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Sirtuins are deacetylase enzymes widely distributed in all domains of life. Although for
decades they have been related only to histones deacetylation in eukaryotic organisms,
today they are considered global regulators in both prokaryotes and eukaryotes. Despite
the important role of sirtuins in humans, the knowledge about bacterial sirtuins is
still limited. Several proteomics studies have shown that bacterial sirtuins deacetylate
a large number of lysines in vivo, although the effect that this deacetylation causes
in most of them remains unknown. To date, only the regulation of a few bacterial
sirtuin substrates has been characterized, being their metabolic roles widely distributed:
carbon and nitrogen metabolism, DNA transcription, protein translation, or virulence.
One of the most current topics on acetylation and deacetylation focuses on studying
stoichiometry using quantitative LC-MS/MS. The results suggest that prokaryotic sirtuins
deacetylate at low stoichiometry sites, although more studies are needed to know if it
is a common characteristic of bacterial sirtuins and its biological significance. Unlike
eukaryotic organisms, bacteria usually have one or few sirtuins, which have been
reported to have closer phylogenetic similarity with the human Sirt5 than with any other
human sirtuin. In this work, in addition to carrying out an in-depth review of the role
of bacterial sirtuins in their physiology, a phylogenetic study has been performed that
reveals the evolutionary differences between sirtuins of different bacterial species and
even between homologous sirtuins.

Keywords: sirtuins, bacteria, deacetylation, metabolism, prokaryote

LYSINE ACETYLATION IS A GLOBAL POST-TRANSLATIONAL
MODIFICATION

Protein acetylation is a post-translational modification (PTM) consisting of the transfer of an acetyl
group from an acetyl donor to a protein residue. Two different types of protein acetylation have
been identified, N-α-acetylation or terminal acetylation and N-ε-acetylation or lysine acetylation
(Drazic et al., 2016). In N-α-acetylation, the transfer of an acetyl group from acetyl-CoA to an
N-terminal residue of a peptide or protein is catalyzed by N-acetyltransferases (NATs) (Drazic
et al., 2016). N-terminal acetylation is frequent in eukaryotic organisms, although it is proposed
to be less common in bacteria (Nguyen et al., 2018; Parks and Escalante-Semerena, 2020). In
contrast, N-ε-acetylation is a PTM widely distributed in all domains of life (Wagner and Payne,
2013; Macek et al., 2019).N-ε-acetylation consists of the transfer of an acetyl group from acetyl-CoA
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or acetyl-phosphate to the N-ε group of a lysine residue
of a protein. Moreover, unlike N-terminal acetylation, N-ε-
acetylation can occur without the participation of any enzyme
(Wagner and Payne, 2013; Kuhn et al., 2014; James et al.,
2017). N-ε-acetylation was for decades only related to histone
acetylation by histone acetyltransferases (HATs) (Hebbes et al.,
1988). However, advances in mass spectrometry allowed the
identification of many non-histone acetylated proteins in the
three domains of life (Spange et al., 2009; Zhang et al.,
2009). Due to the wide diversity of acetylated proteins, histone
acetyltransferases were renamed as lysine acetyltransferases
(KATs). Regarding N-ε-acetylation in bacteria, the first bacterial
lysine acetylome was reported in E. coli in 2008. Subsequently,
several acetylome studies have been reported across bacterial
species (Christensen et al., 2019). These studies have shown that
protein acetylation is one of the most frequent PTM, highly
conserved and ancient in prokaryotes (Yu et al., 2008; Crosby
et al., 2012; Wua et al., 2013; Castaño-Cerezo et al., 2014; Kosono
et al., 2015; Ouidir et al., 2015; Xie et al., 2015; Nakayasu et al.,
2017; Wei et al., 2017; Li et al., 2018).

Bacterial acetylation has become an important mechanism
to regulate metabolism and virulence allowing organisms their
adaptation to different environments (Bernal et al., 2014;
Nurulain and Zaveri, 2016; Carabetta and Cristea, 2017; Macek
et al., 2019). Acetylation can occur by two different mechanisms,
catalyzed by KATs or through a non-enzymatic mechanism. Non-
enzymatic lysine acetylation is positioned as the most frequent
mechanism of acetylation in the prokaryotic model Escherichia
coli (E. coli). Furthermore, lysines that are acetylated by a KAT
are not usually non-enzymatically acetylated, and vice versa
(Weinert et al., 2013a; Kuhn et al., 2014; Christensen et al., 2018).
The importance of lysine acetylation in metabolism regulation
depends, in part, on its reversibility. Acetylation of proteins can
be reverted by lysine deacetylases (KDACs). Depending on their
sequence and domain organization, KDACs have been divided
into four groups: class I, II, and IV KDACs need Zn2+, while class
III, also known as Sir-2 like proteins or sirtuins, need oxidized
nicotinamide adenine dinucleotide (NAD+) to carry out protein
deacetylation (Frye, 2000; Gregoretti et al., 2004). Interestingly,
a proteomic study carried out by AbouElfetouh et al. (2015)
demonstrated that in E. coli, CobB sirtuin can deacetylate lysines
both enzymatically and non-enzymatically acetylated, without a
clear preference. Furthermore, this study identified 69 lysines
reproducibly, significantly, and robustly more acetylated in a
deficient cobB strain than in wild type. Nevertheless, most non-
enzymatic acetylation events do not appear to be reversed by a
KDAC (Weinert et al., 2013a; Kuhn et al., 2014; AbouElfetouh
et al., 2015).

Beyond the identification of acetylation and deacetylation
points in proteins and acetylation fold-changes under different
conditions or mutants, precise measures of acetylation site
occupancy, or stoichiometry, were not possible until a few
years ago. In recent years the development of quantitative LC-
MS/MS methods has allowed the study of the stoichiometry of
acetylation and deacetylation (Baeza et al., 2014; Meyer et al.,
2016; Gil et al., 2017; Weinert et al., 2017). Acetylation or
deacetylation stoichiometry of a modificated lysine refers to

the fraction of that lysine that is acetylated or deacetylated.
To our knowledge, two works have studied how the deletion
of E. coli cobB gene affects the acetylation stoichiometry,
concluding that the absence of CobB increases acetylation at
low stoichiometry sites, which had also been demonstrated
for human Sirt3 (Baeza et al., 2014; Weinert et al., 2015,
2017). This result and the similarities between CobB and SIRT3
suggest an evolutionary origin of sirtuin deacetylases and a
promiscuous activity, which needs to be further investigated
to know if it is a common characteristic of all sirtuins. The
fact that deacetylation occurs at very low stoichiometries could
indicate a low impact of this modification on overall activity,
however, it is not necessarily true, because deacetylation may
be carried out on a small fraction of proteins that are spatially
or temporally different from the rest (Olsen and Mann, 2013).
The stoichiometry of sirtuin-mediated deacetylation is essential
to know its real physiological role, and how it changes according
to environmental conditions. Despite the advances made in
recent years in this field, it is necessary to continue the study
of the stoichiometry of acetylation and deacetylation in other
organisms, both prokaryotic and eukaryotic.

SIRTUINS: A REGULATORY FAMILY OF
PROTEINS CONSERVED SINCE
BACTERIA TO HUMANS

Sirtuins are lysine deacylase enzymes consuming NAD+ and
producing nicotinamide (NAM) and 2′-O-acetyl-ADP-ribose.
In the 1970s, the first sirtuin was identified in Saccharomyces
cerevisiae (S. cerevisiae) and was named Sir2 (Silent informator
regulator 2) (Klar et al., 1979; Ivy et al., 1986). However, its
essential role on replicative lifespan and deacetylase activity was
not discovered until much later (Kennedy et al., 1995; Kaeberlein
et al., 1999; Imai et al., 2000). Since the discovery of Sir2, several
Sir2-like proteins were identified in prokaryotes and eukaryotes
organisms, and Sir2-like proteins became known as sirtuins
(Brachmann et al., 1995). The role of sirtuins in eukaryotic
organisms has been widely studied and, to date, seven Sir2 like
deacetylases (Sirt1-Sirt7) have been identified in human cells.

Sirtuins share an approximately 275 amino acid long
conserved core and a variable N- and C-terminal domains
(Costantini et al., 2013). In the conserved core exists a NAD+

binding domain consisting in a Rossmann fold and a Zn2+

binding domain coordinated with four Cys residues in a
tetrahedral geometry. These two domains are linked by a loop
area where the acetylated peptide is accommodated. Regarding
the area of substrate binding to the catalytic domain, sirtuins
show three pockets: (A) where the ADP-ribose intermediate
binds, (B) where the nicotinamide-ribose interaction occurs, and
(C) where the nicotinamide is located, allowing the transfer of
the acetyl group from lysine to ribose (Avalos et al., 2002; Yuan
and Marmorstein, 2012). Beyond the central core conserved
in all sirtuins, the length and structure of the terminal amino
and carboxyl are highly variable, with several intrinsically
disordered structures that are proposed to be involved in the
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determination of the specificity and subcellular location of the
sirtuin (Costantini et al., 2013).

The first bacterial sirtuin was identified in Salmonella enterica
(S. enterica) and was called CobB because it was related to
cobalamin biosynthesis and propionic catabolism (Tsang and
Escalante-Semerena, 1996; Tsang and Escalante-semerena, 1998).
Shortly after, deacetylation of acetyl-CoA synthetase (Acs) in
S. enterica by CobB was characterized (Starai et al., 2002).
This discovery meant a turning point in sirtuin research:
the regulation by N-ε deacetylation of a non-histone protein
was characterized for the first time. Shortly after this first
identification in Salmonella, a bacterial sirtuin, CobB from E. coli,
was crystallized and its structure solved, concluding that cognate
substrate binding involves the Zn-binding domain and regions
distal to the acetyl-lysine pocket (Zhao et al., 2004).

Escherichia coli CobB was identified as the first prokaryotic
desuccinylase enzyme (Colak et al., 2013). Succinylation,
previously identified in mitochondria, has been described as a
frequent modification in prokaryotes, overlapping extensively
with acetylation (Du et al., 2011; Weinert et al., 2013b). In
Bacillus subtilis (B. subtilis), proteomic studies have identified
hundreds of acetylated and succinylated proteins. The increase in
the acetylation and succinylation observed in the two B. subtilis
deacetylase deficient strains, 1acuC1srtN, suggests a role of
both of them in the global deacetylation and desuccinylation
systems (Kim et al., 2013; Kosono et al., 2015). In this sense,
a recent study carried out a kinetic characterization of SrtN
over different acylated substrates concluding that this sirtuin
catalyzes efficiently other deacylations different to acetylation,
such as malonylation or formylation (Seidel et al., 2016).
Propionylation has also been reported to play a vital role
in cellular physiology of prokaryotes and eukaryotes. It is a
reversible PTM, depropionylation being catalyzed by sirtuins as
human Sirt1 or CobB from E. coli and S. enterica (Garrity et al.,
2007; Cheng et al., 2009; Sun et al., 2016b). In addition, some
sirtuins, like the Lactobacillus acidophilus (L. acidophilus) Sir2La,
the unique characterized sirtuin from L. acidophilus, shows a
preference for propionylated over acetylated and butyrylated
substrates (Olesen et al., 2018).

Beyond “classical” deacylations, sirtuins are related to
other deacylation reactions such as delipoamidation or
dehomocysteinylation. Lipoamidation is a modification
identified in eukaryotes in the 1950s responsible for the
regulation of multimeric enzyme complexes. However, it has
been poorly studied in prokaryotes (Reed et al., 1958; Reed,
2001). Reversible lipoamidation has been identified in eukaryotes
and prokaryotes, being CobB the first bacterial sirtuin with
delipoamidase activity (Mathias et al., 2014; Rowland et al.,
2017). In E. coli, CobB regulates pyruvate dehydrogenase
(PDH) and ketoglutarate dehydrogenase (KDH) complexes,
two carbon entry points into the tricarboxylic acid cycle, by
delipoamidation, which highlights the role in central metabolism
of this sirtuin. Lysine dehomocysteinylation activity has been
attributed to S. enterica CobB, the only prokaryotic enzyme
with this activity to date. This interesting finding suggests that
sirtuins might play a role in hyperhomocysteinemia, the increase
of homocysteinylated proteins in human which is related to

many diseases (Mei et al., 2016). In addition to these deacylase
activities, some sirtuins also catalyze ADP ribosylations, a
modification consisting in the transfer of the ADP-ribose group
from NAD+ to an acceptor, producing mono-ADP-ribosylated
proteins and nicotinamide (Appel et al., 2016). In bacteria, auto
ADP-ribosylation of a sirtuin from Mycobacterium smegmatis
(M. smegmatis) has been identified as essential for growth
in natural environments (Tan et al., 2015). ADP-ribosylation
activity has been also associated to sirtuins from microbial
pathogens (Rack et al., 2015).

SIRTUINS IN CARBON AND NITROGEN
METABOLISM

Deacetylation of acetylated Acs K609 by CobB in S. enterica
(also known SeCobB) was the first described bacterial sirtuin
reaction (Starai et al., 2002, 2003). Following this milestone,
Acs protein has been shown to be a substrate for other sirtuins
in many prokaryotic and eukaryotic organisms (Schwer et al.,
2006; Gardner and Escalante-Semerena, 2009; Crosby et al.,
2010; Xu et al., 2011; Mikulik et al., 2012; Hayden et al., 2013;
Tucker and Escalante-Semerena, 2013; De Diego Puente et al.,
2015; VanDrisse and Escalante-Semerena, 2018; Burckhardt et al.,
2019). A recent study has shown that the binding of cAMP to Acs
inhibits its deacetylation by SeCobB (Han et al., 2017). Our group
carried out the kinetic characterization of E. coliAcs deacetylation
by CobB, showing that deacetylated a minimum of 20 acetylated
lysines of Acs with a single kinetic rate, which suggests that the
main determinants of sirtuin specificity are the structural protein
components rather than the protein sequence. This is, to our
knowledge, the only sirtuin kinetic characterization with a fully
acetylated and natively folded protein as a substrate (Gallego-Jara
et al., 2017). Acs from B. subtilis, AcsA, is essential to consume
the acetate present in soil, the natural habitat of this bacterium
(Grundy et al., 1993). The activity of B. subtilis AcsA has been
reported to be regulated by acetylation/deacetylation. However,
while acetylation is catalyzed by AcuA acetyltransferase, two
lysine deacetylases are involved in its deacetylation: NAD+

independent AcuC and sirtuin SrtN (Gardner et al., 2006;
Gardner and Escalante-Semerena, 2009).

Rhodopseudomonas palustris (R. palustris) is a
photoheterotrophic bacterium able to degrade aromatic
compounds to acetyl-CoA, which makes it an interesting
weapon against environmental contamination by human-
produced aromatic compounds. In R. palustris, reversible
acetylation regulates acyl-CoA synthetases responsible for
aromatic activation. Interestingly, activation of three of these
acyl-CoA synthetases (Benzoyl-CoA (BadA), 4-hydroxybenzoyl-
CoA (HbaA) and cyclohexanecarboxyl-CoA (AliA) synthases)
through lysine deacetylation can be catalyzed by the sirtuin
RpSrtN or by the Zn-dependent protein deacetylase LdaA
(Crosby et al., 2010, 2012).

In 2007, Garrity et al. demonstrated that expression of CobB
in S. enterica was necessary for it to grow with acetate or
propionate as the only carbon source. The CobB activity need for
growth in propionate triggered the identification of the enzyme
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PrpE (propionyl-CoA synthetase) as a new substrate of this
sirtuin. In this case, SeCobB catalyzed the depropionylation of
the 592 PrpE lysine, which induced its activation. This study
was the first to reveal an activity different to deacetylation
in a bacterial sirtuin (Garrity et al., 2007). In Mycobacterium
tuberculosis and M. smegmatis reversible acetylation is also
involved in propionate metabolism through acetylation and
deacetylation carried out by the Rv1151c sirtuin or the ortholog
in M. smegmatis, SrtN (Hayden et al., 2013; Nambi et al., 2013).
Interestingly, while Rv1151c is the only found Sir2 like protein
in M. tuberculosis, two predicted sirtuins, Ms5175 and Ms4620,
are observed in M. smegmatis, showing Ms4620 a robust ADP-
ribosylation activity (Tan et al., 2015). M. tuberculosis fatty acyl
CoA synthetases (FadD22, FadD2, FadD5, and FadD13), AMP-
forming acyl-CoA synthetases similar to Acs, are also acetylated
and deacetylated by Rv1151. This modification activates fatty
acids metabolism (Nambi et al., 2013). Further, FadD33, a
M. smegmatis fatty acid synthetase that is indispensable for
Mycobacterium virulence development through siderophores, is
also regulated by acetylation and deacetylation through its SrtN
sirtuin (Vergnolle et al., 2013).

Beyond acyl-CoA synthetases, other metabolic enzymes
have been reported to be regulated by acetylation/deacetylation.
For example, the S. enterica’s glyceraldehyde-3-phosphate
dehydrogenase (GapA), isocitrate lyase (Icl), or isocitrate
dehydrogenase phosphatase/kinase (AceK) enzymes (Wang
et al., 2010). Results from this study were questioned however
in other reports (Crosby et al., 2012; Crosby and Escalante-
Semerena, 2014). Isocitrate lyase from M. tuberculosis is
also regulated by sirtuin deacetylation (Bi et al., 2017).
The first substrate of CobB identified in E. coli was the
chemotactic regulator CheY (Li et al., 2010). CheY is an essential
regulator of chemotaxis, the mechanism through which bacteria
respond to changes in the chemical compositions of their
environment. In addition to CheY, the N-hydroxyarylamine
O-acetyltransferase (NhoA) protein, the citrate synthase
(Cs) and the isocitrate dehydrogenase (IcdH) enzymes,
both of them belonging to the tricarboxylic acids cycle,
and the adenosylmethionine synthase (MetK) are also
substrates of CobB sirtuin (Zhang et al., 2013; Sun et al.,
2016a; Venkat et al., 2018, 2019). Recently, the activity and
stability of E. coli diguanylate cyclase DgcZ has also been
demonstrated to be regulated by deacetylation catalyzed by
CobB sirtuin (Xu et al., 2019). Furthermore, CobB regulates
TCA cycle by delipoamidation PDH and KDH complexes
(Rowland et al., 2017).

In 2016, nitrogen metabolism of Saccharopolyspora erythraea
(S. erythraea) was shown to be regulated by sirtuin-dependent
reversible lysine acetylation of two glutamine synthetases, GlnA1
and GlnA4. While acetylation inactivated GlnA4, acetylation
of GlnA1 led to a fine modulation of the nitrogen regulator
GlnR binding to DNA with a chaperone-like activity. Moreover,
GlnR regulates transcription of AcuA acetyltransferase and of
SacSrtN sirtuin, responsible for GlnA1 and GlnA4 acetylation
and deacetylation, respectively, forming an autofeedback loop in
nitrogen metabolism. This function of the acetylated GlnA1 over
GlnR regulator seems to be conserved through actinomycetes

such as S. coelicolor and M. smegmatis (You et al., 2016). GlnR
also promotes transcription of the three AMP forming acetyl-
CoA synthetases from S. erythraea: acsA1, acsA2, and acsA3
in response to nitrogen availability. Their activity is regulated
by lysine acetylation catalyzed by the acetyltransferase AcuA
and the sirtuin SacSrtN (You et al., 2014, 2017). A more
recent study also highlights the role of the SacSrtN sirtuin
beyond GlnA1 and GlnA4 deacetylation. It suggests a central
role of SacSrtN in the regulation of the primary and secondary
metabolism in S. erythraea (Zhou et al., 2018). Role of bacterial
sirtuins in carbon and nitrogen metabolism is resumed in
Figure 1.

SIRTUINS IN BACTERIAL VIRULENCE
AND RESISTANCE TO STRESS

Salmonella enterica is a facultative pathogen that survives within
the cells of its host. TacT is a toxin acetyltransferase identified
in S. enterica and responsible for antitoxin TacA acetylation,
which is deacetylated by SeCobB sirtuin (VanDrisse et al.,
2017). TacA acetylation increases TacT activity and therefore
the persistence state inside a host. The two-component system
PhoP-PhoQ is also involved in S. enterica virulence. Its activity
is regulated by acetylation at K201 reverted by sirtuin SeCobB
(Ren et al., 2016). Results showed that deacetylation of PhoP
at K201 is essential for Salmonella pathogenesis. These data
support the role of acetylation/deacetylation by SeCobB as
a key regulator in S. enterica virulence (Yu et al., 2016).
Reversible acetylation has also been related to S. enterica
and E. coli survival under acid stress through modulation
of Pat and CobB activity (Ma and Wood, 2011; Ren et al.,
2015).

Role of sirtuin in Yersinia pestis (Y. pestis), responsible
for causing pulmonary, bubonic and also septicemic plague
in humans, has also been studied. Thus, Y. pestis reversible
acetylation catalyzed by Pat acetyltransferase and CobB-like
sirtuin, YpCobB, regulates the response to stress and virulence
through PhoP acetylation and deacetylation (Liu et al., 2018).
This recent finding should be studied in depth due to the
important consequences that it may have on the development of
drugs against this disease.

Mycobacterium tuberculosis is a pathogenic bacterium
responsible for tuberculosis disease.M. tuberculosis is nonetheless
present in almost 30% of the population of the world, although
most of them do not develop the disease. A proteomic study
carried out by Liu et al. (2014b) showed that lysine deacetylation
by Rv1151c, the only sirtuin present in M. tuberculosis, regulated
colony morphology, biofilm formation and resistance to
heat stress. Interestingly, a strain of M. smegmatis with SrtN
overexpressed showed a higher resistance to isoniazid, an
anti-tuberculosis drug (Gu et al., 2015). INH is supplied as a
prodrug that needs to be activated by the catalase peroxidase
KatG to couple with NAD+ and inhibit the synthesis of mycolic
acid, required for M. tuberculosis cell wall. SrtN overexpression
increases M. tuberculosis resistance to INH through KatG
down-regulation and intracellular NAD+ availability decrease.
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FIGURE 1 | Scheme of the role of bacterial sirtuins in carbon and nitrogen metabolism. Deacetylated substrates are shown in green font and the bacterial sirtuins
that deacetylate them have been represented as enzymes of different colors. Sirtuins shown here are represented with the abbreviated names and belong to different
species. Correspondence with the full name and species for each one can be found throughout the text.

SIRTUINS IN TRANSCRIPTION AND
TRANSLATION PROCESSES

Regulation of transcription by reversible lysine acetylation has
been widely studied in eukaryotes and archaea but not in bacteria.
After the first bacterial acetylome studies, several transcription
factors were suggested to be regulated by acetylation (Yu et al.,
2008; Zhang et al., 2009). E. coli RcsB, a transcription factor
involved in cell division and flagellum synthesis, was the first
transcription factor identified as CobB substrate in bacteria (Thao
et al., 2010). RcsB DNA binding is regulated by the reversible
acetylation of the conserved K180 (Thao et al., 2010). K154 was
also identified as a target of acetylation and deacetylation by CobB
in vivo. K154 acetylation inhibited RcsB while deacetylation by
CobB activated it, regulating flagella biosynthesis and motility
(Hu et al., 2013; Castaño-Cerezo et al., 2014). The global
transcription factor cAMP receptor protein (CRP) has also been
reported to be regulated by chemical acetylation, acetylation
promoting activity in Class II promoters and ensuring adequate
CRP steady state levels in E. coli, although CobB deacetylation has
not been demonstrated yet (Écija-Conesa et al., 2020). DnaA is an
initiator of replication that plays an essential role in the cell cycle.

A recent study has revealed that the binding of E. coli DnaA to
OriC is regulated by acetylation of the two lysines K178 and K243.
Deacetylation of DnaA K243 by CobB is necessary for a correct
DNA binding (Zhang et al., 2016; Li et al., 2017). A proteomic
study carried out recently has identified the global anaerobic
regulator FnrL from Rhodobacter sphaeroides (R. sphaeroides) as a
substrate of its CobB sirtuin homolog, RsCobB. Thus, acetylation
of FnrL decreases its DNA binding ability while the transcription
of genes downstream of FnrL increases with deacetylation by
RsCobB. This result suggests that reversible lysine acetylation
might regulate anaerobic photosynthetic metabolism in this
microorganism (Wei et al., 2017).

The first global analysis of the E. coli acetylome also revealed
that RNA polymerase can be modified by acetylation. Shortly
after, Lime et al. showed that the α-subunit of RNAP was
regulated by acetylation and deacetylation of its K298. This
is specifically required for the stress-responsive cpxP gene
transcription (Lima et al., 2011). Gu et al. (2015) identified
27 proteins with an increased level of acetylation in a strain
of M. smegmatis with the srtN gene deleted. These proteins
included the beta subunit of RNA polymerase (rpoC) in addition
to metabolic and ribosomal proteins. Other DNA-RNA related
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proteins have also been characterized as sirtuin substrates. Some
examples are the proteins Ku and LigD, components of the
non-homologous end-joining (NHEJ) system from M. smegmatis
and M. tuberculosis or the E. coli RNAse II (Li et al., 2011;
Song et al., 2016). Finally, sirtuins have also been related
to translation through E. coli alanyl-tRNA synthetase and
Lactobacillus paracasei ribosomal S4 30S protein deacetylation
(Atarashi et al., 2016; Torres-Barredo et al., 2018; Umehara et al.,
2018). The elongation factor Tu from B. subtilis, TufA, is also
regulated by reversible acetylation. Although deacetylation of
K42 TufA was catalyzed by the sirtuin SrtN, AcuC Zn-dependent
deacetylase also deacetylated TufA, with even greater efficiency
(Suzuki et al., 2019).

Sirtuins have emerged as important components of all
regulation systems in bacteria, being involved in central
metabolism, transcription or virulence regulation. However, the
study of the role of sirtuins in bacteria has been limited to a few
model organisms, leaving many species unstudied. In addition,
even in these model organisms, the degree of knowledge that has
been reached is very low, in comparison to eukaryotes. Their
functional annotation is limited and further work need to be
done to fill in this important gap. Bacterial sirtuins substrates
characterized to date are shown in Table 1.

REGULATION OF BACTERIAL SIRTUINS

The global role demonstrated for bacterial sirtuins suggests
a deep regulation of its expression and deacetylase activity
at both the transcriptional and post-translational levels. This
multidirectional regulation has been demonstrated in human
sirtuins, but it is still mostly unknown in bacteria.

Eukaryotic sirtuins exist frequently in different isoforms as
a consequence of alternative splicing (Zhang et al., 2021). In
2010, evidence of the existence of sirtuin isoforms in S. enterica
were reported. Two active CobB isoforms, a shorter (236 amino
acids) and a longer (273 amino acids) ones were studied.
Moreover, transcription of the two isoforms started at two
different sites (Tucker and Escalante-Semerena, 2010). In E. coli,
the existence of these two isoforms has been also demonstrated
and it has been suggested that they might be conserved in
Enterobacteriae members, excepting species of the Erwinia genus
(Umehara et al., 2018).

Regarding the transcriptional regulation of bacterial sirtuins,
it has been reported that IolR protein, a regulator of the myo-
inositol operon, positively controls the transcription of cobB
in S. enterica, in addition to the acetyltransferase pat and
acs genes (Hentchel et al., 2015). The regulation of sirtuins
by different PTMs has been well covered and reported in
eukaryotes (Flick and Lüscher, 2012). However, little is known
about bacterial sirtuins PTMs. In 2016, a cross-talk between
acetylation and phosphorylation was suggested in M. smegmatis
and tuberculosis. Mycobacterial sirtuin deacetylase activity seems
to be regulated by phosphorylation of a conserved threonine,
which is, to date, the only regulation known of a bacterial sirtuin
by phosphorylation (Yadav et al., 2016). Also in M. smegmatis,
MSMEG_4620 sirtuin has been reported to catalyze its own

ADP-ribosylation (Tan et al., 2015). More recently, regulation
of the long isoform of CobB by N-terminal acetylation has
been reported and negatively affects its deacetylase activity.
Moreover, YiaC, a putative S. enterica acetyltransferase has been
identified as the responsible for CobB N-terminal acetylation
(Parks and Escalante-Semerena, 2020).

Nicotinamide adenine dinucleotide (NAD+) metabolism is
closely related to sirtuins through NAD+ consumption and
NAM production. Sirtuins activity inhibition by NAM is a global
regulation mechanism strongly established (Jackson et al., 2003).
The first kinetic study of a bacterial sirtuin was carried out in
2017, and the regulation of CobB in vivo by NAM concentrations
was also demonstrated in our work (Gallego-Jara et al., 2017).
To identify some E. coli CobB regulators, a study consisting in a
proteome microarray identified, in 2014, 183 proteins that bound
to CobB (Liu et al., 2014a). A more recent interactome study has
revealed that phosphoribosyl pyrophosphate (PRPP) synthetase
Prs protein, which was also identified as a potential interactor
in 2014, increases CobB deacetylase activity and partially disable
its inhibition by nicotinamide (Walter et al., 2020). Prs, is an
enzyme responsible for PRPP synthesis, a pivotal metabolite
involved, among others, in the NAD+ salvage pathway and
NAD+ de novo biosynthesis. Prs regulation of CobB, might be
the nexus between protein acetylation and NAD+ metabolism.
The ubiquitous regulator cyclic diguanylate, c-di-GMP, also
regulates negatively E. coli CobB, inhibiting its deacetylase
activity. Moreover, CobB regulates the diguanylate cyclase
enzyme, DgcZ, which produces c-di-GMP. CobB deacetylation
regulates positively DgcZ, thus increasing DgcZ activity and
c-di-GMP level, and establishing a regulator feedback loop
(Xu et al., 2019).

PHYLETIC DIVERSITY

According to Table 1, substrates of 13 bacterial sirtuins
(corresponding to 13 species) have been in vitro identified. These
organisms represent only three bacterial phyla (Actinobacteria,
Firmicutes, and Proteobacteria) and four bacterial classes
(Actinomycetia, Bacilli, Alpha-, and Gamma-Proteobacteria)
from the 166 phyla and 110 classes defined in the latest releases
of the NCBI Taxonomy database (Agarwala et al., 2018). The
Proteobacteria class is the most abundant in experimental data
and number of species currently sequenced, containing the
experimental model species Escherichia coli.

To gain a wider understanding of the diversity of the
sirtuin distribution among the full range of phyla in the
bacteria superkingdom, we conducted a bioinformatic analysis
of the more than 8000 bacterial representative proteomes
provided by Uniprot (Bateman et al., 2021). The Uniprot
reference proteomes database covers fully annotated proteomes
experimentally determined including at least one member of
every bacterial phylum in the taxonomic tree (Figure 2).
We determined the number of sirtuins encoded in each of
the bacterial species searching for the Hidden Markov Model
(HMM) profile that corresponds to the sirtuin domain family as
defined in the Pfam domain database (Mistry et al., 2021). This
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TABLE 1 | Bacterial sirtuins characterized substrates.

Bacteria Sirtuin Substrate Pathway Reverted modification References

Salmonella enterica SeCobB Acs Acetate metabolism Acetylation Starai et al., 2002

SeCobB PrpE Propanoate Degradation Propionylation Starai et al., 2003

SeCobB GapA Glycolytic process Acetylation Wang et al., 2010

SeCobB Icl Glyoxylate cycle Acetylation Wang et al., 2010

SeCobB AceK Glycolytic process/glyoxylate cycle Acetylation Wang et al., 2010

SeCobB PhoP Transcriptional regulatory protein Acetylation Ren et al., 2016

SeCobB TacA Transport Acetylation VanDrisse et al., 2017

Escherichia coli CobB Acs Acetate metabolism Acetylation Gallego-Jara et al., 2017

CobB CheY Chemotaxis Acetylation Li et al., 2010

CobB Cs Tricarboxylic acid cycle Acetylation Venkat et al., 2019

CobB IcdH Tricarboxylic acid cycle Acetylation Venkat et al., 2018

CobB NhoA Post-translational modification Acetylation Zhang et al., 2013

CobB RNAse II RNA metabolism Acetylation Song et al., 2016

CobB MetK Aspartate superpathway Acetylation Sun et al., 2016a

CobB Alanyl-tRNA synthetase Translation Acetylation Umehara et al., 2018

CobB RcsB Transcription Acetylation Thao et al., 2010;
Castaño-Cerezo et al.,
2014

CobB RNAP Transcription Acetylation Lima et al., 2011

CobB DNAa Replication Acetylation Zhang et al., 2016

CobB PatZ Post-translational modification Acetylation De Diego Puente et al.,
2015

CobB PDH Glycolytic process Lipoamidation Rowland et al., 2017

CobB KGH Tricarboxylic acid cycle Lipoamidation Rowland et al., 2017

CobB DgcZ Purine metabolism Acetylation Xu et al., 2019

Bacillus subtilis SrtN AcsA Acetate metabolism Acetylation Gardner and
Escalante-Semerena,
2009

SrtN TufA Translation Acetylation Suzuki et al., 2019

Mycobacterium tuberculosis Rv1151c Acs Acetate metabolism Acetylation Lee et al., 2012

Rv1151c FadD22, FadD2,
FadD5, FadD13 and
FadD33

Fatty acids metabolism Acetylation Nambi et al., 2013;
Vergnolle et al., 2013

Rv1151c Icl Glyoxylate cycle Acetylation Bi et al., 2017

Rv1151c Ku NHEJ Acetylation Li et al., 2011

Rv1151c LigD NHEJ Acetylation Li et al., 2011

Mycobacterium smegmatis Ms5175 Ku NHEJ Acetylation Li et al., 2011

Ms5175 LigD NHEJ Acetylation Li et al., 2011

Ms5175 Acs Acetate metabolism Acetylation Hayden et al., 2013

Yersinia pestis YpCobB PhoP Transcriptional regulatory protein Acetylation Liu et al., 2018

Lactobacillus paracasei LpSirA S4 30S ribosomal
protein

Translation Acetylation Atarashi et al., 2016

Saccharopolyspora erythraea SacSrtN GlnA1 Nitrogen metabolism Acetylation You et al., 2016

SacSrtN GlnA4 Nitrogen metabolism Acetylation You et al., 2016

SacSrtN AcsA1, AcsA2, AcsA3 Acetate metabolism Acetylation You et al., 2017

Rhodobacter sphaeroides RsCobB FnlR Anaerobic respiration Acetylation Wei et al., 2017

Rhodopseudomonas palustris RpSrtN BadA, HbaA and AliA
synthetases

Aromatic metabolism Acetylation Crosby et al., 2012

Staphylococcus aureus SaCobB Acs Acetate metabolism Acetylation Burckhardt et al., 2019

Streptomyces lividans SlSrtA Acs and Aacs Acetate metabolism Acetylation Tucker and
Escalante-Semerena,
2013; VanDrisse and
Escalante-Semerena,
2018

Streptomyces coelicolor CobB1 AcsA Acetate metabolism Acetylation Mikulik et al., 2012

The metabolic role and reverted modification catalyzed by sirtuins is shown.
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FIGURE 2 | Sirtuins by bacterial class taxon. Bacterial classes are shown on a bacterial Tree of Life (Generated with PhyloT). Only those classes with more than 10
species genomes annotated in Uniprot are shown; those with more than 50 genomes are shown with branch and label in red. Bacterial phyla are indicated in the
onset legend. The first layer indicates, in a red darkness gradient, the abundance of sirtuin-containing species per class. The second layer, in a green darkness
gradient, indicates the abundance of species containing more than one sirtuin. The third layer indicates the classes with species that possess sirtuins that have been
shown to regulate some substrate in vitro.

family is coded as SIR2, with the accession number PF02146.
A custom-made Python script allowed us to automatize the
search and let us localize the number of sirtuins (if any)
encoded in each of these reference bacterial genomes. The
first layer of Figure 2 shows, in a red darkness gradient, the
proportion of sirtuin-containing species with respect to the
total number of different species per class, white indicating
the absence of sirtuins-containing species in the class. This
result indicates that, although sirtuins are widely distributed
in prokaryotes and eukaryotes, they are not necessary for the
proper growth of some organisms. Interestingly, the sirtuin
abundance is not homogeneously distributed among bacterial

taxons. As we show on the taxonomic tree pruned to class
level, Phyla like Actinobacteria or Firmicutes have a tendency
to include at least one sirtuin in their genomes while the
majority of the species from the Cyanobacteria/Melainabacteria
group lack sirtuins. Moreover, organisms lacking sirtuins perhaps
have one or more enzymes that carry out sirtuin roles in
metabolism, virulence, or transcription. Finally, it is important
to highlight that the number of species and genomes covered
by the Uniprot reference proteomes for each class is very
disparate. Therefore, for some classes, abundance is the result of
hundreds of species average, while other classes are composed
of a few species.
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The second layer in Figure 2 shows, in a green darkness
gradient, the average number of species in each bacterial class
that have at least one sirtuin encoded in its genome, white
indicating the species with a single sirtuin. Sirtuins appear mostly
as a single unit in bacteria, although an important number of
species encoded for two homologous sirtuins. Examples have
been found of species containing three or even more sirtuins
among the proteins in their proteomes. From the 8002 species
analyzed, 2321 do not have a single sirtuin encoded (a 29%) while
4396 (more than half of the species) have only 1 sirtuin (55%)
and 1132 (14%) have 2 and only 153 have more than 2. The
existence of duplicity in the sirtuin content in single bacterial
species has been demonstrated experimentally as has been
commented for M. smegmatis in the sirtuins in the carbon and
nitrogen metabolism section. There is important heterogeneity
in the number of sirtuins encoded by bacterial species even
among classes belonging to the same phylum. In Bacteroidetes
for example, while almost all classes encode for only one
sirtuin, Rhodothermia species show more than three on average.
Similar examples of classes with a high number of sirtuins
are Ardenticatenia in the Chloroflexi phylum or Nitriliruptoria
and Catenulisporales in the Actinobacteria one. Curiously,
M. tuberculosis and M. smegmatis, both of them belonging to
Actinobacteria phylum, have one and two homologous sirtuins,
respectively, and the extra sirtuin from M. smegmatis, similar to
Sirt4, has been observed in environmental mycobacterial species
but not in pathogenic species (Tan et al., 2015).

Finally, as we observe in Figure 2, the number of homologous
sirtuins is not directly related to the taxonomy or evolution of the
different species, as species more evolved in the taxonomic tree
of life can have fewer sirtuins or even none of them than more
ancient species.

CLASSIFICATION OF BACTERIAL
SIRTUINS

Based on their phylogenetic relationships, sirtuins are generally
grouped into several classes (Frye, 2000; Greiss and Gartner,
2009; Vassilopoulos et al., 2011; Costantini et al., 2013). The
majority of these are represented by sirtuins present in human
and most vertebrates: SIRT1-SIRT7 (classes I, II, III, and IV).
A fifth class (class U) includes sirtuins mainly from bacteria and
archaea. The last class to date was proposed in 2015, identified in
microbial pathogens, and termed SirTMs (Rack et al., 2015).

To classify the sirtuins that have experimental evidence
(summarized in Table 1), we generated a multiple sequence
alignment [through the Mafft tool with an L-INS-I algorithm
(Katoh et al., 2018)]. To the 13 bacterial sirtuins in Table 1,
the homologous of these sirtuins were added. Furthermore, to
increase the robustness of the analysis, sirtuins from Lactobacillus
acidophilus, Bacillus megaterium, Pseudomonas aeruginosa, and
Aeromonas hydrophila were also added. These bacteria were
selected because the role of their sirtuins has been recently
studied (Williams et al., 2012; Ouidir et al., 2015; Olesen et al.,
2018; Wang et al., 2020). Altogether, the sequences of 21 sirtuins
were aligned (Figure 3B). To assign the classes to the new

sequences we included in the alignment a representative of each
of the mentioned classes, including the seven human sirtuins.
A phylogenetic tree was then built based on the multiple sequence
alignment [FastTree with the JTT + CAT substitution model and
a Shimodaira-Hasegawa test with 500 replicates for a bootstrap
evaluation (Price et al., 2009; Gumerov and Zhulin, 2021)].
This allowed us to observe, even from such a limited set of
sirtuins (only the ones with experimental evidence), that there
are bacterial representatives for every class of sirtuin previously
established from eukaryotes, except for class I (Figure 3A).

As shown in Figure 3A, most of the bacterial sirtuins
with experimental evidence, and in particular those sirtuins
belonging to the Proteobacteria phylum, have closer common
ancestors with the human Sirt5 (class III) than with any other
classes. However, there are examples of sirtuins more related
to the Sirt4 (class II), with examples from the Actinobacteria
phylum. Class IV is more widespread and is present mainly
in Streptomyces and class U in Firmicutes. The most distant
common ancestors from the bacterial sirtuins in our selection
are those with the human sirtuins Sirt1, Sirt2, and Sirt3, i.e.,
those belonging to class I. However, sirtuins from the Bacilli
genera have ancestors closer related to these class I components
than to any other class, which makes a good example of the
wide distribution in the classification of the bacterial sirtuins.
Firmicutes phylum, to which Bacilli belong, appear in many
phylogenetic trees as the older and most divergent group in
Bacteria, which could explain the classification of some of their
sirtuins in the most distant sirtuin class. Interestingly, bacterial
sirtuins belong to different classes, since each of these sirtuin
subtypes may be associated with different catalytic preferences
as is already demonstrated in the human representative sirtuins.
Human Sirt1-3 are considered strong deacetylases, while Sirt5
is mostly associated with other deacylase activities, such as
desuccinylase, demalonylase and deglutarylase, and Sirt6 and
Sirt4 show strong ADP-ribosyltransferase activity (Michishita
et al., 2005; Du et al., 2011; Van Meter et al., 2011; Pannek
et al., 2017). Moreover, Sirt6, and also Sirt1, Sirt2, Sirt3, and
Sirt5, show deacylation activity against long-chain acyl groups
and Sirt2 has lysine debenzoylation activity (Feldman et al.,
2013; Huang et al., 2018). It is necessary to increase the number
of bacterial sirtuins characterized in vitro to confirm whether
this catalytic preference applies to bacterial counterparts. These
observations suggest nevertheless a plausible specialization of
sirtuins during evolution, allowing the species to adapt to the
changing environmental conditions and availability of substrates
through the diversification of the functional group they can
transfer and the substrate they modify. Further studies on this
direction are ongoing through the search for new substrates
for sirtuins already characterized and the classification of new
sirtuins in different bacterial species from more distant phyla.

Interestingly, those sirtuins that belong to the same species,
in the cases where two are encoded, do not necessarily share the
same sirtuin class. This is the case for the sirtuins in Pseudomonas
aeruginosa (classes III and U), both Streptomyces species (classes
II and IV), and Mycobacterium smegmatis (classes II and III).
This observation indicates that the emergence of the paralogs
in the species holding multiple sirtuin genes in their genomes
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FIGURE 3 | Phylogenetic tree and MSA of the sirtuins covered in this work. (A) Sirtuins are shown labeled with the name of their host species. Those species
holding two sirtuins are labeled with a background color. The tree includes all human sirtuins and one representative of sirtuins class U and class TM for class
identification. Branch colors indicate the sirtuins class. (B) Mafft multiple sequence alignment of the 21 sirtuins covered in this work. A red square indicates the loop
insertion sequence.

is the result of duplication events that occurred in the common
ancestors of the majority of the bacterial species summarized in
this work. These duplications may have occurred therefore prior
to the speciation. It is important to point out that none of the
bacterial sirtuins representatives of the class I appear to have a
paralog in the genomes of their species. This underscores the
fact that this sirtuin class, which is the best studied in human
and other vertebrates, is the furthest related with the majority of
bacterial sirtuins, as any gene duplication has occurred in those
cases posterior to a speciation and have therefore derived into a
completely new species.

The results derived above from the classification of the
bacterial sirtuins have to be taken with care, however, as they only

include those species treated in the present work. Further work is
to be done with a wider set of data that should include bacterial
sirtuins from a greater number of bacterial species covering
the full range of phyla and genera in the tree of life. The set
extracted from only 18 species in this work has shown as a good
representative of the bacterial sirtuins however and demonstrated
that their class distribution is very wide.

Figure 3B shows the multiple sequence alignment that we
originally generated for the construction of the phylogenetic tree.
It contains the sequences of all the sirtuins treated in this work. It
is interesting to point out that sequence lengths are very similar
among all the bacterial sirtuins treated here. This is a fact that is
not conserved in human or other vertebrate sirtuins, where there
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is a wide variety of lengths, especially in the C and N terminal
fragments (Costantini et al., 2013). Human or other vertebrate
sirtuins contain also a good number of isoforms that are
related in a great extent to the C and N terminal sections
(Szućko, 2016).

The main source of variation among the bacterial sirtuins
herein studied comes from a 20–30 amino acid insertion in
position 190 (related to Escherichia coli’s CobB sequence), that
is included in one of the two sirtuins from Mycobacterium
smegmatis, Streptomyces coelicolor and Streptomyces lividans (all
three species from the Actinobacteria phylum, Figure 3B). This
small insertion appears to be located between the helices α8 and
α9 as shown in the sirtuin 3D structure (Cosgrove et al., 2006;
Yuan and Marmorstein, 2012). These two regions are involved
in the binding pocket of Zn2+, which plays a structural role.
The loop insertion appears to be a common feature that is
exclusive of class II sirtuins and has been previously observed
in human Sirt4 (Pannek et al., 2017). It could play an important
role in catalysis regulation, contributing to substrate binding and
restricting active site dynamics. A larger investigation with the
full set of reference proteomes from Uniprot is currently ongoing
to further confirm the importance of this insertion and other
features differentiating all bacterial sirtuins among them and with
the known eukaryotic sirtuins.

CONCLUSION

For years, sirtuins were only related to transcription regulation in
eukaryotes by deacetylation of histones. Nowadays, it is known
that they are involved in many metabolic pathways in addition
to transcription regulation. Sirtuins have been widely studied
in humans, where they regulate important metabolic pathways.
However, little is known about sirtuins in lower organisms: only
13 bacterial sirtuins have been studied in vitro from the 8000
bacterial representative proteomes provided by Uniprot. With
only this small sample a great diversity has been suggested both
in the number of sirtuins per species and in the type of sirtuin.
The phylogenetic study carried out in the last part of this review
reveals the evolutionary differences between sirtuins of different
bacterial species and even between homologous sirtuins. Future
studies will be necessary to understand the diversity that emerged
during evolution and thus to increase the knowledge about this
important family of enzymes.

On the other hand, it is essential to continue investigating
the stoichiometry of deacetylation by sirtuins to know if the low
stoichiometry reported for E. coli’s CobB is conserved in other
organisms and to know its physiological meaning. Furthermore,
the low number of targeted proteins whose activity is regulated
by sirtuins deacetylation identified to date contrasts to the high
number of proteins that have been identified as their substrates
in proteomic studies (Castaño-Cerezo et al., 2014; AbouElfetouh
et al., 2015; Weinert et al., 2017). It seems difficult that the activity
of all of them is regulated by sirtuin-mediated deacetylation,
since the physiological behavior of the sirtuin-deficient strains
is similar to that of the wild type. Some studies suggest that
the sirtuins regulatory role might be more important in stressful
or nutrient limited conditions, when acetylation, especially non-
enzymatic is higher than in non-stressful situations (Schilling
et al., 2015, 2019; Weinert et al., 2017).

Research in the field of bacterial sirtuins is essential to
expand our knowledge about molecular signaling pathways,
gene expression regulation, and associated physiological
functions in prokaryotic organisms, which are fundamental
for the advancement of fields such as synthetic biology
or pharmacology.
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