial series of prices.

• Experiment 2 aims to solve the non-stationarity problems of series of prices, using
EMD technique of pre-processing. A General GRU model will be applied to every
single IMF to check if this stationarity pre-processing tool improve the results.

• Experiment 3 tries to improve previous results applying a different GRU model to
each one of the IMFs. Taking into account that each IMF shows a very different
pattern of stationarity, it might be interesting to model each IMF separately.

• Experiment 4 focuses on comparing the effects of incorporating technical indicators
into the EMD-GRU model. This experiment adds the original technical indicators
as additional input feature to the proposed model and evaluates whether this infor-
mation can enhance the prediction performance of EMD-GRU.

• Experiment 5 evaluates the impact in performance of using different time windows
(look-backs and look-aheads). It is worth noting that basic window used in experi-
ments 1-4 has been 10 days back and 1-day ahead.
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• Experiment 6 evaluates the best model using a different evaluation measure. After
running all the scheduled experiments, the best model of all, using classical perfor-
mance measures, will be finally tested using a trading simulation model.

Table 4.3: Details of the model and input features in each experiment. GGRU: General GRU model for
every IMF. IGRU: Individual GRU model for each individual IMF.

Experiment Model Name Input Features

1 GRU Closing price

2 EMD-GGRU Closing Price

3 EMD-IGRU Closing Price

4 EMD-TIs-IGRU Closing Price + Tech. Ind.

Experiment 1: GRU basic model We explored the use of GRUs for prediction in the
Ibex 35 and S&P 500 indices, in both cases considering a ten-day input window and
predicting one day ahead. Table 4.4 and Figure 4.4 exhibit the performance metrics and
the predictive fitting of this model for Spanish Ibex 35.

The model GRU 32-1 shows the best results in terms of MAPE. Nevertheless, the
results in terms of DA are quite disappointing, since they are just slightly above the mini-
mum 50%.

Table 4.5 and Figure 4.5 exhibit the performance metrics and the predictive fitting of
this model for US S&P 500.

Table 4.4: Performance metrics for Ibex 35. Experiment 1. First component of GRU refers to number
of neurons, and second component to layers. MAPE: Mean Absolute Percentage Error, DA: Directional
Accuracy. Bold figures for best result. All models were trained for 100 epochs with early stopping using
ADAM as the optimizer and a learning rate of 0.01 with a batch size of 128. In all cases, a one-day predic-
tion window was used, considering the previous 10 days. A 20% of the data was reserved for validation.

Training Validation

Model MAPE(%) DA(%) MAPE(%) DA(%)

GRU 8-1 1.05 51.35 0.83 50.18
GRU 8-2 1.28 51.39 0.83 49.94
GRU 8-3 1.36 51.41 0.83 50.30
GRU 16-1 1.11 51.17 0.83 50.18
GRU 16-2 1.06 51.12 0.84 50.12
GRU 16-3 1.12 51.21 0.83 50.00
GRU 32-1 1.04 51.14 0.83 50.54
GRU 32-2 1.05 51.03 0.831 50.24
GRU 32-3 1.26 50.84 0.85 50.48
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Figure 4.4: Results in Ibex 35 using the selected best model GRU 32-1. Experiment 1. The blue vertical
line separates the data into training (left) and validation (right) sets. Ground truth: actual data.

In the case of the S&P 500, once again the model that provides the best closeness in
validation is the GRU 32-1, although with slightly worse metrics in the training set and
directional accuracy than Ibex 35. It is worth noting that, in this case, the DA does not
even reach 50%.

Therefore, it can be concluded that, using only the ML algorithm, it does not seem
that we can successfully predict stock market prices, especially in the case of the S&P
500.

Table 4.5: Performance metrics for S&P 500. Experiment 1. First component of GRU refers to number
of neurons, and second component to layers. MAPE: Mean Absolute Percentage Error, DA: Directional
Accuracy. Bold figures for best result. All models were trained for 100 epochs with early stopping using
ADAM as the optimizer and a learning rate of 0.01 with a batch size of 128. In all cases, a one-day predic-
tion window was used, considering the previous 10 days. A 20% of the data was reserved for validation.

Training Validation

Model MAPE(%) DA(%) MAPE(%) DA(%)

GRU 8-1 0.81 49.02 7.21 48.73
GRU 8-2 0.86 49.08 12.97 48.73
GRU 8-3 0.92 48.81 14.50 49.34
GRU 16-1 1.10 48.79 5.28 48.61
GRU 16-2 1.09 48.84 8.08 48.37
GRU 16-3 1.69 48.37 12.45 48.43
GRU 32-1 1.20 48.84 2.78 48.55
GRU 32-2 2.07 48.31 3.82 48.37
GRU 32-3 2.44 48.31 6.60 48.49
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Figure 4.5: Results in S&P 500 using the selected best model GRU 32-1. Experiment 1. The blue vertical
line separates the data into training (left) and validation (right) sets. Ground truth: actual data.

The EMH appears to be relentless, preventing any hint of inefficiency in price forma-
tion process and bringing it closer to a random walk.

Experiment 2: EMD model + General GRU As we have explained in previous sec-
tions, EMD has demonstrated to be particularly useful in analyzing non-stationary situa-
tions. Therefore, in this second experiment the closing price of the stock data has been
transformed into new data using the EMD method. The experiment depicted in Figure 4.6
demonstrates the decomposition of the original closing price sequence into ten IMFs for
the S&P 500 and eleven IMFs for the Ibex 35, of varying frequency scales, using EMD.
Therefore, the number of IMFs generated varied depending on the raw data and the mar-
ket analyzed. The EMD process was repeated until there was only one global maxima
and minima value on IMF 10 and 11, respectively, as shown in Figure 4.6. The number of
IMFs generated would differ based on the raw data, but applying EMD to the same data
would result in the same number of IMFs.

The findings demonstrate that the signal can be categorized into three groups based on
their frequency components. The first group comprises high-frequency components with
a large amount of noise, represented by the initial IMFs. The second group consists of
middle-frequency components with medium noise, represented by the central IMFs. The
final group comprises low-frequency components with minimal noise, represented by the
latter IMFs. Furthermore, it is assumed that the GRU model is capable of accurately
predicting low-frequency IMFs while struggling with high-frequency IMFs. To optimize
prediction efficiency, the GRU model is trained separately for each IMF, and the hyper-
parameters, number of hidden layers, and weights differ for each GRU. This distinction is
a key factor that allows the hybrid EMD-GRU model to outperform a single GRU model
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Figure 4.6: The original closing price for SP500 and Ibex 35 and respective decomposed IMFs.
Experiment 2.
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Table 4.6: Performance metrics for S&P 500. Experiment 2. First component of GRU refers to number
of neurons, and second component to layers. MAPE: Mean Absolute Percentage Error, DA: Directional
Accuracy. Bold figures for best result. All models were trained for 100 epochs with early stopping using
ADAM as the optimizer and a learning rate of 0.01 with a batch size of 128. In all cases, a one-day predic-
tion window was used, considering the previous 10 days. A 20% of the data was reserved for validation.

Training Validation

Model MAPE(%) DA(%) MAPE(%) DA(%)

GRU 8-1 1.46 62.39 13.30 62.09
GRU 8-2 0.88 63.49 12.45 54.85
GRU 8-3 1.91 45.32 20.92 46.59
GRU 16-1 2.02 69.28 6.18 61.78
GRU 16-2 0.92 73.11 10.29 65.16
GRU 16-3 2.66 71.58 17.00 66.52
GRU 32-1 0.90 71.55 6.41 63.53
GRU 32-2 3.32 71.66 10.78 70.40
GRU 32-3 1.38 75.06 15.20 66.00

(Experiment 1), which is applied directly to the original closing price series, exhibiting
noise and volatility.

By subtracting from the original closing price, the IMFs were obtained, and as a result,
the summation of all IMFs becomes exactly the same as the original closing price. Hence,
it can be inferred that the addition of the prediction outcomes of all IMFs can be regarded
as the prediction outcome for the original closing price.

Once we have decomposed the initial non-stationary series in a sum of IMFs, we can
apply the GRU algorithm to the separated IMFs. In this Experiment 2, we used a general
GRU model to predict all the IMFs that are combined for the final price prediction. As
the main problems with the non-stationarity of the series were shown in the S&P 500, we
have focused our analysis from this point on the American index. Table 4.6 and Figure
4.7 exhibit the performance metrics and the predictive fitting of this model for American
S&P 500.

As it can be observed, the performance metrics improve significantly after the ap-
plication of the EMD transformation. The DA figures, just around 50% in the previous
experiment, now reach remarkable levels around 70%. MAPE figures keep similar levels
after EMD decomposition. Therefore, it seems that treating the non-stationarity of the
series with EMD has greatly improved the model’s ability to capture the price behavior
and eliminated the bias in the prediction that the previous model without EMD showed.
The fact that the MAPE is similar in both experiments means that, on average, the model
stays close to the series being predicted. However, the significantly better DA indicates
that the ML algorithm has been able to understand the series much better, being much
more accurate in anticipating changes in price direction.
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Figure 4.7: Results in S&P 500 using the selected best model GRU 32-1. Experiment 2. The blue vertical
line separates the data into training (left) and validation (right) sets. Ground truth: actual data.

Experiment 3: EMD model + Individual GRU This time we use a different GRU
model to predict each IMF. Taking into account that the level of complexity, noise and
stationarity is clearly different between IMFs, it might have sense to apply different GRU
algorithms to each one of the components. Therefore, we adapt the complexity of the
GRU algorithms to that of the IMFs, bearing in mind that the first group of IMFs have
high frequency and complexity, unlike the last group of IMFs, that shows much easier
profiles. This fact can be seen reflected in Figure 4.8, where the selected GRU 8-1 model
has been applied to every single IMF. The errors associated to the first group of IMFs is
clearly higher to those of latest IMFs.

It can be seen in Table 4.7 that this model shows the best results until now. The
DA figures are clearly above 75% both in training and validation sets. The prediction
errors are remarkably low, between 0.5% and 1.0% for both datasets. Therefore, the
improvement showed after EMD application has carried on with the use of individual
GRU algorithms to each of its components.

Figure 4.9 exhibit the predictive fitting of this model for S&P 500 (bottom half) versus
the model used in Experiment 2 (top half), focusing the analysis in the validation sets. It
is more than evident, comparing both graphs, the improvement in prediction capacity
introduced by using an individual GRU for each IMF.

Table 4.7: Performance metrics for S&P 500. Experiment 3. Best model figures. MAPE: Mean Absolute
Percentage Error, DA: Directional Accuracy.

Training Validation

MAPE(%) DA(%) MAPE(%) DA(%)

1.07 78.88 0.56 75.15
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Figure 4.8: Results in S&P 500 using model GRU 8-1. Experiment 3. Prediction errors for individual
IMFs. Ground truth: actual data.

Table 4.8: Performance metrics for S&P 500. Experiment 4. Best model figures. MAPE: Mean Absolute
Percentage Error, DA: Directional Accuracy.

Training Validation

MAPE(%) DA(%) MAPE(%) DA(%)

2.00 74.4688 0.82 73.84

Experiment 4: EMD model + Individual GRU + Technical Indicators This experi-
ment has a similar structure to the previous one. Nevertheless, in addition to using each
IMF as input for each model, we also use the 10 technical indicators of our dataset (see
Table 4.2) as additional inputs for each one.

It can be seen in Table 4.8 that the addition of this new features has not improved
the results of previous experiments, using only closing prices. It is not a bad result, but
MAPE is slightly higher and DA slightly poorer. This result partially contradicts the
findings obtained in other empirical studies.

Experiment 5: Time window optimization of EMD model + Individual GRU Once
that different combinations of EMD and GRU have been tested, the only remaining step
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Figure 4.9: Results in S&P 500 using best model. Experiment 2 versus Experiment 3. Validation set
prediction errors. Ground truth: actual data.
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Table 4.9: Impact in Closeness and Directional Accuracy for S&P 500. Best model figures. Experiment 5.
DA: Directional Accuracy. Look-back: Number of days taken for modeling. Look-ahead: Number of days
taken for forecast.

Closeness Directional Accuracy

Lookback/Lookahead 1 5 10 20 1 5 10 20

1 3.15 3.62 3.84 4.36 68.92 57.89 56.11 53.56
5 1.16 1.15 1.77 2.74 76.27 61.78 57.54 56.76
10 0.62 1.14 1.71 2.58 74.74 61.01 56.91 54.80
20 0.68 1.12 1.42 2.25 76.40 62.14 56.31 54.93

is to optimize the time windows for modeling. It is worth noting that the results presented
so far have used a time window of 10 days backwards and one day forward.

As can be seen in Table 4.9, the impact on Closeness and Accuracy of expanding
and reducing the time windows is clear. The optimal closeness is achieved with a time
window of 10 days in the past and 1 day in the future. These have been the windows used
in previous experiments. The results are fully intuitive, as they worsen as we use fewer
days for modeling and move further into the future for prediction. A similar pattern is
observed with the Accuracy, where the maximum is achieved with the 20/1 window and
the minimum with the 1/20 window. The 5-day look-back also yields very interesting
results in terms of Accuracy.

Experiment 6: Trading Simulation of best Model Unlike previous experiments, where
the goodness of the model was measured based on the proximity of the estimated prices
to the actual prices, in this experiment we want to be much more practical. While an
algorithm’s directional accuracy can be impressive, it does not guarantee profitability for
an investment strategy based on it.

Hence, evaluating predictive models through trading simulations offers a more com-
prehensive perspective on their performance in real-world scenarios. This last exercise
employs the Bollinger Band (BB) trading technique to make decisions on investing in
the S&P 500 Index. The BB strategy was created by John Bollinger in the 1980s and
involves two boundaries – an upper and lower band – which are placed two standard devi-
ations away from a 20-day simple moving average. The upper band indicates a buy signal
and the lower band indicates a sell signal.

The upper and lower bands have served as indicators for when to buy or sell the S&P
500 Index. If the predicted price, using the best model (EMD-IGRU) is higher than both
the upper band and the closing price, it has been interpreted as a buying signal, since
the predicted price is two standard deviations above the average. On the other hand, if
the predicted price is lower than both the lower band and the closing price, it has been
considered as a selling signal, since the predicted price is two standard deviations below
the average. In theory, if prices are accurately predicted, the trading signal generated from
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these conditions should never result in a loss. By utilizing them, this study can accurately
measure the profit-making capabilities of the predictive models.

The trading simulation works as follows: When the predicted price surpasses both
the upper band and the actual closing price, showing that the predicted price is signifi-
cantly higher (two standard deviations) than the normal price, a long (buy) signal is sent.
Conversely, it indicates a short (sell) signal when the forecast price is significantly below
the average price (by two standard deviations) and drops below both the lower band and
the actual closing price. Theoretically, if prices were forecast precisely, trading signals
developed based on these criteria would never result in losses. Since we have translated
the prediction models into actual trading strategies, we will measure the goodness of pre-
diction of the ML models using the standard statistics of any trading system. Hence,
conducting trading simulations offers a more practical approach to assessing the effec-
tiveness of predictive models in real-life scenarios. These statistics primarily focus on
checking the size of the obtained returns, their volatility, and the presence or absence of
significant draw-downs in the cumulative performance.

Figure 4.10 illustrates the trading signals generated by the BBs using the EMD-IGRU
model’s 20-day advance predictions of the S&P 500 Index prices. The 20-day closing
price forecast is shown by the green line. The blue and red lines, respectively, represent
the top and lower bands of the BBs. The 20-day forecast price points that are above the
upper band imply long signals, while the 20-day anticipated price points that are below
the lower band suggest short signals (shown by dashed vertical red lines). The trading
system assumes that long and short positions are closed after a 20-day trading period.
This means that if the system buys the index today, it will automatically be sold 20 days
later. To avoid repeated signals resulting from minor price fluctuations around the BBs,
repeated long and short signals within a 20-day time-frame were disregarded.

Figure 4.11 shows the trading signals using the best model, and the trading simulation
using the BBs, for the window of 10-day ahead. As it can be seen, there are 25 trading
signals, of which 13 are buy (long) signals and 12 are sell (short) signals.

In Table 4.10 there have been presented the main statistics of the trading simulation
experiments, using the best prediction model, for the four different temporal windows
considered, and taking into account transactions costs. Specifically, it has been assumed
a negative return of 0.05% for every single situation in which there is a position change.
This cost includes both brokerage fees and the bid-ask spread.

It is quite remarkable that, taking into account the DA as unique prediction accuracy
measure, the best ML model works well for the four temporal windows considered. Ev-
ery single figure is clearly above desirable 50%. Moreover, 10-day and 20-day ahead
simulations seem the best. Nevertheless, in the case of the longest window, the trading
simulation results, in terms of accumulated return, Sharpe ratio or MDD are quite disap-
pointing. Hence, it becomes evident that, although an algorithm may be highly accurate
in its predictions, using traditional accuracy measures, this does not mean that it will be
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Figure 4.10: Trading simulation EMD-IGRU Model 20-day ahead predictions.

Figure 4.11: Trading signals 10 day-ahead using EMD-IGRU best model.
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Table 4.10: Descriptive statistics of the trading simulation using best model (EMD-IGRU). 1, 5, 10 and
20-day ahead predictions. Return calculated using interest capitalization and transaction costs. TP: True
Positive. TN: True Negative. FP: False Positive. FN: False Negative. DA: Directional Accuracy. MDD:
Maximum Draw-Down.

Statistic Indicators 1-day 5-day 10-day 20-day
Total Net Return (%) 40.24 36.50 39.04 -0.13
Average Return (%) 0.22 0.56 1.42 0.18
StDev Return (%) 1.63 2.23 4.18 5.18
# Trades 173 61 25 24
TP 33 21 11 8
TN 59 15 7 8
FP 27 7 2 1
FN 54 18 5 7
DA (%) 53.18 59.02 72.00 66.67
Sharpe Ratio 1.76 1.94 1.70 0.15
MDD (%) 11.94 13.65 12.57 28.48

successful in generating profits.

Except in this case, the trading results can be considered as truly interesting, according
to trading standards, as can be remarked taking a look to the accumulated return perfor-
mance charts in Figure 4.12. The temporal windows of 5- and 10-day show a more than
remarkable results in terms of return, volatility, accuracy and stability. Specifically, the
10-day model offers a total return of 39.04% in only 25 trades, a DA of 72.00%, a SR of
1.70 and a MDD of 12.57%.

Therefore, it can be concluded that our best ML model, the EMD-IGRU, passes such
a demanding test as exhibiting good performance in a simulated trading test, even after
considering transaction costs. This is a crucial contribution comparing with the results
showed by similar papers in the literature.

Discussion

Table 4.11 summarizes the results of the different models carried out, in terms of predic-
tion accuracy. In terms of MAPE, only the model with individual GRUs for each one of
the IMFs is able to beat the figures of a plain vanilla Box-Jenkins model (ARIMA(1,1,1)).
The results are very similar for the model with technical indicators as additional features.

In terms of DA the results are quite different. Except in the case of the initial GRU
model, without the use of EMD, the remaining models predict better the S&P 500 closing
prices than ARIMA best model. Thus, the combination of EMD pre-processing technique
and GRU enhances substantially the results from traditional univariate models, usually
considered as the better approach to financial series as S&P 500 stock prices. The DA of
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Figure 4.12: Trading simulation performance. Cumulative return. Different windows. Best prediction
model. Ground truth: actual data (left axis).

ML approaches oscillates between 63.53% in the worst case and 75.15% in the case of
the best model (Experiment 3). They are also above recent results in the literature, which
use some other approaches of ML or DL to model and predict S&P 500 stock prices. In
most of cases, the DA figures do not exceed 70%. Good examples of that can be found in
[Akiyoshi, 2020], [Nava et al., 2018], [Shi and Zhuang, 2019] or [Srijiranon et al., 2022].

Finally, as we have seen in the previous section with the Experiment 6, the best model
of all, the EMD-IGRU, has been exposed to a real-life stress test, a trading simulation.
The model’s response has been more than satisfactory, and according to the statistical
standards employed in market trading systems, the model delivers commendable results in

Table 4.11: Summary of prediction accuracy figures for best model in each experiment (validation set).
S&P 500. MAPE: Mean Absolute Percentage Error, DA: Directional Accuracy. ARIMA: ARIMA model
(1,1,1). GRU: GRU model without EMD. GGRU: General GRU model for every IMF. IGRU: Individual
GRU model for each IMF. TI: Technical Indicators.

Experiment Model Name MAPE (%) DA (%)

0 ARIMA 0.76 51.41

1 GRU 2.78 48.55

2 EMD-UGRU 6.41 63.53

3 EMD-IGRU 0.56 75.15

4 EMD-TIs-IGRU 0.82 73.84
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practically all prediction windows. This result suggests that the GRU predictive models,
enhanced with the previous application of the EMD transformation for non-stationary
series, exhibit a reasonable level of accuracy in predicting stock prices and directional
movements. Moreover, it has also demonstrated to be effective in predicting actual profits
in real-world scenarios.

4.2.2. Pairs Trading

Introduction

The goal of investing is to minimize risk while maximizing returns. To this end, the
’pairs-trading’ strategy, sometimes called statistical-arbitrage, has been used increasingly
in modern hedge funds due to its simplicity and market-neutrality. This technique entails
monitoring the correlation between two stocks that are known to be connected, and open-
ing a long position on the one that rises and a short position on the one that falls. The
underlying assumption is that, despite short-term divergence, the two stocks will converge
in the long-run, thus allowing the trader to benefit from the pair regardless of the market
situation.

Trading techniques for pairs often use cointegration or some other time series-related
statistic to find pairs ([Gatev et al., 2006], [Vidyamurthy, 2004]). For other authors ([Han
et al., 2021]), using solely historical price data, however, might lead to the misleading
identification of spuriously linked pairs that might not move jointly in the future. It might
seem that it is possible to find more successfully comparable equities using some kind
type of techniques which take into account both previous price movements and additional
firm characteristics associated to the idiosyncratic risk of both stocks. Stocks with similar
firm characteristics would be seen to move together more likely, and this would be a good
way to find pairs that can work successfully in a pairs trading strategy.

This research looks at the viability of using unsupervised learning ML techniques to
find possible stock pairs for a long-short portfolio. Nevertheless, considering that we are
working with time-series data, each data point is an ordered sequence, and because of
that, clustering various time series into comparable groups can be considered a difficult
operation. By flattening the time series into a table with a column for each time index (or
aggregate of the series), the most popular way for clustering time series is to directly em-
ploy basic clustering algorithms like k-means. In other words, the most recurrent method
of applying UL techniques of classification for time series is to eliminate the time depen-
dence of the data or, what is the same, to avoid the temporal dimension of the data.

We propose a framework for classifying high-dimensional financial data into clusters
and, for this aim, we propose a triple-way contribution. First, we suggest to apply two
different clustering algorithms to build pair portfolios for statistical arbitrage. Specifically,
we pick k-means clustering and Density-based Spatial Clustering of Applications with
Noise (DBSCAN). Second, we propose to apply a very modern clustering approach to
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time series data, without losing the temporal dimension, using the k-means clustering
with Dynamic Time Warping (DTW). Third, we propose to use as additional features in
the classification problem the firm characteristics associated to the idiosyncratic risk of
stocks.

After clustering, we use the previously chosen pairs to create an equally-weighted
long-short portfolio. Two benchmarks —the S&P 500 index and the short-term reversal
portfolio— will be used to compare these clustering-based long-short portfolios.

Main contributions

• Hybrid framework. A hybrid framework that combines dimensionality reduction
through auto-encoders and UL techniques of clustering as k-means and DBSCAN.

• Time series approach. We propose to apply a very recent clustering approach to
time series data, without losing the temporal dimension, using the k-means cluster-
ing with DTW.

• Firm characteristics. We propose to use as additional features in the classification
problem the firm characteristics associated to the idiosyncratic risk of the stocks,
trying to add financial valuable information to find pairs of values which can per-
form together in the long term.

• Multiple accuracy measures. The prediction model is evaluated using traditional
metrics and it will be finally tested using a trading simulation model compared to
several benchmarks as S&500 and short-term reversal portfolio.

Research Data and Feature Generation

The dataset includes monthly stock price data from S&P 500 Index constituents and quar-
terly fundamentals, which have been provided by Factset. Those stocks with a remark-
able lack of information about quarterly fundamentals (above 50% of missing values)
have been eliminated from the dataset. Therefore, the feature set finally consists of stock
prices about 392 firms and 15 firm characteristics generated every month for the sample
period from January 2010 to January 2023. Our sample period for training strategies was
set from 2010-01-01 to 2014-12-31 (5 years), and we used the sample period of 2015-01-
01 to 2023-01-01 for validation.

The feature set is split into two parts. The first set is composed of 36 price momentum
values, ranging from 1 to 36 months. The second set of features includes 15 firm char-
acteristics, with monthly frequency, selected using our own criteria. Using the features
available at the end of month t − 1, stocks are grouped together, and the prior one-month
return is used to pinpoint undervalued and overvalued stocks.
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The momentum of stock prices can be used to predict future stock movements. How-
ever, differences in firm characteristics may cause two stocks that had similar movements
in the past to vary in the future. To take this into account, we introduce a clustering
method that uses both momentum and firm characteristics. This is relatively unusual in
the literature about pairs trading, which usually rely solely on price or return information.

Momentum features The price momentum at the end of month t − 1 is defined as the
cumulative return from month t− i to t− 2 for i > 1, and as the prior one-month return for
i = 1:

momi = rt−1, i = 1,

momi =

t−2∏︂
j=t−i

(r j + 1) − 1, i ∈ 2, ..., 36 (4.8)

where r j denotes the return in month j.

Firm characteristics The 15 firm characteristics have been chosen following our own
criteria, trying to be as general as possible to define the financial and economic reality of
the firms. There are characteristics associated to price, profitability, solvency, liquidity,
among others, as can be seen in Table 4.12.

System Architecture

In this section, we will be taking a deep dive into the two types of algorithms we will
use in this experiment. In the one hand, a dimensionality reduction algorithm brought
from the NNs field, the auto-encoders. In the other hand, the two clustering algorithms
to be used: k-means clustering and DBSCAN. These two algorithms represent partition-
based and density-based clustering, respectively. As opposed to SL methods, clustering
algorithms are unsupervised, meaning they do not require a set of labels to target. All
they need is the input data, and they can find patterns that may not be easily visible to the
human eye. We will pay special attention to time series k-means clustering with DTW,
which is the UL classification algorithm developed to be applied specifically to time series
data as ours.

In contrast to SL methods, such as DL or gradient boosting, which generally require
a great number of hyperparameters, clustering algorithms require only a limited number
of them and leave little opportunity for data snooping. We assess the effects of various
hyperparameter values on the operation of the pairs trading strategy by experimenting
with them.
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Table 4.12: Firm characteristics used in UL clustering methods.

Characteristics Formula

Price to Book ratio Price per share
Book value per share

Return on Equity Net Income
Total Equity

Asset Turnover Total Sales
Total Assets

Total Debt % Equity Total Debt
Total Equity × 100

Net Cash Flow % Total Debt Net Operating Cash Flow
Total Debt × 100

Free Cash Flow Margin Free Cash Flow to Equity
Total Sales

Free Cash Flow to Equity Free Cash Flow
Total Equity

Long Term Debt % Total Capital Long Term Debt
Total Capital incl.ST Debt

Net Income Margin Net Income
Net Sales × 100

Price Earnings ratio Price per share
Earnings per share

Return on Average Assets Net Income
Average Total Assets × 100

Return on Invested Capital Net Income
Invested Capital × 100

Earning Assets to Total Available Funds Earning Assets
Total Capital incl.ST Debt × 100

Cash Flow Return on Invested Capital Net Cash Flow
Invested Capital × 100

Price to Free Cash Flow Price per share
Free Cash Flow

Dimensionality reduction: auto-encoders It is a typical practice to preprocess data
by scaling it and using PCA before carrying out an unsupervised clustering process (for
instance, [Sarmento and Horta, 2020]. To avoid skewed clustering, it is very common
to apply normalization to features so that all of them are given equal weighting in dis-
tance calculation. This normalization is done by computing the cross-sectional mean and
standard deviation of the features, and then subtracting the mean from each feature and di-
viding it by the standard deviation. This ensures that all features have the same weighting
in clustering, and that the resulting clusters are not skewed.

Nevertheless, there are some techniques, coming from the SL field of ML algorithms,
which are more effective when there are some doubts about the linearity of the data struc-
ture. This is the case of the auto-encoders.

By stacking several non-linear transformations (layers), auto-encoders are NNs that
may be used to reduce the data into a low dimensional latent space. Their architecture is
encoder-decoder. The input is translated into latent space by the encoder, and it is recon-
structed by the decoder. For appropriate input reconstruction, they get back propagation
training. Auto-encoders can be used for dimensionality reduction when the latent space
has fewer dimensions than the input. These low-dimensional latent variables can recon-
struct the input, therefore it seems make sense that they would encode the majority of its
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key properties.

An auto-encoder is a unique and challenging three-layered NN in which we set the
output hW,b(x) = (x∼1 ; x∼2 ; ...; x∼n )T equal to the input x = (x1; x2; ...; xn)T . Suppose the
original input x belongs to n-dimensional space and the new representation y belongs to
m-dimensional space. The reconstruction error is J. It employs the back propagation
technique for training and is an UL algorithm.

hW,b(x) = g( f (x) ≈ x (4.9)

J(W, b; x, y) =
1
2
||hW,b(x) − y||2

The structural description of an auto-encoder is shown in Figure 4.13. An encoder f
goes from the first to the second layer, while a decoder g goes from the second to the third
layer. By modifying the encoder and decoder’s settings, we may then obtain the code
while minimizing the reconstruction error J.

Figure 4.13: The visualization description of auto-encoder.

K-means clustering The most used clustering technique is probably k-means clustering
([MacQueen, 1967]). It initially requires the specification of K, the number of clusters.
By using the Euclidean distance, the within-cluster sum of squares (WCSS) between the
data points and their individual centroids is minimized, K centroids are then identified,
and all of the data points are then grouped into one of these clusters. The following
provides the objective function:

W = WCS S =
N∑︂

i=1

K∑︂
k=1

wik||xi − µk||
2 (4.10)

where xi refers to i-th data point, µk the centroid of cluster k, wik=1 if xi belongs to
cluster k, and N is the total number of data points. ||.|| denotes l2 norm.

The minimization issue for the k-means clustering involves two steps. In order to
update the assignment of data points to clusters, W is first reduced with regard to wik
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while keeping µk fixed (Equation 4.11). Then, while retaining wik fixed to recompute the
centroids, W is minimized with respect to µk (Equation 4.12). Until W is minimized, the
aforementioned actions are repeated.

wik =

⎧⎪⎪⎪⎨⎪⎪⎪⎩1, if k = argmin j||x
iµ j||

2.

0, otherwise.
(4.11)

∂W
∂µk
= 2

N∑︂
i=1

wik(xi − µk) = 0 (4.12)

K-means clustering integrated with Dynamic Time Warping (DTW) [Niennattrakul
and Ratanamahatana, 2007] integrated DTW in their work, replacing the Euclidean dis-
tance with a K-medoids clustering approach. Due to its greater sequence-alignment flex-
ibility, this relatively new distance measure has replaced the more widely used Euclidean
distance as a similarity measurement for different data mining tasks. In other words, Eu-
clidean distance is less unsuited for time series since it will incorrectly assess the distance
between two strongly correlated time series if one is altered by even one time step.

According to [Ratanamahatana and Keogh, 2004], DTW overcomes the restriction
of one-to-one alignment of other distance measures and permits non-equal-length time
series. Using a distance matrix with each element representing the cumulative distance of
the minimum of the three immediate neighbors, it uses dynamic programming to search
every feasible path before choosing the one that results in the smallest distance between
the two time series. Assume we have two time series, Q = q1, q2, ..., qi, ..., qn and C =
c1, c2, ..., c j, ..., cm. The first step is to generate a nxm matrix, where each (i, j) element
represents the sum of the distances at (i, j) and the minimum of the three elements that
are immediately next to the (i, j) element, where 0 ≤ i ≤ n and 0 ≤ j ≤ m.

The (i, j) element can be described as:

ei j = di j +min{e(i−1)( j−1), e(i−1) j, ei( j−1)} (4.13)

where ei j is the (i, j) matrix element and di j is equal to (ci+qi)2, the total of the squared
distances between (i, j), as well as the minimum cumulative distance between the three
elements surrounding the (i, j) element. The path that delivers the smallest cumulative
distance at (n,m) is the one to pick next in order to find the best course of action. The
measurement of distance is:

DDTW(Q,C) = min
∀w∈P

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⌜⎷

K∑︂
k=1

dwk

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.14)

where P is a set of all possible warping paths, and wk is (i, j) at k-th element of a
warping path and K is the length of the warping path.
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DBSCAN In a high dimensional data space, the DBSCAN identifies areas of high den-
sity divided by regions of low density ([Ester et al., 1996]). The minimal number of data
points per cluster, MinPts, and the maximum distance between data points that must be
deemed to be in the same cluster, ϵ, are its two parameters.

DBSCAN first chooses a random data point to serve as a core point. For the core point,
only data points with at least MinPts neighbors within ϵ are taken into consideration. In
a technique known as direct density accessible, every neighboring point inside ϵ of a core
point is grouped with the core point. These neighboring points’ neighbors are likewise
included in the same cluster. Density reachable is the term for this procedure. Border
points are non-core points in a cluster, while points inside the same cluster are referred
to as being densely linked. According to [Schubert et al., 2017], outliers or noise are
places that cannot be densely reached from any of the core points and are not a part of any
cluster. This process is repeated until all data points are visited.

Portfolio Formation and Trading Strategy

At the conclusion of each month throughout the research period, we perform the dimen-
sionality reduction using auto-encoders, and then we group stocks together using one of
the already described clustering algorithms. Clustering enables us to assign stocks to a
group or recognize them as outliers. The clustering algorithm has been applied to identi-
cal time windows of five years (sixty observations), and the portfolio formation has been
started in February 2015. From this moment on, the clustering optimization has been
carried out repeatedly every month.

According to price trends and fim characteristics up to month t − 1, we will assume
in the prediction that stocks that were grouped together in the same cluster will move
similarly in month t. To detect pairs of stocks, we analyze their one-month returns (mom1)
prior to month t. Stocks with a lower mom1 value are likely to experience an upswing in
the following month -or longer-, while stocks with a higher mom1 are likely to experience
a decrease in price.

We arrange the stocks in each cluster according to their mom1 values, forming pairs
of stocks with the highest and lowest mom1 values, the second-highest and second-lowest
mom1 values, and so on. We then assemble an equally weighted long-short portfolio that
is composed of pairs whose mom1 difference is greater than the average variance of the
mom1 differences of all the pairs. If the mom1 differences of the pairs in a cluster are not
wide enough, none of them will be eligible for trading. The positions are held for a month,
and at the conclusion of each month, the portfolio is rebalanced. Up to the conclusion of
the sample period, this cycle is repeated.

In order to check the robustness of the model, we have tested the trading system using
the alternative periods of three, six and twelve months, and rebalanced the portfolio at
the end of each month until the end of the sample period. Obviously, in the experiments
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Table 4.13: Clustering statistics summary. Features used in the different clustering algorithms. Price:
Prices and momentums. Price+FI: Prices, momentums and financial indicators. Price+DTW: Prices as
only features, integrated with DTW.

Statistic
k-means DBSCAN

price price+FI price+DTW price price+FI

# clusters 20 20 20 20 20
# stocks in total 391 391 391 391 391
# average stocks in the biggest cluster 38 34 63 42 37
# average stocks in the 2nd biggest cluster 32 30 51 35 31
# median stocks in all clusters 19 20 14 18 19

longer than one month, several portfolios will be held at the same time, although only
one portfolio will be formed each month. In this way, we will be able to test the average
period in which the temporary differences in behavior that may be revealed between two
stocks that, due to their characteristics, should perform similarly, tend to go away. In other
words, what is the average period to expect to "return to normal."

The performance of the clustering-based long-short portfolios is compared with two
benchmarks; the S&P 500 index (including dividends available from Factset) and the
short-term reversal portfolio (which involves sorting all stocks based on their mom1, and
initiating long positions on the stocks in the first decile and short positions on the stocks
in the bottom decile).

Results

This section provides a summary of each clustering method’s grouping characteristics, as
well as an evaluation of the financial outcomes of pairs trading approaches from various
perspectives. Several robustness tests have been completed to make sure that the results
are not caused by data mining.

Clustering Characteristics We provide an overview of the clustering statistics of the
two clustering methods, with their subsequent sub-methods, that is, with the use or not of
the financial characteristics as additional features, and in the case of k-means clustering,
considering the use of DTW. The results of this analysis are outlined in Table 4.13.

It can be seen that the number of clusters and their characteristics are very homo-
geneous throughout methods. The number of clusters has been optimized at 20, being
the median number of stocks approximately 15-20 stocks, and the two biggest clusters
conformed by between 40 and 60 stocks.

Strategy Performance Table 4.14 reports the performances of the long-short portfolios
constructed via the two clustering methods used in this study. In the same table we have
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represented the same figures for the two models used as benchmarck: the S&P 500 index
and the short-term reversal portfolio calculated over the same index.

As it can be observed, five models have been revised. In the case of k-means cluster-
ing, we have estimated three different algorithms, depending on the features considered
and the use or not of the DTW: 1) only stock prices and their momentums without DTW,
2) stock prices, momentums and financial indicators without DTW, and 3) only stock
prices but using DTW. In the case of DBSCAN, two algorithms have been used: 1)
only stock prices and their momentums, and 2) stock prices, momentums and financial
indicators.

The model using the k-means algorithm, but in its version adapted to time series, i.e.,
the k-means clustering integrated with DTW, shows the best results. Without capitaliza-
tion of the monthly returns, it achieves a total return of 89% in 8 years, with a DA of 63%,
a SR of 2.658, and a CR of 0.678. The second best model is obtained using the second
algorithm, DBSCAN, without any additional features, only stock prices. It achieves a
total return of 67% in 8 years, with a DA of 60%, a SR of 2.148, and a CR of 0.638.

In Table 4.15 we have represented a summary of these two best models, in comparison
with the two benchmarks previously introduced. As it can be seen, the k-means clustering
integrated with DTW keeps its privilege place in terms of total return, but also in terms
of the different trading performance measures, mainly SR figures. The results form the
DBSCAN model are not so brilliant in terms of total return, as they keep below benchmark
figures, but it is able to stay ahead in terms of SR and CR.

In Figure 4.14, this outperformance of both clustering algorithms over the two bench-
marks can be visually confirmed. Both benchmarks go through situations of higher stress,
with more pronounced ups and downs, while the two clustering algorithms evolve in a
smoother manner, without major disturbances.
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Table 4.14: Performance of the equally-weighted pairs trading portfolios constructed via k-means and
DBSCAN (for all versions). The monthly returns are not capitalized. The validation sample period is
2015.01 - 2023-01. Features used in the different clustering algorithms. Price: Prices and momentums.
Price+FI: Prices, momentums and financial indicators. Price+DTW: Prices as only features, integrated
with DTW.

Statistic
k-means DBSCAN

price price+FI price+DTW price price+FI

Total return (%) 44.675 46.518 89.067 67.157 35.188
Monthly return (%) 0.470 0.490 0.938 0.707 0.370
Minimum return (%) -12.857 -15.538 -14.784 -12.315 -16.721
Maximum return (%) 12.165 12.709 13.563 11.629 12.905
Directional accuracy (%) 50.526 57.895 63.158 60.000 53.684
Sharpe ratio 1.547 1.418 2.658 2.148 1.027
Maximum drawdown (%) -14.204 -16.391 -16.582 -13.303 -19.628
Calmar ratio 0.397 0.358 0.678 0.638 0.231
Skewness 0.045 -0.360 -0.187 -0.090 -0.502
Kourtosis 5.818 6.072 5.570 3.167 6.450

Figure 4.14: Performance of two best clustering methods trading simulations versus benchmarks.

Effects of Firm Characteristics We initially hypothesized that the firm characteristics
might be advantageous for clustering stocks and improving pairs trading strategies. As we
have explained in previous section, the data does not seem to confirm our hypothesis. The
results are not bad, but they do not improve the achievements from the k-means clustering
with DTW and DBSCAN, in both cases without financial indicators of firm characteristics
as features. It seems that this kind of financial information is not useful for enhancing the
classification of stocks in pairs and, thus, for improving the performance of the trading
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Table 4.15: Performance of the equally-weighted pairs trading portfolios constructed via k-means and
DBSCAN (in their best versions). The monthly returns are not capitalized. The validation sample period is
2015.01 - 2023-01.

Statistic k-means DBSCAN S&P 500 Reversal

Total return (%) 89.067 67.157 75.926 70.320
Monthly return (%) 0.938 0.707 0.808 0.748
Minimum return (%) -14.784 -12.315 -13.375 -27.090
Maximum return (%) 13.563 11.629 13.589 52.850
Directional accuracy (%) 63.158 60.000 64.286 57.317
Sharpe ratio 2.658 2.148 1.642 0.711
Maximum drawdown (%) -16.582 -13.303 -27.259 -68.670
Calmar ratio 0.678 0.638 0.356 0.131
Skewness -0.187 -0.090 -0.341 1.518
Kourtosis 5.570 3.167 0.811 7.342

system build with them.

All the clustering techniques produce similar levels of returns, but the returns and
other risk-adjusted performance metrics decline when the firm characteristics are consid-
ered in the equation.

Factor Regression We use three factor models to investigate if systematic risk factors
can account for the returns of long-short portfolios created through the most effective
clustering algorithm used in this exercise. We chose k-means clustering integrated with
DTW as it showed the most satisfactory results compared to other clustering algorithms.

The three models that we consider are the Fama and French ([Fama and French, 1996])
three-factor model (FF3), the Fama and French ([Fama and French, 2015]) five-factor
model, and the [Hou et al., 2020] q5 factor model. Data for the Fama-French factors are
obtained from Kenneth French’s website, and the q5 factors are taken from the global-q
website.

As shown in Table 4.16, the long-short portfolio constructed from k-means exhibits an
economically and statistically meaningful monthly alpha of 0.56 (t= 1.84) when regressed
on FF3. The market beta is also high and positive (0.35), showing that the trading strategy
is not risk-neutral but rather dollar-neutral. Positive and weakly significant factor loading
on High minus Low (HML) suggests that it favors companies with larger book-to-market
ratios. The size factor does not seem to be significant in the returns of our pairs trading
strategy. The adjusted R2 from FF3 is 0.27.

The explanatory power of the FF5 model is comparable to that of the FF3, and the
alpha (0.642) is still statistically and economically significant, much as the market beta
(0.311). Compared to the FF3 model, the factor loading on HML is once more significant
(0.249) and positive, what means that the book-to-market ratio remains as an explanatory
factor of our returns. Another factor loading, the investment factor Conservative minus
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Aggresive (CMA), also presents statistical significance (-0.284), denoting that our pairs
trading model favours firms with an aggressive level of investment. The returns of our
strategy do not seem to be explained by the factors of size and profitability.

Three of the factors in q5 are also unable to explain the returns, suggesting that the
significant return of the strategy is not a result of excessive risk taking in this kind of firm
characteristics, but the two remaining factors appear to be economically and statistically
significant. As in the two previous cases, the alpha (0.846) remains high, and the market
beta (0.274) and expected growth factor associated to investment (-0.577) also present
significant coefficients. These results seem to demonstrate that our model excess returns
might be explained by the selection of firms with lower level of expected growth.

Table 4.16: Factor regression results of the equally-weighted pairs trading portfolio constructed via k-
means integrated with DTW. FF3, FF5 and q5 respectively denote the Fama-French three factors, Fama-
French five factors and Hou-Mo-Xue-Zhang q5 factors. The sample period is from 2015.01 to 2023.01.
t-statistic values in parentheses.

Variable FF3 FF5 q5

Intercept 0.564∗ 0.642∗∗ 0.846∗∗∗

(1.841) (2.071) (2.856)
Market-Rf 0.350∗∗∗ 0.311∗∗∗ 0.274∗∗∗

(5.310) (4.326) (4.079)

SMB3 - Size factor 0.089
(0.760)

HML3 - Value factor 0.148∗

(1.895)

SMB5 - Size factor 0.089
(0.665)

HML5 - Value factor 0.249∗∗

(2.208)
RMW5 - Profitability factor -0.002

(-0.015)
CMA5 - Investment factor −0.284∗

(-1.648)

R-ME - Size factor -0.189
(-1.470)

R-IA- Investment factor -0.135
(-1.017)

R-ROE - Profitability factor 0.016
(0.113)

R-EG - Growth factor −0.577∗∗∗

(-3.207)

R2 0.294 0.319 0.387
Ad j.R2 0.271 0.281 0.352

* p < 0.10, ** p < 0.05, *** p < 0.01
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Figure 4.15: Performance two best models. Time windows of 1, 3, 6 and 12 months.

Robustness Check In order to check the robustness of the model, we have tested the
trading system using the alternative periods of three, six and twelve months, and rebal-
anced the portfolio at the end of each month until the end of the sample period. Obviously,
in the experiments longer than one month, several portfolios will be held at the same time,
although only one portfolio will be formed each month. In this way, we will be able to test
the average period in which the temporary differences in behavior that may be revealed
between two stocks that, due to their characteristics, should perform similarly, tend to go
away. In other words, what is the average period to expect to return to normal.

As can be observed in Table 4.17, there is a smoothing of the results. Although the
outcomes are less outstanding in terms of total return, the models benefit from greater
stability as the poor results of one trade are offset by the good results of other trades that
coincide in time. This smoothing effect increases as we extend the trade duration period
from 1 to 3, 6, and 12 months, which is evident in significantly higher Sharpe ratios and
virtually non-existent draw-downs. These results, also represented in Figure 4.15, confirm
the strong robustness of the models used in this exercise.
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Table 4.17: Performance of the equally-weighted pairs trading portfolios constructed via k-means and
DBSCAN (best versions) for the alternative periods of 3, 6 and 12 months. The monthly returns are not
capitalized. The validation sample period is 2015.01 - 2023-01.

Statistic
k-means DBSCAN

3 months 6 months 12 months 3 months 6 months 12 months

Total return (%) 46.463 33.557 41.367 37.014 24.078 34.435
Monthly return (%) 0.489 0.353 0.435 0.390 0.253 0.362
Minimum return (%) -0.969 -0.674 -0.838 -0.821 -0.534 -0.826
Maximum return (%) 2.348 1.143 1.187 2.050 0.921 1.18588
Directional accuracy (%) 70.526 82.105 95.789 61.053 78.947 94.737
Maximum Drawdown (%) 2.685 2.478 1.549 3.714 1.856 1.406
Sharpe ratio 5.979 9.056 13.079 5.073 7.529 10.628

Discussion

In this study, we used UL to create pairs trading strategies. We employed, additionally to
price data, data from firm characteristics and historical returns, and utilized two clustering
techniques, k-means clustering and DBSCAN.

We tested our tactics on the US stock market from January 2010 to January 2023, and
we found that both of them significantly beat the market as well as the benchmark for
short-term reversals. With an annualized return of 11.3% and an annualised Sharpe ratio
of 2.66, the k-means clustering-based approach, integrated with DTW, seemed to be the
best performing one. This return was obtained without considering return capitalization
or using any level of leverage. It is also true that, on the other hand, transaction costs did
not been introduced in this exercise for considering them not so relevant.

During the 2020 market collapse, the trading system exhibited strong performance.
Surprisingly, it turns out that firm characteristics are not a significant source of informa-
tion for recognizing couples. At least, it seems evident, according to the data used, that
firm characteristics do not help to find better pairs to trade. The volatility and downside
risk of the methods are not significantly reduced, and performance is not enhanced.

We have been interested in finding out whether some kind of risk factors can be behind
the extra returns achievement. Therefore, we used three factor models to investigate if
systematic risk factors can account for the returns of long-short portfolios created through
the most effective clustering algorithm used in this exercise, the k-means with temporal
dimension DTW. First of all, the explanatory power of the models is not so brilliant,
around 30-40% in the three cases. In terms of statistical significance, factors as size,
profitability, or investment factor are not significant in none of the three models, and only
market beta factor or growth factor seems to show some level of significance. Therefore,
it can be concluded that the extra returns achieved with our ML model and trading system
can not be explained by excessive risk taking.

Finally, in order to check the robustness of the model, we have tested the trading
system using the alternative periods of three, six and twelve months, and rebalanced the
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portfolio at the end of each month until the end of the sample period. The models gain
from increased stability since the strong results of some transactions that overlap in time
outweigh the negative results of other trades, despite the outcomes being less exceptional
in terms of overall return. The results achieved confirm the robustness of the models and
strategy used in the exercise.

4.2.3. Factor Investing

Introduction

[Fama and French, 1992] included size and book-to-equity as the two new variables to
the original CAPM model. As we explain in a detailed way in Chapter 2, these authors
discovered that when these two factors were combined with the initial risk factor, they
effectively reflected the cross-sectional variations in stock returns. Then, as an extension
of their 1992 model, the Fama-French three-factor model ([Fama and French, 1993]) was
released. It identifies three stock market variables, including an overall market component
and factors related to business size and book-to-market equity. They suggested modifying
the baseline CAPM model by adding High Minus Low (HML) and Small Minus Big
(SMB), respectively. High Minus Low (HML) is the average return on the two high-value
portfolios less the average return on the two growth portfolios. Small Minus Big (SMB)
is the average return on the three smallest portfolios reduced by the average return on the
three largest portfolios. Their model did better than the original CAPM, which could only
account for over 90% of portfolio returns with data from the United States on average.

In spite of this compelling new data, some scholars questioned the ability of the Fama-
French three-factor model to forecast future returns. For instance, [Daniel and Titman,
1997] were unable to confirm Fama and French’s findings using a collection of monthly
U.S. data from the NYSE, AMEX, and NASDAQ covering the years 1963–1993. [Grif-
fin and Lemmon, 2002] also discovered that the Fama-French three-factor model was
country-specific and needed to integrate local characteristics to more accurately forecast
the returns of diversified portfolios.

More recently, a five-factor model was presented by [Fama and French, 2015], who
added two extra components to the three-factor model to account for profitability and in-
vestment. The elements Robust minus Weak (RMW) is determined by the difference in
returns between businesses with strong (high) and weak (low) operational profitability, as
well as the investment component. There was developed a concept known as Conserva-
tive minus Aggresive (CMA), which measures the difference between the returns from
companies that invest prudently and firms that invest proactively.

In this research, we suggest an alternative estimation method for the Fama-French
three and five-factor models through the use of ML algorithms. To be more specific,
we apply a combination of Support Vector Regression (SVR) and mixed Grid Search
(GS) with 10-fold Cross Validation (CV) optimization to forecast portfolio returns for the
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United States using the three and five factors presented by Fama and French. In line with
the principle of structural risk minimization, SVR is a statistical ML toolkit that aids in
model prediction. Cross-validation (CV) is used to evaluate the predictive power of those
models, and comprehensive grid search (GS) is used to study all possible combinations
of the hyperparameters of SVR models. We can simply map both linear and non-linear
relationships between our dependent variable (output) and the variables (inputs) by using
the two models.

We will try to demonstrate that the SVR models have been found to be quite successful
when applied to the analysis of portfolio returns in the United States from July 1926 to
November 2022 for five industries. This is especially so when taking into consideration
the presence of collinearity among the factors, an issue that ML approaches are well-
suited to address.

Main contributions

• Hybrid framework. We apply a combination of SVR and mixed GS with 10-fold
CV optimization to improve the prediction accuracy of traditional linear models
(OLS). The ML technique enables us to address problems with factor collinearity
that have been documented in the finance literature.

• Traditional (OLS) versus ML approach comparison. In the same study, we can
see the compared performance analysis of two of the most famous financial asset
pricing models, using econometric and ML approaches. For this purpose, we will
use a battery of different performance measures.

Research Data

We employ monthly data taken from the Kenneth French Data Library from the period
of July 1926 to November 2022 to re-evaluate the Fama-French three-factor model. With
regard to the Fama and French 3-factor (FF-3), we use three measurements in particular:
Small minus Big (SMB) (average return of the three smallest portfolios minus the aver-
age return of the three biggest portfolios), HML (average return of the two highest-value
portfolios minus the average return of the two growth portfolios), and (Rm-Rf) (excess
return on the market), weighted in terms of return of all CRSP companies with US reg-
istration, listed on the NYSE, AMEX, or NASDAQ, with price data at the start of t and
good return data for t less the 1-month Treasury bill rate (from Ibbotson Associates), and
with a CRSP share code of 10 or 11 at the start of the month. As explanatory variables,
these factors are employed. We will utilize the additional returns from the five industries
that make up the S&P 500 as our dependent variables. These industries are: consumption,
manufacturing, high technology, health, and others (mining, construction, transportation,
hotels, entertainment, and finance).
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Table 4.18: Summary statistics. SMB: Small Minus Big; HML: High Minus Low; RMW: Robust Minus
Weak; CMA: Conservative Minus Aggressive. CRF: Consumption Industry; MANUF: Manufactury Indus-
try; HITEC: High Technology Industry; HLTH: Healthcare Industry; OTHER: Other Industries.

Variables Obs. Mean Std. Dev. Max. Min.

SMB 1,157 0.19 3.17 36.56 -17.23
HML 1,157 0.36 3.56 35.61 -13.97
RMW 713 0.28 2.22 13.09 -18.73
CMA 713 0.30 2.05 9.05 -6.94
(Rm − R f ) 1,157 0.67 5.35 38.85 -29.13
(Ri − R f ) CRF 1,157 0.74 5.29 43.57 -28.61
(Ri − R f ) MANUF 1,157 0.70 5.53 43.43 -30.89
(Ri − R f ) HITEC 1,157 0.71 5.60 33.81 -26.81
(Ri − R f ) HLTH 1,157 0.82 5.53 37.03 -34.14
(Ri − R f ) OTHER 1,157 0.65 6.41 58.64 -30.08

In the case of the 5-factor from Fama and French (FF-5), we consider two additional
measurements (see section 2.2.1): RMW and CMA, which are calculated, respectively,
as the gap between the returns on portfolios of stocks of companies with strong and poor
profitability, as well as the difference between the returns on portfolios of stocks of busi-
nesses with high and low investment levels. In the case of these two last factors, the
available sample is clearly shorter. It comprises from July 1963 to November 2022.

The Kenneth French Data Library is also the source of the data for SMB, HML, RMW
and CMA factors. Statistics are summarized in Table 4.18. The average values for SMB
and HML factors are 0.2 and 0.4, respectively, with standard deviations of 3.2 and 3.6.
RMW and CMA factors have averages of 0.3 and 0.3, and standard deviations of 2.2
and 2.1. The lowest figures for SMB, HML, RMW and CMA factors are -17.2, -14.0,
-18.7 and -6.9, respectively; and the highest values for them are 36.6, 35.6, 13.1 and 9.0,
respectively. The calculation of RMW and CMA factors involves the difference in returns
between portfolios of stocks from companies with high and low profitability, as well as
the gap between the returns on portfolios of stocks of firms with high and low investment
levels.

Estimation models

Support Vector Regression (SVR) [Cortes and Vapnik, 1995] developed the super-
vised ML technique known as SVR. The idea of structural risk reduction later established
by [Vapnik et al., 1996] serves as the foundation for the model. SVR is a powerful statisti-
cal technique with several benefits for model predictions. It first implements the notion of
structural risk reduction by decreasing the upper bound of the anticipated risk, boosting
the predictive capability of the SVM. This is done when the number of observations and
inputs (independent variables) is constrained. Second, mapping using SVR is feasible
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for both linear and non-linear relationships between the inputs and outputs (dependent
variables), making it one of the most effective prediction strategies.

SVR is a modeling and prediction-related application of SVM. The fundamental idea
of SVRs is to display a single output variable, y, as a function of n input variables x using
a function f (x) that, for the whole training dataset, has an ϵ maximum deviation. The
simplest version of such a function is presented as a linear connection in Equation 4.15:

f (xi) = ωTϕ(xi) + b; ω ∈ Rn, b ∈ R (4.15)

where f (xi) is the output, ω is a weight vector, ϕ(xi) is a non-linear mapping function,
and b is a constant called intercept vector. To determine the minimum error or deviation,
ϵ, the lowest weight vector could be obtained by minimizing the Eucledian norm ∥ω∥2.
The problem becomes:

minimize 1
2∥ω∥

2

subject to yi − ω
Tϕ(xi) − b ≤ ϵ

ωTϕ(xi) + b − yi ≤ ϵ

(4.16)

Equation 4.16, however, can only be accurate to a certain extent when f exists for
all pairings (xi, yi) with a specific precision ϵ. There can be included certain flaws in the
equation known as slack variables (ξi and ξ∗i ), which allow for flexibility and go against
these restrictions. Slack variables are added to the minimization process when the restric-
tions in Equation 4.16 are broken. Likewise, in the non-separable situation. The slack
variables also guarantee the existence of a solution and permit input from sources other
than the loss function being trained. The current issue is:

minimize 1
2∥ω∥

2 +C
∑︁

i(ξi + ξ∗i )
subject to yi − ω

Tϕ(xi) − b ≤ ϵ + ξi
ωTϕ(xi) + b − yi ≤ ϵ + ξ

∗
i

ξi, ξ
∗
i ≥ 0, i = 1, 2, ..., n

(4.17)

where the newly included parameter C, also known as the regularization parameter, is
a positive constant that handles data points that are outside of the ϵ-sensitive loss margin.
The trade-off between model complexity and the precision of the predictions made using
training and test data is also considered by this penalty.

Through the Lagrangian method, we can solve Equation 4.17 as follows:
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L =
1
2
∥ω∥2 +C

∑︂
i

(ξi + ξ∗i )

−
∑︂

i

αi(ϵ + ξi − yi + (ω, xi) + b)

−
∑︂

i

α∗i (ϵ + ξ∗i + yi − (ω, xi)

−
∑︂

i

(ηiξi + η
∗
i ξ
∗
i ) (4.18)

where αi, α∗i , ηi and η∗i are the Lagrangian multipliers which are positive numbers.
Using the first order conditions and eliminating the Lagrangian multipliers allow us to
find the value of the weight vector ω given by:

ω =
∑︂

i

(α∗i − αi)K(xi, x) + b (4.19)

where K(xi, x) is the kernel parameter that allow our model to transform into a higher
dimensional space. Some kernel functions used in the literature are the following:

• 1. linear model, with the kernel function K(xi, x j) = (xi, x j),

• 2. Gaussian kernel also called the radial basis function (RBF), with
K(xi, x j) = exp(−∥xi−x∥2

2σ2 ) or K(xi, x j) = exp(−γ∥xi − x∥2), where γ = 1
2σ2

• 3. polynomial kernel K(x, y) = ((xi, x j) + 1)d

In order to estimate the SVR model in an efficient manner, three parameters (namely
the cost parameter C, the error ϵ and the kernel parameter γ) must be chosen accurately.
They are also named hyperparameters, because unlike parameters, hyperparameters are
set before training a ML model. The penalty parameter C should not be either too little
or too high since if it is, the model will not penalize the training data enough or, if it
is, will penalize the training data too much. The loss function ϵ emphasizes the quantity
of support vectors and also affects how well the SVR model performs. To assess the
capacity of the model to handle non-linear instances, the kernel parameter γ transfers
linear functions into higher-dimensional space.

Grid Search and Cross-validation optimization To find efficient hyperparameters of
our SVR models, namely C, ϵ, and γ, we use the combined GS and Minimum Cross
Validation (MCV) method.

The GS algorithm offers a technique for determining a model’s optimal hyperparame-
ters. Contrary to parameters, hyperparameters are not present in training data. In order to
identify the right hyperparameters, we develop a model for each group of them. Since we
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are essentially forcing all potential combinations, GS is regarded as a fairly conventional
hyperparameter optimization technique. The models are then tested against one another.
Naturally, the model with the highest accuracy is regarded as the best.

CV is a method for assessing the ability of a model to generalize to different datasets.
To avoid over-fitting, S-fold CV is advised rather than leave-one-out CV. In the training
of an S-fold CV, N groups of data are randomly created from the data, and they have
identically sized divisions, which are called folds. Then, one group (independent dataset)
is utilized as the data to test the model built using the information from the other S − 1
groups (training dataset). This process is carried out S times such that the information
of the validation data is utilized once for each of the S groups. Finally, it is possible to
acquire predicted values of y rather than computed values. In this exercise, S is set to 10,
which is a standard value.

Finding the SVR regression model with the best generalization is our aim. Each SVR
regression is determined using training data D and a set of hyperparameters. To accom-
plish our objective, we must identify the optimal collection of hyperparameters, and to
do so, we require validation data V that is unrelated to D. Since data size is frequently
severely constrained, we use the cross-validation approach.

During the cross-validation process, given data D is randomly divided into S separate
segments {Gs, s = 1, ..., S }. S − 1 segments are used for training, while the remaining
segment is used for testing. By altering the remaining section, this procedure is carried
out N times, and the generalization performance is assessed using the MSE stated in
Equation 4.20:

MSECV =
1
N

S∑︂
s=1

∑︂
µ∈Gs

(yµ − y(xµ|θŝ))2 (4.20)

where Gs denotes the s-th segment for the test, and θŝ denotes the optimal parameter
vector obtained by using D −Gs for training. The extreme case of S = N is known as the
leave-one-out (LOO) method, often used for a small size of data.

By using CV, the hyperparameters are optimized so that the CV error MSECV is min-
imized. The MCV method, which learns a different penalty factor for each weight, func-
tions well when NNs are regularized. The following approach may be used to generalize
the MCV process (see [Ito and Nakano, 2003]): let λ be a hyperparameter vector, and
a target function for optimizing λ is MSECV . Let θ and J(θ|λ) be a parameter vector of
a model and a target function to train θ under the given hyperparameters λ respectively.
The MCV method employs the coordinate descent; that is, iterates the following two steps
until convergence:

• step 1: Given λ, optimize {Gs, s = 1, ..., S }.

• step 2: Given {Gs, s = 1, ..., S }, improve λ.
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Table 4.19: Factor regression results of the 3- and 5-factor Fama-French models using Ordinary Least
Squares (OLS). The sample period is from 1926.07 to 2022.11. Training set represents 70% of the total
dataset. The value in parenthesis are the t-statistics.

OLS Models

Variable Consumption Manufacturing High Tech Health Other

Train Test Train Test Train Test Train Test Train Test

Fama-French 3-factors

Intercept (α) 0.139∗∗ 0.138 -0.014 0.069 0.121∗ 0.092 0.314∗∗∗ 0.382∗∗ −0.226∗∗∗ −0.176∗∗

(2.253) (1.380) (-0.368) (0.621) (1.883) (0.832) (2.762) (2.370) (-3.385) (-2.155)
Market-Rf 0.967∗∗∗ 0.832∗∗∗ 1.017∗∗∗ 0.883∗∗∗ 0.915∗∗∗ 1.198∗∗∗ 0.941∗∗∗ 0.697∗∗∗ 1.039∗∗∗ 1.109∗∗∗

(81.308) (36.911) (135.206) (35.511) (73.451) (48.171) (42.802) (19.242) (80.729) (19.646)
SMB3 0.083∗∗∗ −0.107∗∗∗ −0.087∗∗∗ -0.012 -0.019 0.063∗ -0.019 −0.176∗∗∗ 0.173∗∗∗ −0.111∗∗∗

(3.957) (-3.291) (-6.571) (-0.337) (-0.879) (1.768) (-0.487) (-3.387) (7.648) (-4.237)
HML3 −0.164∗∗∗ 0.089∗∗∗ 0.097∗∗∗ 0.344∗∗∗ −0.174∗∗∗ −0.499∗∗∗ −0.287∗∗∗ −0.084∗ 0.306∗∗∗ 0.489∗∗∗

(-6.469) (2.904) (8.561) (10.216) (-9.314) (-14.791) (-8.678) (-1.716) (15.810) (19.646)

R2 0.908 0.801 0.966 0.800 0.884 0.894 0.715 0.525 0.925 0.921
Ad j.R2 0.908 0.800 0.966 0.798 0.883 0.893 0.714 0.520 0.925 0.920
F − Test 2668∗∗∗ 462.3∗∗∗ 7560∗∗∗ 457.8∗∗∗ 2041∗∗∗ 961.1∗∗∗ 674.7∗∗∗ 126.1∗∗∗ 3310∗∗∗ 1328∗∗∗

Fama-French 5-factors

Intercept (α) −0.237∗∗∗ 0.048 −0.166∗ -0.096 0.398∗∗∗ 0.130 0.242 0.284 −0.209∗∗∗ -0.083
(-3.041) (0.477) (-2.412) (-0.685) (3.961) (1.369) (1.735) (1.669) (-2.701) (-0.901)

Market-Rf 1.044∗∗∗ 0.906∗∗∗ 0.970∗∗∗ 0.962∗∗∗ 0.931∗∗∗ 1.089∗∗∗ 0.899∗∗∗ 0.761∗∗∗ 1.157∗∗∗ 1.069∗∗∗

(54.449) (37.858) (57.401) (29.177) (37.611) (48.297) (26.152) (18.878) (60.619) (48.843)
SMB5 0.172∗∗∗ 0.021 -0.029 0.110∗ −0.076∗∗ -0.020 −0.144∗∗∗ -0.027 0.125∗∗∗ -0.068

(6.847) (0.474) (-1.294) (1.777) (-2.369) (-0.464) (-3.213) (-0.358) (5.006) (-1.652)
HML5 0.142∗∗∗ −0.187∗∗∗ 0.127∗∗∗ 0.132∗∗ −0.195∗∗∗ −0.254∗∗∗ −0.533∗∗∗ −0.301∗∗∗ 0.421∗∗∗ 0.551∗∗∗

(3.671) (-4.648) (3.720) (2.372) (-3.897) (-6.669) (-7.678) (-4.417) (10.907) (14.909)
RMW5 0.482∗∗∗ 0.203∗∗∗ 0.247∗∗∗ 0.260∗∗∗ −0.518∗∗∗ 0.013 0.447∗∗∗ −0.208∗∗ 0.215∗∗∗ −0.235∗∗∗

(13.898) (3.595) (8.081) (3.328) (-11.551) (0.253) (7.191) (-2.186) (6.219) (-4.539)
CMA5 0.158∗∗∗ 0.126∗ 0.242∗∗∗ 0.197∗∗ −0.402∗∗∗ -0.102 0.426∗∗∗ 0.326∗∗∗ −0.129∗∗ −0.228∗∗∗

(2.912) (1.872) (5.021) (2.128) (-5.701) (-1.615) (4.355) (2.878) (-2.373) (-3.714)

R2 0.881 0.890 0.882 0.846 0.859 0.932 0.670 0.669 0.903 0.948
Ad j.R2 0.880 0.887 0.881 0.842 0.857 0.931 0.667 0.661 0.902 0.946
F − Test 732.3∗∗∗ 336.7∗∗∗ 740.8∗∗∗ 228.2∗∗∗ 597.7∗∗∗ 572.3∗∗∗ 200.2∗∗∗ 84.09∗∗∗ 920.6∗∗∗ 748.8∗∗∗

* p < 0.10, ** p < 0.05, *** p < 0.01

Results

OLS models Table 4.19 shows the estimation results of the 3- and 5-factor Fama-French
models using the traditional optimization method of OLS.

The first point to highlight is the notable difference in goodness of fit between the
training and testing datasets, except for the high-tech sector in the 5-factor model, where
the results are very similar in both datasets. In any case, the significance of the variables is
clearly higher in the training datasets in a general sense, as reflected in the F-Test values.
This suggests that, over the years, this type of framework to explain return differences
among sectors and assets no longer works as it did in the past. Among sectors, the health
sector exhibits the worst fit and overall statistical significance, with a noticeable difference
compared to the other four, which show very high levels in both aspects.
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Table 4.20: Factor regression results of the 3- and 5-factor Fama-French models using Support Vector
Regression (SVR) algorithm, optimized using 10-fold cross validation optimization. The sample period is
from 1926.07 to 2022.11. Training set represents 70% of the total dataset.

SVR Models

Weight Consumption Manufacturing High Tech Health Other

Train Test Train Test Train Test Train Test Train Test

Fama-French 3-factors

Intercept (b) -1.178 0.994 -1.811 0.648 -0.985 0.519 -0.852 -0.479 -3.231 0.282
ω_Market 198.9 26.458 201.4 50.0 160.4 66.9 185 47.8 202.8 40.27
ω_SMB3 59.6 0.524 23.0 -17.0 56.5 34.8 65.8 -10.8 34.5 -29.71
ω_HML3 129.2 10.241 33.8 25.5 95.3 -14.3 93.7 -21.3 61.2 5.27

bR2 0.578 0.617 0.596 0.600 0.578 0.723 0.355 0.335 0.522 0.733

Fama-French 5-factors

Intercept (b) 0.220 0.204 -0.101 0.325 0.480 0.069 0.256 0.495 -0.289 0.260
ω_Market 102.96 77.746 87.7 52.3 121.8 53.16 67.47 51.32 88.1 60.23
ω_SMB5 33.25 12.257 -11.23 13.4 40.5 9.81 14.34 16.87 -15.2 20.12
ω_HML5 6.97 -0.489 -17.43 2.3 -34.9 23.71 -50.77 -3.22 -15.4 36.81
ω_RMW5 3.78 -12.818 5.91 17.7 -57.1 -18.5 9.24 14.15 24.3 -3.18
ω_CMA5 -16.43 -19.313 13.95 12.2 -59.3 -9.24 -36.61 -11.75 -26.8 -3.13

bR2 0.672 0.673 0.673 0.600 0.650 0.771 0.476 0.480 0.743 0.734

Regarding the comparison between the 3-factor and 5-factor models, the 3-factor
model shows more accurate fit and significance figures. In this latter case, only in the
manufacturing sector some of the factors result in non-significance when working with
the testing dataset.

For the 5-factor case, concerning the testing dataset, the opposite occurs: only in the
manufacturing sector, all five factors of the model remain statistically significant. From
the point of view of economic significance, except in the case of the market factor, there is
not an unanimous answer for the different factors. Although positive sign is predominant,
there exist some factors with negative loadings, both in 3- and 5-factor models.

SVR models In Table 4.20 we can observe the global results using SVR models. Specif-
ically, the results shown for each industry are those obtained after the application of the
combined hyperparameter optimization method of Grid Search (GS) and Minimum Cross
Validation (MCV) (GS-CV-SVR model). Three parameters, namely the cost parameter C,
the error parameter ϵ, and the kernel parameter γ, have been precisely selected using this
combined model in order to estimate the optimum SVR model in an effective manner.

In most of cases, the kernel function used in this optimization has been the Gaussian
kernel, also called the radial basis function (RBF). By industries, the health sector shows
the worst figures of fit, both in 3- and 5-factor models, showing the remaining sectors very
similar metrics in terms of bR2.
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Table 4.21: Performance statistics results of the 3- and 5-factor Fama-French models using both OLS
estimation and optimized SVR algorithm. The sample period is from 1926.07 to 2022.11. Training set
represents 70% of the total dataset. RMSE: Root of Mean Squared Errors, MAE: Mean of Absolute Errors.

Fama-French 3-factors

OLS

Measure Consumption Manufacturing High Tech Health Other

Train Test Train Test Train Test Train Test Train Test

RMSE 1.729 1.832 1.094 2.020 1.811 2.022 3.197 2.942 1.871 1.491
MAE 1.265 1.388 0.795 1.571 1.368 1.508 2.333 2.238 1.307 1.113

SVR

RMSE 1.526 1.567 1.026 1.752 1.644 1.769 2.835 2.515 1.639 1.236
MAE 1.127 1.133 0.757 1.287 1.231 1.239 2.054 1.873 1.221 0.921

Fama-French 5-factors

OLS

Measure Consumption Manufacturing High Tech Health Other

Train Test Train Test Train Test Train Test Train Test

RMSE 1.631 1.394 1.438 1.921 2.107 1.314 2.924 2.349 1.623 1.275
MAE 1.237 1.080 1.060 1.477 1.632 1.069 2.244 1.837 1.213 0.961

SVR

RMSE 1.243 0.761 0.982 1.256 1.460 0.822 2.128 1.639 1.028 0.948
MAE 0.908 0.606 0.693 0.875 1.087 0.638 1.537 1.117 0.772 0.716

Table 4.22: Correlations for 3-Factor and 5-Factor models for the testing (i.e. out-of-sample) and training
(in-sample) datasets. The sample period is from 1926.07 to 2022.11. Training set represents 70% of the
total dataset.

Model Consumption Manufacturing High Tech Health Other

Fama-French 3-factors

Train Test Train Test Train Test Train Test Train Test

OLS 0.953 0.895 0.983 0.894 0.940 0.945 0.846 0.724 0.962 0.960

SVR 0.964 0.925 0.985 0.922 0.950 0.959 0.881 0.808 0.971 0.972

Fama-French 5-factors

Train Test Train Test Train Test Train Test Train Test

OLS 0.938 0.943 0.939 0.920 0.926 0.966 0.819 0.818 0.950 0.973

SVR 0.965 0.983 0.972 0.967 0.965 0.987 0.908 0.916 0.980 0.990

Performance analysis The performance comparison between the two estimation meth-
ods can be evaluated in Table 4.21. The reported statistics consist of the RMSE and the
MAE. The most relevant conclusion in the light of this report is that the optimized SVR
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model outperforms OLS model in every single industry, both in 3- and 5-factor Fama-
French models, and also for both the training and testing datasets.

For testing and training datasets of both models, the manufacturing industry has the
lowest RMSE and MAE values. The health sector, on the other hand, has the highest
values, supporting the conclusions drawn from prior estimation statistics, such as OLS or
SVR models, in that it appears to have the lowest goodness of fit and the greatest modeling
difficulties.

We report in Table 4.22 the correlation coefficients between actual and predicted val-
ues, for the 3- and 5-factor models across industries, for the training and testing datasets,
using the traditional OLS model and, alternatively, the GS-CV-SVR model. For portfolio
returns in the consumption industry, the correlations between experimental (i.e., observed)
and predicted (i.e. SVR) values are 96% and 93%, respectively; for manufacturing, the
correlations are 99% and 92%, for high-tech, they are 95% and 96%, for the health sector,
they are 88% and 81%, and for other industries, they are 97% and 97%. The Fama-French
3-factor model may produce great predictions when used with our ML algorithm of SVR.
We can vouch for the fact that the correlation coefficients for this model range from 81%
for the health sector to 99% for the manufacturing sector. The Fama-French 5-factor
model has correlation coefficients that are considerably better, ranging from 91% (for the
health business) to 99.9% (for the high-tech industry). As can be seen, the SVR 5-factor
model performs better than the SVR 3-factor model.

Anyway, GS-CV-SVR outperforms clearly the prediction performance from the OLS
models. This is specially remarkable in the case of the health industry, the sector which
has shown more resistance to be modeled and fitted in previous tests. The discrete corre-
lation coefficients from OLS, specifically 72% and 85% for training and testing datasets,
climb to 81% and 88%, in the case of the 3-factor model, and from 82% and 82% to 92%
and 91%, respectively, which can be considered as brilliant. The improvement, something
more modest, is present in each one of the remaining industries, both in 3- and 5-factor
versions.

This prediction performance enhancement is also evident when we observe Figures
4.16 and 4.17, where we show the XY-plots between actual and predicted values across
the five industries, for OLS (left side) and SVR (right side). In the case of industries as
Consumption or High-Tech, the correlation reaches 99% for the 5-factor model.
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Figure 4.16: Actual versus predicted values in testing datasets. 3-factor Fama-French model.
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Figure 4.17: Actual versus predicted values in testing datasets. 5-factor Fama-French model.
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Discussion

This study have effectively used ML to improve the estimation procedure for the three-
and five-factor Fama French models. To be more exact, we have applied a combination of
SVR and mixed GS with 10-fold CV optimization to forecast monthly portfolio returns
for the US stock market sectors using the three and five factors presented by [Fama and
French, 1993], [Fama and French, 2015]. We have discovered the following findings for a
dataset of portfolio returns across different industries in the United States from July 1926
to January 2019.

First, our GS-CV-SVR three-factor estimations produced out-of-sample (testing data-
sets) correlation coefficients of 97% for portfolio returns for the mining, construction,
transportation, hotels, entertainment, and finance sectors, 96% for the high-tech sector,
92% for manufacturing and consumption sectors, and 81% between predicted and exper-
imental (i.e. observed) values of portfolio returns for the health sector. In comparison
with the traditional approach of OLS optimization, the results suggest that the prediction
accuracy improvement is quite remarkable. Very similar conclusions can be reached if
the comparison criteria to be used are traditional predictive accuracy statistics as RMSE
or MAE.

Second, the GS-CV-SVR Fama-French five-factor model performs even better than
the GS-CV-SVR Fama-French three-factor model, with correlation coefficients ranging
from 92% to 99% across industries. This conclusion differs from a significant portion of
literature about this topic (for instance, [Diallo et al., 2019]).
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5. CONCLUSION

5.1. Methodological conclusions

This first part of this chapter about conclusions will be focused on the first part of the the-
sis. After reviewing the recent literature, the selected datasets, methods, and performance
criteria, we will take a step back to analyze them at a higher level of abstraction. This
discussion will comprise three aspects: firstly, we will provide an overview of the state of
the art of ML for asset management; second, we will highlight the most successful data,
methods, and criteria for each financial discipline we reviewed; at last, we will lay down
the existing challenges which might motivate further research.

5.1.1. Overview

The traditional approach (statistics and econometrics) to solving asset management is-
sues has been the focus of academics and practitioners alike throughout the last 50 years.
However, it has also exhibited many drawbacks. Next, we will describe shortly the main
pitfalls and challenges that this discipline is currently addressing:

• Researchers are sometimes compelled to present incomplete results that are often
refuted by additional studies due to the publication bias towards successful results
(see [Harvey, 2017]). As a result, replication is critical, and many academic find-
ings have a very short expiration date, especially if transaction costs are considered
[Cakici and Zaremba, 2021].

• One of the main pitfalls of the traditional econometric approach has to do with
the p-hacking. As it was demonstrated by [Chen, 2019], p-hacking alone cannot
account for all the anomalies documented in the literature. One way to reduce the
risk of spurious detection is to increase the hurdles (often, the t-statistics) but the
debate whose title might be “the factor zoo” is still ongoing [Harvey and Liu, 2019].

• Because of its easy understanding, the decomposition of returns into linear factor
models is extremely useful. Nonetheless, there is an eternal dispute in the academic
literature as to whether business returns are explained by exposure to macroeco-
nomic variables or merely by firm characteristics. Until the new century the factor-
based explanation for risk premium was the favorite, but after the seminal work
by [Daniel and Titman, 1997], the characteristics-based explanation has become a
great competitor of the traditional outlook. The second experiment of the thesis
(section 4.2.2) is focused on the pairs trading strategy, but uses as additional feature
a set of firm characteristics. The third empirical exercise (section 4.2.3) focuses
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on a ML alternative to estimate and forecast the three- and five-factor models from
Fama and French.

• Some researchers have observed fading anomalies as a result of publication: once
an anomaly is made public, agents invest in it, driving up prices and causing the
anomaly to vanish. [David McLean and Pontiff, 2016] documents this impact in
the United States, while [Jacobs and Mülle, 2020] finds that post-publication factor
returns are sustained in other relevant markets. Herding may be destroying factor
premia [Krkoska and Schenk-Hoppé, 2019], and the democratization of so-called
smart-beta products (particularly the ETFs) that enable investors to actively invest
in specific styles (value, low volatility, etc.) may speed the process up.

• Researchers have developed more sophisticated techniques to organize the so-called
factor zoo and, more significantly, to detect false anomalies. [Feng et al., 2020],
for example, use LASSO selection and Fama–MacBeth regressions to see if new
factor models are worthwhile. They calculate the benefit of adding one new factor
to a set of preset factors, demonstrating that many of the factors described in papers
published in the 2010 decade do not provide much extra value.

• There is no such thing as a flawless approach, but the sheer volume of contributions
in the field emphasizes the importance of robustness. The notion that factors are
likely to change over time is a key obstacle for short-term strategies. We refer for
instance to [Cooper and Maio, 2019].

• As we have seen in the Section 3.2 about price forecasting, the difficulty to test con-
sistently, using traditional approaches, the EMH, leaves a huge space to alternative
techniques. We have tested two in this thesis: a hybrid model EMD+GRU to fore-
cast daily prices in the US Equity market (section 4.2.1), and another hybrid model
Autoencoders+k-means+DTW to create a pairs trading system (section 4.2.2).

• In the case of MVO, as [Cochrane, 2011] points out, even though it is not a partic-
ularly useful guide to computation, classic one-period mean-variance analysis is a
brilliantly useful characterization of an optimal portfolio, useful for final investors
to understand and think hard about risk allocations. Even when investors are con-
sidering highly non-normal payoffs, traditional mean-variance analysis continues
to dominate portfolio applications. Nevertheless, many researchers have tried to
improve the suitability of this model from different perspectives.

In conclusion, traditional financial economics has no perfect answers to all these pit-
falls and challenges described. On the other hand, ML techniques have found an excellent
breeding ground to develop all its potentialities. As [Cerniglia and Fabozzi, 2020] point
out, financial theory, market behavior, ever-increasing data sources, and computational
innovation are all required for good forecasting and pricing. By putting together the most
comprehensive toolbox, you can create realistic computational models. This goal may be
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achieved using both financial econometrics and ML techniques. According to these au-
thors, ”ML tools provide the ability to make more accurate predictions by accommodating
nonlinearities in data, understanding complex interaction among variables, and allowing
the use of large, unstructured datasets. The tools of financial econometrics remain criti-
cal in answering questions related to inference among the variables describing economic
relationships in finance; when properly applied, their role has not diminished with the
introduction of ML”.

As we have reviewed, and according to [Song et al., 2017], ML algorithms are com-
monly employed for financial market forecast and trading strategies. There are three
different sorts of applications. The first sort of application forecasts asset prices or re-
turns in the future. Generally, SVR and NN algorithms are used in this type of strategies.
The high number of applications of LSTM models is especially remarkable where time-
series come into play. The drawback with this strategy is that it has a high error rate owing
to the difficulty in predicting future asset values based on erratic financial market data.
The second type uses classification algorithms to anticipate price movement directions,
such as SVM and DTs. These approaches generally have significant forecast accuracy,
but this does not always imply high profitability. For example, a model can anticipate
small gains properly but massive losses wrongly, resulting in a substantial downside risk.
Rule-based optimization is the third type. Its goal is to find the best trading indicator and
parameter combinations (for example, technical indicators, fundamental indicators, and
macroeconomic indicators). Optimization algorithms that have been explored include GP
and RL.

To sum up, the trend indicates that ML algorithms clearly outperform traditional
econometrics approaches. The empirical part of our thesis also seems to confirm this
trend. Both classical and modern ML methods have been applied successfully. However,
the main pitfall is that the landscape is extremely diverse in terms of data and applied
methods, which suggests a lack of common benchmarks, methodologies, and frameworks.

5.1.2. Discipline Focus

After providing an overview for the field as a whole, we will increase our focus to discuss
each one of the reviewed disciplines (including the extra algorithmic trading) from the
ML perspective.

• Price Forecasting: It is the most heterogeneous discipline, where all sorts of ML
methods have been applied to either refine the output of other algorithms, to gener-
ate predictions on its own or even as a technique to process alternative data sources.
A few works make use of social media, financial news, and sentiment analysis to
increase prediction accuracy. There is no dominant paradigm in this discipline.

• Algorithmic Trading: In this case, most reviewed papers make use of SL to train
architectures more typically suited to target other domains. For instance, CNNs
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(which are common in image processing scenarios) are applied to specially pre-
processed financial data with success. Oftentimes, they are also coupled with RNNs
techniques to model time dependencies, usually applying LSTM.

• Value/Factor investing: The landscape is not specifically dominated by any par-
ticular technique. PCA is successful in most works as a pre-processing technique
whilst other classical ML methods like RFs, SVMs, or shallow NNs are present in
almost all the analyzed works. RNNs does not have much presence in this disci-
pline. The paradigms are mainly SL and UL.

• Portfolio Management: In this discipline, we observed a trend of favoring RNNs
architectures to model long-term dependencies of financial time-series data. In par-
ticular, most of the reviewed methods make use of variations of LSTMs (usually
combining them with other techniques like MVO). RL methods appear in this
discipline coupled with RNNs in the form of LSTMs in the most recent works.
The dominant paradigms are SL and RL.

5.1.3. Challenges and Opportunities

We have identified the following main challenges and opportunities:

• Standard Datasets: The whole field is characterized by a lack of curated datasets to
be reused by the community. Although some datasets are built upon the portfolio
database of [Fama and French, 1993], most of them deviate from this standard.
Furthermore, even those which reuse that database end up diverging in terms of
the final data available for investigation. Therefore, creating a standard database
(complete and broad enough) to be reused by the research community is a need for
further works.

• Reproducibility: No common methodology or framework for method training and
benchmarking has been established. This hurts reproducibility since most of the
analyzed methods are difficult, if not impossible, to compare against each other
(unless reimplemented specifically for each scenario). In addition, almost no paper
includes codes or data to be accessed by other researchers. Establishing a repro-
ducibility framework for asset management ML research is a high-impact work-
stream for improving the quality of life and pace of the research community.

• Multimodal Data: Most methods are focused on analyzing numerical financial data
to generate predictions. Analyzing alternative sources of information like news,
social media, sentiment, and user-generated content can provide useful cues for
financial decisions. Few works make use of those data sources at the moment.
The challenge of combining all those multimodal sources and multiple architectures
might unlock new levels of prediction accuracy.
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• Heterogeneous Architectures: Arguably due to the state of immaturity in which
financial ML sits nowadays (with regard to other more established synergies like
image processing or NLP), no clear architectures for processing financial data have
been established yet. There is a broad range of papers that spawn new models,
and few that build upon solid groundwork to improve them. Finding the common
patterns and unifying those diverse architectures could have a beneficial effect to
the community for broad adoption in industry (in a similar way as other networks,
such as UNet or ResNet, have done for image processing by becoming the de facto
standard for many applications).

• Algorithmic trading: This application field is characterized by a very interesting
trade-off. From an academic perspective, this area is relatively disconnected from
the theoretical background about asset pricing and value investing, which has had
a central role in financial economics during the last five decades. However, in re-
turn, and precisely because of this characteristics—exclusive dependence on price
data—it is the financial discipline that can maximize the contributions of ML appli-
cations. We can find a future challenge in the possibility of combining both issues,
deepening trading algorithms with a higher relevance of financial fundamentals.

5.2. Empirical conclusions

After this global analysis of the methodological conclusions, in this new section we will
try to extract the most relevant conclusions about the empirical section of this thesis. As
we commented in the introduction of Chapter 4, the empirical part of this thesis has been
dedicated to present representative examples of how ML can help to better understand the
behavior of certain markets, more accurately predict the behavior of their prices, better
capture the structure of certain investment strategies, or significantly improve the predic-
tive capacity of multi-factor models of financial asset valuation.

5.2.1. Price Forecasting

The main objective of every single investor or asset manager is forecasting prices accu-
rately. The EMH claims that stock prices reflect all available information and are unfore-
seeable (i.e., the way they behave can be compared to that of a random walk, indicating
that its movements are inevitably unpredictable), but evidence from numerous studies
shows that the market is not completely efficient, especially with the use of machine
learning technologies. Traditional econometric models like the ARIMA models and other
sophisticated models, like the ARCH models, may not be suitable for forecasting stock
values since stock prices are intrinsically nonlinear, non-stationary, and volatile.

With this aim we face the first empirical exercise of the thesis. We started the ex-
periments using both US and Spain stock market indices, but we quickly realized that
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the American one exhibits the deepest problems to be modelled, mainly due to problems
of non-stationarity. Nothing different from what happens in traditional approaches like
ARIMA or ARCH. The non-stationarity of price series poses an initial obstacle that must
be addressed before moving on to subsequent stages of estimation.

One of the main contributions of this empirical exercise is the use of the EMD trans-
formation to avoid the problems of stationarity. EMD has demonstrated to be particularly
useful in analyzing non-stationary situations, according to some previous findings. We
get the same result. Once applied to our series, the results demonstrate that the initial sig-
nal of prices can be categorized into three groups based on their frequency components.
The first group comprises high-frequency components with a large amount of noise, rep-
resented by the initial IMFs. The second group consists of middle-frequency components
with medium noise, represented by the central IMFs. The final group comprises low-
frequency components with minimal noise, represented by the latter IMFs.

Once we have decomposed the initial non-stationary series in a sum of IMFs, we can
apply the ML algorithm to estimate and forecast the separated IMFs. We selected the
Gated Recurrent Unit Networks (GRUs), a ML algorithm which is a type of RNN that has
been designed to address the vanishing gradient problem in traditional RNNs. Similar to
other RNNs, GRUs use feedback loops to process sequential data, but they incorporate
gating mechanisms that allow them to selectively retain or forget information over time.
We carried out some different experiments in order to check what is the best approach of
all. One of those experiments was to include technical indicators, usually employed in
financial markets, as additional features in the prediction model.

Finally, we concluded that the improvement showed after EMD application carried
on with the use of individual GRU algorithms (EMD-IGRU model) to each of its compo-
nents. For this purpose, we used two traditional performance measures, MAPE and DA.
In terms of MAPE, the model with individual GRUs for each one of the IMFs was able to
beat the figures of a plain vanilla Box-Jenkins model (ARIMA(1,1,1)). The results were
very similar for the model with technical indicators as additional features. Nevertheless,
in terms of DA, the results showed that almost every single model using a combination
of EMD and GRU was better than ARIMA to predict future prices of S&P 500. Thus,
the combination of EMD pre-processing technique and GRU enhances substantially the
results from traditional univariate models, usually considered as the better approach to
financial series as S&P 500 stock prices. The DA of ML approaches oscillates between
63.53% in the worst case and 75.15% in the case of the best model (Experiment 3). They
are also above recent results in the literature, which uses some other approaches of ML
or DL to model and predict S&P 500 stock prices. In most of cases, the DA figures do
not exceed 70% in the best references. Good examples of that can be found in [Akiyoshi,
2020], [Nava et al., 2018], [Shi and Zhuang, 2019] or [Srijiranon et al., 2022].

The EMD-IGRU, the greatest model of all, has finally undergone a trading simulation
stress test that mimics real-world conditions. The reaction of the model has been more
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than adequate, and by the usual statistical criteria used in trading systems, the model
performed admirably in almost all forecast windows. This finding implies that the GRU
predictive models have a respectable degree of accuracy in predicting stock prices and di-
rectional movements after being strengthened by the prior application of the EMD trans-
formation for non-stationarity series. Additionally, it has proven successful in predicting
actual profits in real-world settings.

5.2.2. Pairs Trading

Investments should aim to reduce risk while boosting returns. Due to its simplicity and
market neutrality, the "pairs-trading" strategy —also known as statistical arbitrage— has
been utilized more frequently in contemporary hedge funds. This strategy can be cat-
egorized as a "price forecasting" strategy, but the difference with the pure asset price
prediction is that, in this case, the variable to estimate and forecast is the price difference
between two stocks or assets. With this strategy, you establish a long position on the stock
that increases its price and a short position on the stock that decreases it while keeping
an eye on the correlation between two stocks that are known to be related. The core idea
is that despite short-term divergence, the two stocks would eventually converge, allowing
the trader to profit from the pair regardless of the state of the market.

Trading techniques for pairs often use cointegration or some other time series-related
statistic to find pairs. This second experiment of the thesis looks at the viability of using
unsupervised learning ML techniques to find possible stock pairs for a long-short portfo-
lio. Nevertheless, considering that we are working with time-series data, each data point
is an ordered sequence, and because of that, clustering various time series into comparable
groups is a difficult operation. For this reason, besides using autoencoders for dimension-
ality reduction and additional clustering techniques as DBSCAN, we propose to apply an
specific clustering approach to time series data (specifically, monthly data from 2010 for
individual constituents of the US index S&P 500), without losing the temporal dimension,
called k-means clustering with DTW. As an additional contribution, we suggest to use
financial data (firm characteristics) as additional features in the pairs selection.

The results suggest that the number of clusters and their characteristics are very homo-
geneous throughout methods. The number of clusters has been optimized at 20, being the
median number of stocks approximately 15-20 stocks, and the two biggest clusters con-
formed by between 40 and 60 stocks. Once stock pairs have been selected, a very simple
trading strategy is defined, basically taking into account the one-month divergences in
prices. Five different models of clustering and classification are revised once they are ma-
terialized in the trading strategy previously presented. The model using the k-means algo-
rithm, but in its version adapted to time series, i.e., the k-means clustering integrated with
DTW, shows the best results. Without capitalization of the monthly returns, it achieves
a total return of 89% in 8 years, with a DA of 63%, a SR of 2.658, and a CR of 0.678.
In comparison with the two benchmarks selected, the market and the short-term reversal
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strategy, this model keeps its privilege place in terms of total return, but also in terms
of the different trading performance measures, mainly SR figures. The results are not
improved when firm characteristics are used as additional features for clustering, what
differs from some other academic references.

The final analysis of this second exercise is intimately connected with the third one,
because we will use three factor models to check if systematic risk factors can account for
the returns of long-short portfolios created through the most effective clustering algorithm
used in this exercise. The three models that we consider are the Fama and French ([Fama
and French, 1996]) three-factor model (FF3), the Fama and French ([Fama and French,
2015]) five-factor model, and the [Hou et al., 2020] q5 factor model. The explanatory
power of the models does not result so brilliant, around 30-40% in the three cases. In
terms of statistical significance, factors as size, profitability, or investment factor are not
significant in none of the three models, and only market beta factor or growth factor seem
to show some level of significance. Therefore, it can be concluded that the extra returns
achieved with our ML model and trading system can not be explained by excessive risk
taking.

5.2.3. Factor Investing

As we have intensively explained throughout this thesis, both in chapters 2 and 3, the
three- and five-factor models from Fama and French, can be considered as the most fa-
mous, productive, applied, interpreted and admired asset pricing models in history, maybe
only behind the model they are inspired by, and they tried to improve as well, at least from
an empirical point of view, the CAPM model.

After some years of strong criticism against the canonical model from [Sharpe, 1964],
[Fama and French, 1993] suggested adding High Minus Low (HML) and Small Minus
Big (SMB) as additional explanatory variables to explain the excess returns in the US
stock market. Their model outperformed the original CAPM, which could only explain
an average of 70% of portfolio returns with U.S. data, by being able to explain over 90%
of portfolio returns. Some years later, the same authors ([Fama and French, 2015]), intro-
duced two additional variables to answer some criticisms about the lack of consistency of
their models to new data and new markets.

In the third exercise of the thesis, we take a some different way from the previous two
exercises. The proposal is more methodological than empirical, because we suggest an
alternative estimation method for the Fama-French three and five-factor models through
the use of ML algorithms. To be more specific, we apply a combination of SVR and
mixed GS with 10-fold CV optimization to forecast monthly returns in five industries of
US S&P 500 using the three and five factors presented by Fama and French. This hybrid
model is called GS-CV-SVR Model. SVR is a powerful statistical technique with several
benefits for model predictions. It first implements the notion of structural risk reduction
by decreasing the upper bound of the anticipated risk, boosting the predictive capability
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of the SVM. This is done when the number of observations and inputs (independent
variables) is constrained. Second, mapping using SVR is feasible for both linear and non-
linear relationships between the inputs and outputs (dependent variables), making it one
of the most effective prediction strategies.

Our GS-CV-SVR three-factor model estimations produced out-of-sample (testing data
sets) correlation coefficients of 97% for the mining, construction, transportation, hotels,
entertainment, and finance sectors’ portfolio returns, 96% for the high-tech sector, 92%
for the manufacturing, and 81% for the health sector’s predicted and experimental (i.e.
observed) values of portfolio returns. The findings show that the prediction accuracy gain
is rather notable when compared to the conventional OLS optimization method used in the
original work of Fama-French and the traditional approach of the literature globally in-
spired in them. Very similar findings may be drawn if classic predicted accuracy measures
like RMSE or MAE are employed as comparison criteria. The GS-CV-SVR Fama-French
five-factor model performs even better than the three-factor version, with correlation co-
efficients ranging from 92% to 99% across industries. This conclusion differs from a
significant share of literature about this topic.

5.2.4. Future lines of research

As potential and futures lines of research, we have identified the following ones:

Price forecasting

• The effectiveness of the EMD-IGRU model can be improved by further research.
After breaking down the initial data, for instance, alternative ML algorithms may
be adaptively chosen for the various IMFs. This procedure may enhance each IMFs
prediction outcomes and forecasts for stock market closing prices.

• Related to the previous point, it could be a future line of research the use of alter-
native methods of signal decomposition as Fourier Transformation and DWT.

• Although in our study the technical indicators have proved to be useless, the effect
of different or alternative sets of technical indicators can be explored to find the best
set for IMF forecast.

• We have tested our price forecasting models, initially to Spain and US markets, and
finally to the American one. It is obvious that one way of future research drives to
the application to alternative world markets, in order to check whether the results
obtained can be generalized and/or the efficiency level of the market is a crucial
factor for the performance of the model.

• As benchmark traditional models, we have used a plain-vanilla univariate model as
ARIMA(1,1,1). Alternative and more advanced models can be used as benchmark;
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for example, ARCH, Generalized Autorregressive Conditional Heteroskedasticity
(GARCH) and GARCH-M models.

Pairs trading

• Since our aim was to suggest some contribution in the field of UL, the trading
system/strategy implemented in our study was extremely simple, although it proved
to be efficient enough to improve alternative traditional approaches. Bearing in
mind that our proposals were driven to the use of ML algorithms to improve the
portfolio risk-return binomial, it seems a logical improvement to use SL algorithms
to forecast future returns of the stock pairs selected by k-means and DBSCAN
methods from UL classification and clustering family. RNN, LSTM or GRUs can
be considered as potential techniques to be used in enhancing the trading procedure.

• Although in our study the firm characteristics have proved to be useless, the effect
of different or alternative sets of firm characteristics can be explored to find the best
set for k-means classification.

• Obviously, alternative classification techniques can be used in order to find better
approaches and more brilliant performance. We have used in our study two tech-
niques of partitioning and density-based clustering, respectively. It could be used
an additional technique of hierarchical clustering. For instance, agglomerative clus-
tering.

• In a similar way to previous exercise, we have tested our pairs trading model in the
most potentially efficient stock market of all, the US market. It would be interesting
to test whether the results achieved can be generalized to other markets.

• Transaction costs have not been considered in the return calculations of our trading
strategy. Although we believe they are not crucial in this case, the introduction of
this kind of costs in the calculations could be an interesting fine-tuning step.

• Co-integration analysis and some other time series-related statistic methods related
to mean-reversion processes could be used as supplementary criteria to choose stock
pairs, in order to enhance the results of the clustering ML techniques used in this
thesis.

Factor Investing

• Alternative ML supervised learning algorithms could be used in order to achieve
better prediction accuracy results. For instance, NN, LASSO regression, DT re-
gression, KNN model, and Ridge Regression.
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• In a similar way to previous exercises, we have tested our GS-CV-SRV model in
the most potentially efficient stock market of all, the US market. It would be inter-
esting to test whether the results achieved can be generalized to other markets or, in
other words, apply this technique to cross-sectional data across countries in order
to investigate if our new method is country-specific.

• The estimation of Fama-French models has been made only in its time-series di-
mension. It could be interesting for further research to apply this proposal to cross-
sectional data, as Fama-French original procedures ([Fama and Macbeth, 1973]).

Others

• Due to time and available resources constraints, this thesis has not made any empir-
ical contribution in one of the most important areas of interest in asset management,
the portfolio management. It is a personal commitment of the author to address this
discipline through some ML contribution in future work.

• In a closely related vein, this thesis has also refrained from undertaking any em-
pirical contribution utilizing algorithms from the reinforcement learning paradigm.
Notably, the area of portfolio management is, maybe, where the contributions of
the third ML paradigm may be particularly pertinent. This aligns with the commit-
ment of the author to engage in empirical contributions through the utilization of
RL tools.

• As we have mentioned in section 5.1.3, there are relevant possibilities to enhance
the field of application of ML techniques to asset management. All of them could
be interesting ways to improve futures research about this topic: standard datasets,
reproducibility issues, multimodal data, and heterogeneous architectures.
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