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Abstract—Instruction prefetching is instrumental for guaran-
teeing a high flow of instructions through the processor front
end for applications whose working set does not fit in the lower-
level caches. Examples of such applications are server workloads,
whose instruction footprints are constantly growing. There are
two main techniques to mitigate this problem: fetch directed
prefetching (or decoupled front end) and instruction cache (L1I)
prefetching.

This work extends the state-of-the-art Entangling prefetcher
to avoid training during wrong-path execution. Our Entangling
wrong-path-aware prefetcher is equipped with microarchitectural
techniques that eliminate more than 99% of wrong-path pollu-
tion, thus reaching 98.9% of the performance of an ideal wrong-
path-aware solution. Next, we propose two microarchitectural
optimizations able to further increase performance benefits by
1.8%, on average. All this is achieved with just 304 bytes.

Finally, we study the interplay between the L1I prefetcher and
a decoupled front end. Our analysis shows that due to pollution
caused by wrong-path instructions, the degree of decoupling
cannot be increased unlimitedly without negative effects on
the energy-delay product (EDP). Furthermore, the closer to
ideal is the L1I prefetcher, the less decoupling is required. For
example, our Entangling prefetcher reaches an optimal EDP with
a decoupling degree of 64 instructions.

Index Terms—Instruction prefetching, processor front-end,
performance, energy efficiency.

I. INTRODUCTION

A plethora of studies converge to the conclusion that modern
workloads for servers, Cloud computing, etc significantly
exceed the L1 instruction cache (L1I), leading to numerous
processors stalls [11], [22] Instruction prefetching is the prime
mechanism to address this problem, by caching in advance
precisely the required instructions. Instruction prefetching can
be initiated on L1I accesses [9], [14], [15], [20], [23], [31],
[32], [37], [42], [45], or following the predicted execution path
ahead of instruction fetch [19], [24], [25], [30], [33]–[35],
namely decoupled front end [33] and also known as fetch-
directed prefetching (FDP) [34]. FDP decouples the computa-
tion of the next instruction address from the instruction fetch
through the Fetch Target Queue (FTQ). The FTQ records
the generated instruction addresses on the predicted execution
path, which are then used to issue prefetch requests. The larger
the FTQ is, the more ahead can run the predicted execution
path, so a larger decoupling degree is employed.

While the two mechanisms were sought to be comple-
mentary [21], latest developments and optimizations push
both approaches to their limits, in an attempt to eliminate
instruction misses and approach the ideal L1I behavior. Recent
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Fig. 1. Effect of FDP without LII prefetcher and with an ideal L1I prefetcher

work shows that FDP can achieve good performance provided
that it has enough capacity to store the prefetched instructions
and that it fetches instructions from the correct execution
path [19], [21], [24]. This would translate to (1) a large
FTQ to ensure enough capacity, (2) a perfect direction branch
prediction and (3) a perfect Branch Target Buffer (BTB).

We complement the literature survey with a sensitivity study
in which we analyze the interplay between L1I prefetching and
FDP when varying the size of the FTQ. We integrate a two-
level branch prediction scheme [4] with the best performing
branch predictor [40] and indirect target predictor [39] at the
second level, and model wrong-path (WP) execution (more
details about our methodology can be found in Section V).
The average IPC for the workloads employed in this work is
illustrated in Figure 1 where we varied the FTQ size from 32 to
256 instructions (shown on the Ox) and evaluated a baseline
system without a dedicated L1I prefetcher (NoL1IPref ) and
an ideal L1I prefetcher (IdealL1I). IPC is normalized to
NoL1IPref with a 32-instruction FTQ. As expected, increasing
the fetch decoupling improves performance when no L1I
prefetcher is employed, saturating at about 160 instructions.
An ideal L1I prefetcher however saturates at a lower FTQ
size (around 96 instructions) and can push performance an
additional 5.6%.

Increasing the FTQ size also comes with extra energy
consumption since more instructions are fetched. Figure 2
shows the wrong-path effects when varying the FTQ size.
As the FTQ grows, the percentage of wrong-path instructions
inserted in the pipeline over committed instructions increases
from 56% for a 32-entry FTQ to 155% for 256-entries. The
majority of wrong-path instructions only reach the fetch stage,
yet, the several folds increase from 32 to 256 entries leads
increasing energy waste. We evaluated the full-system energy
expenditure and observed that it increases by 6% when moving
from 32 to 256 FTQ entries because of extra branch pre-
dictions, L1I accesses, and even main memory accesses (due
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Fig. 2. Percentage of wrong-path instructions inserted in the pipeline over
committed instructions and the stage that they reach (without L1I prefetcher)

mostly to accessing wrong-path instructions). Hence, simply
increasing the FTQ size is not sufficient and complementing
FDP with a precise, tailored and accurate L1I prefetching is
essential to effectively eliminate L1I misses while keeping
energy expenditure at bay.

This work extends our previous Entangling instruction
prefetcher [36] and aims to bring Entangling closer to a
ready-to-be-deployed solution. First, since Entangling was not
designed nor evaluated in presence of wrong-path instructions,
we propose simple extensions to avoid training the prefetcher
for wrong-path instructions. Then, we propose a set of mi-
croarchitectural optimizations that push Entangling closer to
an ideal L1I prefetcher. Finally, this paper sheds light on the
L1I prefetcher’s synergies with FDP.

This work makes the following contributions:
• We extend the Entangling instruction prefetcher, and

show that it can easily deal with wrong-path execution
with minor additions (accounting for a total of 280 bytes).
As the original version of Entangling is wrong-path
agnostic, that implementation suffers from wrong-path
pollution, and in consequence cannot be deployed out-
of-the-box in a real system. By adding such lightweight
and simple support for wrong path, we are able to
eliminate more than 99% (on average) of the wrong-path
information learned by the original Entangling proposal,
thus reaching 98.9% of the performance of an ideal
wrong-path-aware solution.

• We present two novel, simple, yet effective optimizations
that using only 24 extra bytes improve further the perfor-
mance of the Entangling prefetcher by 1.8%, on average.

• In the view of integrating Entangling in a real system,
we study the interplay of L1I prefetchers with FDP and
show that they must work in tandem for optimal energy-
delay product (EDP). Furthermore, the closer to ideal is
the L1I prefetcher, the less decoupling is required. For
example, our optimized Entangling prefetcher reaches an
optimal EDP with a decoupling degree of maximum 64
instructions.

II. BACKGROUND

This section describes the two instruction prefetching tech-
niques more relevant to this work: Fetch Directed Prefetching
(FDP) [34], driven by the branch prediction engine, and
the Entangling Instruction Prefetcher [36], trained with L1I
accesses.
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Fig. 3. Fetch directed instruction prefetching

A. Fetch Directed Prefetching

Typical L1I caches implemented in high-performance sys-
tems have a fetch latency of 4 cycles [6], [18]. Thus, waiting
until an instruction is fetched to determine whether it is
a branch and then predict if the branch is taken or not
would dramatically serialize the processor’s front end. To
avoid this serialization, the next instruction to fetch should
be known before the current instruction is fetched. This is
accomplished by using the current instruction address, i.e.,
the program counter (PC), for computing, in parallel with the
L1I accesses, the next addresses to be fetched. Generating
instruction addresses ahead of fetch is commonly known as
Fetch Directed Prefetching (FDP) [34].

Central to the FDP mechanism, depicted in Figure 3, is
the FTQ. Each FTQ entry contains three fields: the status,
the instruction address, and the corresponding instruction (if
already fetched). The FTQ is fed by the branch prediction
engine (shown on the left) which computes the address of the
next instruction (next PC). Instruction fetch is shown below
the FTQ. Next, we detail these two components.

1) The branch prediction engine: The mechanism for se-
lecting the next PCs takes as input the outcome of the target
prediction selected by a multiplexer (Mux) and the branch
(direction) prediction which are accessed in parallel. The next
PCs are then pushed to the FTQ and the last one of these next
PCs is used as input for the next cycle prediction.

The branch target prediction consists of several predictors:
the branch target buffer (BTB), the indirect branch target
predictor (indirect), and the return address stack (RAS). The
most critical predictor is the BTB since, apart from providing
branch targets, it offers information about the next sequential
instructions and, in case those instructions are branches, their
type [44]. To this end, each BTB entry holds information
for a maximum number of bytes/instructions and a maximum
number of targets (e.g., up to two targets if the first branch in
the sequence of instructions is conditional as in the AMD Zen
cores [7]). The branch type then dictates which of the three
target predictors should provide the target address through
the target Mux: (1) the BTB is selected for direct branches,
which do not change the target address, (2) the indirect
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target predictor for indirect branches, where the target address
depends on a register value, and (3) the RAS for return
branches, for which the return address register value can be
easily identified using a stack of calls. The RAS prediction
does not depend on the PC, so the top of the RAS is always
given as input for the Mux.

Apart from the target, the branch direction (taken vs. not
taken) is also necessary to compute the next PC. To this end,
the branch predictor generates a prediction for the next condi-
tional branches (e.g., two [7]). In case the target predictor fails
to provide target addresses (e.g., on a BTB miss), the branches
are considered as not taken until the target is computed. On
a predicted taken branch, no more instruction addresses are
generated in that cycle, and the target is used as input for the
next cycle. On branches predicted as non-taken next instruction
addresses are generated, until either a branch without target is
found or the last instruction in the BTB entry is reached [7].

Re-steering fetch. Large BTBs and highly-accurate predic-
tors incur several cycles to deliver their outcome. To avoid
stalling fetch during this time, modern processors complement
these large predictors with simpler predictors and smaller
BTBs that can be accessed within one cycle, but deliver
lower accuracy [6], [7]. In this two-level prediction setting,
the highly-accurate predictors are trusted over the 1-cycle pre-
dictors, so in case of disagreement, the following instructions
are squashed and fetch is redirected.

Mispredictions can also be detected at decode stage when
the target provided by the branch instruction does not match
the predicted target. As before, the subsequent instructions are
squashed and the branch prediction engine is redirected.

Finally, mispredictions are also detected at the execution
stage when the branch target and direction is computed.
Although state-of-the-art predictors are very accurate and
mispredictions are rare (≈ 3 branch MPKI [40]), these events
have a considerable impact on the processor performance as
they are detected only when the branch executes.

2) Instruction Fetch: As soon as an address (next PC) is
inserted in the FTQ, the instruction fetch starts (provided that
the L1I and ITLB have available ports). Since L1I caches are
commonly virtually-indexed, physically-tagged (VIPT), the
access to the ITLB and L1I is performed in parallel. Once
the head of the FTQ has fetched the instruction, it can be sent
to the decode stage.

If the ITLB and the L1I were ideal, then a FTQ size equal
to the instruction’s width × the number of cycles required to
fetch an instruction could avoid bubbles, thus fetching at full
speed. In the absence of ideal caches, larger FTQs compensate
for ITLB and L1I misses by boosting the FDP’s prefetching
capabilities, but run the risk to fetch too much on the wrong-
path. Therefore, the FTQ size has to be carefully adjusted for
maximizing performance and efficiency.

B. The Entangling Instruction Prefetcher

L1I prefetchers and FDP have been proposed in a bid to
more accurately prefetch instructions. There are a multitude of
L1I prefetching approaches, as mentioned in the introduction.
In this work we focus on the state-of-the-art Entangling
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Fig. 4. Entangling prefetcher operation

Instruction Prefetcher [36], which won the 1st Instruction
Prefetching Championship (IPC-1) [3]. The key concept in
Entangling is timeliness, and it is achieved by computing the
prefetch latency and by associating to each cache line missing
in the L1I a corresponding cache line that should trigger the
prefetch request, such that the target cache line is cached on
time. The prefetch triggering cache line is called source, and
the target of the prefetch cache line is called destination, while
the pair built by the two is called entangled pair. Figure 4
depicts an overview of Entangling.

1) Training: Learning is built on two pillars:
1. Basic block detection. Entangling detects runtime basic

blocks, namely sequences of cache lines consecutively ac-
cessed. In other words, conditional branches that are not taken
are embedded in the current basic block. Entangling stores the
runtime basic block of maximum size.

2. Entangling pairs formation. Computing the latency of
each prefetch instruction and pairing sources and destinations
to build entangling pairs is the core of Entangling. To this
end, the prefetcher records in the History table L1I accesses
that are heads of basic blocks, i.e., the first cache line of a
basic block (see basic block detector in Figure 4). Next, for
each L1I cache miss, the latency of fetching the requested line
is computed. Finally, Entangling tracks back in the History
table and identifies a source instruction that executed at least
latency cycles earlier than the requested instruction (i.e. the
destination). The source and destination are entangled and
recorded in the Entangled table.

This component ensures the timeliness of the approach,
with a high accuracy (72%) and coverage (87%). Latency
variations are also accounted for by means of confidence
counters that are used to adjust the prefetching. To reduce the
storage requirements, Entangling only entangles heads of basic
blocks. Furthermore a compression scheme is designed that
encodes each destination as a delta of the source instruction,
to further reduce the storage demands. More precisely, the
destination bits only contain the signifB least significant
bits of the destination, starting from the most significant bit
that differs from the source. Considering that the distance
between source and destination (in cache lines) is typically
small, the destinations can be highly compressed. Based on the
signifB required to encode a destination, one can compute
the compression “mode”. The mode indicates the number
of destinations that can be associated to a certain source
(1 ≤mode≤ 6). All destinations must be encoded following
the same mode.
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2) Prefetching: On each cache access, the list of entangled
destination for the current access is checked. If the currently
accessed cache line corresponds to a source, two sets of
prefetches are triggered. First, the basic block of the current
cache line (i.e. the source) is fully prefetched. This leverages
spatial locality and subsumes a next line prefetcher. Next,
for each destination, the entire basic block of the destination
instruction is prefetched, to fulfill timeliness.

In the presence of hard-to-predict branches, Entangling
naturally prefetches instructions from both paths. In contrast,
FDIP would fetch from one path only, which could be the
wrong path with a not-too-low probability. When finally re-
steering to the correct path, FDIP would suffer stalls when the
correct-path instructions are not in the L1I.

III. SUPPORT FOR WRONG PATH

This section proposes a set of microarchitectural solu-
tions to deal with the effects of wrong-path accesses on the
L1I prefetcher. As mentioned in the introduction, our target
prefetcher is the Entangling instruction prefetcher [36], which
was designed without considering the effects of wrong-path
execution, other than a discussion on a potential solution.

Wrong-path execution affects the prefetcher behaviour
with instructions that will be eventually squashed. First, the
prefetcher is trained with those wrong-path accesses. For
Entangling, wrong-path training refers to building basic blocks
and entangled (correlated) pairs during the execution of the
wrong path, and store them in the Entangled table. Second,
the prefetcher triggers prefetch requests as a consequence
of wrong-path accesses. For Entangling, it means to access
the Entangled table looking for a source and prefetch based
on information that was possibly created during correct-path
execution, but that may not be useful as the access initiating
the prefetch will be squashed. Prefetch requests triggered
by wrong-path accesses may already be far in the memory
hierarchy when the squash occurs and therefore canceling
them is difficult.

A typical solution is to train the prefetcher only on correct-
path (e.g., at commit [14]). While this is viable for many
prefetchers, it is not a suitable solution for Entangling, which
Entangles accesses on L1I fills based on the time at which
previous accesses occurred. Moving this functionality to the
commit stage would require to propagate large amounts of
timestamps from the front-end to the back-end since entan-
gling basic blocks based on commit timestamps would be
inaccurate. A second solution is to update the prefetcher’s
structures upon a processor squash, thus canceling the training
done on the wrong path, similar to how the branch history is
recovered from a squash.

We first quantify the effects of wrong-path execution on the
Entangling prefetcher, considering either training or triggering
prefetch requests, and our findings are promising. Figure 5
shows this analysis as the FTQ size (i.e., FDP decoupling)
increases. The plot shows in gray the Entangling version
unaware of wrong-path accesses [36] (Entangling), an Entan-
gling version that does not trigger prefetches on wrong-path
accesses thanks to oracle knowledge (Entangling-OraclePref ),
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Fig. 5. Impact of wrong path on the Entangling prefetcher in FDP.

an Entangling version that never trains the prefetcher on
wrong-path accesses thanks to oracle knowledge (Entangling-
OracleTrain), and an Entagling version that fully ignores
(neither train, nor trigger) wrong-path accesses (Entangling-
WPIdeal). Entangling-OracleTrain differs from Entangling-
WPIdeal in the fact that Entangling-OracleTrain can trig-
ger prefetch requests due to wrong path accesses, if the
information used for prefetching (i.e. the basic blocks and
entangled pairs) was built on the correct path. This can happen
for instance if the same path was executed previously as a
correct path, thus populating the Entangling table. Entangling-
WPIdeal does not trigger such prefetch requests.

The key observation is that most of the negative impact
of the wrong-path execution stems from the prefetcher’s
training, since the curve representing Entangling trained only
for accesses on the correct path (Entangling-OracleTrain)
approaches an ideal version where the wrong path is fully
neglected (Entangling-WPIdeal). In short, prefetches triggered
by wrong-path accesses have a negligible negative impact.

Driven by these findings, we describe three simple, but
effective microarchitectural techniques to annihilate on branch
mispredictions wrong-path training, which would otherwise
pollute the prefetching structures, evicting useful training, and
ultimately polluting the cache. We call the resulting solution
Entangling-WPA (wrong-path aware). Since in the Entangling
prefetcher, prefetch requests are triggered by searching basic
block sizes and entangling destinations in the Entangled table,
our ultimate goal is that if this information (basic block sizes
and entangling pairs) is created by any access in the wrong
path, it will never be stored in the Entangled table. We achieve
this goal by simply informing the prefetcher about squash
events.

A. Updating runtime basic block information

Branch prediction, and handling the wrong-path thereof,
has direct implications on the correct identification of runtime
basic blocks, which are essential for the effectiveness of the
Entangling prefetcher, as described in Section II-B. As the
application starts its execution, neither the branch predictor
nor the prefetcher are trained. Therefore, branches are initially
predicted as not taken, until the branch predictor is warmed up
and sufficiently trained. In parallel, the Entangling prefetcher
already uses this inaccurate information for identifying the
basic blocks. Without any branch being predicted as taken, the
wrong-path leads to the building of very large (and incorrect)
runtime basic blocks, which will be then entirely prefetched
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evicting useful data from the cache. A similar behavior is
observed also when the application enters new phases, or
simply paths that have not been explored before.

To circumvent this drawback, the first step in updating
the prefetcher’s bookkeeping information upon a branch mis-
prediction is to adjust the size of the current basic block.
This turns out to have also the highest impact in reducing
wrong-path pollution and regaining performance, as shown in
Section VI. Thus, upon a squash, Entangling is informed about
the PC of the mispredicted branch. If the branch PC belongs
to the current basic block being processed, i.e., its value is in
between the head of the basic block and the head of the basic
block plus the size of the basic block, then the basic block size
is updated to the distance –in cache lines– from the head of
the block to the branch. Figure 6 depicts this scenario where
on the left appears the status of the basic block detector, and
its representation in consecutive cache lines (indicating those
only accessed in the wrong path), and on the right appears the
status after the squash, updating the basic block size to 1.

This step ensures that the correct basic block information
is propagated to the Entangled table and only the correct-path
instructions are subsequently prefetched.

B. Squashing the history buffer

Another essential data structure of the Entangling prefetcher
is the History, used for identifying the entangled pairs of
cache lines. However, the History is also vulnerable to the
wrong path. Wrong-path accesses recorded in it can incorrectly
serve as entangled sources, as shown in Figure 7a (and thus
Entangling may never issue the expected prefetch requests) or
as entangled destinations (and thus prefetching unnecessary
data). This section addresses the first problem by cleaning up
the History, i.e. by flushing wrong-path entries upon a branch
misprediction, as shown in Figure 7b. For this, we extend the
History with an extra field per entry that holds the sequence
number (or ID) of the first instruction accessing the recorded
basic block. On a squash, the processor informs the prefetcher
about the ID of the mispredicted branch. The prefetcher then
flushes each entry in the History table whose ID is higher than
the mispredicted branch. Additionally, each basic block in the
History is updated following the mechanism described in the
previous subsection.

C. Delaying insertion in the Entangled table

Despite flushing the History table and correcting the block
size on a branch misprediction, the Entangled table is still

Free Wrong path (WP) Correct path (CP)
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headtail Pair
(a) Entangling
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Fig. 7. Squash of the History

polluted during the execution of the wrong path when (1) a
new basic block is detected and (2) when a new entangled pair
is built, since they are inserted in the Entangled table as soon
as they are detected (Figure 4).

Since “cleaning up” the Entangled table is difficult, we opt
for keeping the basic block information and the new entangled
pairs in the smaller History table, which is squashed on each
branch misprediction. As there is already information about
the basic block sizes in the History, it is only necessary to
add a new field to record the corresponding source of each
destination. We opt for storing this information along with the
destination because, on a History squash, pairs with wrong-
path destination and correct-path source will be removed.

Basic block sizes and entangled sources reside thus in the
History and are squashed each time wrong-path is detected.
They enter the Entangled table when evicted from History
due to its limited capacity. Eviction is performed in FIFO
order, thus increasing the likelihood of only correct-path data
to be inserted in the Entangled table. It could happen however
that wrong-path basic blocks and entangled pairs reach the
Entangled table if the execution continues in the wrong-path
for a very long time. Yet, given the high accuracy of state-of-
the-art branch predictors, this situation is unlikely and would
cause negligible pollution.

D. Complexity and memory requirements
The extensions proposed for mitigating the pollution caused

by wrong-path accesses require simple extra logic and only
lightweight additions to the History table. Each entry is
extended with a sequence number field (ID) and a source
entangled field (source). For the processor configuration em-
ployed in our experiments (see Section V), 12 bits suffice to
store the instruction ID field while accounting for rollbacks.
The source field employs the full 58 bits of the cache line
address. The format of an entry in the History and each field’s
size is depicted in Figure 8, with the newly added fields
highlighted in blue. Hence, considering a 32-entry History,
the total extra storage requirements amounts to just 280 bytes.

IV. OPTIMIZING ENTANGLING

By analyzing the behavior of the Entangling prefetcher
under different situations, we identified that it performs sub-
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optimally when (1) selecting a timely source for each desti-
nation among several candidates and (2) filtering overlapping
(redundant) prefetch requests. In this section we present two
microarchitectural techniques to address these limitations and
improve the Entangling’s performance.

A. Selecting optimal source-entangled

Problem: For building each entangled pair, the Entangling
prefetcher searches a suitable source instruction positioned
at least latency cycles earlier than the destination instruction
(where latency is the latency of the destination instruction).
However, such a source is not unique. Since the Entangled
table is a limited resource, the Entangling prefetcher already
employed an optimization for maximizing its utilization [36].
Namely, the prefetcher performs two searches in the Entangled
table, identifies the two youngest potential timely sources, and,
when possible, selects the one that still has space in the list
of destinations.

For example, consider two candidate source instructions,
src 1 and src 2, where src 1 uses the compression mode 3
(i.e. can accept three destinations) and holds two destinations,
while src 2 uses the compression mode 6 and holds five des-
tinations. The new destination would have to be compressed
in mode 4 with respect to both sources. But choosing one
source or another yields a very different utilization of the
Entangled table. If src 1 is chosen, we do not need to evict
any destination. But if src 2 is chosen, we would need to evict
two destinations to accommodate the new one, as the mode
of src 2 would be set to 4.

Solution: Our goal is thus to increase the Entangled table’s
utilization. Nevertheless, selecting the optimal source is a
costly operation because the Entangled table is the largest
structure of the prefetcher and snooping it often entails sig-
nificant costs.

To avoid snooping the Entangled table frequently, we pro-
pose to hold in the History table the compression mode of
each inserted cache line along with the number of destinations
already entangled. This information can be retrieved from the
Entangled table as it is accessed on every L1I access. Going
back to the previous example, the prefetcher can now easily
select the optimal source, by computing the compression mode
with respect to each potential source and choosing the one
that maximizes utilization. Iterating the much smaller History
table is faster than iterating the Entangled table and translates
directly to performance improvements as more Entangled
destinations can be held in the Entangled table.

Our algorithm for selecting the best source among the
candidates works as follows. Each timely source candidate
whose number of destinations is smaller than its compression
mode (i.e., has space for accepting new destinations) computes
the compression mode of the new destination if pairing with it.
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The optimal source is then chosen according to the following
priorities: first, the sources that still have space and whose
compression mode matches the one of the new destination;
second, the ones with space to hold the new destination; third;
the ones that are not present in the Entangled table (encoded in
the History with compression mode 0), since we prefer to evict
an old source (based on the replacement policy, thus making
space for a new source) than a useful destination. In case of a
tie, i.e. multiple sources fulfill the same criteria, the youngest
source is preferred.

Once the source is selected, the new compression mode is
computed (minimum of the current compression mode and
destination compression mode) and updated, and the number
of destinations of that entry is increased.

B. Keeping useful destination-entangled

Problem: As the Entangling prefetcher builds entangled
pairs on each execution path, the same cache line (head of
basic block) can be prefetched multiple times, by different
sources. This can be beneficial for instance when the same
basic block is reachable from two convergent paths. But in
other situations, the prefetchers may be redundant (overlapping
requests). For example, when the two sources are on the
same execution path. This could happen for a destination
with varying latencies, that gets entangled each time with
a different source. While the confidence counters help to
identify and remove the non-timely prefetches, if the redundant
destinations are timely the counter is not decreased, thus
occupying unnecessary entries.

Solution: We identify redundant prefetch requests upon a
merge either in the Prefetch Queue (PQ) or in the Miss Status
Holding Register (MSHR). In those cases, the confidence of
the younger source is decreased. If this situation arises fre-
quently, the counter will reach 0 and the redundant destination
will be removed, leaving more space in the Entangled table
for useful pairs.

C. Complexity and memory requirements

The presented optimizations require small additions to the
History entries, on top of the solution derived from the
previous section. In particular, each entry is now extended
with two new fields: the format (F) of its destinations in the
entangled table and the number (#) of such destinations. Since
Entangling contemplates six different formats (from 1 to 6)
each of them containing a maximum number of destinations
as the value of the format, each field is comprised of 3 bits
(Figure 9, again with additions in blue). For our 32-entry
History, the added storage requirements is just 24 bytes.
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TABLE I
BASELINE SYSTEM CONFIGURATION

Processor decoupled front-end: Two-level branch prediction: 1-
cycle branch prediction (3K-targets 3-way L1 BTB, 3K-targets 3-
way tagged indirect target array, 32-entry RAS, hashed perceptron
predictor [43]); 2-cycle branch prediction (8K-targets 8-way L2 BTB,
64KB ITTAGE indirect target predictor [39], 64KB TAGE-SC-L
branch predictor [40]); 32KB, 8-way uop cache; from 24-instruction to
256-instruction FTQ; 32-entry decode queue; 32-entry dispatch queue;
4-uop decode width; 6-uop dispatch width.

Processor back-end: 320-entry ROB; 136-entry LQ; 64-entry SQ; 8-
uop execute width; 8-uop retire width.

Memory hierarchy: 32KB, 8-way, 4-hit-cycle VIPT L1I cache;
no L1I prefetcher; 32KB, 8-way, 4-hit-cycle VIPT L1D cache;
stride L1D prefetcher; 1MB, 8-way, 10-hit-cycle L2 cache; next-
line L2 prefetcher; 32MB, 16-way, 20-hit-cycle LLC cache; no LLC
prefetcher; 4 GB, one 8-byte channel, 3200MT/s DRAM.

V. METHODOLOGY

The evaluation has been conducted using the cycle-accurate
ChampSim simulator [16]. ChampSim was the simulator em-
ployed for the 1st Instruction Prefetching Championship (IPC-
1) and since then important improvements have been done
towards a more accurate model, including a detailed front-end
model. We have further modified ChampSim to model wrong-
path execution and squashing of instructions (Section V-A) and
a two-level branch and target prediction scheme1 akin to the
AMD Zen family [4], [6]. Table I shows the main configuration
parameters of the baseline system evaluated in this work
mimicking an AMD Zen 4 processor [6]. CACTI-P [28] and
McPAT 1.3 [1], [27], using a 7nm process technology [5],
are employed to model the energy expenditure of the whole
system (core, cache hierarchy, and main memory).

We run the traces provided by Qualcomm Datacenter Tech-
nologies for the Championship Value Prediction (CVP) [2]. A
subset of these traces was used for evaluating the prefetchers
at IPC-1, but this study considers a larger number of those
traces, whose conversion to ChampSim has been recently
improved [13]. We use the 779 large server traces that show at
least 1 L1I MPKI (misses per kilo-instruction) in the baseline
system. Workloads are warmed up for 20M instructions, and
then we gather statistics for their execution until completion.

A. Wrong-path model

ChampSim is a trace-based simulator and by default it does
not model applications’ wrong-path. However, not modeling
wrong-path execution can lead to suboptimal decisions on
the optimal FTQ size. Therefore, we modified ChampSim to
model wrong-path execution and squashing of instructions.

Accurately modeling wrong path in a trace-based simulator
is a difficult task [12]. However, this task simplifies when
the focus is on instruction prefetching and when a decoupled
front-end like FDP is employed. The reason is that FDP drives
fetching based only on instruction addresses, not on the actual
trace, and the main piece of information required to model the
front-end is the instruction address.

1TAGE-SC-L branch predictor, ITTAGE indirect target predictor, and large
BTBs cannot be accessed in a single cycle.

Correct path
br1

Wrong path
br2

Wrong path 1

Wrong path 2

Fig. 10. Branch mispredictions on the wrong path

Therefore, we follow the FDP’s branch prediction on the
next addresses, then insert them in the FTQ and initiate the
instruction fetch. The L1I will fetch the wrong-path addresses
indicated by FDP, as in an execution-driven simulator, even
when the prediction is towards the sequential path due to
instructions never executed so far. In our model, wrong-
path instructions advance to the next pipeline stages and are
squashed when an older branch is considered mispredicted,
either according to the L2 branch prediction engine, at decode
stage due to a target misprediction, or later at execute stage.
It is possible that a branch is detected as mispredicted more
than once as the prediction is updated. We account for such
cases, squashing and re-steering the fetch unit on each detected
misprediction.

B. Limitations of the wrong-path model and solutions

Mispredicted wrong-path branches. Traces store information
about taken/not taken branches on the correct path, but this
information is not known for wrong-path instructions. Our
approach is to follow the branch predictor decision and not
squash branches on the wrong path (except when the L2
predictor contradicts the L1 predictor). This way, we can miss
some branch mispredictions due to out-of-order execution.

Figure 10 shows the scenario where a mispredicted branch
on the wrong path (br2) is corrected before a previous mis-
predicted branch on the correct path (br1). Continuous lines
reflect the predicted path. In execution-based simulation, if br2
is resolved before br1, fetch is redirected from Wrongpath1
to Wrongpath2. In our model, br2 will not correct the
path after its execution. Thus, we would continue prefetching
instructions from Wrongpath1. In both cases, however, the
cache would be polluted with incorrect instructions (either
from Wrongpath1 or Wrongpath2), since execution follows
the Wrongpath with respect to br1.

Modeling instructions at the back-end. Modeling scheduling
and execution at the back-end requires information such as the
instruction type, the source and destination registers, and the
memory locations. To obtain that information for wrong-path
instructions, we keep a history of all the instructions loaded
from the trace. When executing instructions on the wrong path,
if their address matches the address of an instruction in the
history, we retrieve its information. This way we can model
load and store queues occupancy and register dependencies
accurately. While type and registers are the same through
different executions of an instruction, target addresses may
change. We opted for retrieving the last address referenced by
that instruction.

Since typically branches are predicted based on their pre-
vious behavior, it is very likely that a predicted path (either
wrong or correct) has been visited before and hence recorded
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Fig. 11. Wrong-path induced pollution (lower is better) in FDP

in our history of instructions (exceptions are BTB misses
for taken branches). Therefore, this simple solution provides
useful information for most instructions on the wrong path. In
particular, for the largest 256-instruction FTQ configuration,
the percentage of wrong-path instructions dispatched to the
back-end is 8.1%. Out of those, 78.0% can be retrieved from
the history. Hence, 98.4% of the back-end instructions are
known.

VI. RESULTS

We start by measuring the wrong-path mitigation capabili-
ties of Entangling-WPA. Then we explore the benefits of the
proposed optimizations on top of Entangling-WPA. Finally,
we compare our solution to other state-of-the-art proposals
and show their impact on energy and (energy-delay) optimal
FTQ size for each.

A. Wrong-path mitigation

Entangling-WPA employs three microarchitectural tech-
niques to reduce the impact of wrong-path accesses on the
L1I prefetcher. In order to quantify the effectiveness of each
technique, we use a metric named wrong-path pollution de-
fined as the percentage of insertions in the Entangling table
that contain at least one cache line accessed only by wrong-
path instructions.

The outcome of our analysis based on this metric is shown
in Figure 11, in which we analyze the L1I prefetcher’s
performance in combination with an FDP of an increasing
FTQ size (x axis). First, we show Entangling without wrong-
path management. Then, we show the impact of updating
the basic blocks (WPA-Update, Section III-A). Then, on top
of WPA-Update is added the squashing of the History table
technique (WPA-Squash, Section III-B). Finally, on top of
WPA-Squash is added the proposal of delaying the insertion
of new basic blocks and pairs in the Entangling table (WPA-
Delay, Section III-C).

The first observation is that the pollution of the prefetcher
grows with the FTQ size, since there are more wrong-
path instructions being fetched. For the original Entangling
prefetcher, the pollution is between 34%-46%, but it is con-
siderably reduced when the basic block size is restored on
a squash (WPA-Update), between 10%-22%. Squashing the
History does not provide by itself significant reductions in
pollution, but it is a necessary step towards the effectiveness
of the third technique (WPA-Delay), which achieves less than
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Fig. 13. Performance breakdown for optimized Entangling in FDP

1.6% pollution when considering large FTQ sizes, and less
than 1% for a 64-entry FTQ. The remaining pollution is
due to pathological cases where a basic block starts on the
correct path and ends on the wrong path. Addressing this
pollution would complicate our design while offering modest
performance benefits.

The reduction in wrong-path pollution translates to im-
provements in IPC, as shown in Figure 12. We show all
the WPA proposals and the ideal WPA scenario described in
Section III as an ideal version that fully ignores wrong path
accesses (Entangling-IdealWP) – namely, wrong-path accesses
are not used either for training the prefetcher nor for triggering
prefetch requests.

The take away message of Figure 12 is that when all three
techniques to mitigate the wrong-path pollution are applied
(WPA-Delay), our Entangling-WPA approaches the perfor-
mance of the ideal wrong-path fully aware version. In addition,
Entangling-WPA shows a 2.8% performance improvements
with respect to the previously published Entangling version
without support for mitigating the wrong-path effects [36] for
a 256-entry FTQ. Even higher improvements are reached for
energy-aware FTQ sizes (6.8% for a 64-entry FTQ).

B. Optimizations

Figure 13 shows the improvements over the wrong-path
aware Entangling (WPA) brought by our two microarchitec-
tural optimizations: selecting optimal source-entangled (Op-
timalSrc) and, on top of it, filtering redundant prefetch re-
quests and keeping only the useful entangled destinations
(UsefulDst). Our analysis shows that when using an energy-
aware 64-entry FTQ, OptimalSrc brings 1.4% performance
improvements over Entangling-WPA, and together with the
UsefulDst technique they obtain a speed up over Entangling-
WPA of 1.8%.
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Fig. 14. EDP of the evaluated prefetchers

C. Comparison to state-of-the-art techniques

We compare Entangling equipped with the microarchitec-
tural techniques proposed in this work to a baseline without
L1I prefetching (NoL1IPref) and to two other state-of-the-art
L1I prefetchers: MANA [8] and RDIP [23] (a more detailed
analysis including comparison to other L1I prefetchers and
larger L1I cache sizes can be found in our previous work [36]).
MANA is a BTB-directed L1I prefetcher, providing a good
performance-area trade-off. It is a successor of SN4L-Dir-
BTB [9]. RDIP is a RAS-directed L1I prefetcher that asso-
ciates prefetch operations with signatures that encode the RAS
and its context. We modified the original MANA and RDIP
proposals, that are wrong-path agnostic, to train them ideally
only on the correct path. In what follows, we compare with
these wrong-path ideal versions of the prefetchers (WPIdeal).

Energy delay product (EDP). We start this evaluation
showing the EDP for all prefetchers since later the description
focuses on the best FTQ size for each prefetcher in terms of
EDP. Figure 14 shows the energy delay product normalized
to NoL1IPref with a 32-entry FTQ. Energy is measured in nj
and delay is measured in cycles per instruction. The lower is
the EDP, the better. Increasing the FTQ size from 32 to 64
entries significantly improves EDP for all prefetchers because
of the important boost in performance. Our Entangling version
reaches optimal EDP with an FTQ of 64 instructions. The
other competitors still benefit from larger FTQs. Indeed a 96-
entry FTQ is optimal in terms of EDP for both of them. Finally,
NoL1IPref obtain optimal EDP with 128 entries in the FTQ.
Hence, different prefetchers achieve the best EDP at a different
FTQ size. In what follows, for each prefetcher, we focus on the
FTQ size for which it delivers the lowest EDP, as summarized
in Table II.

Performance. Figure 15 presents the performance of the
prefetchers, measured in instructions per cycle (IPC), the
higher the better. Results are normalized to NoL1IPref with
an FTQ of 32 entries. As the FTQ size increases prefetchers
improve performance. RDIP-WPIdeal and MANA-WPIdeal
reach a plateau with negligible improvements after 128-entries.
Entangling reaches that plateau with a lower FTQ size (96
instructions). RDIP-WPIdeal and MANA-WPIdeal improve
performance by 2.7% and 1.8%, respectively, over NoL1IPref,
when all implement an FTQ size of 96, at which these
prefecthers deliver the lowest EDP. Our optimized version of
Entangling, Entangling-WPA-Opt, outperforms both MANA
and RDIP and with a 64-entry FTQ obtains performance
improvements of 12.7% over NoL1IPref with the same FTQ.
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Fig. 15. Performance of the evaluated prefetchers

As the FTQ size increases, the performance gap between
the prefetchers decreases, i.e. for 256-entry FTQ, Entangling-
WPA-Opt outperforms NoL1IPref by 3.7%. Yet, the perfor-
mance benefits of NoL1IPref come with a higher energy-
cost, as we detail next, while a 64-FTQ Entangling-WPA-Opt
already obtains close to optimal (w.r.t FTQ size) performance.

Energy consumption. Figure 16 presents the dynamic
energy expenditure of the system (core, cache hierarchy, and
main memory), normalized to NoL1IPref with 32-entries FTQ
(the lower, the better). Energy expenditure grows linearly with
the FTQ size. Larger FTQs increase the number of accesses
to BTBs and branch predictors, as well as L1I and, in case of
cache misses, higher cache levels and main memory.

Generally, the energy trends are similar across all prefetch-
ers. Interestingly, using a L1I prefetcher incur a lower energy
expenditure than not using a dedicated L1I prefetcher. After
analyzing this behavior, we found out that prefetch requests
help positively updating the L1I replacement information. In
essence, prefetch requests first search the L1I. Hence, although
there is an increase in L1I accesses due to prefetching,
they only access cache metadata (i.e., tags and replacement
information), which incur low energy consumption. Prefetch
requests then update the LRU policy on a hit, which yields
less data accesses to the more costly L2 and LLC since the
prefetch requests are accurate even when they hit L1I. We
observed that most of the energy reduction comes from less
accesses to the large L2 cache.

As a consequence, Entangling is consistently more energy
efficient than NoL1IPref by 6-9%, and than MANA-WPIdeal
and RDIP-WPIdeal, when considering the same FTQ size. For
the FTQ sizes at which the prefetchers achieve the best EDP,
the energy efficiency per prefetcher with respect to NoL1IPref
of 128-entry FTQ is: 10.6% for Entangling-WPA-Opt with
64-entry FTQ, 6.5% for RDIP-WPIdeal with 96-entry FTQ,
and 4.1% for MANA-WPIdeal with 96-entry FTQ. NoL1IPref
with 128-entry FTQ increases energy expenditure by 3.1%
over a 32-entry FTQ. As the FTQ size increases to 256-entries,
all prefetchers become less energy efficient which around 6%
more energy consumption than for a 32-entry FTQ.

Memory requirements. We evaluate MANA-WPIdeal with
a 4K-entry MANA table, which reflects the low-cost config-
uration described by Ansari et al. [8]. It requires a total size
of 17.25KB. For RDIP-WPIdeal, we evaluate a 4K-entry miss
table with 3 trigger prefetchers for discontinuities and an 8-bit
vector for consecutive cache lines. The total required storage is
63KB. For Entangling we model a 32-entry History and a 4K-
entry Entangled table. This results in 41.85KB for our wrong-
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TABLE II
MEMORY REQUIREMENTS AND OPTIMAL FTQ SIZE

Prefetcher FTQ Total
Prefetcher memory entries memory

(KB) (optimal) (KB)

NoL1IPref 0 128 1.31

RDIP-WPIdeal 63.00 96 63.98

MANA-WPIdeal 17.25 96 18.23

Entangling-WPA 41.18 64 41.84

Entangling-WPA-Opt 41.21 64 41.87

path aware version and 41.87KB for the wrong-path aware
version with the proposed microarchitectural optimizations.
Table II summarizes the memory requirements of all prefetch-
ers and shows the optimal FTQ size for each prefetcher
considering the energy-delay-product metric averaged across
all applications.

VII. RELATED WORK

Wrong path modeling and effects. The discrepancy be-
tween modeling or disregarding wrong-path effects has been
analysed in the past. For instance, Mutlu et al. [29] showed
that the performance difference between modeling and dis-
regarding wrong-path execution is up to 10%. Furthermore,
the wrong-path negative effects are demonstrated to increase
with larger pipelines. Modelling wrong path in trace-based
simulators is a challenging task. Bhargava et al. [12] proposed
to recreate a copy of the application code in other to model
wrong path instructions in trace-based simulators. They find
that often, more than 99% of the branch targets are found
in their copy of the code. Although our wrong-path model is
aimed at modeling accurately the front-end where we leverage
the branch prediction information to discover new instructions
to fetch (as a real processor would do), we also resort to a
similar technique as the one proposed by Bhargava et al. to
model instructions at the back end.

Other studies show that wrong-path memory accesses can
be beneficial for performance in some cases [26], [31], as long
as only superficial wrong-path prefetching is allowed, such as
one, two or up to three wrong-path cache lines.

Wrong path effects in FDP. Fetch Directed Prefetching
(FDP) [34] is inherent to wrong-path aware prefetches and, as
prior work underlines [31] wrong-path “pollution” can even
slightly boost performance. Elastic Instruction Fetching [30]
proposes a solution to mitigate the negative impact of deep

pipelines, at the cost of replicating hardware structures. Re-
cently, Ishii et al. [19], brings to our attention the importance
of evaluating a large enough FTQ, however their analysis does
not consider wrong-path execution.

Mitigating wrong-path effects in FDP requires an ideal
branch predictor. In practice, this translates to continuously
growing BTBs. Yet, BTBs are already quite large structures,
e.g., 561.5KB in the Samsung Exynos M6 [17], commonly
organized in several BTB levels. Further augmenting the
number of BTB levels or compressing them at the cost of
indirection [38], [41], leads to front-end bubbles and increases
the number of wrong-path instructions. In this work we use
state-of-the-art branch and target prediction [39], [40], how-
ever close-to-perfect branch prediction is difficult to achieve
due to BTB size limitations and hard-to-predict branches, and
the front-end choice of predicting (and therefore prefetching)
a single execution path. In contrast, the Entangling instruction
prefetcher can explore both paths at the same time, thanks
to entangling each source with several destinations when
necessary.

An alternative to mitigate wrong-path effects is to recover
fast from branch mispredictions [10]. This way, the wrong-path
execution flow is redirected earlier, reducing the wrong-path
impact on L1I accesses.

Wrong path management in L1I prefetching. Tradi-
tional L1I prefetchers, such as the next-line prefetcher, are
commonly wrong-path agnostic. For prefetchers that do not
require training, such as next-line prefetchers, this is not a
problem as limited prefetching on the wrong path has been
proved beneficial. More complex prefetchers are also active
on the wrong-path. In particular, Confluence [21] proposes to
unify the metadata of the BTBs used in FDP and of the L1I
prefetchers, thus reducing the storage overhead and exposing
the predicted path to the L1I prefetcher. It also evaluates FDP
and an L1I prefetcher in tandem, but the prefetchers do not
perform any particular action to mitigate wrong-path pollution.
Another state-of-the-art prefetcher, SN4L-Dir-BTB [9], having
as a main component a BTB-directed prefetcher, opts for
not performing particular actions to recover from wrong-path
execution.

An alternative is to train the prefetcher just on the correct-
path, either by using the instruction commit sequence [14] or
the non-speculative RAS state [23]. A drawback of recording
instructions at commit-time is that the filtering of L1I accesses
done by a decode cache in the front-end cannot be leveraged
by the prefetcher. Additionally, timeliness can be jeopardized
by recording the instructions much later than when they took
place. As timeliness is essential for the Entagling prefetcher,
we opted for a more precise handling of the wrong path.

VIII. CONCLUSION

In this work we show that a precise L1I prefetcher working
in tandem with FDP can provide significant benefits. Fur-
thermore, we show that depending on the precision of the
prefetcher, different decoupling degrees yield lower energy-
delay-product, and close to ideal L1I prefetchers work best
with small Fetch Target Queues (FTQ). Modeling wrong path
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has a direct impact on performance and we show that in
addition to energy waste, larger FTQs increase the wrong-
path-caused pollution.

Departing from these observations, we add lightweight
support for mitigating wrong-path pollution in the state-of-
the-art Entangling instruction prefetcher and propose two
optimizations to further improve its performance. This work
makes a solid step towards including the L1I prefetcher in
future chip designs by: (1) demonstrating its effectiveness on
top of FDP, (2) reducing wrong-path pollution by 99%, (3)
improving performance by 1.8% over a wrong-path aware
version of the best up-to-date L1I prefetcher, and (4) with
a moderate storage overhead of 304 bytes.
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