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a) Was the sequencing done in the authors' lab or by a company?
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17 Abstract

18 Mycoplasma capricolum subsp. capricolum (Mcc) is one of the causative agents of contagious 

19 agalactia, and antimicrobial treatment is the most commonly applied measure to treat 

20 outbreaks of this disease. Macrolides and lincosamides bind specifically to nucleotides at 

21 domains II and V of the 23S rRNA. Furthermore, rplD and rplV genes encode ribosomal 

22 proteins L4 and L22, which are also implicated in the macrolide binding site. The aim of this 

23 work was to study the relationship between mutations in these genes and the acquisition of 

24 macrolide and lincosamide resistance in Mcc. For this purpose, in vitro selected resistant 

25 mutants and field isolates were studied. This study demonstrates the appearance of DNA point 

26 mutations at the 23S rRNA encoding genes (A2058G, A2059G and A2062C) and rplV gene 

27 (Ala89Asp) in association to high minimum inhibitory concentration values. Hence, it proves 

28 the importance of alterations in 23S rRNA domain V and ribosomal protein L22 as molecular 

29 mechanisms responsible for the acquisition of macrolide and lincosamide resistance in both 

30 field isolates and in vitro selected mutants. Furthermore, these mutations enable us to provide 

31 an interpretative breakpoint of antimicrobial resistance for Mcc at MIC 0.8 µg/ml.  

32

33 Keywords: contagious agalactia, antimicrobial resistance, macrolides, rplV gene    
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34 1. Introduction

35 Antimicrobials, especially macrolides and lincosamides, are one of the most commonly used 

36 treatments against mycoplasmoses. Both antimicrobials share the same mechanism of action, 

37 as they obstruct protein synthesis by binding specifically to nucleotides of the 23S rRNA, 

38 interacting with domains II (hairpin 35) and V at the 50S ribosomal subunit. Moreover, L4 

39 and L22 proteins, which are encoded by rplD and rplV genes, respectively, are also implicated 

40 in the ribosomal macrolide binding site (Waites et al., 2014). Previous reports on different 

41 mycoplasma species such as M. gallisepticum, M. synoviae and M. bovis have demonstrated 

42 the effect of point mutations in the 23S rRNA encoding genes on the acquisition of macrolide 

43 and lincosamide resistance (Gerchman et al., 2011; Lysnyansky et al., 2015; Sulyok et al., 

44 2017). On the other hand,  variations in ribosomal proteins appeared in combination with 

45 alterations at the 23S rRNA when isolates reached very high minimum inhibitory 

46 concentration (MIC) values (Khalil et al., 2017; Lerner et al., 2014)  and thus, have been 

47 scarcely described (Pereyre et al., 2006; Prats-van der Ham et al., 2017).

48 Mycoplasma capricolum subsp. capricolum (Mcc) is one of the etiologic agents of contagious 

49 agalactia (CA) and it is usually associated to severe outbreaks of this disease in goat herds 

50 (De la Fe et al., 2007). Prior reports have demonstrated the inefficacy of 14-membered 

51 macrolides against this mycoplasma species (Tatay-Dualde et al., 2017). Therefore, 16-

52 membered macrolides, such as tylosin, and lincosamides, are used against this pathogen 

53 nowadays. However, recent studies on other CA-causing mycoplasma species have 

54 demonstrated a decrease in macrolide susceptibility in current field isolates (Poumarat et al., 

55 2016; Prats-van der Ham et al., 2017). More specifically in Mcc, prior works have shown that 

56 close to the 20% of the contemporary field strains are resistant to tylosin (Tatay-Dualde et al., 

57 2017). In this sense, the lack of resistance breakpoints complicates the interpretation of in 

58 vitro antimicrobial susceptibility tests. Therefore, some authors have proposed the use of 
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59 point mutations in the 23S rRNA gene to establish molecular breakpoints for the minimal 

60 inhibitory concentrations (MIC) values in other mycoplasma species (Gerchman et al., 2011). 

61 However, there are no previous studies addressing molecular resistance mechanisms of 

62 macrolide and lincosamide resistance in Mcc. Hence, the aim of this work was to analyse the 

63 partial sequences of the 23S rRNA, L4 and L22 encoding genes in order to study their 

64 relationship with the acquisition of in vitro resistance to macrolides and lincosamides and 

65 their connection with different MIC values of Mcc field isolates, determining which 

66 molecular mechanisms are involved in the macrolide and lincosamide resistance of Mcc. 

67

68 2. Material and methods

69 2.1. Mycoplasma isolates

70 Resistant mutants of the reference strain California Kid (CK, NCTC 10154) and a field isolate 

71 of Mcc (Cap24) were selected in vitro. Additionally, 14 field isolates with different MIC 

72 values for macrolides (tylosin and tilmicosin) and licosamides (clindamycin and lincomycin) 

73 were also studied. Isolates were mainly retrieved from mastitic milk samples of different 

74 farms from the Canary Islands, although some were isolated from auricular swabs (n=3) and 

75 from farms of Murcia (n=2) and Andalusia (n=2). 

76 2.2. Selection of resistant mutants

77 The in vitro selection of resistant mutants was performed by 20 serial dilution passages at 

78 subinhibitory concentrations of tylosin and tilmicosin, following a previously described 

79 protocol (Antunes et al., 2015). Briefly, an initial minimum inhibitory concentration (MIC) 

80 test was performed and the highest concentration at which the strain grew was subsequently 

81 cultured at the same antimicrobial concentration (step 1). Afterwards, another MIC analysis 
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82 was performed and, in the same way, the highest antimicrobial concentration showing growth 

83 was picked to be cultured in this following concentration (steps 2 to 20). When a decrease in 

84 antimicrobial susceptibility between steps was observed, a MIC analysis was performed with 

85 tylosin, tilmicosin, clindamycin and lincomycin. Besides, the partial sequences of 23S rRNA, 

86 rplD and rplV genes were then studied. This process is detailed in Table 1. 

87 2.3. Minimum inhibitory concentration tests

88 The inhibitory effect of the studied antimicrobials was evaluated by the minimum inhibitory 

89 concentration (MIC) technique, as previously described (Hannan, 2000). Microtitre plates 

90 were used to perform this method. 150 µl of PPLO broth supplemented with 18% (v/v) heat-

91 inactivated horse serum, 1% (v/v) of 50% fresh yeast extract and 0.4% (w/v) DNA, with 

92 0.007% of phenol red, 25.6 µl of each antimicrobial dilution and the inocula at a 

93 concentration of 103 – 105 CFU/ml were added to each well. Moreover, two wells were used 

94 as positive (without antimicrobial) and negative (without neither antimicrobial nor inocula) 

95 controls. Plates were incubated at 37 ºC and they were read when the positive control showed 

96 a change of colour due to acidification of the medium. Initial MICs of tylosin, tilmicosin, 

97 clindamycin and lincomycin were assessed for field isolates and between each step of the in 

98 vitro selection of resistant mutants study.

99 2.4. Molecular analysis

100 Novel PCR protocols were designed using PRIMER3 software (Koressaar and Remm, 2007) 

101 in order to analyse partial sequences of 23S rRNA (domains II and V), rplD and rplV genes. 

102 PCR conditions and sequencing primers are shown in Table 2. PCR products were sequenced 

103 at the molecular biology service of the University of Murcia. The obtained sequences were 

104 compared to those of the Mcc type strain CK (NC_000913.3), which was used as a non-

105 resistant reference. Sequence analyses were conducted using MEGA6 (Tamura et al., 2013) 
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106 and the numbering of nucleotide or amino-acid positions is based on the 23S rRNA encoding 

107 genes or L4/L22 proteins of Escherichia coli K-12 substrain MG1655 (NC_000913.3). 

108 Supplementary table S1 shows the resulting DNA alignments and the accession numbers of 

109 the sequences that have been submitted to NCBI.

110

111 3. Results

112 Two susceptible Mcc strains (CK and Cap24) were selected by serial passages at 

113 subinhibitory concentrations of tylosin and tilmicosin in order to assess which DNA 

114 alterations are related to the acquisition of macrolides resistance. Table 1 summarizes MICs 

115 and sequencing results of the obtained in vitro selected mutants. DNA changes were found in 

116 domain V of the 23S rRNA encoding genes (A2058G) of both mutant populations. This 

117 transversion appeared always in both alleles from macrolide MIC values of 0.8 – 1.6 µg/ml 

118 and lincosamide MIC values of 6.4 – 12.8 µg/ml. Furthermore, predicted amino acid changes 

119 were observed in the L22 protein (Ala89Asp) from MIC values of 8 µg/ml and 16 µg/ml for 

120 macrolides and lincosamides, respectively.  No alterations were observed either in domain II 

121 of the 23S rRNA or in the predicted amino acid sequence of ribosomal protein L4.  

122 Moreover, the 23S rRNA, L4 and L22 encoding genes of 14 Mcc field isolates with 

123 macrolides and lincosamides MIC values ranging from 0.025 to >128 µg/ml were also studied 

124 so as to correlate decreases in their susceptibility with DNA mutations. Table 3 synthesizes 

125 their MICs and sequencing results. Mutations were observed in domain V of the 23S rRNA 

126 encoding genes but in different positions as in the in vitro study (A2059G and A2062G). 

127 A2059G mutations appeared from macrolide MIC values of 0.8 µg/ml, but they did not affect 

128 both alleles until MICs of 12.8 µg/ml were reached. On the other hand, predicted amino acid 
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129 changes in L22 protein (Ala89Asp) were detected in all field isolates with MIC values over 

130 0.8 µg/ml for macrolides and 0.8 – 3.2 µg/ml for lincosamides.

131

132 4. Discussion

133 The analysis of partial sequences of the 23S rRNA, L4 and L22 encoding genes of in vitro 

134 selected mutants and field isolates of Mcc demonstrated the association between point 

135 mutations and the acquisition of macrolide and lincosamide resistance in this mycoplasma 

136 species. 

137 As for 23S rRNA, point mutations were detected in the in vitro as well as the field isolates 

138 study, although they appeared at different positions. Mutation A2058G is one of the changes 

139 most commonly associated to macrolide and lincosamide resistance in different mycoplasma 

140 species (Gerchman et al., 2011; Lerner et al., 2014; Lysnyansky et al., 2015). Nonetheless, 

141 differently from previous studies in which mutations in both alleles were associated with 

142 higher MIC values (Lysnyansky and Ayling, 2016), our in vitro selected resistant strains 

143 showed this DNA change in both 23S rRNA alleles from the lowest MIC value at which 

144 mutations started to appear (0.8 µg/ml). Thus, our in vitro study highlights the importance of 

145 this mutation in the acquisition of macrolide resistance in Mcc from lower MIC values than in 

146 other mycoplasma species (Lerner et al., 2014; Lysnyansky et al., 2015). 

147 In addition, A2059G transition was observed in Mcc field isolates: it was detected in one 

148 allele from MIC values of 0.8µg/ml for tylosin and tilmicosin, and in both 23S rRNA 

149 encoding alleles when MICs reached higher values (except for Cap22). This is in consistency 

150 with previous studies on M. bovis, in which heterozygous mutations were related with 

151 intermediate resistance whereas the highest MIC values were connected with mutations in 
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152 both alleles (Lysnyansky and Ayling, 2016). Moreover, Cap19 and Cap22, which were the 

153 field isolates with the highest MIC values, also displayed a second mutation (A2062G), which 

154 did not appear in the in vitro study. This combination of mutations A2059 and A2062 has 

155 been previously described and related to antimicrobial treatment failures in M. genitalium 

156 (Guschin et al., 2015). Thus, the outcomes of our in vitro selected mutants and field isolates 

157 might explain treatment failures during outbreaks of CA caused by Mcc.

158 The present work demonstrated coherency between the in vitro assay and the analysis of Mcc 

159 field isolates. Thus, our results demonstrate the acquisition of cross-resistance between 

160 macrolides and lincosamides, as the MIC values for the studied antimicrobials increased 

161 similarly in in vitro selected mutants and in the field isolates. This has been previously 

162 reported in other mycoplasma species such as M. agalactiae and M. bovis (Prats-van der Ham 

163 et al., 2017; Sulyok et al., 2017).  Although 23S rRNA mutations were found in different 

164 positions, 2058, 2059 and 2062 are part of the peptidyltranferase loop of domain V of 23S 

165 rRNA where macrolides and lincosamides bind specifically (Waites et al., 2014). Therefore, 

166 mutations of these positions should be considered as the same molecular resistance 

167 mechanism. Moreover, the study of this genetic area could be interesting for a rapid detection 

168 of resistant field strains, as has been described for other mycoplasma species including M. 

169 genitalium and M.bovis (Gosse et al., 2016; Sulyok et al., 2018).   

170 Regarding the study of ribosomal proteins, prior works on other mycoplasma species were not 

171 able to correlate them with changes in antimicrobial susceptibility, as they appeared in 

172 combination with 23S rRNA mutations (Khalil et al., 2017; Lerner et al., 2014; Lysnyansky et 

173 al., 2015) although in some cases, point mutations associated to an increase in MIC values 

174 were reported in M. pneumoniae and M. hominis (Matsuoka et al., 2004; Pereyre et al., 2006), 

175 and previous studies on M. agalactiae, which is also a CA-causing mycoplasma, remarked the 

176 importance of ribosomal protein L22 in the acquisition of macrolide resistance, as mutations 
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177 encoding changes in the protein sequence were associated with decreased susceptibility values 

178 (Prats-van der Ham et al. 2017). Interestingly, both our in vitro and field isolates studies 

179 showed predicted amino acid changes in L22 and in the same position as previously reported 

180 (Matsuoka et al., 2004; Pereyre et al., 2004; Prats-van der Ham et al., 2017). Specifically, 

181 substitution Ala89Asp appeared in strains selected with tylosin from MIC values of 8 µg/ml. 

182 Besides, our field isolates showed the same variation from MICs ≥ 0.8 µg/ml. Thus, the 

183 change of a neutral amino acid (Ala) to a negatively charged one (Asp) could result in protein 

184 conformational changes affecting antimicrobial binding, highlighting the importance of this 

185 protein in the acquisition of antimicrobial resistance. 

186 Although this is not an epidemiological study, previous works have shown that close to 20% 

187 of the contemporary field strains of Mcc are tylosin resistant (Tatay-Dualde et al., 2017), 

188 which can be explained by the acquisition of 23S rRNA and/or L22 mutations. This decrease 

189 in susceptibility has also been reported in other CA-causing mycoplasmas, namely M. 

190 agalactiae (Poumarat et al., 2016; Prats-van der Ham et al., 2017). Therefore, the presence of 

191 these strains in the field may lead to treatment failures when macrolides or lincosamides are 

192 selected to treat CA outbreaks. In this sense, determining the antimicrobial susceptibility 

193 profile of these pathogens in order to select the most convenient therapy would be advisable. 

194 Notwithstanding, the lack of MIC breakpoints complicates the interpretation of these studies 

195 and, therefore, the antimicrobial choice. Based on our results, molecular resistance 

196 breakpoints of tylosin and tilmicosin could be fixed for Mcc at 0.8 µg/mL, as also suggested 

197 previously for M. agalactiae (Prats-van der Ham et al 2017) and similarly to other 

198 mycoplasma species such as M. gallisepticum and M. synoviae (Gerchman et al., 2011; 

199 Lysnyansky et al. 2015). 

200
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201 5. Conclusions

202 Alterations in domain V of the 23S rRNA and ribosomal protein L22 are responsible for the 

203 acquisition of macrolide and lincosamide resistance in Mcc, and their study provides rapid 

204 information about antimicrobial susceptibility in field isolates. Moreover, Mcc field isolates 

205 with macrolide MIC values over 0.8 µg/ml should be considered as resistant to this 

206 antimicrobial group.   

207
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- Report of molecular mechanisms involved in macrolide and lincosamide 

resistance in M. capricolum subsp. capricolum. 
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17 Abstract

18 Mycoplasma capricolum subsp. capricolum (Mcc) is one of the causative agents of contagious 

19 agalactia, and antimicrobial treatment is the most commonly applied measure to treat 

20 outbreaks of this disease. Macrolides and lincosamides bind specifically to nucleotides at 

21 domains II and V of the 23S rRNA. Furthermore, rplD and rplV genes encode ribosomal 

22 proteins L4 and L22, which are also implicated in the macrolide binding site. The aim of this 

23 work was to study the relationship between mutations in these genes and the acquisition of 

24 macrolide and lincosamide resistance in Mcc. For this purpose, in vitro selected resistant 

25 mutants and field isolates were studied. This study demonstrates the appearance of DNA point 

26 mutations at the 23S rRNA encoding genes (A2058G, A2059G and A2062C) and rplV gene 

27 (Ala89Asp) in association to high minimum inhibitory concentration values. Hence, it proves 

28 the importance of alterations in 23S rRNA domain V and ribosomal protein L22 as molecular 

29 mechanisms responsible for the acquisition of macrolide and lincosamide resistance in both 

30 field isolates and in vitro selected mutants. Furthermore, these mutations enable us to provide 

31 an interpretative breakpoint of antimicrobial resistance for Mcc at MIC 0.8 µg/ml.  

32

33 Keywords: contagious agalactia, antimicrobial resistance, macrolides, rplV gene    
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34 1. Introduction

35 Antimicrobials, especially macrolides and lincosamides, are one of the most commonly used 

36 treatments against mycoplasmoses. Both antimicrobials share the same mechanism of action, 

37 as they obstruct protein synthesis by binding specifically to nucleotides of the 23S rRNA, 

38 interacting with domains II (hairpin 35) and V at the 50S ribosomal subunit. Moreover, L4 

39 and L22 proteins, which are encoded by rplD and rplV genes, respectively, are also implicated 

40 in the ribosomal macrolide binding site (Waites et al., 2014). Previous reports on different 

41 mycoplasma species such as M. gallisepticum, M. synoviae and M. bovis have demonstrated 

42 the effect of point mutations in the 23S rRNA encoding genes on the acquisition of macrolide 

43 and lincosamide resistance (Gerchman et al., 2011; Lysnyansky et al., 2015; Sulyok et al., 

44 2017). On the other hand,  variations in ribosomal proteins appeared in combination with 

45 alterations at the 23S rRNA when isolates reached very high minimum inhibitory 

46 concentration (MIC) values (Khalil et al., 2017; Lerner et al., 2014)  and thus, have been 

47 scarcely described (Pereyre et al., 2006; Prats-van der Ham et al., 2017).

48 Mycoplasma capricolum subsp. capricolum (Mcc) is one of the etiologic agents of contagious 

49 agalactia (CA) and it is usually associated to severe outbreaks of this disease in goat herds 

50 (De la Fe et al., 2007). Prior reports have demonstrated the inefficacy of 14-membered 

51 macrolides against this mycoplasma species (Tatay-Dualde et al., 2017). Therefore, 16-

52 membered macrolides, such as tylosin, and lincosamides, are used against this pathogen 

53 nowadays. However, recent studies on other CA-causing mycoplasma species have 

54 demonstrated a decrease in macrolide susceptibility in current field isolates (Poumarat et al., 

55 2016; Prats-van der Ham et al., 2017). More specifically in Mcc, prior works have shown that 

56 close to the 20% of the contemporary field strains are resistant to tylosin (Tatay-Dualde et al., 

57 2017). In this sense, the lack of resistance breakpoints complicates the interpretation of in 

58 vitro antimicrobial susceptibility tests. Therefore, some authors have proposed the use of 
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59 point mutations in the 23S rRNA gene to establish molecular breakpoints for the minimal 

60 inhibitory concentrations (MIC) values in other mycoplasma species (Gerchman et al., 2011). 

61 However, there are no previous studies addressing molecular resistance mechanisms of 

62 macrolide and lincosamide resistance in Mcc. Hence, the aim of this work was to analyse the 

63 partial sequences of the 23S rRNA, L4 and L22 encoding genes in order to study their 

64 relationship with the acquisition of in vitro resistance to macrolides and lincosamides and 

65 their connection with different MIC values of Mcc field isolates, determining which 

66 molecular mechanisms are involved in the macrolide and lincosamide resistance of Mcc. 

67

68 2. Material and methods

69 2.1. Mycoplasma isolates

70 Resistant mutants of the reference strain California Kid (CK, NCTC 10154) and a field isolate 

71 of Mcc (Cap24) were selected in vitro. Additionally, 14 field isolates with different MIC 

72 values for macrolides (tylosin and tilmicosin) and licosamides (clindamycin and lincomycin) 

73 were also studied. Isolates were mainly retrieved from mastitic milk samples of different 

74 farms from the Canary Islands, although some were isolated from auricular swabs (n=3) and 

75 from farms of Murcia (n=2) and Andalusia (n=2). 

76 2.2. Selection of resistant mutants

77 The in vitro selection of resistant mutants was performed by 20 serial dilution passages at 

78 subinhibitory concentrations of tylosin and tilmicosin, following a previously described 

79 protocol (Antunes et al., 2015). Briefly, an initial minimum inhibitory concentration (MIC) 

80 test was performed and the highest concentration at which the strain grew was subsequently 

81 cultured at the same antimicrobial concentration (step 1). Afterwards, another MIC analysis 
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82 was performed and, in the same way, the highest antimicrobial concentration showing growth 

83 was picked to be cultured in this following concentration (steps 2 to 20). When a decrease in 

84 antimicrobial susceptibility between steps was observed, a MIC analysis was performed with 

85 tylosin, tilmicosin, clindamycin and lincomycin. Besides, the partial sequences of 23S rRNA, 

86 rplD and rplV genes were then studied. This process is detailed in Table 1. 

87 2.3. Minimum inhibitory concentration tests

88 The inhibitory effect of the studied antimicrobials was evaluated by the minimum inhibitory 

89 concentration (MIC) technique, as previously described (Hannan, 2000). Microtitre plates 

90 were used to perform this method. 150 µl of PPLO broth supplemented with 18% (v/v) heat-

91 inactivated horse serum, 1% (v/v) of 50% fresh yeast extract and 0.4% (w/v) DNA, with 

92 0.007% of phenol red, 25.6 µl of each antimicrobial dilution and the inocula at a 

93 concentration of 103 – 105 CFU/ml were added to each well. Moreover, two wells were used 

94 as positive (without antimicrobial) and negative (without neither antimicrobial nor inocula) 

95 controls. Plates were incubated at 37 ºC and they were read when the positive control showed 

96 a change of colour due to acidification of the medium. Initial MICs of tylosin, tilmicosin, 

97 clindamycin and lincomycin were assessed for field isolates and between each step of the in 

98 vitro selection of resistant mutants study.

99 2.4. Molecular analysis

100 Novel PCR protocols were designed using PRIMER3 software (Koressaar and Remm, 2007) 

101 in order to analyse partial sequences of 23S rRNA (domains II and V), rplD and rplV genes. 

102 PCR conditions and sequencing primers are shown in Table 2. PCR products were sequenced 

103 at the molecular biology service of the University of Murcia. The obtained sequences were 

104 compared to those of the Mcc type strain CK (NC_000913.3), which was used as a non-

105 resistant reference. Sequence analyses were conducted using MEGA6 (Tamura et al., 2013) 
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106 and the numbering of nucleotide or amino-acid positions is based on the 23S rRNA encoding 

107 genes or L4/L22 proteins of Escherichia coli K-12 substrain MG1655 (NC_000913.3). 

108 Supplementary table S1 shows the resulting DNA alignments and the accession numbers of 

109 the sequences that have been submitted to NCBI.

110

111 3. Results

112 Two susceptible Mcc strains (CK and Cap24) were selected by serial passages at 

113 subinhibitory concentrations of tylosin and tilmicosin in order to assess which DNA 

114 alterations are related to the acquisition of macrolides resistance. Table 1 summarizes MICs 

115 and sequencing results of the obtained in vitro selected mutants. DNA changes were found in 

116 domain V of the 23S rRNA encoding genes (A2058G) of both mutant populations. This 

117 transversion appeared always in both alleles from macrolide MIC values of 0.8 – 1.6 µg/ml 

118 and lincosamide MIC values of 6.4 – 12.8 µg/ml. Furthermore, predicted amino acid changes 

119 were observed in the L22 protein (Ala89Asp) from MIC values of 8 µg/ml and 16 µg/ml for 

120 macrolides and lincosamides, respectively.  No alterations were observed either in domain II 

121 of the 23S rRNA or in the predicted amino acid sequence of ribosomal protein L4.  

122 Moreover, the 23S rRNA, L4 and L22 encoding genes of 14 Mcc field isolates with 

123 macrolides and lincosamides MIC values ranging from 0.025 to >128 µg/ml were also studied 

124 so as to correlate decreases in their susceptibility with DNA mutations. Table 3 synthesizes 

125 their MICs and sequencing results. Mutations were observed in domain V of the 23S rRNA 

126 encoding genes but in different positions as in the in vitro study (A2059G and A2062G). 

127 A2059G mutations appeared from macrolide MIC values of 0.8 µg/ml, but they did not affect 

128 both alleles until MICs of 12.8 µg/ml were reached. On the other hand, predicted amino acid 
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129 changes in L22 protein (Ala89Asp) were detected in all field isolates with MIC values over 

130 0.8 µg/ml for macrolides and 0.8 – 3.2 µg/ml for lincosamides.

131

132 4. Discussion

133 The analysis of partial sequences of the 23S rRNA, L4 and L22 encoding genes of in vitro 

134 selected mutants and field isolates of Mcc demonstrated the association between point 

135 mutations and the acquisition of macrolide and lincosamide resistance in this mycoplasma 

136 species. 

137 As for 23S rRNA, point mutations were detected in the in vitro as well as the field isolates 

138 study, although they appeared at different positions. Mutation A2058G is one of the changes 

139 most commonly associated to macrolide and lincosamide resistance in different mycoplasma 

140 species (Gerchman et al., 2011; Lerner et al., 2014; Lysnyansky et al., 2015). Nonetheless, 

141 differently from previous studies in which mutations in both alleles were associated with 

142 higher MIC values (Lysnyansky and Ayling, 2016), our in vitro selected resistant strains 

143 showed this DNA change in both 23S rRNA alleles from the lowest MIC value at which 

144 mutations started to appear (0.8 µg/ml). Thus, our in vitro study highlights the importance of 

145 this mutation in the acquisition of macrolide resistance in Mcc from lower MIC values than in 

146 other mycoplasma species (Lerner et al., 2014; Lysnyansky et al., 2015). 

147 In addition, A2059G transition was observed in Mcc field isolates: it was detected in one 

148 allele from MIC values of 0.8µg/ml for tylosin and tilmicosin, and in both 23S rRNA 

149 encoding alleles when MICs reached higher values (except for Cap22). This is in consistency 

150 with previous studies on M. bovis, in which heterozygous mutations were related with 

151 intermediate resistance whereas the highest MIC values were connected with mutations in 
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152 both alleles (Lysnyansky and Ayling, 2016). Moreover, Cap19 and Cap22, which were the 

153 field isolates with the highest MIC values, also displayed a second mutation (A2062G), which 

154 did not appear in the in vitro study. This combination of mutations A2059 and A2062 has 

155 been previously described and related to antimicrobial treatment failures in M. genitalium 

156 (Guschin et al., 2015). Thus, the outcomes of our in vitro selected mutants and field isolates 

157 might explain treatment failures during outbreaks of CA caused by Mcc.

158 The present work demonstrated coherency between the in vitro assay and the analysis of Mcc 

159 field isolates. Thus, our results demonstrate the acquisition of cross-resistance between 

160 macrolides and lincosamides, as the MIC values for the studied antimicrobials increased 

161 similarly in in vitro selected mutants and in the field isolates. This has been previously 

162 reported in other mycoplasma species such as M. agalactiae and M. bovis (Prats-van der Ham 

163 et al., 2017; Sulyok et al., 2017).  Although 23S rRNA mutations were found in different 

164 positions, 2058, 2059 and 2062 are part of the peptidyltranferase loop of domain V of 23S 

165 rRNA where macrolides and lincosamides bind specifically (Waites et al., 2014). Therefore, 

166 mutations of these positions should be considered as the same molecular resistance 

167 mechanism. Moreover, the study of this genetic area could be interesting for a rapid detection 

168 of resistant field strains, as has been described for other mycoplasma species including M. 

169 genitalium and M.bovis (Gosse et al., 2016; Sulyok et al., 2018).   

170 Regarding the study of ribosomal proteins, prior works on other mycoplasma species were not 

171 able to correlate them with changes in antimicrobial susceptibility, as they appeared in 

172 combination with 23S rRNA mutations (Khalil et al., 2017; Lerner et al., 2014; Lysnyansky et 

173 al., 2015) although in some cases, point mutations associated to an increase in MIC values 

174 were reported in M. pneumoniae and M. hominis (Matsuoka et al., 2004; Pereyre et al., 2006), 

175 and previous studies on M. agalactiae, which is also a CA-causing mycoplasma, remarked the 

176 importance of ribosomal protein L22 in the acquisition of macrolide resistance, as mutations 
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177 encoding changes in the protein sequence were associated with decreased susceptibility values 

178 (Prats-van der Ham et al. 2017). Interestingly, both our in vitro and field isolates studies 

179 showed predicted amino acid changes in L22 and in the same position as previously reported 

180 (Matsuoka et al., 2004; Pereyre et al., 2004; Prats-van der Ham et al., 2017). Specifically, 

181 substitution Ala89Asp appeared in strains selected with tylosin from MIC values of 8 µg/ml. 

182 Besides, our field isolates showed the same variation from MICs ≥ 0.8 µg/ml. Thus, the 

183 change of a neutral amino acid (Ala) to a negatively charged one (Asp) could result in protein 

184 conformational changes affecting antimicrobial binding, highlighting the importance of this 

185 protein in the acquisition of antimicrobial resistance. 

186 Although this is not an epidemiological study, previous works have shown that close to 20% 

187 of the contemporary field strains of Mcc are tylosin resistant (Tatay-Dualde et al., 2017), 

188 which can be explained by the acquisition of 23S rRNA and/or L22 mutations. This decrease 

189 in susceptibility has also been reported in other CA-causing mycoplasmas, namely M. 

190 agalactiae (Poumarat et al., 2016; Prats-van der Ham et al., 2017). Therefore, the presence of 

191 these strains in the field may lead to treatment failures when macrolides or lincosamides are 

192 selected to treat CA outbreaks. In this sense, determining the antimicrobial susceptibility 

193 profile of these pathogens in order to select the most convenient therapy would be advisable. 

194 Notwithstanding, the lack of MIC breakpoints complicates the interpretation of these studies 

195 and, therefore, the antimicrobial choice. Based on our results, molecular resistance 

196 breakpoints of tylosin and tilmicosin could be fixed for Mcc at 0.8 µg/mL, as also suggested 

197 previously for M. agalactiae (Prats-van der Ham et al 2017) and similarly to other 

198 mycoplasma species such as M. gallisepticum and M. synoviae (Gerchman et al., 2011; 

199 Lysnyansky et al. 2015). 
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201 5. Conclusions

202 Alterations in domain V of the 23S rRNA and ribosomal protein L22 are responsible for the 

203 acquisition of macrolide and lincosamide resistance in Mcc, and their study provides rapid 

204 information about antimicrobial susceptibility in field isolates. Moreover, Mcc field isolates 

205 with macrolide MIC values over 0.8 µg/ml should be considered as resistant to this 

206 antimicrobial group.   
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Table 1. Minimum inhibitory concentrations (MIC) and mutations in the 23S rRNA gene and 
L22 protein resulting from in vitro selection with tylosin and tilmicosin

MIC (µg/ml) Mutationsa

Strain-Ab-Passage Tylb Tlmc Clid Line 23S rRNA A1 
(nt)

23S rRNA A2 
(nt)

L22 
(aa)

CK (NCTC 10154) 0.01 0.01 0.01 0.2 A2058 A2058 Ala89
Tylosin

CK-Tyl-6 0.2 0.2 0.1 0.4 - - -
CK-Tyl-9 1.6 1.6 12.8 12.8 A2058G A2058G -
CK-Tyl-10 8 8 16 16 A2058G A2058G Asp
CK-Tyl-11 16 32 32 32 A2058G A2058G Asp
CK-Tyl-20 32 64 32 32 A2058G A2058G Asp

Tilmicosin
CK-Tlm-5 0.4 0.2 0.05 0.4 - - -
CK-Tlm-7 0.8 0.8 6.4 6.4 A2058G A2058G -
CK-Tlm-9 12.8 6.4 32 32 A2058G A2058G -
CK-Tlm-10 16 8 32 32 A2058G A2058G -
CK-Tlm-20 32 32 64 64 A2058G A2058G -

Cap24 0.1 0.025 0.1 0.4 A2058 A2058 Ala89
Tylosin

Cap24-Tyl-6 0.2 0.2 0.1 0.4 - - -
Cap24-Tyl-9 1.6 1.6 12.8 12.8 A2058G A2058G -
Cap24-Tyl-10 8 8 16 16 A2058G A2058G Asp
Cap24-Tyl-11 16 32 32 32 A2058G A2058G Asp
Cap24-Tyl-20 32 64 32 32 A2058G A2058G Asp

Tilmicosin
Cap24-Tlm-5 0.4 0.2 0.1 0.4 - - -
Cap24-Tlm-7 0.8 0.8 6.4 6.4 A2058G A2058G -
Cap24-Tlm-9 12.8 6.4 32 32 A2058G A2058G -
Cap24-Tlm-10 16 8 32 32 A2058G A2058G -
Cap24-Tlm-20 32 32 64 64 A2058G A2058G -

a: E. coli numbering positions
b: Tylosin
c: Tilmicosin
d: Clindamycin
e: Lincomycin



Table 2. Oligonucleotide sequences and PCR conditions applied for amplification and sequencing.

Target Name Primers 5’-3’ Protocol 
PCR 

product 
size (bp)

Sequencing primers 5’-3’ Sequence 
size (bp)

23S 
A1DII-F TGCAAGCTGGTTTAGCATTG GTACCGTGAGGGAAAGGTGA23S rRNA 

allele 1  
domain II

23S 
A1&2DII-

R
GTCAAACGGCATGGAAGATT

93ºC 5 min. (93ºC 45 
sec, 58.3ºC, 45 sec, 72ºC 

2 min) x 30, 72 ºC 10 
min

1850
GTCAAACGGCATGGAAGATT

839

23S 
A1DV-F TCTGCTAAGTCGCAAGACGA TCTGCTAAGTCGCAAGACGA23S rRNA 

allele 1  
domain V 23S 

A1DV-R TGCATTCACTTTCTCCTTTCTTT

93ºC 5 min. (93ºC 45 
sec, 57.5ºC, 45 sec, 72ºC 
2min30 sec) x 30, 72 ºC 

10 min

3150
CATCCATTCCGGTCCTCTC

882

23S 
A2DII-F CGGTAGAGCAACTGGCTTTT GTACCGTGAGGGAAAGGTGA23S rRNA 

allele 2  
domain II

23S 
A1&2DII-

R
GTCAAACGGCATGGAAGATT

93ºC 5 min. (93ºC 45 
sec, 58.3ºC, 45 sec, 72ºC 

2 min) x 30, 72 ºC 10 
min

1694
GTCAAACGGCATGGAAGATT

839

23S 
A2DV-F

TCTGCTAAGTCGCAAGACGA TCTGCTAAGTCGCAAGACGA23S rRNA 
allele 2  

domain V 23S 
A2DV-R TGTTCTAGCGGTTATTGGGATT

93ºC 5 min. (93ºC 45 
sec, 58.3ºC, 45 sec, 72ºC 
2min30sec) x 30, 72 ºC 

10 min

3100
CATCCATTCCGGTCCTCTC

882

rplD-F CCCGTGCTGAAGTATCTGGA Same as PCR
rplD

rplD-R TGCGTATACCTCCTCAACTGC

93ºC 5min. (93ºC 30 sec, 
57.6ºC 45 sec, 72ºC 30 
sec) x 30, 72ºC 10 min

469
Same as PCR

-

rplV-F TGGTGATACTTTTTGTCCCATTT Same as PCR
rplV

rplV-R AATTCGGTGGTCATGGTGAT

93ºC 5min. (93ºC 30 sec, 
57.6ºC 45 sec, 72ºC 30 
sec) x 30, 72ºC 10 min

437
Same as PCR

-



1 Table 3. Minimum inhibitory concentration (MIC) and 23S rRNA and L22 changes in 
2 the studied M. capricolum subsp. capricolum field isolates.  

MIC (µg/ml) Mutationsa

Strain Tylb Tlmc Clid Line 23S rRNA A1 (nt) 23S rRNA A2 (nt) L22 (aa)

CK 0.01 0.01 0.01 0.2 A2059 A2062 A2059 Ala89
Cap1 0.05 0.025 0.1 0.8 - - -
Cap8 0.05 0.025 0.1 0.4 - - -
Cap 3 0.05 0.025 0.1 0.2 - - - -
Cap4 0.05 0.025 0.1 0.8 - - - -
Cap21 0.1 0.025 0.1 0.4 - - - -
Cap24 0.1 0.025 0.1 0.4 - - - -
Cap20 0.1 0.05 0.2 0.8 - - - -
Cap23 0.8 0.8 12.8 12.8 A2059G - - Asp
Cap17 1.6 0.4 0.8 3.2 - - - Asp
Cap18 3.2 0.8 0.8 3.2 A2059G - - Asp
Cap16 12.8 12.8 12.8 12.8 A2059G - A2059G Asp
Cap25 16 16 16 12.8 A2059G - A2059G Asp
Cap19 16 >128 12.8 12.8 A2059G A2062C A2059G Asp
Cap22 64 128 1.6 6.4 A2059G A2062C - Asp

3 a: E. coli numbering positions
4 b: Tylosin
5 c: Tilmicosin
6 d: Clindamycin
7 e: Lincomycin
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