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transmitirme que investigar divirtiéndose es la mejor forma de hacerlo. Sin ti, estoy seguro de
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Resumen

Modelización no lineal

El método principal y más utilizado para dilucidar las relaciones, las dinámicas y, en general,
para modelizar el comportamiento tanto de los individuos como de los indicadores macroe-
conómicos, ha sido de forma habitual el enfoque lineal. Su sencillez permite a los economistas
comunicar las ideas y relaciones económicas de forma clara y concisa, lo que facilita su in-
terpretación (un aspecto esencial de la toma de decisiones económicas y poĺıticas). Además,
permite un análisis intuitivo, por ejemplo, de elasticidades y previsiones.

Sin embargo, rara vez la realidad se rige por un comportamiento lineal. La economı́a es un
sistema complejo que comprende múltiples variables interdependientes que pueden interactuar
de forma no lineal, dando lugar a resultados imprevisibles o contraintuitivos cuando se emplean
métodos lineales tradicionales.

Existen numerosos casos en los que la macroeconomı́a o la microeconomı́a no se ajustan a
un comportamiento lineal. Por ejemplo, las respuestas a las perturbaciones pueden describirse
utilizando funciones de respuesta al impulso no lineales en el caso de series temporales per-
sistentes, como se ve en Potter (1998) en relación con el PNB de EE.UU., mientras que, por
su parte, el crédito puede actuar como propagador no lineal de las perturbaciones económicas
(Balke, 2000). Además, los cambios en las variables económicas pueden dar lugar a respuestas
no proporcionales en otras variables, como ocurre con el consumo en respuesta a perturba-
ciones de la riqueza, la renta y los tipos de interés (Coskun, Apergis y Coskun, 2022), o en
cómo los mercados bursátiles (Escobari y Sharma, 2020) o el PIB (Karaki, 2017) responden a
las perturbaciones del precio del petróleo.

La mayor evidencia y una creciente disponibilidad de datos han supuesto que la aplicación
de técnicas no lineales en economı́a haya cobrado importancia en los últimos años, pudiendo
éstas aportar múltiples ventajas. La primera de ellas es la mayor precisión de los modelos y
las previsiones. La dinámica económica presenta con frecuencia dinámicas que no son sencillas,
como efectos umbral, caos o efectos de segundo orden. Las técnicas lineales, incapaces de
acomodar estas complejidades, se quedarán cortas en términos de precisión. Por lo tanto, los
modelos no lineales, menos propensos a sufrir en esos casos, pueden conducir a una mayor
precisión de las previsiones.

Aunque la modelización no lineal se remonta al menos a Hicks (1950) y Goodwin (1951)
como solución para abordar el problema de la trayectoria temporal oscilatoria que aparećıa en el
enfoque lineal como, por ejemplo, en el enfoque de Samuelson (1939), fue después del desarrollo
de los modelos lineales en series temporales con el influyente art́ıculo de Box y Jenkins (1976)
que popularizó los modelos ARIMA (basado en el trabajo seminal de Whittle en 1951), y su
extensión al contexto multivariante por Sims (1980), cuando más se desarrollan los modelos no
lineales buscando ampliar estos planteamientos.
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Debido a que los modelos ARIMA y multivariantes antes mencionados se basan en el
supuesto de linealidad y simetŕıa, que rara vez se cumplen en datos económicos, Tong (1978)
introdujo el concepto de efectos umbral en el modelo autorregresivo de umbral (TAR por sus si-
glas en inglés) para tener en cuenta la asimetŕıa, incorporando más tarde Anderson y Teräsvirta
(1992) una transición suave en el umbral mediante el modelo autorregresivo de transición suave
(STAR). Para los casos en los que el cambio de régimen se asume modelizable, Tong (1990)
propuso los modelos autorregresivos de umbral de autoexcitación (SETAR) en los que las ob-
servaciones retardadas de la variable dependiente provocan cambios de régimen, mientras que
Hamilton (1989) supone un proceso de Markov como base de estos cambios. Estos modelos
se han extendido a un contexto multivariante, como el modelo autorregresivo vectorial de um-
bral (TVAR) (Tsay, 1998; Hubrich y Teräsvirta, 2013), los modelos autorregresivos vectoriales
de transición suave (Camacho, 2004; Teräsvirta y Yang, 2014), el modelo multivariante con
umbral de autoexcitación (MSETAR) de Arnold y Günther (2001), y los modelos de Vectores
autorregresivos Markov Switching (MSVAR) en Krolzig y Krolzig (1997).

No obstante, la introducción de estas dinámicas más sofisticadas requiere a veces de técnicas
no paramétricas tanto para la estimación como para la elaboración de tests, técnicas éstas menos
propensas a sufrir cuando los datos presentan no linealidades. Las técnicas de Boostrap, por
ejemplo, se han aplicado para probar los efectos de umbral en Giannerini, Goracci y Rahbek
(2021), y como técnica de estimación en el modelo de Markov Switching en Ho (2001), mientras
que el algoritmo genético se ha empleado como técnica de estimación en los modelos MSETAR
en Baragona y Cucina (2013). En el mismo contexto de extensión de modelizaciones lineales,
cabe mencionar el modelo EGARCH (Nelson, 1991), el GJR (Glosten, Jagannathan y Runkle,
1993), o el GARCH de transición suave (Hagerud, 1997; Lanne y Saikkonen, 2005) como
extensiones no lineales de los modelos GARCH (Bollerslev, 1986), los cuales por si sólos no
consiguen captar correctamente la volatilidad asimétrica, como señalan Bildirici y Orsen (2014).
Además también se han propuesto combinaciones h́ıbridas, como por ejemplo el modelo Fuzzy-
EGARCH-ANN (Mohammed, Aduda y Kubo, 2020) para captar mejor las asimetŕıas en la
volatilidad de los rendimientos financieros. Por último, los modelos de factores dinámicos (Stock
y Watson, 1991), ampliamente utilizados para la previsión del ciclo económico, incorporan en
la extensión de Brockwell y Davis (2009) la no linealidad manteniendo el filtro de Kalman sin
actualizar cuando se manejan valores ausentes, aumentando la propuesta inicial a un marco no
lineal. Otra forma de extensión no lineal dentro de estos modelos es la forma de dinámica de
segundo orden propuesta en Guerrón-Quintana Khazanov, y Zhong (2021) para la elaboración
de un ı́ndice de actividad económica y que se estima a través del filtro de Kalman sin esencia
(UKF por sus siglas en ingles).

Una segunda caracteŕıstica a destacar cuando se profundiza en la modelización no lineal de
series temporales es su mayor capacidad para manejar bases de datos extensas con variables
interrelacionadas. En los últimos años, los datos económicos han aumentado en tamaño y
complejidad, dando lugar a conjuntos de datos más grandes con relaciones entrelazadas. Cier-
tas técnicas no lineales, como los modelos basados en agentes y las técnicas de aprendizaje
automático, resultan útiles para manejar datos tan voluminosos. Es más, las técnicas no lin-
eales podŕıan ayudar a descubrir relaciones que no se detectaŕıan con técnicas lineales. Aunque
algunas de estas técnicas se remontan en el tiempo, su utilidad se ha hecho con el tiempo
cada vez más evidente debido a la proliferación de la capacidad de almacenamiento de datos,
lo que ha dado lugar a una adopción más amplia en las ciencias sociales y la economı́a. Por
ejemplo, las técnicas de Random Forest (RF) (Breiman, 2001) se han aplicado recientemente a
la predicción del crecimiento del PIB y la pobreza (Adriansson y Matterson, 2015; Sohnesen,
2017) empleando herramientas como las medidas de importancia de las variables y los gráficos



de dependencia parcial para explorar las relaciones económicas. El Gradient Boosting (Fried-
man, 2001) se ha utilizado para predecir quiebras en el sector bancario de EE.UU. (Carmona,
Climent y Momparler, 2019) y para predecir el crecimiento del PIB real (Yoon, 2021). Las
máquinas de vectores de soporte (Boser et al., 1992) se han utilizado para predecir los precios
de los mercados energéticos en Papadimitrou, Gogas y Stathakis (2014), mientras que las redes
neuronales recurrentes (Rumelhart et al. 1986) se han aplicado, entre otros, para predecir los
tipos de cambio en Kuan y Liu (1995), y para predecir la inflación no lineal en Almosova y
Andresen (2023).

De hecho cuando la economı́a, y en particular la econometŕıa, surge como disciplina, la
escasez de datos transversales y longitudinales hizo que la modelización lineal fuera más atrac-
tiva que la no lineal. Los enfoques no lineales se consideraban menos adecuados para extraer
información ante la escasez de datos. Sin embargo, en la actualidad, la capacidad de recopi-
lación de datos, la disponibilidad de numerosos datos históricos y la mejora de las capacidades
informáticas han hecho que los modelos no lineales sean más atractivos y asequibles para este
contexto.

Además, y en relación con la mayor disponibilidad de datos mencionada y el deseo de
ampliar la modelización lineal, en los últimos años ha aumentado la bibliograf́ıa sobre datos de
panel no lineales. La creciente capacidad de almacenamiento ha hecho que los datos de series
temporales de varios individuos sean fácilmente accesibles, lo que hace que los datos de panel
sean especialmente relevantes. Para incorporar las no linealidades a la modelización de datos
de panel, Hansen (1999) desarrolló un modelo de umbral de panel, posteriormente ampliado
a un marco de panel de transición suave por González, Teräsvirta y Van Dijk (2004). Por
su parte, Kremer et al. (2013) proponen un modelo de panel dinámico de umbral, estimado
mediante GMM, que permite la presencia de regresores endógenos pero que exige exogeneidad
a la variable de transición. Seo y Shin (2016) generalizaron este enfoque permitiendo regresores
endógenos y exógenos también en la variable de transición.

Por lo tanto, las técnicas no lineales en el análisis de series temporales ofrecen la posibilidad
de modelizar la complejidad de los sistemas económicos, de proporcionar descripciones sobre
las dinámicas más ricas y precisas, y mejorar la exactitud de las predicciones, lo que, en última
instancia, conduce a una toma de decisiones más informada y rigurosa.

Contribución

Esta tesis pretende contribuir a esta literatura sobre modelización de series temporales no
lineales mediante su aplicación en una serie de distintos análisis. Para ofrecer una visión
general de estas contribuciones, junto con la estructura de la tesis, podemos resumirlas como
sigue. En el caṕıtulo 2, proponemos un modelo univariante no paramétrico para predecir las
recesiones fechadas por el Economic Cycle Research Insitute (ECRI) de los páıses del G7. Se
trata de una cuestión relevante, sobre todo en tras las profundas repercusiones económicas de
la pandemia de Covid-19, donde muchos modelos de previsión han perdido precisión. En el
Caṕıtulo 3, utilizamos un modelo de arboles de decisión basado en boosting para examinar
qué indicadores económicos predicen mejor las recesiones en la economı́a española para una
muestra de 270 indicadores mensuales a lo largo de 50 años. La disponibilidad de bases de
datos extensas y exhaustivas ha hecho cada vez más factible la utilización de técnicas capaces
de identificar relaciones no inmediatas y multidimensionales. En el caṕıtulo 4, proponemos la
aplicación de un modelo factorial dinámico a los homicidios con armas de fuego en EE.UU.,



donde el modelo se estima mediante un filtro de Kalman no lineal debido a la presencia de
observaciones ausentes, y compara su rendimiento con otros modelos lineales y no lineales. El
retraso en la publicación de los datos oficiales en esta serie tiene implicaciones significativas para
los responsables poĺıticos y agentes económicos como aseguradoras o inmobiliarios, provocando
que ésta investigación sea de especial relevancia. En el Caṕıtulo 5, proponemos un modelo de
panel dinámico no lineal, basado en un modelo de gravedad, para explicar los efectos spillover
(o de influencia cruzada) entre páıses de la zona del euro, previamente estimados mediante la
metodoloǵıa de descomposición de la varianza de los errores de predicción de un modelo VAR.
Entender los distintos grados de interconexión entre páıses a lo largo del tiempo es de suma
importancia y tiene implicaciones para la poĺıtica económica y monetaria.

Además de sus aportaciones sustantivas, cada uno de estos caṕıtulos también ofrece valor en
términos de aportación de código. Algunos caṕıtulos presentan nuevas propuestas de modelos,
mientras que otros implican la adaptación de modelos de lenguajes de programación como Gauss
o Matlab a R. Esta dimensión transversal añade profundidad y practicidad a la investigación,
haciéndola no sólo académicamente significativa, sino también accesible y aplicable en contextos
del mundo real.

Modelización univariante no lineal no paramétrica para la predicción de rece-
siones económicas

Los sistemas de alerta temprana desempeñan un papel clave en la capacidad de los agentes
económicos para tomar decisiones de inversión y ahorro adecuadas. También influyen sig-
nificativamente en las decisiones poĺıticas de los gobiernos y los responsables poĺıticos. En
consecuencia, en la literatura académica existen numerosas propuestas de sistemas de alerta
temprana: desde el famoso art́ıculo de Hamilton que propone un modelo de Markov Switching
(1989), hasta el enfoque STAR defendido por Anderson y Terasvirta (1992), pasando por el
modelo modelo probit de Estrella y Mishkin (1998). Un poco antes, Wecker (1979) hizo una
propuesta de previsión basada en un modelo autorregresivo, que posteriormente Camacho y
Pérez Quirós (2002) confirmaron que teńıa una considerable capacidad emṕırica. Para este
tipo de análisis se suelen comparar los periodos identificados como de alta probabilidad de
recesión por el modelo con los periodos identificados por el el National Bureau of Economic
Research (NBER) y el ECRI.

No obstante, un acontecimiento sin precedentes desde que se dispone de datos económicos
como ha sido el colapso económico causado por la pandemia COVID-19 y las rápidas me-
didas antićıclicas aplicadas por los responsables poĺıticos, provocó una cáıda de la actividad
económica de una magnitud nunca antes registrada seguida de un repunte de magnitud similar,
lo que ha causado importantes problemas de ajuste en los modelos antes mencionados. Algunas
propuestas tratan esta recesión de forma única y especial para adaptar enfoques paramétricos
(Leiva-León, Perez-Quirós y Rots, 2020; Carreiro et al., 2021; Ng, 2021), mientras que los in-
dicadores de instituciones como el Econbrowser (́ındice de indicadores de recesión basado en
el PIB en base al modelo de Chauvet y Hamilton (2006)) fija los parámetros para el segundo
trimestre de 2020 y no actualiza su cálculo en ese periodo, mientras que por su parte el indi-
cador de probabilidad de recesión de la Reserva Federal de San Luis (basado en el modelo de
Chauvet y Piger, 2008), estima permitendo un cambio de los parámetros del modelo en dicho
trimestre. Alternativamente, McGrane (2022) deja de estimar los parámetros a finales de 2019
como solución.

El primer caṕıtulo de esta tesis contribuye a esta literatura proponiendo un enfoque no lineal
y no paramétrico para la previsión de recesiones, que no requiere modificar la base de datos ni



el modelo, y que es robusto frente a observaciones influyentes. La propuesta se construye sobre
la base de la metodoloǵıa de Wecker. Esta ampliación permite generar de previsiones para un
peŕıodo de tiempo futuro (h-peŕıodos hacia delante) en un peŕıodo de tiempo t dado mediante
el aumento de la serie temporal actual con incrementos históricos encontrados en bloques de
tamaño (h + 1) extráıdos del pasado de la serie temporal. Estas trayectorias pronosticadas
se utilizan posteriormente para calcular la frecuencia relativa de las recesiones técnicas con
ponderación de las distintas trayectorias de predicción posibles, obtenidas incrustando la serie
en el espacio de śımbolos. Mediante una simulación de Monte Carlo, analizamos la capacidad
de predicción de la propuesta frente a la aproximación de Wecker y frente a un modelo de
Markov Switching, obteniendo un rendimiento robusto en nuestro caso frente a los problemas
de la competencia. Se realiza Un ejercicio emṕırico para los páıses del G7, obteniendo una
mayor capacidad predictiva en el ejercicio dentro de muestra (in-sample) tras incorporar la
observación derivada de la pandemia.

Si bien el primer caṕıtulo centra su contribución al uso de modelos no lineales y no paramétricos
en series temporales univariantes con procesos generadores de datos que presentan no lineal-
idades, se trata de una base de datos sencilla, por lo que el uso de la no linealidad no era
necesario para descubrir relaciones complejas en bases de datos extensas, sino para tratar prob-
lemas de datos en el proceso generador de datos. En el caṕıtulo siguiente se examina cómo
puede ayudar la modelización no lineal en un caso de base de datos amplia.

Identificación de los indicadores económicos que predicen las recesiones en España

La Gran Recesión provocada por la crisis financiera de 2008 a 2012 tuvo consecuencias
económicas que tuvieron un impacto especialmente profundo en España. El ciclo económico
español se ha caracterizado por periodos de fuerte crecimiento e intensas recesiones debido a que
se trata de una economı́a con una elevada dependencia del exterior pero al mismo tiempo con
un modelo de crecimiento también basado en sectores dependientes del consumo. Sin embargo,
la magnitud de la Gran Recesión y sus repercusiones sobre el empleo, el sistema bancario, la
vivienda, y la erosión de la confianza económica aumentaron el interés por analizar el ciclo
económico español.

En los últimos años se han propuesto diversos indicadores económicos basados de distin-
tas variables económicas, como en Camacho y Doménech (2012) o en Cuevas, Pérez Quirós y
Quilis (2017). Al mismo tiempo, se han realizado análisis sobre la sincronización de la activi-
dad económica en España en relación con las economı́as internacionales, como en Camacho,
Caro y López-Buenache (2020), aśı como análisis de la sincronización a nivel regional como en
Gadea-Rivas, Gómez-Loscos y Leiva-León (2019), y análisis de la sincronización de las regiones
españolas con el ciclo nacional como en Camacho, Pacce y Ulloa (2018). A pesar de estos
esfuerzos, sigue existiendo una notable ausencia de investigaciones centradas en identificar los
indicadores más eficaces para anticipar periodos de recesión en la economı́a española. Esta falta
es relevante dado el desfase temporal con el que el Comité de Fechado Ćıclico evalúa los picos
y valles del ciclo económico.

Recientenmente, se han realizado esfuerzos anaĺıticos para páıses de importancia económica
mundial, como Estados Unidos y Alemania, ambos con capacidad para influir en el ciclo
económico mundial con ciertos investigadores utilizado técnicas de árboles de decisión en estos
contextos. En concreto, Ng (2014) investigó la capacidad de los árboles de gradient boost-
ing para predecir recesiones económicas en Estados Unidos, mientras que Döpke, Fritsche y
Pierdzioch (2017) realizaron un análisis similar para el caso de Alemania. Al mismo tiempo,
Ward (2017) exploró la capacidad de los bosques aleatorios (RF por sus siglas en inglés) para



identificar crisis financieras internacionales. Más recientemente, Piger (2020) ha llevado a cabo
un análisis comparativo de varios métodos de predicción, incluida la técnica de árboles basados
en boosting, para el caso de Estados Unidos y encuentra que ésta última arroja resultados
superiores. Aśı, en este caṕıtulo utilizamos esta técnica para analizar los distintos indicadores
para el caso de España utilizando la base de datos MEI de la OCDE, que cuenta con hasta 270
indicadores mensuales, algunos de ellos recogidos desde 1970.

La técnica del gradient boosting en los árboles de decisión permite analizar tanto la capaci-
dad predictiva como la importancia de las variables a la hora de realizar la predicción, e incluso
la interacción entre variables a la hora de construir la probabilidad de recesión. El enfoque
mostró una capacidad alta para predecir la recesión tanto en horizontes de previsión a tres
como a seis meses vista, tanto en el ejercicio dentro de la muestra como en el ejercicio fuera
de la muestra. Además, los indicadores adelantados de la tendencia del PIB y de la venta de
automóviles junto con los datos de desempleo registrado y de precios parecen ser indicadores
clave en la predicción, ayudados por los indicadores de confianza, bursátiles y de tipos de in-
terés. Sin embargo, mientras que los indicadores clave para predecir la Gran Recesión fueron los
indicadores financieros y el indicador adelantado de la construcción, para predecir la recesión
económica derivada del Covid-19, tanto los precios, como el paro registrado y los indicadores
adelantados del PIB y la venta de coches volvieron a ser los indicadores clave.

Por lo tanto, en este caṕıtulo se utiliza una técnica no lineal consolidada para analizar bases
de datos complejas e inferir relaciones entre variables. Para profundizar en las ventajas de
incorporar cierto grado de no linealidad en el modelado de bases de datos menos complejas,
en el caṕıtulo siguiente se demuestra cómo incluso la introducción de sutiles no linealidades en
un modelo lineal multivariante puede mejorar la precisión predictiva, superando a menudo el
rendimiento de técnicas no lineales más complejas.

Capacidad predictiva de un modelo factorial dinámico para predecir homicidios
con arma de fuego

Al igual que ocurre con el ciclo económico, los responsables poĺıticos dependen en gran me-
dida de la información oportuna sobre la evolución de la dinámica de los cŕımenes para la toma
de decisiones que busquen su reducción. De hecho, no sólo los responsables poĺıticos tienen
interés en su seguimiento, si no que para agentes económicos como aseguradoras o el sector
inmobiliario es también de gran importancia. Como ocurre con los organismos estad́ısticos al
tratar los datos económicos recogidos, los datos sobre delincuencia, debido a la investigación
necesaria y a los procedimientos establecidos, están sujetos a un considerable retraso en la publi-
cación de los datos oficiales. Este problema es especialmente relevante en un páıs muy castigado
por la violencia criminal como es Estados Unidos. Como consecuencia de la desigualdad y el
acceso a las armas de fuego, el páıs sufre altos ı́ndices de violencia armada que se traducen
en consecuencias no sólo sociales sino también económicas. Aunque se observó una reducción
de los niveles de delincuencia a principios del siglo XXI, la violencia armada ha aumentado
recientemente en Estados Unidos (Gramlich, 2022), lo que se refleja en que la violencia armada
se ha convertido en el segundo tema de preocupación para los estadounidenses (Ipsos, 2022).

No obstante, como ocurre con los datos macroeconómicos con los datos de registro o de
confianza que aparecen con menor retraso en su publicación, han aparecido también diferentes
bases de datos en la descripción de la violencia armada con carácter de publicación más inmedi-
atos: desde bases de datos crowdsource, hasta datos de medios de comunicación o registros de
verificación de antecedentes, éstos suponen una cantidad de información previa a la publicación
de los datos oficiales que resulta de gran interés para anticiparse a la dinámica a seguir, ya



que el retraso en la publicación por parte del Centro de Control y Prevención de Enfermedades
(CDC) de los registros de homicidios con armas de fuego es de hasta 23 meses. Aunque en
la literatura se han propuesto modelos autorregresivos univariantes, como los presentados en
McDowall (2002), también se han explorado modelos autorregresivos multivariantes, como en
Blumstein y Rosenfeld (2008). En esta ĺınea, Cherian y Dawson (2015) introdujeron un modelo
ARIMA bivariado que vincula los homicidios con indicadores económicos concurrentes, mien-
tras que Parkin et al. (2020) desarrollaron un modelo VAR que relacionaba la presencia de
determinados agentes con las tasas de homicidio. Recientemente, técnicas no lineales como el
bosque aleatorio en Berk et al. (2009) o las redes neuronales de memoria corta (LSTM por sus
siglas en inglés) en Meskela et al. (2020) y Devi y Kavitha (2021) han mostrado ser también
de interés en este contexto, aunque estas técnicas dependen de la riqueza de la base de datos
para poder realizar predicciones precisas.

En el contexto de unas fuentes de datos principales cada vez más accesibles, en este tercer
caṕıtulo ajustamos un modelo factorial dinámico (Stock y Watson, 1991) a los datos oficiales de
los CDC sobre homicidios con armas de fuego, junto con distintas series con datos económicos,
de los medios de comunicación o de crowdsourcing, estimados mediante un filtro de Kalman no
lineal, con la capacidad de incluir datos de distinta frecuencia y datos ausentes sin actualizar
el filtro para dichas observaciones faltantes, siguiendo a Brockwell y Davis (2009). El modelo
describe bien la dinámica y también demuestra tener una mayor capacidad predictiva que
los modelos autorregresivos paramétricos y los modelos de aprendizaje automático, incluso
teniendo en cuenta en éstos también la presencia de esos datos anticipados para sus predicciones,
especialmente ante los incrementos registrados como consecuencia de los disturbios tras el caso
George Floyd y el repunte durante la pandemia de Covid-19.

Si bien los caṕıtulos hasta este punto profundizan por un lado en la modelización no
paramétrica y no lineal, y por otro lado tanto en la aplicación de métodos no lineales a bases de
datos complejas como en la inclusión de no linealidades en modelos lineales, la mayor disponi-
bilidad de datos que ha impulsado el uso de técnicas no lineales también se aplica en las técnicas
de panel, lo que se analiza a continuación en el último caṕıtulo de esta tesis.

Un modelo de panel dinámico no lineal para explicar las conexiones entre páıses

Los recientes shocks económicos extraordinarios que suponen la Gran Recesión y la Covid-19
se han producido al mismo tiempo que el aumento del uso de las telecomunicaciones, la global-
ización del turismo y los niveles de comercio internacional alcanzan niveles sin precedentes. Si
bien la globalización ha provocado un cambio de paradigma, su papel en la propagación de las
perturbaciones en este mundo más interconectado no está claro, como señala Eickmeier (2007).
La transmisión de las perturbaciones es, de hecho, una cuestión aún más relevante para los
páıses de la UEM debido a su particular diseño.

Sin embargo, cuando la sincronización de los ciclos económicos ha sido objeto de investi-
gación, no se ha llegado a un consenso definitivo. Las perspectivas van desde las que afirman
la existencia de un único ciclo económico (Giannone, 2010), hasta las que abogan por más
de uno (Aguiar-Conrario y Soares, 2009). Ambos puntos de vista se unen parcialmente en
Gehringer y Konig (2021), donde apuntan a la idea de que la integración económica impulsó
una sincrońıa que se detuvo con la crisis de deuda. Además, Crespo-Cuaresma y López-Amador
(2013) sostienen que de hecho la integración monetaria no aumentó la sincronicidad sino las
interdependencias entre un grupo de páıses. Si bien en este contexto la conectividad se ha
inferido recientemente para la UE en Arcabic y Skrinjaric (2021) y para el sector bancario de
los páıses de la UEM en Magkonis y Tsopanakis (2020), la literatura sin embargo carece de



modelos que expliquen tales interdependencias.

Aśı, en este caṕıtulo, primero derivamos las conectividades (o spillovers) entre la producción
industrial mensual de 11 páıses de la UEM basándonos en la propuesta de Diebold y Yilmaz
(2009). A continuación, analizamos la estructura de las conectividades y proponemos un modelo
de panel dinámico no lineal con estructura TAR basado en la propuesta de Seo y Shin (2016). El
enfoque se inspira en un modelo de gravedad (Anderson y Wincoop, 2003), pero donde el nivel
de umbral entre reǵımenes viene determinado por el ı́ndice de conectividad global estimado
de la muestra. La introducción tanto de un término dinámico como de un efecto umbral se
debe a la naturaleza persistente y asimétrica de la dinámica de las conectividades. De nuestros
resultados se desprende que la visión aceptada de la estructura nucleo-periferia no prevalece en
la estructura de conectividad obtenida, en ĺınea con los resultados de Matesanz et al. (2017),
y también observamos que la conectividad retardada, junto con el turismo y las exportaciones,
juegan un papel relevante explicando los spillovers, tanto en el régimen superior como en el
inferior definidos por el umbral, mientras que el PIB diferenciado es relevante en el régimen
superior y la similitud industrial marginalmente en el régimen inferior. Consecuentemente, la
propuesta también proporciona un indicador con dos reǵımenes con diferentes niveles de conec-
tividad entre páıses, con implicaciones para los responsables poĺıticos a la hora de establecer
medidas para hacer frente a las fluctuaciones económicas, teniendo en cuenta los periodos en
los que estas medidas podŕıan ser más eficaces.

En resumen, esta tesis combina técnicas de modelización no lineales y no paramétricas,
análisis de datos complejos y metodoloǵıas innovadoras para abordar diversos aspectos de la
modelización económica, la previsión y la comprensión de la dinámica económica. Cada caṕıtulo
contribuye a la literatura económica en general ofreciendo hallazgos y aplicaciones prácticas
tanto para los responsables poĺıticos como para los investigadores y los agentes económicos.
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Chapter 1
Introduction

1.1—Nonlinear modeling

The primary and enduring method of choice to elucidate relationships, dynamics and, in general,

to model the behaviour of both individuals and macroeconomic indicators, has consistently

been the linear approach. Its simplicity enables economists to communicate economic ideas

and relationships in a clear and concise manner, facilitating their interpretation-an essencial

aspect of economic and political decision-making. Additionally, it allows for intuitive analysis,

for instance, of elasticities and forecasting.

Nonetheless, seldom reality is driven by linear behavior. Economics is a complex system

comprising multiple interdependent variables that may interact nonlinearly, leading to unpre-

dictable or counterintuitive outcomes when traditional linear methods are employed. Numerous

instances exist where macroeconomics or microeconomics do not conform to linear behavior.

For instance, responses to shocks can be described using nonlinear impulse response functions

in case of persistent time series, as seen in Potter (1998) regarding US GNP, or credit can act

as a nonlinear propagator economic shocks (Balke, 2000). Furthermore, changes in economic

variables can yield non-proportional responses in other variables, as consumption does in re-

sponse to wealth, income and interest rate shocks (Coskun, Apergis, and Coskun, 2022), or as

stock markets response to oil price shocks (Escobari and Sharma, 2020), or GDP does also to

them (Karaki, 2017).

Hence, the application of nonlinear techniques in economics has gained significance in

recent years, and can provide multiple advantages. The first of all to be highlighted is the higher

ability in accuracy while modeling and forecasting. Economic dynamics frequently exhibit non

straightforward dynamics, such as threshold effects, chaos or second-order derivative effects.

Linear techniques, incapable of accommodating these complexities will fall short in terms of

accuracy. Therefore, nonlinear models, less prone to suffer in those cases, may lead to higher

forecasting accuracy.

While nonlinear modeling can be traced back at least to Hicks (1950) and Goodwin (1951)

1
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as a solution to address the oscilatory time path problem in the lineal approach that for instance

appeared in the approach in Samuelson (1939), it was after the development of linear models

in time series with the influential paper by Box and Jenkins (1976) that popularized ARIMA

models (based on Whittle’s seminal work in 1951), and its extension to the multivariate context

by Sims (1980), when non-linear models are most developed while extending linear approaches.

Since the aforemention ARIMA and multivariate models rely on the assumption of linearity and

assume symmetry, which seldom are fulfilled, Tong (1978) introduced the concept of threshold

effects in the Threshold Autoregressive (TAR) model to take into account asymmetry, later

incorporating Anderson and Teräsvirta (1992) a smooth transition in the threshold through

the smooth transition autoregressive (STAR) model. For cases where the shift of regime is

assumed to be modellable, Tong (1990) proposed the Self-Exciting Threshold Autoregressive

(SETAR) models where lagged observations of the dependent variable cause regime shifts, while

Hamilton (1989) assumes a Markov process to underlie these shifts. These models have then

been extended to a multivariate context, such as the Threshold Vector Autorregresive (TVAR)

model (Tsay, 1998; Hubrich and Teräsvirta, 2013), the Vector Smooth Transition Autoregressive

Models (Camacho, 2004; Teräsvirta and Yang, 2014), the Multivariate Self-Exciting Threshold

Autoregressive (MSETAR) models (Arnold and Günther, 2001), and the Markov Switching

Vector Autoregressive (MSVAR) model (Krolzig and Krolzig , 1997).

Nonetheless, the introduction of these more sophisticated dynamics sometimes requires

of nonparametric techniques for testing and estimation, less prone to suffer when data present

nonlinearities. Boostrap techniques, for instance, have been applied for testing threshold effects

in Giannerini, Goracci, and Rahbek (2021), and as estimation technique in the Markov Switch-

ing model in Ho (2001), while Genetic Algorithm has been employed as estimation technique

in MSETAR models in Baragona and Cucina (2013). Within the same context of extending

linear modelling, the EGARCH (Nelson, 1991), the GJR (Glosten, Jagannathan, and Run-

kle, 1993), or the smooth transition GARCH (Hagerud, 1997; Lanne and Saikkonen, 2005)

models are nonlinear extensions of linear GARCH models (Bollerslev, 1986) which failed to

correctly capture asymmetric volatility as pointed in Bildirici and Orsen (2014). Additionally,

hybrid combinations have been also proposed, as for instance the Fuzzy-EGARCH-ANN model

(Mohammed, Aduda and Kubo, 2020) to better capture asymmetries in volatility of finan-

cial returns. Last but not least, the widely used Dynamic Factor Models (Stock and Watson,

1991) for business cycle forecasting, as extended in Brockwell and Davis (2009), incorporate

nonlinearity by integrating the Kalman Filter without updates when handling missing values,

augmenting the initial proposal to a nonlinear framework. Another form of nonlinear exten-

sion within these models is the second-order dynamics form proposed in Guerrón-Quintana,

Khazanov, and Zhong (2021) and which is estimated through Unscented Kalman Filter.

A second feature to emphasize when delving into nonlinear modeling in time series is its

heightened ability to handle large and intricate data. In recent times, economic data have in-

creased in size and complexity, resulting in larger datasets with entangled relationships. Certain
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nonlinear techniques, such as agent based models and machine learning techiques prove useful

in handling such voluminous data. What’s more, nonlinear techniques might help to uncover

relations that would not be detected through linear techniques. While some of these techniques

trace back in time, their utility has become increasingly evident due to the proliferation of

data availability, leading to broader adoption in social sciences and economics. For instance,

Random Forest (RF) techniques (Breiman, 2001) have recently found application in predicting

GDP growth and poverty (Adriansson and Mattsson, 2015; Sohnesen, 2017) employing tools

like variable importance measures and partial dependence plots to explore economic relations.

Gradient Boosting (Friedman, 2001) has been utilized in predicting failures in the US bank-

ing sector (Carmona, Climent and Momparler, 2019) and forecasting real GDP growth (Yoon,

2021). Support Vector Machines (Boser et al. 1992) have been deployed to forecast energy

markets prices in Papadimitriou, Gogas, and Stathakis (2014), and Recurrent Neural Networks

(Rumelhart et al., 1986) have been applied for forecasting exchange rates in Kuan and Liu

(1995), and to forecast nonlinear inflation in Almosova and Andresen (2023).

In fact, when economics, particularly econometrics, emerged as a discipline, the scarcity

of both cross-sectional and longitudinal data made linear modelling more appealing than non-

linear modelling. Nonlinear approaches were considered less suitable for extracting information

in the face of data scarcity. However, nowadays, the capacity for data collection, the availability

of extensive historical data, and enhanced computational capabilities have made nonlinear

modeling more alluring and attainable.

Furthermore, and related to the both mentioned higher data availability and the desire

to extend linear modeling, in the recent years an increasing literature on nonlinear panel data

models. The growing storage capacity has made time series data for various individuals readily

accessible, making panel data particularly relevant. To incorporate nonlinearities into panel

data modeling, Hansen (1999) developsd a panel threshold model, subsequently extended to a

smooth transition panel framework by González, Teräsvirta, and van Dijk (2004). Kremer et

al. (2013) put forward a threshold dynamic panel model, estimated through GMM, allowing for

endogenous regressors but equiring exogeneity of the transition variable. Seo and Shin (2016)

generalized this approach allowing endogenous and exogenous regressors but also the transition

variable.

In a nutshell, nonlinear techniques in time series analysis offer the potential to model the

complexity of economic systems, provide richer descriptions of their dynamics, and enhance

predictive accuracy, ultimately leading to more informed decision-making.
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1.2—Contribution

This dissertation endeavors to contribute to this literature through a range of distinct analyses.

To provide an overview of these contributions, along with the structure of the dissertation, we

can summarize them as follows. In Chapter 2, we propose a non-parametric univariate model

to predict ECRI-dated recessions for G7 countries. This is a relevant issue, particularly in

the aftermath of the profound economic repercussions of the Covid-19 pandemic, where many

forecasting models have experienced diminished accuracy. In Chapter 3, we use a decision tree

family model to examine which economic indicators are the best predictors of recessions in the

Spanish economy based on a sample of 270 monthly indicators over 50 years. The availability

of extensive and comprehensive databases has made it increasingly feasible to utilize techniques

capable of identifying intricate and multifaceted relationships. In Chapter 4, we propose the

application of a dynamic factor model to gun homicides in the USA, where the model is es-

timated through a nonlinear Kalman filter due to the presense of missing observations, and

compares its performance with other linear and non-linear models. The timeliness of official

data publication has significant implications for policymakers, making this research particu-

larly relevant. In Chapter 5, we propose a non-linear dynamic panel model based on a gravity

model to explain the cross-country spillovers between euro area countries, previously estimated

using the variance decomposition methodology of the prediction errors of a VAR model. Under-

standing the varying degrees of interconnectedness among countries over time is of paramount

importance and carries significant implications for economic and monetary policy.

In addition to their substantive contributions, each of these chapters also offers value

in terms of code implementation. Some chapters feature novel model proposals, while others

involve the adaptation of models from programming languages such as Gauss or Matlab to

R. This transversal dimension adds depth and practicality to the research, making it not only

academically meaningful but also accessible and applicable in real-world contexts.

Nonparametric nonlinear univariate modeling to forecast economic recessions

Early warning systems play a key role in the ability of economic agents to make appro-

priate investment and savings decisions. They also significantly influence the policy decisions

of governments and policymakers. Consequently, the academic literature abounds with propos-

als for early warning systems: from Hamilton’s famous article proposing a Markov Switching

model (1989), to the STAR approach advocated by Anderson and Terasvirta (1992), and the

probit model of Estrella and Mishkin (1998). A little earlier, Wecker (1979) made a pro-

posal for forecasting based on an autoregressive model, which later Camacho and Perez-Quirós

(2002) confirmed to have considerable empirical capacity. This is usually done by comparing

the periods identified as having a high probability of recession with the periods identified by

the National Bureau of Economic Research (NBER) and Economic Cycle Research Institute

(ECRI).
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Nevertheless, an unprecedented event since economic data have been available, the eco-

nomic collapse caused by the COVID-19 pandemic and the rapid countercyclical measures im-

plemented by policymakers, caused a fall in economic activity of previously unrecorded magni-

tude followed by a rebound of similar magnitude, which has caused major adjustment problems

in the models mentioned above. Some proposals treat this recession in a unique and special

way to adapt parametric approaches (Leiva-León, Perez-Quirós and Rots, 2020; Carriero et

al., 2021; Ng, 2021), while the indicators of institutions such as the Econbrowser GDP-based

recession indicator index (based on the MS model in Chauvet and Hamilton, 2006) fixes the

parameters for the second quarter of 2020 and do not update their calculation in that period,

or the St. Louis Fed recession probability indicator (based on the model of Chauvet and Piger,

2008), estimates allowing for a change of model parameters in the aforementioned quarter.

Similarly, McGrane (2022) ceased parameter estimation at the end of 2019.

The first chapter of this dissertation contributes to this literature by proposing a non-

linear and non-parametric approach to recession forecasting where the proposal does not require

modification of the database or the model, which is robust to influential observations. The

proposal is constructed on the basis of Wecker’s proposal. This extension enables the generation

of forecasts for a future time period (h-period ahead) at a given time point t by augmenting the

current time series with historical increments found within (h + 1)-dimensional blocks extracted

from the time series’ past. These forecasted paths are subsequently utilized to calculate the

relative frequency of technical recessions as a weighting of the different possible prediction paths,

obtained by embedding the series in the symbol space. By means of a Monte Carlo simulation

exercise, we analyse the prediction capacity of the proposal in the face of non-linearities in the

data against the Wecker approximation and against a Markov Switching model, obtaining a

robust performance in our case against the competitors’ problems. The empirical exercise is

carried out for the G7 countries, obtaining a higher predictive capacity in the in-sample exercise

after the incorporated observation derived from the pandemic.

While the first chapter focuses on its contribution to the use of non-linear and non-

parametric modeling in univariate time series with data-generating processes featuring non-

linearities, it dealt with a simple database so that the use of non-linearity was not needed to

uncover complex relationships in extensive databases but to deal with data problems in the

data generating process. The subsequent chapter does examines how non-linear modeling can

assist in regard to extensive databases.

Identification of the economic indicators that predict recessions in Spain

The Great Recession caused by the financial crisis from 2008 to 2012 had economic con-

sequences that had a particularly profound impact on Spain. Although Spain’s economic cycle

has been characterized by periods of strong growth and intense recessions due to the fact that

it is an economy with a high dependence on external factors, but at the same time with a

growth model also based on consumption-dependent sectors. However, the magnitude of the
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Great Recession and its repercussions on employment, the banking system, housing, and the

erosion of economic confidence heightened interest in analyzing Spain’s economic cycle.

In recent years, various economic indicators based on different economic variables have

been proposed, such as in Camacho and Doménech (2012) or in Cuevas, Pérez Quirós and

Quilis (2017). At the same time, analysis on the synchronization of economic activity in Spain

in relation to international economies has been performed, as in Camacho, Caro and López-

Buenache (2020), as well as analysis of the synchronization at the regional level as in Gadea-

Rivas, Gomez-Loscos and Leiva-León (2019) and analysis of the synchronization of the spanish

regions with the national cycle as in Camacho, Pacce and Ulloa (2018). Despite these endeavors,

there remains a notable absence of research focused on identifying the indicators that are most

effective in anticipating recessionary periods in the Spanish economy. This gap is significant

given the time lag with which the Cycle Dating Committee evaluates economic peaks and

troughs.

Analytical efforts have been undertaken for countries of global economic importance,

such as the United States and Germany, both of which have the capacity to influence the

world economic cycle. Researchers have utilized decision tree techniques in these contexts.

In particular, Ng (2014) investigated the ability of gradient boosting trees to predict economic

recessions in the USA, while Döpke, Fritsche and Pierdzioch (2017) conducted a similar analysis

for the case of Germany. At the same time, Ward (2017) explored the ability of random forest to

identify international financial crisis. Recently, Piger (2020) conducts a comparative analysis

of several predicting methods, including the boosting technique, for the case of the United

States and finds that the latter yields superior results. In this chapter, we use this technique

to analyze the different indicators for the case of Spain using the OECD MEI database, which

has up to 270 monthly indicators, some of them collected since 1970.

The gradient boosting technique makes it possible to analyze both the predictive capac-

ity and the importance of the variables in making the prediction, and even the interaction

between variables when constructing the probability of recession. The approach showed very

high ability to predict recession in both three and six month ahead forecast horizon, both in

sample and in out of sample exercises. Moreover, leading indicators of trend GDP and car sales

together with registered unemployment data appeared to be key indicators in the prediction,

helped by confidence, stock and interest rates indicators. However, while the key indicators to

predict the Great Recession were financial indicators and the leading indicator of construction,

to predict economic recession derived from Covid-19 car sales, registered unemployment and

leading indicators of GDP were again the key indicators.

Therefore, this chapter makes use of an established nonlinear technique for analyzing com-

plex databases and inferring relationships between variables. To further explore the advantages

of incorporating a degree of nonlinearity in modeling less complex databases, the subsequent

chapter demonstrates how even the introduction of subtle nonlinearities into a linear model
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can enhance predictive accuracy, often surpassing the performance of more complex nonlinear

techniques.

Predictive ability of a dynamic factor model predicting homicides with gun

Similar to the economic cycle, policymakers heavily rely on timely insights into evolving

crime dynamics. In fact, it is not only political decision-makers who are interested in moni-

toring it, but also economic agents such as insurers. As is the case with statistical agencies

when processing the economic data collected, crime data, due to the necessary research and

established procedures, is subject to a considerable delay in official data released. This problem

is especially relevant in a country hit particularly hard by criminal violence such as the United

States is. As a result of inequality and access to firearms, the country suffers high rates of gun

violence that translate into not only social but also economic consequences. While a reduction

in crime levels was observed at the beginning of the 21st century, gun violence has recently

increased in the United States (Gramlich, 2022), which is reflected in gun violence becoming

the second most important issue of concern to Americans (Ipsos, 2022).

Nevertheless, as is also the case with macroeconomic data, with registry or confidence

data appearing with little delay in their publication, different databases have appeared in the

description of gun violence: from crowdsource databases, to media data or background check

registries, these represent a quantity of information ahead of the publication of the data to

be published that is of great interest to anticipate dynamics to appear, since the delay in the

publication by the Center for Disease Control and Prevention (CDC) of gun homicide records is

as long as 23 months. While the literature has proposed univariate autoregressive models, such

as those presented in McDowall (2002), it has also explored multivariate autoregressive models,

as in Blumstein and Rosenfeld (2008). In this vein, Cherian and Dawson (2015) introduced a

bivariate ARIMA model linking homicides to concurrent economic indicators, while Parkin et

al. (2020) developed a VAR model relating the presence of certain agents to homicide rates.

Recently, non-linear techniques such as random forest in Berk et al. (2009) or short memory

neural networks in Meskela et al. (2020) and Devi and Kavitha (2021) have also been shown to

be interesting in this context, although these techniques depend on the richness of the database

to be able to make accurate predictions.

In the context of increasingly accessible leading data sources, in this third chapter we

fit a dynamic factor model (Stock and Watson, 1991) to official CDC data on gun homicides,

together with different series with economic, media or crowdsourced data, estimated through a

nonlinear Kalman filter, with the ability to include data of different frequency and missing data

without updating the filter for missing observations, as in Brockwell and Davis (2009). The

model describes the dynamics well and also has a higher capacity than parametric autoregressive

and machine learning models, even taking into account the presence of such advance data for

its predictions, especially in the face of the increases recorded as a consequence of the riots

following the George Floyd case and the spike in the Covid-19 pandemic.
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While the initial chapters delve into non-parametric, non-linear modeling and the appli-

cation of non-linear methods to complex databases and include non-linearities in linear models,

the increased availability of data that has driven the use of non-linear techniques also in panel

techniques, discussed in the last chapter of this thesis below.

A dynamic nonlinear panel model to explain cross-country connectedness

The recent extraordinary economic shocks, spanning the Great Recession and the Covid-

19 recession, have occurred concurrently with the increased use of telecommunications, the

globalization of tourism, and record-high levels of international trade. While globalisation

has brought about a paradigm shift, its role in the propagation of shocks within this more

interconnected world is not clear, as Eickmeier (2007) points out. The transmission of shocks is

in fact an issue of even greater relevance for EMU countries because of their particular design.

Although the synchronization of economic cycles has been a subject of thorough investi-

gation, yet it has failed to yield a definitive consensus. Perspectives range from those asserting

the existence of a single business cycle (Giannone, 2010), to those views advocating for more

than one (Aguiar-Conrario and Soares, 2009). Both views are partially joined in Gehringer and

Konig (2021) where they point to the idea that economic integration drove a synchronicity that

stopped with the debt crisis. Furthermore, Crespo-Cuaresma and Lopez-Amador (2013) argue

that monetary integration did not increase synchronicity but interdependencies among a group

of countries. While connectivity has recently been inferred for EU in Arčabić and Škrinjarić

(2021) and for EMU countries’ banking sector in Magkonis and Tsopanakis (2020), however,

there is a lack of modeling to explain such interdependencies in the literature.

Hence, in this chapter, we first derive the cross-country connectivities based on the Diebold

and Yilmaz (2009) proposal for the monthly industrial production of 11 countries from the

EMU. Then, we analyze the structure of the connectivities, and propose a nonlinear dynamic

panel model with TAR structure based on the Seo and Shin (2016) proposal. The approach

is inspired by a gravity model (Anderson and Wincoop, 2003), where the treshold level be-

tween regimes was determined by the estimated global connectivity index of the sample. The

introduction of both a dynamic term and a threshold effect is due to the persistent and asym-

metric nature of the spillovers’ dynamics. We observed from our findings that the accepted

core-periphery view was not prevailing in the connectivity structure obtained, in line with the

results in Matesanz et al. (2017), and we also obtained that the lagged spillover, together with

tourism and exports play a relevant role explaining the spillovers in both the upper and lower

regimes defined by the treshold, while the differentiated GDP was relevant in the upper and the

industrial similarity marginally in the lower regime. The proposal also provides therefore an

indicator with two regimes with different levels of connectivity between countries, with impli-

cations for policymakers when establishing measures to address economic fluctuations, taking

into account the periods where these measures could be most effective.
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In summary, this dissertation combines non-linear and non-parametric modeling tech-

niques, complex data analysis, and innovative methodologies to address various aspects of eco-

nomic modeling, forecasting, and understanding economic dynamics. Each chapter contributes

to the broader economic literature by offering unique insights and practical applications for

policymakers and researchers alike.
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González, A., Teräsvirta, T., and van Dijk, D., 2004. Panel smooth transition regression model

and an application to investment under credit constraints. Unpublished manuscript, Stockholm

School of Economics.

Goodwin, R. M., 1951. The nonlinear accelerator and the persistence of business cycles. Econo-

metrica: Journal of the Econometric Society, 1-17.

Gramlich, J., 2022. What the data says about gun deaths in the US. Pew Research Center.

Guerrón-Quintana, P. A., Khazanov, A., and Zhong, M., 2021. Nonlinear Dynamic Factor

Models. Unpublished manuscript.

Hagerud, G. E., 1997. A smooth transition ARCH model for asset returns. Stockholm School

of Economics, the Economic Research Inst.

Hamilton, J. 1989. A new approach to the economic analysis of nonstationary time series and

the business cycle Econometrica 57: 357-384.

Hansen, B. E., 1999. Threshold effects in non-dynamic panels: Estimation, testing, and infer-

ence. Journal of Econometrics, 93(2), 345-368.

Hicks, J., 1950. A Contribution to the Theory of the Trade Cycle. Clarendon Press, Oxford.

Ho, T. W., 2001. Finite-sample properties of the bootstrap estimator in a Markov-switching

model. Journal of Applied Statistics, 28(7), 835-842.
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Chapter 2
Nonparametric nonlinear univariate

modeling to forecast economic

recessions

2.1— Introduction

Early detection of changes in business cycle phases is crucial for consumption, investment,

savings, and production decisions made by economic agents, as well as for making monetary

and fiscal policies. Since phase changes are officially recognized long after they start, developing

early warning mechanisms to forecast recessions has been a long-standing quest for academics,

market practitioners, and policymakers.

To provide timely early warning of an approaching recession, academics usually rely on

nonlinear parametric methods that produce probabilistic statements of future phase changes

from business cycle indicators, such as the growth rates of quarterly real Gross Domestic Prod-

uct (GDP). To name only a few, Estrella and Mishkin (1998) used a probit model, Hamilton

(1989) developed a Markov-switching autoregressive (MSAR) specification, and Teräsvirta and

Anderson (1993) proposed a Smooth Transition Autoregressive (STAR) model.

In addition, Wecker (1979) offered a heuristic solution to compute inferences of future

recessions from linear autoregressive (AR) models based on Monte-Carlo simulations of forecast

paths. Considering a technical recession (two consecutive quarters of decline in the GDP) as a

recession event, the method consists of computing the relative frequency of technical recessions

across the simulated forecasts. Despite its simplicity, Hamilton and Perez-Quirós (1996) and

Camacho and Perez-Quirós (2002) showed the considerable empirical reliability of this approach

to provide forecasts of US recession probabilities.

One way to assess the goodness of fit of recession forecast models is to examine their

ability to identify official recessions as determined by national Dating Committees, such as the

committee of the National Bureau of Economic Research (NBER) for the US economy. Regard-
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less of how successful the parametric methods have been in the past, in 2020, the parametric

dating methods were exposed to unprecedented atypical data that challenged their ability to

provide reliable probability forecasts of future recessions. In 2020, due to the economic collapse

caused by the COVID-19 pandemic and the rapid countercyclical measures implemented by

policymakers, most industrialized countries recorded the sharpest fall and the largest rebound

in quarterly GDP since records began. In this chapter, we show that these leverage points have

dramatically altered the state of affairs in performing business cycle inferences.1

To overcome this drawback, the empirical approaches used to compute forecasts of re-

cession probabilities with parametric models rely on the shortcut of manipulating the sample

to estimate the model parameters. One example is the Econbrowser GDP-based recession

indicator index, which estimates recession probabilities by applying a methodology based on

the Markov-switching model developed by Chauvet and Hamilton (2006). To keep the index

working after the dramatic drop in the second quarter of 2020, the parameters of the Markov-

switching model were not estimated but fixed with the values of the estimated parameters using

data only up to the first quarter of 2020. In the same vein, McGrane (2022) obtained the post-

COVID recession probabilities from a Markov-switching model estimated with data only up to

2019. On a monthly basis, the recession probability index maintained by the St. Louis Fed and

documented by Chauvet and Piger (2008), is computed from a Markov-switching model that

allows a change in model parameters associated with the period from March 2020 to July 2020.

The aim of this chapter is to introduce a new approach to compute h-step ahead predictive

probabilities of future recessions that does not require manipulating the sample of the database

because the method is robust to influential points and other data irregularities, such as struc-

tural breaks, heteroskedasticity and Autoregressive Conditional Heteroskedasticity (ARCH).

Specifically, we propose a nonparametric extension of Wecker’s method that generates h-period

ahead forecast paths at time t by adding to the time series under consideration at time t the

past increments occurred in the set of (h+1)-dimensional blocks that can be extracted from the

past of the time series. Then, the forecast paths can be used to compute the relative frequency

of technical recessions.

As we will show below, this strategy implies assuming equal weigths for all the past

increments, which seems unreliable in practice. For example, past blocks of the time series

referring to recovery periods exhibit upward trends that would hardly ever occur when time

t refers to a downturn. To overcome this drawback, we embed all the forecast paths into a

symbolic space and derive the expressions required to compute the probability of occurrence

of each of the symbols at the time of the forecast. Thus, we compute the relative frequency of

a technical recession across the forecast paths by weighting each path differently according to

1Although not in the context of forecasting recessions, Lenza and Primiceri, 2020, Leiva-Leon, Perez-Quiros
and Rots, 2020, Antolin-Diaz, Drechsel and Petrella, 2021, Carriero at al., 2021, and Ng, 2021, have recently
investigated some ways to handle the unique features of the COVID-19 recession in time-series forecasting with
parametric approaches.
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the probability of the corresponding symbol occurring at time t.

The advantage of forecasting recession probabilities in this way compared to linear and

nonlinear parametric approaches is twofold. Firstly, the method is nonparametric so there is

no need to make any assumption in a specific dynamic model for the given population. In

addition, performing of recession probabilities to provide accurate business inferences does not

depend on the estimates of the model parameters, which tend to be unstable under structural

breaks and large outliers. Secondly, the impact of extreme values appearing in some past

blocks of the time series, like those observed in the pandemic period, are expected to average

out when computing the weighted relative frequency of the technical recessions and their impact

on forecasting performance becomes negligible.

By conducting several Monte Carlo experiments designed to capture standard data prob-

lems that characterize economic data sets, we evaluate the finite-sample performance of the

proposed algorithm to predict recession probabilities. To assess its forecasting performance,

we analyze Receiver Operating Characteristic (ROC) curves, Brier Scores, and Cohen’s Kappa

coefficients. In absence of data problems, we use these statistics in an out-of-sample fore-

casting scenario to show that the nonparametric approach developed in this chapter behaves

similarly to Markov-switching and Wecker’s approaches in one-period forecasting but its rela-

tive improvement over parametric approaches consistently increases with the forecasting hori-

zon. In the presence of influential observations and structural breaks, and when the errors

are heteroskedastic or present ARCH dynamics, the nonparametric approach outperforms the

parametric models.

Finally, we evaluate the ability of our nonparametric method to compute accurate in-

sample forecasts of recession probabilities of future recessions (captured by NBER and ECRI

recession dates) from national GDP growth rates in the G7 countries. Using pre-pandemic

data, the Markov switching approach slightly outperforms the other approaches at one-period

forecasting, although there are no sizeable differences with the nonparametric proposal as the

forecasting horizon increases. Undoubtedly, the best-performing model is the nonparametric

approach when the extreme values of GDP growth rates observed in 2020 are included in the

sample because its forecasts of recession probabilities are barely affected by these influential

observations.

The chapter is organized as follows. Section 2 introduces the nonparametric approach to

compute forecasts of recession probabilities. Section 3 shows the results of the Monte Carlo

simulations. Section 4 applies the models to forecast recession probabilities in the G7 countries

from quarterly GDP growth rate data. This section highlights the estimation problems faced by

parametric approaches when the extreme figures observed in 2020 are included in the data set.

Section 5 concludes and outlines some further research lines. This is followed by the references,

appendices, tables and figures referred to in the chapter.
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2.2—Robust probabilistic recession statements

Based on a novel extension of Wecker’s (1979) proposal, this section describes a new procedure

to compute h-period forecasts of recession probabilities. For clarity, we first describe the linear

approach and then present our nonparametric extension.

2.2.1. The linear approach

The approach proposed by Wecker (1979) offers a heuristic solution to compute business cycle

inferences with linear autoregressive models based on Monte-Carlo simulations. Let {y1, . . . , yt}

be the observed values of a stationary and ergodic time series, yt, and let {ŷt+1, . . . , ŷt+h} be the

predictions of its uncertain future values {yt+1, . . . , yt+h}.

To adapt the method to our context, let yt be the growth rates of the seasonally adjusted

real GDP series for a given country. We rely on the popular definition of a technical recession to

state the occurrence of a recession, which requires the GDP to fall for at least two consecutive

quarters.2 To obtain a probabilistic statement about the event of a recession, we define zt as

the sequence of indicator variables that indicate a recession at t, whose outcomes rely on the

time series yt according to the rule

zt(yt−1, yt) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if yt−1 < 0 and yt < 0

0 otherwise
. (2.1)

Thus, the rule identifies a recession after two (or more) successive declines.

To estimate the h-step-ahead forecast of the probability of a recession, the vector of present

and future values of the time series Yh(t + 1) = {yt, yt+1, . . . , yt+h−1, yt+h}, for h ≥ 1, must be es-

timated. Assuming that the data-generating process is a univariate autoregressive Gaussian

model, sample paths of the future values of the time series can be repeatedly generated. Con-

cretely, one can draw a number M of vectors of forecasts {(ŷmt+1, . . . , ŷ
m
t+h)}

M
m=1 from N(µt,Q),

where explicit forms of the mean and covariance matrix for different forecasting horizons are

derived in Appendix A. This leads to (h + 1)-dimensional forecast paths

Ŷ m
h+1(t) = (yt, ŷ

m
t+1, . . . , ŷ

m
t+h), (2.2)

where m = 1, . . . ,M and we set ŷmt = yt.

Then, using the rule of two consecutive periods of declining stated in (2.1), we can compute

M realizations of the indicator variable ZM
t+h = {zt+h(ŷ

m
t+h−1, ŷ

m
t+h)}

M
m=1. Notice that, since the dis-

2Among others, this definition has been used by Hamilton and Perez-Quiros (1996) and by Camacho and
Perez-Quiros (2002) to compute business cycle inferences from linear autoregressive models.
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tribution of future values of the time series conditioned to its past values, gy(yt+1, . . . , yt+h∣y1, . . . , yt),

can be approximated by the empirical distribution of the generated forecast paths Ŷ m
h+1(t), the

distribution of zt+h can also be approximated by the empirical distribution of ZM
t+h, as stated

in Wecker (1979). Therefore, the sample mean of this empirical distribution is taken to be a

forecast of the probability that the economy will be in recession at date t + h

PL(zt+h = 1) =
1

M

M

∑
m=1

zt+h(ŷ
m
t+h−1, ŷ

m
t+h), (2.3)

for any look-ahead horizon h.

From this expression, it becomes clear that the ability of PL to detect future recessions

depends crucially on the performance of the forecasting model used to compute reliable forecasts

of (yt+1, . . . , yt+h). In this context, it is evident that model misspecification, structural breaks,

or extreme values inducing instability in the autoregressive parameters will negatively impact

the performance of PL.

2.2.2. Nonparametric forecasts

As in the linear approach, our proposal to infer whether an economy will be in recession with

forecast horizon h, requires estimating Yh+1(t) = {yt, yt+1, . . . , yt+h−1, yt+h}. However, instead

of generating forecast paths from parametric autoregressive models, we rely on simulating

nonparametric forecasts by embedding the time series {yt}Tt=1 in a (h+1)-dimensional space by

computing the histories

Yh+1(τ) = (yτ , yτ+1, . . . , yτ+h−1, yτ+h), (2.4)

where τ = 1, . . . , T − h. Each of these vectors summarizes the behavior of the time series in

the neighborhood of τ , accounting for the value of the stationary time series at τ and the

subsequent steps τ + 1, . . . , τ + h.

For each τ , we use Yh+1(τ) to generate realizations of the forecast of Yh+1(t) as follows:

Ŷ τ
h+1(t) = (yt, ŷ

τ
t+1, . . . , ŷ

τ
t+h), (2.5)

where ŷτt+k = yt + (yτ+k − yτ) is the τ -th generation of the forecast yt+k, for k = 1,2, . . . , h and

τ = 1,2, . . . , t−h. In this proposal, the τ -th forecast of yt+k, given by ŷτt+k, is the value of yt plus

the increment produced in the time series in the following k step starting at a given period τ .

Apart from it being stationary and ergodic, we do not require further assumptions about

the data-generating process of yt, its population probability distribution. In this case, it is

straightforward to show that E(ŷτt+k) = E(yt). In addition, the increments in the time series,

yt+k − yt as well as yτ+k − yτ , are stationary because the time series is also stationary, which

implies that they are realizations of the same distribution distribution that depends on k but
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not on t. This supports our approach as a natural way to perform the different forecasts.

Using the t−h forecast paths Ŷ τ
h+1(t), we can generate a sequence of indicators of a tech-

nical recession zt+h(ŷτt+h−1, ŷ
τ
t+h) for τ = 1, . . . , t − h, whose empirical distribution approximates

the distribution of zt+h. Thus, as a natural extension of the linear approach, the probability of

a recession at t + h can be estimated by

P (zt+h = 1) =
1

t − h

t−h

∑
τ=1

zt+h(ŷ
τ
t+h−1, ŷ

τ
t+h), (2.6)

which is the frequency of a technical recession across the nonparametric simulations of the

forecast path.

It is worth emphasizing that this extension of the linear approach to producing probabilis-

tic statements for the occurrence of recessions could lead to invalid inferences. Notice that in

the linear autoregressive case, the forecasts of the variable of interest yt+1, ..., yt+h, account for

the inertia of the time series since they are computed using linear combinations of past values

of the variable, with the recent past having the highest weights.

By contrast, our nonparametric projections do not consider the typical business-cycle in-

ertia of GDP growth rates when developing the short-term forecasts at t. In fact, expression

(2.6) computes the probability of a recession at t+h by averaging the t−h estimates of the indi-

cator variable z, which assigns equal weights to all the indicators of recession zt+h(ŷτt+h−1, ŷ
τ
t+h),

regardless of the neighborhoods of the time series at t and τ . Thus, when the economy is in the

middle of an expansion at t, the method would assign the same weight to Ŷ τ
h+1(t) regardless of

whether τ refers to an expansionary or to a recessionary period.

The following section proposes a modification of (2.6) that overcomes this drawback using

a weighting algorithm based on symbolic dynamics.

2.2.3. Symbolic dynamics based weights

Symbolic dynamics involves the simple process of labeling each of the (h+ 1)-history Yh+1(t) =

(yt, yt+1, . . . , yt+h), for t = 1, . . . , T − h, with a symbol. Thus, instead of following the trajectory

of the time series point by point, one only keeps recording the alternation of the symbols.

According to Collet and Eckmann (2009), the evolution of the symbols can capture the complete

description of the dynamic system3.

The proposed symbolization is as follows. Let Sh+1 be the symmetric group of order

(h + 1)!, that is the group formed by all the permutations of length h + 1 of the elements in

the set {0,1,2, . . . , h}. An element of this group, namely π = (i0, i1, ..., ih) ∈ Sh+1, is called a

3Some other applications of symbolic dynamics in economics are Tino et al. (2000), Matilla, Ruiz, and Dore
(2014), Hou et al. (2017) and Camacho, Romeu, and Ruiz (2021).



2.2. ROBUST PROBABILISTIC RECESSION STATEMENTS 21

symbol. The symbolization procedure consists on assigning a unique permutation that sorts out

its entries from the smallest to the largest to any (h+1)-tuple Yh+1(t). Formally, this procedure

maps Yh+1(t) to the unique permutation π = (i0, i1, ..., ih) ∈ Sh+1, satisfying the following two

conditions:

yt+i0 ≤ yt+i1 ≤ ... ≤ yt+ih , (2.7)

is−1 < is if yt+is−1 = yt+is . (2.8)

The first condition imposes an ordinal pattern and the second is a technical condition that

guarantees the uniqueness of the symbol in the case of equal values, which theoretically has

zero probability of occurring in the case of continuous distributions. Thus, symbolic dynamics

converts the sequences of (h+1)-histories {Yh+1(t)}T−ht=1 into sequences of ordinal patterns labeled

with symbols {π(t)}T−ht=1 .

As a quick example, consider the time series {yt} = {5,3,2,1,8,9,3,4,5,2} of length

T = 10. For a forecasting horizon h = 2, we can obtain eight 3-histories

{Y3(t)}
8
t=1 = {(5,3,2), (3,2,1), (2,1,8), (1,8,9), (8,9,3), (9,3,4), (3,4,5), (4,5,2)}. (2.9)

Using the integers {0,1,2} to construct the symbols, the set of potential symbols is

S3 = {(0,1,2), (0,2,1), (1,0,2), (1,2,0), (2,0,1), (2,1,0)}. (2.10)

Now, symbolic dynamics yields the symbolized series as

{π(t)}8t=1 = {(2,1,0), (2,1,0), (1,0,2), (0,1,2), (1,2,0), (2,0,1), (0,1,2), (1,2,0)}. (2.11)

It is worth emphasizing that symbol (0,1,2) will be associated with increasing patterns (ex-

pansions) in the time series, while symbol (2,1,0) will typically refer to decreasing dynamics

(recessions).

In addition, the probability at t of symbol π ∈ Sh+1, which we call P t
π, can be computed

analytically. Based on an extension of Abd Alla (2004), Appendix B shows the expressions of

these forecasts for h = 1,2,3. These forecasts of symbol probabilities can be used to improve

the accuracy of the recession probability forecasts stated in (2.6).

To this end, let τ be any time period smaller or equal to t − h, and denote with π(τ) the

symbol associated with (h+1)-history Yh+1(τ). Let P t
π(τ)

be the probability that symbol π(τ)
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appears at t.4 We propose the nonparametric forecast at t of a recession occurring at t + h as

PNP (zt+h = 1) =

t−h

∑
τ=1

zt+h(ŷτt+h−1, ŷ
τ
t+h)P

t
π(τ)

t−h

∑
τ=1

P t
π(τ)

. (2.12)

This expression implies that the contribution to PNP (zt+h = 1) of the τ -th recession indi-

cator is weighted by the probability that the ordinal pattern of (h + 1)-history Yh+1(τ) =

(yτ , yτ+1, . . . , yτ+h) (i. e. symbol π(τ)) would occur at t, where the weights are normalized

to add up to one.5

It is easy to check that forecasting probabilities of recession with the weighted average of

the recession indicators as in (2.12) overcomes the drawback of (2.6). Let us denote with πE

those symbols associated with expansions and with πR those associated with recessions. If we

assume that the economy is in the middle of an expansion at t, then probability P t
πE

should be

much higher than probability P t
πR
. Therefore, if period τ is in the middle of a recession, the

corresponding (h+1)-history, Yh+1(τ), will be associated with π(τ) = πR and the weight of the

recessionary indicator zt+h(ŷτt+h−1, ŷ
τ
t+h) appearing in the numerator of (2.12) will be as low as

P t
πR
.

2.3—Monte Carlo simulation

In this section, we set up several Monte Carlo experiments to assess the finite-sample perfor-

mance of our nonparametric proposal to compute h-step ahead predictions of recession proba-

bilities, PNP (zt+h = 1), for h = 1,2,3. In addition, we use the simulations to evaluate how data

problems, such as influential points, structural breaks, heteroskedasticity, and ARCH effects,

might affect forecast performance. To facilitate comparisons with Wecker’s (1979) linear ap-

proach, we also include the forecasts of recession probabilities using an autoregressive model,

PL(zt+h = 1).

For the sake of comparison, we have included the forecasts of a Markov-switching au-

toregressive model of order q, MSAR(q), which is one of the most popular approaches used to

compute recession probabilities. Following Hamilton (1989), we assume that the dynamics of yt

are governed by an unobservable regime-switching state variable, st. The model can be stated

as

yt = µst + a1(yt−1 − µst−1) + . . . + aq(yt−q − µst−q) + ϵt, (2.13)

4It implies that P t
π(τ) = P

t
π if π(τ) = π, for all π ∈ Sh+1.

5It is worth pointing out that, since PNP (zt+h = 1) = E(zt+h), expression (2.3) is an unbiased estimator of
the probability of recession.
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where ϵt ∼ iidN(0, σ2).6

Within this framework and assuming that µ0 > µ1, one can label st = 0 and st = 1 as the

expansion and recession states at time t, respectively. In addition, it is commonly supposed

that the state variable evolves following an irreducible 2-state Markov chain whose transition

probabilities are defined by

p(st = j∣st−1 = i, st−2 = h, ..., It−1) = p(st = j∣st−1 = i) = pij, (2.14)

where i, j = 0,1 and It = {y1, . . . , yt} is the information set up to period t.

Hamilton (1989) described a forward filter to store the filtered probabilities of recession

P (st = 1∣θ, It), where θ = (µ0, µ1, a1, . . . , aq, p00, p11) and to provide a maximum likelihood esti-

mation of model parameters θ̂. Using the parameter estimates, it is easy to compute inferences

about the business cycle regime at t + 1 as

P (st+1 = 1∣θ̂, It) =
1

∑
i=0

P (st = i∣θ̂, It)pi1. (2.15)

This expression can be used recursively to obtain h-period ahead forecasts P (st+h = 1∣θ̂, It).

We quantify the ability of the Wecker (1979) method, the Markov-switching model, and

our nonparametric approach to forecasting the h-step ahead state of the business cycle with

the help of three different metrics. The first metric is the Brier score, BS, which is the mean

square error of recession probability. A Brier score of 0 means perfect accuracy, and a Brier

score of 1 means perfect inaccuracy. For more detailed information this metric is also computed

only for recessions (BSR) and expansions (BSE).

The second metric is the area under the receiver operating characteristic curve, namely

AUROC (Berje and Jorda, 2011), which is a measure of the overall performance of a binary

classifier, it considers the trade-off between the true positive rate and the false positive rate.

The AUROC takes values between 0.5 for a random classifier and 1 for a perfect classifier.

Regarding this metric, we define the True Posititive rate (TPR) as the probability of predicting

recessions that actually become recessions and the True Negative rate (TNR) as the probability

of predicting expansions that actually become expansions.

The third metric is Cohen’s Kappa coefficient (Cohen, 1960), which is a chance-corrected

measure of agreement between the classification of the forecasting techniques and actual re-

cessions. This metric, denoted by κ, reaches 1 for complete agreement. A more detailed

explanation of these metrics can be found in Appendix C.

6The dynamics can be adapted to account for regime shifts in the autoregressive parameters and in the
variance. In addition, the nonlinearities can be imposed in the mean or in the drift of the time series.
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2.3.1. Nonparametric model performance

We start the simulations by generating r = 1, . . . ,R = 500 business cycle sequences srt of expan-

sions (srt = 0) and recessions (srt = 1) of length T = 500 that follow 2-state Markov chains. To

ensure that these dummies share the standard business cycle dynamics, we use the NBER dates

to compute the percentage of quarters classified as expansions followed by expansions and the

percentage of quarters classified as recessions followed by recessions in the period 1955.2-2022.3.

According to this analysis, we set p00 = 0.9 and p11 = 0.6.

The data-generating process is an MSAR(1) as outlined in (2.13) with noisy terms ϵ2t ∼

iidN(0,0.5). Using srt , the dynamics of time series yrt are generated by setting the differences of

the within-state means µ0−µ1 = 0.5 and a state-independent autoregressive parameter a1 = 0.2.

With this data-generating process, we examine forecasting performance in an out-of-sample

scenario.

The results of this exercise for the nonparametric approach are displayed in Table 1. The

baseline simulations, whose results are presented in Panel A, show that the accuracy of the

probability forecasts deteriorates very little as the forecasting horizon increases, as documented

by the Brier score. Similarly, the AUROC metric is around 0.8 regardless of the forecasting

horizon, indicating that our nonparametric method presents a good discriminating ability to

distinguish the state of the generated business cycles. Finally, Cohen’s kappa suggests a reason-

able level of agreement between the one-period forecasts of the nonparametric method and the

generated business cycles. Nevertheless, κ tends to diminish slightly as the forecasting horizon

increases.

Panel B of Table 1 evaluates the effect of the persistence of the generated time series,

measured by the autoregressive parameter a1, on the nonparametric probability forecasts. The

results indicate that the forecasting performance is somehow worsened by higher persistence,

mainly through BSR. However, the deterioration of the forecasting performance is not dra-

matic since the persistence does not change this metric substantially when the autoregressive

parameter rises from a1 = 0.2 to a1 = 0.5 or a1 = 0.8.

To examine the effect of the sample size in the nonparametric approach, Panel C displays

the estimates of the forecasting performance metrics for data-generating processes of sample

sizes T = 250 and T = 1000. In these two cases, the figures are similar to those obtained in

the baseline scenario, indicating that the model’s performance is invariant to time series of

reasonable sample sizes.

We also study the effects of uncertainty on forecasting performance by generating noisy

terms with variances of σ2 = 1 and σ2 = 1.5, shown in Panel D. As expected, the ability of

the model to compute inferences on the generated business cycle deteriorates substantially

when variance σ2 increases. Thus, we find that noisy scenarios deteriorate the ability of the
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nonparametric procedure to classify the periods into recessions and expansions.

In addition, we evaluate the effects of business cycle phase persistence on forecasting

performance by performing simulations with combinations (p00, p11) of (0.6,0.6) and (0.9,0.9).

The results are shown in Panel E. When a business cycle phase becomes more persistent, the

Brier score falls, whereas the overall performance of the binary classifier (AUROC) and the

overall agreement (κh) of the forecasts and the generated cycles increase.

Finally, to examine how the business cycle signal affects forecasting performance, we also

set the within-state difference µ0 − µ1 to 1 and 2. Panel F shows that larger differences of

within-state means substantially improve the performance of the nonparametric model as the

signal-to-noise of the data-generating process increases. Thus, large differences between within-

state means facilitate the classification of the time periods into recessions and expansions.

2.3.2. Comparison of the methods’ performance under data problems

Despite the good performance of the model in providing statistical inferences of the generated

business cycles in the baseline scenario, the data problems that characterize the economic dy-

namics in empirical applications could lead to potential performance deterioration. To evaluate

these potential adverse effects, we conduct an out-of-sample forecasting exercise with outliers,

structural breaks, heteroskedasticity, and ARCH dynamics.

In addition, we are interested in evaluating the differences in performance deterioration

that the data problems may cause in Markov-switching, linear and nonparametric specifications

to forecast recession probabilities. For this purpose, Panels A, B, and C of Table 2 display the

Brier scores, AUROC, and Kappa coefficients achieved by these three alternative forecasting

proposals. To facilitate comparisons, the first row in each panel reports the results of the

baseline scenario. The table shows that the three models perform well forecasting business

cycle phases. For h = 1, the three models display similarly low BS, and high AUROC and κ.

Notably, the forecasts that deteriorate the least with the prediction horizon are those of the

nonparametric model. Regardless of the statistic, the nonparametric model has the greatest

classification ability for h = 2 and h = 3.

To assess the performance deterioration caused by extremely large observations, we gen-

erate additive outliers in the simulated time series that are consistent with the magnitude of

the large GDP growth rates observed in 2020. Specifically, we add an additive outlier of -15

standard deviations from the mean of the simulated time series at t = 100, followed by a 10

standard deviations outlier in t + 1 to the baseline data-generating process. In line with the

results reported in Table 2, of the three models, the one that fails the most in performing busi-

ness cycle inferences due to the large number of observations is the Markov-switching model.

Intuition indicates that the estimated mean in the low-growth regime is dominated by the first
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outlier and the sample after this date is classified as expansion regardless of the value of the

time series. For this reason, BSR tends to 1 while TPR and AUROC are close to 0 and 0.5,

respectively.

For one-period forecasting horizons, the performance deterioration of the probability fore-

casts computed with the linear model is not as significant as that of the Markov-switching model.

However, the deterioration is much greater for forecasting horizons larger than 1, as demon-

strated by the low values of AUROC, which fall to about 0.5, indicating no better classification

ability than the toss of a coin strategy. Performance deterioration in forecasting recessions is

also evident in the large value of BSR, which is 0.72, and the low value of κ, which tends to 0.

Remarkably, the forecasts computed with the nonparametric algorithm do not show any

significant deterioration in the metrics used to examine the performance of the h-step ahead

forecasts of the business cycle, regardless of the forecasting horizon considered. As Panel C

of Table 2 shows, the metrics are almost invariant when the outlier is introduced into the

data-generating process and BS, AUROC, and κ are roughly similar to the baseline scenario.

The second robustness check focuses on structural breaks. To examine this data problem,

we generate the last three-fourths of the sample as in the baseline scenario (µ0 = 0.25) while

we set µ0 = 1 for the first fourth of the sample, with the rest of the parameters unaltered.

The third row of each panel of Table 2 shows that, as in the case of the outlier, the structural

break produces substantial deterioration in the performance of the Markov-switching and linear

specifications. However, the changes in the performance of the nonparametric proposal are,

again, negligible.

Finally, we evaluate the models’ performance to static and serially correlated heteroskedas-

ticity. To simulate data with static heteroskedasticity, we generate the last three-fourths of the

sample as in the baseline scenario (σ2 = 0.5) while we set σ2 = 2.5 for the first fourth of the

sample. Serially correlated heteroskedasticity is achieved by generating disturbances ϵt = σtut,

where ut is a normalized independent Gaussian process and σt = 0.2 + 0.8ϵt−1. Again, the per-

formance deterioration of Markov-switching and linear autoregressive forecasts is substantial,

although a bit less severe than in the cases of outliers and structural breaks. As in the pre-

vious two scenarios, the deterioration in the performance of the linear and Markov-switching

approaches is much greater than in our nonparametric proposal.

2.4—Empirical example

In this section, we assess the empirical reliability of Markov-switching specifications, linear

autoregressive models, and our nonparametric approach to provide accurate in-sample forecasts

in the run-up to business cycle recessions in the G7 countries. In addition, we examine the

impact of the COVID-19 recession, which led to record falls and recoveries, on forecasting
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performance. For this purpose, we develop the analysis with a sample that ends in 2019 and

a complete sample that includes the COVID-19 pandemic data ending in the third quarter of

2022.

The COVID-19 recession is the latest in our data sets. Thus, we are precluded from

examining its effect in out-of-sample exercises as in the section devoted to Monte Carlo sim-

ulations. To assess the effect that the observations recorded in 2020 will have on the future

performance of the forecasting approaches, we focus on the impact of these influential obser-

vations on historical business cycle dating. Notice that we do not pursue ad-hoc shortcuts as

temporary solutions to this problem, such as using additional regimes or shortening the sample

used to estimate model parameters.

We use data sets of the growth rates of seasonally adjusted real GDP for the Group

of Seven (G7) countries (USA, UK, Germany, France, Italy, Canada, and Japan). The data

come from the OECD Main Economic Indicators. The sample starts in 1955.2 for the UK

and US, 1960.2 for Italy, Canada, and Japan, 1964.1 for Germany, and 1969.1 for France. It

ends in 2022.3 for all the countries. To evaluate the empirical performance of the forecasting

approaches, we use the reference cycle dates provided by the dating committees of the NBER

in the case of the US and the Economic Cycle Research Institute (ECRI) for the rest of the

countries.

2.4.1. Pre-COVID-19 data

In the first approximation to the analysis of forecasting performance, we focus on the historical

ability of the three forecasting approaches to classify the dates into expansion and recession

in constrained samples that end in the last quarter of 2019. Remarkably, the results reported

in Panel C of Table 3 show that the probability forecast of our nonparametric procedure is in

close agreement with the reference cycles for all the countries. Regardless of the forecasting

horizon, our approach results in a low Brier score, an AUROC much higher than 0.5, and a

large kappa coefficient, all of which are comparable to those reached by the Markov-switching

model (Panel A) and the linear specification (Panel B).

In terms of ROC curves, the Markov-switching model achieves the best business cycle

performance across all the possible classification thresholds for all the countries but France,

Germany, and Italy, in part because their higher volatilities tend to diminish the ability of the

Markov-switching model to separate the states.7 Although this approach shows high values

for the US, UK, and Canada, the magnitudes reported for the linear and the nonparametric

approaches are also significantly greater than 0.5, indicating their considerable discriminating

ability. The apparently better performance of the Markov-switching approach relies on its

ability to classify expansions because this advantage vanishes when examining the ability to

7This result agrees with those of Carstensen et al.(2020).
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correctly identify recessions with TPR statistics.

Measured by the Brier score, the differences in forecasting performance across the three

competing approaches are minor in all the cases. The nonparametric model slightly outper-

forms in one and two-quarter forecasts, and the linear approach outperforms in three-quarter

forecasts. Regarding the kappa index, the data reveal uniformly closer agreement between

the nonparametric probabilities of recession the official recessions than with the other two

forecasting approaches. The numbers reported in Table 3 show that the kappa coefficients of

the nonparametric approach are substantially larger than those of the other two competitors,

regardless of the forecasting horizon and the country of the sample.

To illustrate the good performance of the three dating processes with samples that do not

include the pandemic period, Figure 2.1 displays the growth rates of quarterly real GDP for the

US from 1955.2 to 2019.4 (Panel A) and the 2-quarter ahead predictions of the probabilities of

recession obtained from a Markov-switching model (Panel B), a linear specification (Panel C)

and our nonparametric approach (Panel D), which are obtained using full-sample parameter

estimates. To facilitate comparisons, the panels include the dates of economic recessions as

determined by the NBER, which are shaded.

The Markov-switching model estimates within-expansion and within-recession means of

µ̂0 = 0.91 and µ̂1 = −0.56, respectively. Panel B of Figure 2.1 plots the two-horizon forecast

recession probabilities P (st+2 = 1∣θ̂, It), with θ̂ estimated using data up to 2019.4. These

probabilities produce satisfactory data classification into expansions and recessions, reproducing

the NBER chronology very closely. During periods that the NBER classifies as expansions, the

probabilities of recession are usually close to zero. At the NBER peaks, the probabilities rise

above 30% and remain at these levels until the NBER troughs.

Moving to Wecker’s approach, we fit an AR(2) model to the GDP growth rates, whose

parameters are also estimated using data up to 2019.4. This specification produces estimates

of the autoregressive parameters of â1 = 0.26 and â2 = 0.13, respectively, which are statistically

significant. At each period, we use (2.3) to compute the 2-period forecasts of recession proba-

bility, PL(zt+2 = 1), which are plotted in Panel C of Figure 2.1. The predicted probabilities of

recession also align well with the official NBER business cycle, although to a lesser degree than

the Markov-switching specification. Generally, when the probability of recession exceeds 40%,

a recession follows, while recession probabilities fall below 40% in recession troughs.

Finally, Panel D of Figure 2.1 plots the 2-quarter forecasts of recession probabilities com-

puted as expression (2.12). Despite the simplicity of computing the forecasts, the figure shows

that the new, nonparametric assessment of recession probabilities is proficient at capturing the

NBER-referenced business cycle chronology. Specifically, the forecasts of recession probabilities

always jump to almost one at the point of NBER recessions (shown in shaded areas) and remain

much lower at NBER expansions.
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2.4.2. Complete data set

Despite the good performance of the three alternative methods when the samples end in 2019,

the COVID-19 pandemic in 2020 hit the national economies worldwide with unprecedented

force causing record fluctuations in GDP growth that have substantially altered the findings

obtained with pre-pandemic data. Particularly, the G7 countries faced one of their sharpest

declines during the health restrictions established in the first quarter of 2020, followed by

exceptionally rapid rebounds when the restrictions were relaxed and stimulus measures came

into effect.

In Table 4, we evaluate the impact of the extraordinaryly high growth rates reported

in 2020 on forecasting performance by extending the sample to the third quarter of 2022.

Regardless of the country, the table shows that the Markov-switching specification has lost its

business cycle classification abilities. For each country, the model identifies only one recession in

2020 while classifying the rest of the sample dates as expansions. This implies that BSR tends

to be one, and BSE tends to be zero. For this model, the AUROC metrics are close to 0.5,

suggesting no better performance than a random classifier. In addition, the kappa coefficients

are always close to zero.

The deterioration suffered in the linear autoregressive forecasts is a bit less severe than

in the Markov-switching approach. However, we find that BSR increases substantially and the

TPR falls dramatically, as does κh, indicating that this model is not very useful for anticipating

future recessions. In addition, Table 4 reveals that the losses in forecasting accuracy when

pandemic data is included increase as the forecasting horizon expands.

In contrast to the Markov-switching model and the linear autoregressive specification,

Table 4 shows that our nonparametric approach is scarcely affected by the 2020 data. Regardless

of the country, when the extreme data are included, the model still agrees closely with the

reference cycles, has good overall performance as a binary classifier, and is consistent with the

turning points determined by the national dating committees.

To illustrate this graphically, we enlarge the sample in Figure 2.1 with US GDP growth

rates observed up to 2022.3. Panel A of Figure 2.2 shows that the US suffered from the deepest

recession and the most significant recovery on record in two consecutive quarters (-8.9% and

7.5% in 2020.2 and 2020.3, respectively). These two extreme observations blur the patterns of

the time series dynamics observed in the pre-pandemic data. A straightforward explanation is

that the two influential observations drastically skewed the empirical distribution of the GDP.

In the case of the Markov-switching specification, the two influential observations in 2020

affect the estimate of the within-recession mean dramatically. It falls to µ̂1 = −9.07, leaving the

within-recession mean almost unaltered at µ̂0 = 0.77. The resulting 2-period ahead forecasts of

recession probability, displayed in Panel B of Figure 2.2 show that the cyclical interpretation of
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high and low growth states fails spectacularly. The substantial drop in GDP growth documented

in 2020.2, which is identified as a low-growth state, is so influential that the model relegates all

the previous recessions to a high-growth state. This invalidates the standard Markov-switching

approach as a tool for anticipating future recessions unless we use ad-hoc shortcuts such as

allowing changes in model parameters in 2020 or estimating model parameters using data only

up to 2019.

Regarding Wecker’s technique, it is well-known that extreme observations greatly affect

the forecasting performance of linear autoregressive models and tend to bias the full-sample

parameter estimates. Fitting an AR(2) to the enlarged sample of growth rates produces autore-

gressive parameters that fall dramatically to â1 = 0.03 and â2 = 0.08 and become statistically

non-significant. We use these estimates to simulate the forecast paths and the recessionary

indicator required to compute the two-period forecasts of recession probabilities. Panel C of

Figure 2.2, which displays these probabilities, shows that Wecker’s technique also fails to pre-

dict the NBER-referenced recessions when the two extreme observations released in 2020 are

used to compute the model-based forecasts.

Notably, Panel D of Figure 2.2 shows that enlarging the sample with data up to 2022.3 does

not deteriorate the performance of the new nonparametric approach. In this case, estimating

the model parameters from samples that use the extreme observations reported in 2020 leads to

recession probabilities that continue to be remarkably similar to NBER business cycle dating.

This shows that, unlike the cases of autoregressive models and Markov-switching specifications,

our proposal minimizes the importance of extreme observations in the time series used to

perform the forecasts of recession probabilities.

To sum up, the two influential observations of GDP growth rates in 2020 have (and will

have in the future) devastating effects on business cycle identification from standard parametric

models and calls into question whether they will be useful for dating business cycles from the

COVID-19 period on. We show that our nonparametric proposal is robust to this and other

data-generating problems, such as structural breaks and when errors are heteroscedastic or

present ARCH dynamics8.

2.5—Conclusions

Providing economic agents with early warning systems that give advanced notice of future

business cycle developments has become an issue of great interest in economics. For this pur-

pose, some parametric approaches, such as the Markov-switching model advocated by Hamilton

(1989) or the autoregressive forecasts used by Wecker (1979), have become very popular meth-

ods to provide recession probabilities. However, the unprecedented magnitude of the recession

8All data and codes are available at Github

https://github.com/salvatoteles/NonparametricNonlinearUnivariate
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caused by the recent global pandemic has shown that these tools fail to produce robust dating

of business cycle turning points.

To contribute to this literature, this chapter develops a nonparametric extension of the

autoregressive forecast method, combined with symbolic dynamics, to compute robust infer-

ences of reference cycle turning points. Our simulations suggest that the method performs well

in recession predictions and that, unlike the parametric alternatives, it is robust against out-

liers, structural breaks, heteroscedasticity, and ARCH effects. This is desirable in early warning

systems because, in practice, these data problems are the norm rather than the exception.

Using pre-COVID-19 data, the empirical evidence shows that the historical ability of the

nonparametric approach to forecasting the business cycle phases of the G7 countries is similar

to that of its parametric competitors. However, when the sample is enlarged with COVID-

data, the nonparametric approach substantially outperforms the parametric forecasts, whose

performance is hardly better than a random classifier.

We look forward to carrying out future work addressing the following issues. First, we see

a natural extension of our approach to developing early warning systems for determined events

in many other situations by defining the event under consideration differently. For example,

further application areas are forecasting critical transitions in temperature regimes, detecting

product defects in manufacturing, or providing statistical classifications of diseases. Second,

our empirical application relies on an in-sample approach because the post-COVID-19 data

have only been available for roughly two years. As new vintages become available, real-time

reassessments will provide new insights into the model’s forecasting performance. Third, we see

the possibility of adjusting the methodology to a multivariate approach, to take several series

into account when predicting recessions. While the number of symbols would largely grow with

the increase of series, the use of tools from the symbolic literature such as transcripts to achieve

dimensionality reduction could help in pursuing this extension.
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2.7—Appendix A

Let yt be a time series that follows the following autoregressive process of order 2

yt = c + a1yt−1 + a2yt−2 + ϵt, (A.1)

where ϵt is a white noise Gaussian disturbance term with a mean of 0 and variance σ2. For a

one-step forecasting horizon h = 1, simulations of yt+1 can be developed from the distribution

yt+1 ∼ N(c + a1yt + a2yt−1, σ2). (A.2)

When the forecasting horizon is h = 2, simulations of (yt+2, yt+1)′ can be performed by
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Finally, when h = 3, simulations of (yt+3, yt+2, yt+1)′ can be obtained from
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where

Q = σ2
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2.8—Appendix B

Let {yt}Tt=1 be a stationary Gaussian process and ρti its autororrelation of order i computed with

information up to t. In addition, let h = 1,2,3 be the forecasting horizon, let Yh+1(τ) be the

(h+1)-dimensional history of this time series starting at τ , and let π ∈ Sh+1 be its corresponding

symbol. Finally, let P t
π be the forecast probability of that symbol. For a forecasting horizon

h = 1, the probability of the symbols that belong to S2 are

P t
(0,1) = P

t
(1,0) =

1

2
. (B.1)

For a forecasting horizon h = 2, the probability of the symbols that belong to S3 become
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Finally, for a forecasting horizon h = 3, the probability of the symbols that belong to S4

are
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where
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2.9—Appendix C

The Brier score is computed as the average over the R simulations of the squared deviations

of the h-period recession probability forecasts, P̂ tr
h , from a binary value, srt+h, which takes the

value of one in actual recessions:

BSh =
1

R

R

∑
r=1

1

T

T

∑
t=1

(P̂ tr
h − s

r
t+h)

2, (C.1)

where P̂ tr
h is PNP (zt+h = 1) in the case of the nonparametric forecasts proposed in this chapter.

It is PL(zt+h = 1) in the case of the autoregressive forecasts, and it is P (st+h = 1∣θ̂r, It) in the

case of the Markov-switching autoregressive forecasts for h = 1,2,3, and r = 1, . . . ,R. A Brier

score of 0 means perfect accuracy, and a Brier score of 1 means perfect inaccuracy. When the

measure focuses only on those time periods where a recession occurs (srt = 1), we call it the

Brier Score of Recessions (BSRh), whereas when it focuses on expansions (srt = 0), we call it

the Brier Score of Expansions (BSEh).

The second metric used to measure the models’ performance follows the lines suggested

by Berje and Jorda (2011). In particular, we measure the recession/expansion classification

ability of the three forecasting methods using the Receiver Operating Characteristic (ROC)

framework. In particular, given a threshold c, a recession is called when P̂ tr
h > c, whereas an

expansion is called when P̂ tr
h ≤ c. For each simulation, we can define the True Positive rate,

TP r
h(c), and the False Positive rate, FP r

h(c), as

TP r
h(c) = P (P̂

tr
h > c∣s

r
t+h = 1), (C.2)

FP r
h(c) = P (P̂

tr
h > c∣s

r
t+h = 0). (C.3)

This implies that TP r
h(c) is the probability of calling recessions when there are actually

recessions, and FP r
h(c) is the probability of calling recessions when there are actually expan-

sions. We refer to the True Positive Rate, TPRh, as the average of TP r
h(c) for all r = 1,2, . . . ,R,

and all c from 0 to 1 at steps of 0.001,

TPRh =
1

1000R

R

∑
r=1

1

∑
c=0.001

TP r
h(c). (C.4)

Similarly, we define the True Negative rate, TNRh as

TNRh =
1

1000R

R

∑
r=1

1

∑
c=0.001

(1 − FP r
h(c)). (C.5)

The ROC curve represents the trade-off between TP r
h(c) and FP

r
h(c) for different thresh-
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olds c. Concretely the ROC curve is represented plotting the points (FP r
h(c), TP

r
h(c)) on a

[0,1] × [0,1] plane for all possible thresholds c. When P̂ tr
h is an uninformative classifier with

respect to the phase cycle, the ROC curve coincides with the main diagonal line, and, when it

is a perfect classifier the ROC curve is on the upper left part of the unit quadrant. A standard

measure of overall classification ability is the area under the ROC curve, denoted by AUROCr
h.

This quantity takes values between 0.5 for a random classifier and 1 for a perfect classifier (see

Berge and Jorda, 2011). Then, we take

AUROCh =
1

R

R

∑
r=1

AUROCr
h, (C.6)

which measures the business cycle classification ability of the h-step forecasting probabilities.

Finally, we use Cohen’s kappa coefficient, originally developed by Cohen (1960). It is a

chance-corrected measure of agreement between forecasting technique classifications and real

recessions. For a given threshold c, the kappa coefficient is calculated as

κrh(c) =
P r
a (c) − P

r
r (c)

1 − P r
u(c)

, (C.7)

where P r
a denotes the probability of overall agreement and P r

u is the probability of hypothetical

probability of chance agreement for the r-th simulation. Specifically, these probabilities are

calculated as:

P r
a (c) =

1

T − h

T−h

∑
t=1

[I(P̂ tr
h > c)s

r
t+h + I(P̂

tr
h < c)(1 − s

r
t+h)] , (C.8)

and

P r
u(c) =

1

T − h

T−h

∑
t=1

I(P̂ tr
h > c)

1

T − h

T−h

∑
t=1

srt+h +
1

T − h

T−h

∑
t=1

I(P̂ tr
h < c)

1

T − h

T−h

∑
t=1

(1 − srt+h) (C.9)

where I(⋅) is an indicator function taking the value 1 for a true statement.

Using this notation, the calculation of Cohen’s metric, κrh, for a particular forecasting

horizon h, is given by the average of all kappa coefficients:

κh =
1

1000R

R

∑
r=1

1

∑
c=0.001

κrh(c) (C.10)

The interpretation of a given magnitude of κh is somehow problematic.9 Nonetheless, it is

straightforward to check that Cohen’s κ is equal to 1 when there is complete agreement between

the two classifiers while it is equal to 0 when there is no agreement between the classifiers other

9Cohen’s κ tends to increase when recessions and expansions are equiprobable and when expansions and
recessions are distributed asymmetrically by the two classifiers.
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than what would be expected by chance. The metric can be negative when the agreement

between the two classifiers is worse than random.
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2.10—Tables

Table 1. Nonparametric model’s performance

h=1 h=2 h=3
BS BSR BSE AUROC TPR TNR κ BS BSR BSE AUROC TPR TNR κ BS BSR BSE AUROC TPR TNR κ

Panel A. Baseline model: a1 = 0.2; T = 500; σ2 = 0.5; p00 = 0.9; p11 = 0.6; µ0 − µ1 = 0.5
0.16 0.36 0.11 0.75 0.52 0.83 0.31 0.13 0.33 0.09 0.80 0.48 0.78 0.23 0.14 0.30 0.10 0.80 0.50 0.74 0.21

Panel B. Changes in time series’ inertia
a1 = 0.5 0.15 0.42 0.08 0.75 0.49 0.89 0.37 0.12 0.39 0.06 0.81 0.45 0.85 0.29 0.13 0.32 0.08 0.81 0.49 0.77 0.24
a1 = 0.8 0.18 0.65 0.06 0.64 0.31 0.93 0.27 0.16 0.63 0.04 0.74 0.28 0.92 0.23 0.14 0.51 0.05 0.74 0.35 0.87 0.21

Panel C. Changes in sample size
T = 250 0.17 0.40 0.11 0.73 0.49 0.83 0.28 0.14 0.34 0.09 0.78 0.47 0.78 0.21 0.14 0.32 0.10 0.78 0.48 0.74 0.19
T = 1000 0.16 0.36 0.11 0.76 0.52 0.84 0.33 0.13 0.33 0.08 0.80 0.48 0.78 0.24 0.14 0.30 0.10 0.80 0.50 0.75 0.22

Panel D. Changes in variance
σ2 = 1 0.23 0.44 0.18 0.64 0.45 0.75 0.15 0.18 0.39 0.14 0.67 0.43 0.71 0.11 0.19 0.36 0.15 0.67 0.45 0.68 0.11
σ2 = 1.5 0.26 0.47 0.21 0.60 0.42 0.71 0.10 0.20 0.41 0.15 0.62 0.41 0.69 0.08 0.21 0.38 0.16 0.62 0.43 0.66 0.07

Panel E. Changes in states’ inertia
p00=p11=0.6 0.25 0.36 0.14 0.73 0.52 0.79 0.31 0.22 0.33 0.10 0.76 0.48 0.74 0.23 0.21 0.30 0.12 0.76 0.50 0.71 0.21
p00=p11=0.9 0.21 0.31 0.12 0.78 0.58 0.83 0.40 0.19 0.29 0.09 0.83 0.52 0.78 0.30 0.18 0.26 0.10 0.83 0.54 0.74 0.28

Panel F. Changes in differences of within-state means
µ0-µ1=1 0.08 0.23 0.04 0.89 0.65 0.94 0.58 0.07 0.24 0.04 0.94 0.57 0.87 0.43 0.09 0.21 0.05 0.94 0.59 0.82 0.37
µ0-µ1=2 0.02 0.10 0.01 0.96 0.79 0.99 0.81 0.03 0.15 0.01 0.99 0.68 0.94 0.64 0.04 0.13 0.02 0.99 0.67 0.87 0.54

Notes. For each forecasting horizon h = 1,2,3, the table shows the total Brier Score (BS), the Brier Score conditional to recessions (BSR) and to expansions

(BSE), the area under the ROC curve AUROC, the average True Positive Rate (TPR), the average True Negative Rate (TNR) and the average Cohen’s

kappa coefficient (κ), for the nonparametric approach. Panel A reports the results of the baseline specification and Panels B to F refer to the extent to which

departures from the baseline model affect the classification measures.
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Table 2. Comparison of the three different approaches under data problems

h=1 h=2 h=3
BS BSR BSE AUROC TPR TNR κ BS BSR BSE AUROC TPR TNR κ BS BSR BSE AUROC TPR TNR κ

Panel A. Markov-switching model
Baseline 0.28 0.47 0.28 0.66 0.47 0.64 0.10 0.28 0.42 0.25 0.63 0.44 0.63 0.06 0.29 0.44 0.24 0.61 0.43 0.63 0.05
Outliers 0.23 0.75 0.11 0.55 0.19 0.85 0.05 0.23 0.75 0.10 0.55 0.19 0.84 0.03 0.23 0.75 0.10 0.55 0.18 0.84 0.03
Breaks 0.42 0.09 0.50 0.64 0.79 0.38 0.09 0.39 0.14 0.46 0.61 0.71 0.40 0.07 0.37 0.18 0.42 0.59 0.66 0.42 0.05
Hetero 0.41 0.41 0.41 0.52 0.51 0.51 0.01 0.40 0.41 0.40 0.51 0.50 0.51 0.01 0.40 0.41 0.40 0.51 0.50 0.51 0.01
ARCH 0.30 0.66 0.22 0.52 0.28 0.72 0.00 0.30 0.66 0.22 0.51 0.28 0.71 0.00 0.30 0.66 0.22 0.51 0.27 0.71 -0.01

Panel B. Linear model
Baseline 0.14 0.51 0.04 0.76 0.32 0.90 0.20 0.15 0.69 0.02 0.75 0.17 0.88 0.05 0.17 0.78 0.01 0.61 0.12 0.90 0.01
Outliers 0.15 0.55 0.04 0.73 0.28 0.90 0.16 0.17 0.72 0.02 0.54 0.16 0.86 0.01 0.17 0.72 0.02 0.52 0.15 0.85 0.00
Breaks 0.14 0.64 0.01 0.73 0.23 0.97 0.23 0.17 0.81 0.01 0.79 0.10 0.97 0.07 0.18 0.87 0.01 0.69 0.07 0.96 0.03
Hetero 0.17 0.51 0.07 0.68 0.32 0.85 0.14 0.16 0.58 0.06 0.56 0.24 0.77 0.01 0.17 0.62 0.05 0.51 0.22 0.79 0.00
ARCH 0.16 0.53 0.06 0.69 0.32 0.87 0.15 0.15 0.64 0.03 0.65 0.21 0.83 0.03 0.16 0.70 0.03 0.57 0.17 0.84 0.01

Panel C. Nonparametric specification
Baseline 0.16 0.36 0.11 0.75 0.52 0.83 0.31 0.13 0.33 0.09 0.80 0.48 0.78 0.23 0.14 0.30 0.10 0.80 0.50 0.74 0.21
Outliers 0.16 0.36 0.12 0.75 0.52 0.83 0.31 0.14 0.31 0.10 0.80 0.50 0.76 0.23 0.14 0.31 0.10 0.79 0.50 0.76 0.22
Breaks 0.14 0.41 0.08 0.76 0.47 0.89 0.35 0.12 0.38 0.06 0.84 0.43 0.84 0.25 0.12 0.31 0.08 0.84 0.48 0.79 0.22
Hetero 0.18 0.43 0.12 0.69 0.43 0.81 0.19 0.16 0.39 0.11 0.72 0.40 0.72 0.10 0.17 0.35 0.12 0.72 0.43 0.68 0.09
ARCH 0.20 0.39 0.15 0.70 0.50 0.79 0.24 0.17 0.36 0.12 0.73 0.46 0.74 0.18 0.17 0.32 0.13 0.73 0.48 0.71 0.16

Notes. For the Markov switching, linear and nonparametric approaches, and each forecasting horizon h = 1,2,3, the table shows the total Brier Score (BS),

the Brier Score conditional to recessions (BSR) and to expansions (BSE), the area under the ROC curve AUROC, the average True Positive Rate (TPR),

the average True Negative Rate (TNR) and the average Cohen’s kappa coefficient (κ).
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Table 3. Empirical performance in G7 countries: 1955.2-2019.4

h=1 h=2 h=3
BS BSR BSE AUROC TPR TNR κ BS BSR BSE AUROC TPR TNR κ BS BSR BSE AUROC TPR TNR κ

Panel A. Markov-switching model
US 0.08 0.53 0.01 0.92 0.31 0.93 0.26 0.11 0.70 0.02 0.81 0.17 0.90 0.07 0.11 0.77 0.01 0.69 0.13 0.89 0.02
UK 0.07 0.62 0.01 0.90 0.24 0.96 0.24 0.09 0.74 0.01 0.84 0.15 0.95 0.12 0.10 0.80 0.01 0.76 0.11 0.85 0.07

Canada 0.06 0.51 0.01 0.86 0.36 0.96 0.37 0.07 0.63 0.01 0.81 0.24 0.94 0.21 0.08 0.73 0.01 0.76 0.16 0.93 0.10
France 0.45 0.09 0.54 0.72 0.83 0.35 0.11 0.44 0.10 0.52 0.65 0.80 0.35 0.08 0.43 0.10 0.51 0.58 0.76 0.34 0.06

Germany 0.25 0.97 0.01 0.71 0.02 0.98 -0.01 0.25 0.96 0.01 0.66 0.02 0.98 0.00 0.25 0.96 0.01 0.58 0.02 0.98 0.00
Italy 0.32 0.43 0.29 0.60 0.48 0.62 0.09 0.33 0.47 0.29 0.56 0.46 0.61 0.06 0.34 0.48 0.29 0.52 0.44 0.60 0.04
Japan 0.47 0.01 0.61 0.83 0.95 0.31 0.15 0.46 0.02 0.60 0.76 0.92 0.30 0.12 0.46 0.03 0.59 0.73 0.89 0.29 0.11

Panel B. Linear model
US 0.17 0.19 0.17 0.85 0.71 0.74 0.31 0.13 0.29 0.11 0.83 0.50 0.73 0.17 0.13 0.45 0.08 0.68 0.34 0.73 0.05
UK 0.14 0.29 0.12 0.81 0.53 0.78 0.20 0.11 0.42 0.07 0.76 0.37 0.76 0.11 0.11 0.48 0.06 0.73 0.32 0.76 0.07

Canada 0.19 0.21 0.19 0.82 0.70 0.72 0.25 0.12 0.31 0.10 0.76 0.49 0.72 0.16 0.12 0.44 0.08 0.71 0.34 0.73 0.05
France 0.16 0.56 0.07 0.65 0.28 0.83 0.07 0.16 0.69 0.05 0.66 0.17 0.80 -0.02 0.16 0.55 0.07 0.51 0.26 0.74 0.00

Germany 0.18 0.43 0.10 0.69 0.38 0.81 0.16 0.19 0.55 0.07 0.50 0.26 0.74 0.00 0.20 0.59 0.07 0.60 0.24 0.75 -0.01
Italy 0.19 0.32 0.14 0.76 0.55 0.78 0.29 0.18 0.41 0.10 0.69 0.38 0.72 0.10 0.20 0.53 0.09 0.55 0.28 0.72 0.00
Japan 0.19 0.36 0.14 0.71 0.48 0.76 0.20 0.17 0.46 0.09 0.66 0.34 0.74 0.07 0.18 0.53 0.07 0.57 0.28 0.74 0.02

Panel C. Nonparametric specification
US 0.07 0.41 0.02 0.79 0.5 0.97 0.53 0.11 0.49 0.05 0.78 0.37 0.87 0.23 0.13 0.54 0.06 0.68 0.31 0.84 0.13
UK 0.09 0.39 0.06 0.78 0.51 0.92 0.40 0.10 0.37 0.07 0.77 0.48 0.82 0.26 0.11 0.43 0.06 0.71 0.44 0.82 0.24

Canada 0.08 0.45 0.04 0.76 0.49 0.94 0.42 0.08 0.42 0.05 0.78 0.44 0.86 0.27 0.10 0.44 0.07 0.74 0.40 0.82 0.18
France 0.17 0.75 0.04 0.60 0.20 0.94 0.17 0.16 0.64 0.06 0.68 0.23 0.86 0.09 0.18 0.75 0.06 0.60 0.15 0.86 0.00

Germany 0.19 0.52 0.09 0.68 0.37 0.88 0.25 0.19 0.51 0.09 0.68 0.31 0.80 0.10 0.22 0.57 0.10 0.60 0.27 0.77 0.03
Italy 0.18 0.50 0.08 0.71 0.41 0.89 0.32 0.17 0.46 0.08 0.72 0.38 0.81 0.18 0.20 0.50 0.11 0.61 0.33 0.76 0.08
Japan 0.18 0.61 0.05 0.66 0.32 0.92 0.27 0.17 0.51 0.07 0.73 0.32 0.83 0.15 0.19 0.53 0.08 0.69 0.30 0.82 0.11

Notes. For the Markov switching, linear and nonparametric approaches, and each forecasting horizon h = 1,2,3, the table shows the total Brier Score (BS),

the Brier Score conditional to recessions (BSR) and to expansions (BSE), the area under the ROC curve AUROC, the average True Positive Rate (TPR),

the average True Negative Rate (TNR) and the average Cohen’s kappa coefficient (κ).
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Table 4. Empirical performance in G7 countries: 1955.2-2022.3

h=1 h=2 h=3
BS BSR BSE AUROC TPR TNR κ BS BSR BSE AUROC TPR TNR κ BS BSR BSE AUROC TPR TNR κ

Panel A. Markov-switching model
US 0.13 0.98 0.01 0.50 0.01 0.99 0.00 0.13 0.98 0.01 0.50 0.01 0.99 0.00 0.13 0.98 0.01 0.50 0.01 0.99 0.00
UK 0.12 0.99 0.01 0.50 0.01 0.99 -0.01 0.12 0.97 0.01 0.50 0.01 0.98 -0.01 0.12 0.96 0.01 0.50 0.02 0.98 -0.01

Canada 0.11 0.98 0.01 0.50 0.01 0.99 0.00 0.10 0.98 0.01 0.50 0.01 0.99 0.00 0.10 0.98 0.01 0.50 0.01 0.99 0.00
France 0.21 0.97 0.01 0.50 0.02 0.99 0.01 0.21 0.98 0.01 0.49 0.01 0.98 -0.01 0.21 0.97 0.01 0.49 0.01 0.98 -0.01

Germany 0.34 0.13 0.40 0.68 0.64 0.37 0.00 0.35 0.13 0.40 0.60 0.64 0.37 0.00 0.35 0.13 0.40 0.55 0.64 0.36 0.00
Italy 0.24 0.97 0.01 0.50 0.02 0.99 0.01 0.24 0.97 0.01 0.49 0.01 0.98 -0.01 0.24 0.96 0.01 0.49 0.02 0.97 -0.01
Japan 0.23 0.97 0.01 0.51 0.01 0.99 0.00 0.23 0.97 0.01 0.50 0.01 0.99 0.00 0.23 0.97 0.01 0.50 0.01 0.99 0.00

Panel B. Linear model
US 0.13 0.31 0.11 0.81 0.49 0.79 0.17 0.13 0.49 0.07 0.75 0.30 0.75 0.03 0.13 0.55 0.07 0.56 0.26 0.75 0.01
UK 0.14 0.55 0.08 0.59 0.27 0.81 0.03 0.13 0.70 0.06 0.69 0.17 0.78 -0.03 0.12 0.53 0.07 0.58 0.27 0.74 0.01

Canada 0.14 0.41 0.10 0.69 0.39 0.79 0.07 0.12 0.57 0.06 0.52 0.25 0.75 0.00 0.12 0.56 0.07 0.48 0.25 0.75 0.00
France 0.17 0.52 0.09 0.64 0.30 0.81 0.07 0.17 0.69 0.06 0.65 0.17 0.79 -0.04 0.16 0.53 0.07 0.54 0.27 0.74 0.00

Germany 0.19 0.54 0.07 0.66 0.29 0.84 0.11 0.20 0.62 0.07 0.62 0.21 0.76 -0.03 0.18 0.54 0.07 0.56 0.27 0.75 0.01
Italy 0.18 0.47 0.09 0.67 0.34 0.82 0.13 0.19 0.60 0.06 0.56 0.23 0.76 -0.01 0.19 0.55 0.07 0.53 0.25 0.75 0.00
Japan 0.18 0.43 0.11 0.70 0.40 0.79 0.16 0.17 0.54 0.06 0.64 0.27 0.77 0.03 0.18 0.55 0.06 0.59 0.26 0.76 0.01

Panel C. Nonparametric specification
US 0.08 0.42 0.03 0.78 0.50 0.96 0.49 0.12 0.49 0.06 0.77 0.36 0.86 0.20 0.14 0.56 0.07 0.67 0.30 0.83 0.11
UK 0.10 0.39 0.06 0.78 0.51 0.92 0.39 0.11 0.37 0.08 0.76 0.46 0.80 0.22 0.11 0.44 0.07 0.77 0.42 0.81 0.21

Canada 0.09 0.48 0.05 0.74 0.47 0.94 0.39 0.10 0.44 0.06 0.76 0.42 0.84 0.22 0.11 0.46 0.07 0.72 0.38 0.82 0.16
France 0.17 0.70 0.05 0.62 0.24 0.94 0.05 0.17 0.63 0.07 0.68 0.24 0.85 0.08 0.19 0.72 0.07 0.60 0.17 0.84 -0.01

Germany 0.20 0.52 0.09 0.68 0.37 0.88 0.25 0.20 0.50 0.10 0.68 0.32 0.79 0.09 0.22 0.57 0.11 0.60 0.26 0.77 0.02
Italy 0.18 0.50 0.08 0.71 0.41 0.89 0.32 0.18 0.44 0.09 0.72 0.39 0.80 0.18 0.21 0.51 0.11 0.61 0.32 0.76 0.07
Japan 0.19 0.62 0.06 0.65 0.31 0.91 0.25 0.17 0.49 0.07 0.73 0.34 0.82 0.15 0.19 0.55 0.08 0.69 0.29 0.81 0.09

Notes. For the Markov switching, linear and nonparametric approaches, and each forecasting horizon h = 1,2,3, the table shows the total Brier Score (BS),

the Brier Score conditional to recessions (BSR) and to expansions (BSE), the area under the ROC curve AUROC, the average True Positive Rate (TPR),

the average True Negative Rate (TNR) and the average Cohen’s kappa coefficient (κ).
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2.11— Figures

Figure 2.1. Business cycle inferences: 1955.2-2019.4

(a) Panel A. US GDP growth rates (b) Panel B. Probability from Markov-

switching

(c) Panel C. Probability from AR(2) (d) Panel D. Probability from nonpara-

metric

Notes. Panel A displays the US quarterly GDP growth rate for the period 1955.2-2019.4. Panels B, C, and

D plot the 2-quarter ahead predictions of the probability of recession from AR(2), Markov-switching and

nonparametric models, respectively. The shaded areas represent the NBER-referenced recessions.
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Figure 2.2. Business cycle inferences: 1955.2-2022.3

(a) Panel A. US GDP growth rates (b) Panel B. Probability from Markov-

switching

(c) Panel C. Probability from AR(2) (d) Panel D. Probability from nonpara-

metric

Notes. Panel A displays the US quarterly GDP growth rate for the period 1955.2-2022.3. Panels B, C, and

D plot the 2-quarter ahead predictions of the probability of recession from AR(2), Markov-switching and

nonparametric models, respectively. The shaded areas represent the NBER-referenced recessions.
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Chapter 3
What economic indicators point to

recessions in Spain?

3.1— Introduction

Economic growth in Spain, as in the rest of the industrialised countries, does not imply a

continuous increase in the level of economic activity. On the contrary, as the National Bureau

of Economic Research (NBER) points out, economic growth is characterised by a sequence of

expansions and recessions. According to this institution’s view, a recession, which starts at a

peak and ends in a trough, implies a significant fall in the level of economic activity common

to all economic sectors, lasting longer than a few months and typically seen in indicators such

as GDP, income, employment, industrial production and sales. The NBER defines expansions

symmetrically.

The Great Recession, which led to a general decline in the level of economic activity

during the first decade of the 21st century, demonstrated the devastating power that recessions

can have particularly in Spain. Stock market falls, loss of confidence among economic agents,

problems in bank balance sheets, the uncontrolled rise in unemployment and the collapse in

house prices are just some of the effects that this intense and prolonged recession had on the

Spanish economy.1

For this reason, in recent years there have been numerous studies analyzing the charac-

teristics of the economic cycle in Spain. On the one hand, various economic indicators have

been proposed as a weighted average of individual indicators, as in Camacho and Pérez Quirós

(2011), Camacho and Doménech (2012), Cuevas and Quilis (2012) and Cuevas, Pérez Quirós,

and Quilis, (2017). On the other hand, the synchronization of the Spanish economy at the in-

ternational level has been recently analyzed, as a country in Camacho, Caro, López-Buenache

(2020) and by regions in Gadea-Rivas, Gomez-Loscos, and Bandrés (2017) and in Gadea-

Rivas, Gomez-Loscos, and Leiva-León (2019). Finally, the synchronization of the Autonomous

1Camacho, Gadea-Rivas and Pérez Quirós (2019) rank the Spanish economy among those most negatively
affected by the Great Recession.
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Communities with the national cycle has been analyzed, as in Cancelo (2004), Gadea-Rivas,

Gomez-Loscos and Montañés (2012), and in Camacho, Pacce, and Ulloa (2018).

Despite the progress made in understanding the characteristics of the Spanish economic

cycle and its synchronization at an international and regional level, we believe that an exhaus-

tive analysis of which are the best indicators to anticipate recessions in the Spanish economy is

still to be carried out. Although the Spanish Economic Association decided to create a Spanish

Economic Cycle Dating Committee in 2012 in charge of providing a historical dating of the

reference cycle in Spain, the determination of the turning points in the phases of the cycle is

done a posteriori so the dating of peaks and valleys is done with a considerable delay. Knowing

the indicators that anticipate these phase changes in the Spanish economic cycle will be very

useful for economic agents to make optimal decisions.

The framework we have chosen to perform in this chaptere this analysis is classification

trees, which are within supervised learning algorithms. There are several reasons that justify

this choice. The first reason is because they are a very simple and flexible nonparametric tool

for classification of observations, allowing the use of categorical data and without much impact

from outlier data. The second reason is that they allow to operate with very large databases

since they work with very efficient algorithms from the computational point of view. These

techniques are very stable even in cases where the number of explanatory variables exceeds the

sample size. The third reason is because they are very easy to interpret as the results are usually

accompanied by very intuitive graphical representations. The fourth reason is that they provide

an ideal framework for examining the relative importance of indicators in the classification of

recessions. In addition, classification trees allow us to examine the evolution of the relative

importance over time of the indicators and thus help to discriminate which indicators best

predict each of the recessions.

Recently, some papers have examined the ability of boosting-based classification trees for

the prediction of economic recessions, such as Ng (2014) for the US, and Döpke, Fritsche, and

Pierdzioch (2017) for Germany. Complementarily, Ward (2017) uses classification trees that are

combined using random forest to identify international financial crises. Piger (2020) performs

a comparison of both (and other) procedures to predict US recessions and concludes that the

boosting technique produces better results. For this reason, we will use classification trees that

are estimated using the Stochastic Gradient Boosting algorithm described in Friedman (2002).

The main results obtained in the empirical application are the following. First, the ability

of the classification trees to anticipate the recessions of the Spanish economy 3- and 6-month

ahead is very high, both in the in-sample exercise and in the recursive prediction. Second,

in general, the ability of the leading indicators of the trend GDP and car sales, as well as of

the registered unemployment and consumer prices series, is remarkable. Third, the predictive

ability increases when we add the information contained in the confidence indicators, stock

market, and interest rates. Fourth, in predicting the Great Recession, financial indicators
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and leading indicators of the evolution of construction took on higher importance. Fifth, the

current recession caused by Covid-19 is a production and employment crisis, where financial or

construction variables are not so important this time around and where leading indicators of

GDP, car sales or the registered unemployment and consumer prices series are once again the

determining variables.

The structure of the chapter is as follows. In Section 2, we present the classification

trees applied to the classification of a period in time in recession or expansion based on the

information available at a previous point in time of a set of economic indicators. For readers

uninitiated in boosting, we present the Adaboost algorithm and the (Stochastic) Gradient

Boosting, both of which are based on iteratively improving the classification of simple trees by

focusing on observations that have been difficult to classify up to the previous iteration. In

Section 3, we present the results of the application of these techniques to the prediction of the

recessions in the Spanish economy. Conclusions are then presented in the Section 4. This is

followed by the references, appendix, and figures referred to in the chapter.

3.2—Classification trees for predicting recessions

This section is devoted to presenting the notation and operation of classification trees, as well

as to adapting this technique to the analysis To facilitate this purpose, a very simple economic

example is included. Readers more familiar with these techniques can jump directly to the

empirical application.

3.2.1. Introduction to classification trees

Applied to the prediction of the phases of the business cycle with h periods ahead, the clas-

sification problem consists of predicting at each moment of time t whether the economy will

be in the recession or expansion group at t + h, based on the observation of K indicators

xt = (x1t, ..., xKt), with t = 1, ..., T . The classification in the decision trees consists of partition-

ing the set of possible values of the indicators into regions that are classified into expansions

or recessions for t + h trying to minimize a loss function. As a result, the period t + h will be

classified in the phase of the cycle of the region to which xt belongs.

The classification problem can be viewed as a hierarchical model of latent variables. Let

us label the business cycle by an unobserved latent variable t s which takes values at time t in

the set E,R , where E refers to expansions and R to recessions2. Let us call S = s the set of

realizations of the latent variable. Therefore, when at time t the latent variable takes a given

value, we know the phase of the economic cycle in which the economy is: if st = E the economy

2One could extend the approach to assume more than two possible states if needed.
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is in expansion while if st = R the economy is in recession.

To describe how classification trees work, we need to clarify some concepts. Let us call X

the set containing all possible xt values. In the process of classification, we need to partition

the space X into J disjoint regions, A1, ...,AJ , such that X = ⋃J
j=1Aj. The classification

consists of assigning each vector xt to a region Aj and proposing an estimate for the probability

that the observations in that region are in recession. The determination of a region as an

economic recession will be made when the probability of recession in the region exceeds a

certain threshold, for instance, 0.5.

Suppose we know st for all t = h+1, ..., T+h. We can calculate the probability of a recession

for any value of the indicators belonging to a region as the proportion of the observations in

the region that come from a recession. If one defines I(●) as an indicator whose value is 1 if

the condition inside the parentheses is satisfied and 0 otherwise, the estimate of the recession

probability for a region Aj can be estimated as

pRj =
1

T
∑

xt∈Aj

I(st+h = R), (C.1)

where Tj is the number of observations in region j . The probability of expansion for any

observation in that region will be pEj = 1 − p
R
j .

Once we have determined the probability of recession and expansion for each region, we

can make an inference about the phase of the cycle in which the observations of the indicators

belonging to each region will be found. A widespread option in the analysis of economic cycles

is to present the inference that a model makes on the probability of recession at time t+h, once

xt has been observed. With classification trees, if we known about xt , we can determine to

which region it belongs and one will make inference about the probability of recession to which

it results as p(st+h = R∣xt ∈ Aj) = pRj .

With this information, the user can determine the threshold ϑ from which to classify

the time t + h as a recession from the value xt. To the inference we make about the phase

of the cycle once the data are known, xt, and the parameters used in the model, c, we will

call them ˆst+h(xt, c) (we will omit from now own the dependence for clarity in the exposition).

Therefore, the inference will be ŝt+h = R if p(st+h = R∣xt ∈ Aj) > ϑ but it will be ŝt+h = E

if p(st+h = R∣xt ∈ Aj) ≤ ϑ. This way, we can infer the value of the realizations of the latent

variable Ŝ = (ŝh+1, ..., ŝT+h). In classification trees with two possible states, we usually take the

threshold ϑ = 0.5, i.e., we classify the region in the most probable phase of the cycle according

to the observations that are most likely to occur to that region.

This method allows for easy analysis of results and prediction. First, the classification

trees will allow us to understand the reasons why the moment of time t + h has been classified

as a recession or expansion by analyzing the characteristics of the region in which the vector of
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observations of indicators xt is located. Secondly, we can predict the probability of recession

for any period τ , once we know the value of the indicators xt, from the probability of recession

of the region where xτ belong to, p(sτ+h = R∣xτ ∈ Aj) = pRj even if τ > T .

3.2.2. Creating the classification tree

Breiman et al. (1984) describe a procedure for partitioning decision trees known as Classifica-

tion and Regression Trees (CART). This procedure is based on a classification rule or function

defined on the space X such that, for each xt , it indicates which region the observation belongs

to, and in our case, makes inference about the assignment of each region to a phase of the

economic cycle.

Suppose we know the set of realizations of the latent variable S. For the creation of the

regions it is necessary to identify a loss function that allows us to compare some partitions

with others. Since the inference on the state in which a region is classified is a function of the

percentage of observations in the region that are in that state, the partitions are performed

with the goal of finding the least impure regions as possible (for instance, if a region is classified

as recession, it wiil be tried that it contains the largest percentage of observations in recessions

as possible). To perform the partitions a measure of the degree of impurity of a tree and a rule

that allows us to perform partitions are needed.

A measure that allows us to determine the degree of impurity of a region Aj is the Gini

index (others are classification error or entropy),

Gj = ∑
s=E,R

psj(1 − p
s
j) = 2p

E
j p

R
j . (C.2)

The index takes the maximum value of 0.5 when the distribution of cycle phases in the

region is very impure, i.e. the region contains the same number of recessions as expansions.

However, the index takes values closer to zero the more predominant one of the two states is.

The degree of impurity of the tree will be measured as the weighted average of the degree of

impurity of each of its regions.

G=
J

∑
j=1

Tj
T
Gj, (C.3)

where the weights reflect the weight of the region’s observations over the total. This

indicator is a measure of the total variance of the classification tree.

Since it is not feasible to consider all possible partitions of space X , we use the recursive

binary splitting algorithm, which is based on performing a recursive partitioning. At the begin-
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ning of the algorithm, all observations are in a single region, A , which coincides with the entire

space X. The partitions we are going to consider are rectangular (although non orthogonals as

in Paez et al. (2019) can be applied) and are going to be formed from thresholds c = (c1, ..., cK)

that we will compare with the values that can be taken by the indicators (x1, ..., xK).

To perform the first partitioning, we will select an indicator xk and a threshold c1k that

will give rise to two rectangular regions A1
1 = {X ∣xk < c

1
k} and A1

2 = {X ∣xk ≤ c
1
k}. For the

first region, the indicator xk will take values below the threshold c1k . For the second region,

the indicator will be greater than or equal to the threshold. For each indicator xk and each

threshold c1k we will calculate the Gini index and choose the indicator and the threshold that

results in the partition that minimizes the degree of impurity of the resulting tree.

For the second partition, we will need to divide one of the previous two regions into

two, resulting in a segmentation of X into three regions. The two possibilities are either

A2
1 = {X ∣xk < c

1
k, xj < c

2
j}, A

2
2 = {X ∣xk < c

1
k, xj ≥ c

2
k} y A

2
3 = {X ∣xk ≥ c

1
k}, or A

2
1 = {X ∣xk < c

1
k},

A2
2 = {X ∣xk ≥ c

1
k, xj < c

2
j} and A

2
3 = {X ∣xk ≥ c

1
k, xj ≥ c

2
j}. Again, for each indicator xj and each

threshold c2k we will calculate the Gini index in each of the two possibilities above. We will

keep the partition such that the new indicator and the new threshold result in a partition with

the lowest index value.

In this recursive procedure, the partition generated in one step will give rise to two new

regions in the next step. This process is repeated iteratively until some criterion is reached

that stops the algorithm. The idea is that trees with many partitions will have a low degree

of impurity, but will have little ability to classify new observations well. Some of the most

common criteria for limiting the number of partitions are that no region should contain less

than a minimum number of observations, that the space X should have a maximum number

of partitions or that the realization of a new partition does not imply much reduction in the

reduction in the Gini index of the resulting tree. The most common option is starting from a

tree that gives rise to many regions and ”pruning” the tree in order to minimize the Gini index

penalized by the number of regions using cross-valuation procedures to determine the degree

of penalty.

Figure 3.1 allows us to understand the idea behind the regression trees by means of a

simplified example, in which we have assumed h = 0 . The objective of the example is to create

a classification tree to determine whether in one period the Spanish economy is in recession

or in expansion. To determine the state variable of the business cycle, S = s1, ..., sT , we have

used the quarterly reference economic cycle determined by the Spanish Business Cycle Dating

Committee (CFCEE) or the period between 1990.2 and 2019.2. Therefore, st = Rec indicates

that the Committee determined that in quarter t the Spanish economy was in recession, while

st = Exp would indicate that the economy was in expansion.

The economic indicators xt that have been taken into account to prepare the classification
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tree are the seasonally adjusted unemployment rate of the Labor Force Survey and the growth

rate of the Industrial Production Index (IPI), which has been quarterly adjusted by taking the

quarterly average. Using these indicators and the state variable, we have estimated a decision

tree by imposing four partitions and we have plotted the result in Figure 3.1.

This figure shows the elements that make up the usual terminology of decision trees. The

root node represents the entire space X and is sequentially partitioned into new regions up to

the four final regions shown at the bottom. The various branches of the tree arise from the root

node, two new ones at each of the decision nodes. Finally, the terminal nodes, or leaves of the

tree represent the four regions into which the space has been divided. For ease of interpretation,

the nodes report the percentage of recessions and the percentage of observations that include

the regions they determine.

The top panel of Figure 3.1 graphically represents the tree structure with its nodes,

branches and leaves. At the beginning, the tree assigns the observations to expansion because

only 21% of this sample were recessions. The first partition assigns 11% of the observations that

have an IPI growth rate below 1.73% to the right branch and classifies them as recessions since

85% of these observations are recessions. This region is not re-partitioned. Eighty-nine percent

of the observations whose IPI growth rate is above 1.73% are assigned to the left branch of the

tree and this is the branch that undergoes with new partitions. The probability of recession

for this region is only 12% since this is the percentage of recessions that contains.

In the lower panel of Figure 3.1, the four partitions of the X space that the classification

tree has given rise to are represented. Each of the points depicted in the plane refers to each of

the T=117 observations of xt = (IPIt, Unempt). The 93 observations that have been classified

by the Cycle Dating Committee (CFCEE by its acronym in spanish) as expansion are shown in

red, while the 24 observations classified as recessions by the Cycle Dating Committee are shown

in blue. The first region, located on the left, is characterized by the value taken by industrial

production, A3
1 = X ∣IPI < −1.73, and any observation that belonging to it will be classified by

the tree as a recession.

The second region, located on the lower right, is characterized by a combination of not

very low industry growth and a low unemployment rate, A3
2 = X ∣IPI ≥ −1.73, Unemp. < 17.31,

and the tree infers an expansion for it. The two regions in the upper right are characterized

by high unemployment (equal to or greater than 17.31). The leftmost region also has very low

growth in industrial production and is classified as a recession,

A3
3 = X ∣ − 1.73 < IPI < −0.29, Unemp. ≥ 17.31, while the one further to the right offers a not

so low industrial production growth, A3
4 = X ∣IPI ≥ −0.29, Unemp. ≥ 17.31, and is classified as

expansion. Therefore, in this example recessions in the Spanish economy are characterized by

a sharp fall in industrial production or a somewhat more moderate fall in industrial production

combined with high unemployment.
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To measure the degree of tree purity we can use the Gini index. The region A3
2 is very

pure in the sense that it only contains observations that have been classified by the CFCEE

as expansions, so the Gini index is minimal and is G4 = 0. The purity of regions A3
1 and A3

4 is

also very high: for A3
1 10 of the 12 observations came from recessions (G1 = 0.28), while for A3

4,

34 of the 39 observations came from expansions (G4 = 0.22). The most impure region is A3
3,

as only 8 out of 13 observations come from recessions (G3 = 0.47). The total Gini index, as a

weighted average of the above, is G = 0.16.

Finally, it is interesting to measure not only the degree of purity of the tree but also its

ability to form regions that do not contain misclassified observations. A simple way to measure

the classification ability of the tree is to compare the value of the realizations of the latent

variable S = s1, ..., sT with their inference using the classification tree Ŝ = ŝ1, ..., ŝT such that

ŝt = ŝt(xt∣xt ∈ Am) is the classification that is made for the values of the indicators that belong

to the region Am (this is, st is external and does not depend on indicators, while ŝt is inferred

based on the region where the indicators xt where classified).

Thus, region A3
1 contains two observations of expansions. For this region recession was

inferred {ŝt = Rec∣xt ∈ A3
1} because most of the moments in time t (with values of the indicators

xt) for that region were determined by the Committee as economic recessions. In region A3
2

expansions are inferred, {ŝt = Exp∣xt ∈ A3
2} , and does not contain observations of recessions.

In region A3
3 recession is the classification, {ŝt = Rec∣xt ∈ A3

3}, although five observations of

expansions appear. Finally, the region A3
3 contains five recession observations when it is a region

of expansions, {ŝt = Exp∣xt ∈ A3
4}. Therefore, the percentage of observations misclassified by

the tree, out of the total number of observations, is 10%.

The graph is very intuitive because the resulting regions have been shaded as a function

of the recession probability of the observations in each region. The areas that appear darker

indicate a higher probability of recession. Thus, in a very visual way we can visually deter-

mine the probability of recession for any combination of IPI and unemployment rate. Finally,

Breiman et al. (1983) propose a very useful measure to select the relative importance of indi-

cators for ranking relative importance of indicators to classify observations between expansions

and recessions. The relative importance of the indicator xk in the final ranking is determined

by the number of times that indicator has been used to make the partitions, weighted by the

reduction in the Gini index provided by the partitions in which it participates.

Let’s suppose that in a tree a total of P sub-partitions are made at each non-terminal

node and that the indicator used to partition the tree is vp , with p = 1, ..., P . If we name ∆Gp

the reduction in the Gini index that occurs in that partition, the relative importance of the

indicator xk in the classification is

Ik =
P

∑
p

∆GpI(vp = xk), (C.4)
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where k = 1, ...,K . For ease of interpretation, the indicator is usually normalized so that the

relative importance sums to 100. Figure 3.2 shows that the relative importance of industrial

production for classification purposes is much higher than that of unemployment, since their

relative importance is 83 and 17, respectively.

3.2.3. Results evaluation

To get to know the true classification ability of the tree we must examine to what extent it is

able to classify observations that have not been used to generate the tree. As trees fall under

what we know as supervised learning methods based on past experience, it is useful to divide

the sample period into two sub-periods. The first subperiod is the training subperiod, for which

we assume that we know the classification ST1 = sh+1, ..., sT1+h and economic indicators data xt

for t = 1, ..., T1, with T1 < T (we will choose it at the beginning of the sample without loss of

generality).

The second subperiod is the evaluation one, in which the classification ability of the model

is examined for observations that have not been used to generate the tree. In this case, the

classification ST2 = sT1+h+1, ..., sT will be assumed to be unknown and we will use the tree with

observations up to T1 to make a classification of the observations of the evaluation period

ŜT2 = ŝT1+h+1, ..., ŝT from the indicators xt for t = T1+1, ..., T . The comparison between ST2 and

ŜT2 will inform us of the true capacity of the tree to classify the observations.

3.2.4. Classification trees and boosting

Two problems have been identified in classification tree applications. The first problem is that

trees often have limited classification ability in the evaluation period. The second is that they

tend to produce results that are not very robust, in the sense that small changes in the data

can produce large changes in the estimated classification tree. To alleviate these problems, one

of the most widespread techniques is boosting, which began with a set of binary classification

techniques proposed by Freund and Schapire (1996), based on the earlier work of Schapire (1990)

and Freund (1995), and which are known as the AdaBoost (Adaptive Boosting) algorithm.3

The idea behind the application of boosting to classification trees is to sequentially create

trees in which each new tree is a modification of the previous one, so that in each new iteration

the algorithm learns from the mistakes made up to the previous iteration. The algorithm uses

3Other techniques used to make classification trees robust are bagging and random forest. Unlike boosting,
they are based on generating copies of the original data using bootstrap. In each copy a classification tree is
estimated and the results are combined to produce a final classification. Thus, deep trees are generated with
little impurity, but with little ability to correctly classify new observations. However, by aggregating the results
of many generated trees, the ability to classify new observations is improved without greatly increasing the
impurity.
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trees with few partitions, so they are very impure, although with a high capacity to classify new

observations. However, as the trees are adjusted sequentially, the degree of impurity is reduced

without losing classification ability. This is achieved because in each iteration the algorithm

focuses on correctly predicting the observations that previous iterations have not been able to

classify.

Discrete Adaboost

To apply Adaboost on classification trees, Ng (2014) describes the following version of the

algorithm known as discrete Adaboost, which is one of the most common Adaboost algorithms

in classification trees. For convenience, these techniques encode the state variable st+h in the

set {−1,1},where st+h = −1 refers to the expansions and st+h = 1 refers to the expansions with

t = 1, ..., T − h. The algorithm can be summarized as follows:

1. We start from equal weights for all indicator values w1
t =

1
T−h . Let us define the classifi-

cation up to iteration j as Sj
t+h, with t = 1, ..., T − h, to which we assign a neutral initial

value of S1
t+h = 0 for all t = 1, ..., T − h.

2. For a set of iterations m = 1, ...,M , the classifications performed up to the previous

iteration Sm−1
t+h are updated with those of the current iteration smt+h adjusted by a correction

factor αm

Ŝm
t+h = Ŝ

m−1
t+h + α

mŝmt+h. (C.5)

The correction parameter αm is defined in the algorithm, by iteration of the following

steps:

(a) In iteration m we estimate a decision tree with a few partitions that will result in

a classification ŝmt+h, with t = 1, ..., T − h, in such a way to minimize the error that

is made with this tree. In this case, the error is defined as the weighted sum of the

number of times that observations are misclassified,

em =
T−h

∑
t=1

wm
t+hI(st+h ≠ ŝ

m
t+h), (C.6)

The algorithm only updates Ŝm
t+h if em < 0.5, since em = 0.5 would be a random

classification.

(b) In such a case, we calculate the weight that we will give to the classification we

obtain with this tree in the final classification by means of a function that decreases

with the error made

αm =
1

2
ln(

1 − em

em
). (C.7)
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If the error tends to the maximum of 0.5, αm tends to zero and that tree that

generates the classifications ŝmt+h will have almost no influence on the final classifi-

cation. The weighting of the tree estimated in step m will be higher the lower the

classification error of that tree.

(c) We update the weight we will give to the observations in the next iteration as follows

wm+1
t+h =

wm
t+h

2
√
em(1 − em)

exp(−αmst+hŝt+h), (C.8)

where it is satisfied that ∑
T−h
t=1 wm+1

t+h . When the tree classification error approaches

the maximum error of 0.5, then 2
√
em(1 − em) tends to 1 and αm to zero. This

implies that wm+1
t+h ≃ w

m
t+h and the weights of the observations to be used in the next

iteration are almost not updated with that tree.

The algorithm will give more importance in iteration m+ 1 to the observations that

did not classified well in iteration m. If the observation t + h is well classified, the

sign of st+hŝt+h will be positive and the weight will be multiplied by a number less

than 1, which will be smaller the smaller the error of the tree is. Otherwise, the

weight of that misclassified observation will be multiplied by a number greater than

1, which will be larger the smaller the error of the tree.

3. The final classification will be based on the average of the classifications of the trees

constructed in the process, weighted in a decreasing way by the error they have made

ŝt+h = sign(Ŝ
M
t+h =

M

∑
m=1

αmŝ
m
t+h), (C.9)

where sign(z) = 1 if z > 0 and sign(z) = −1 if z < 0. Therefore, we can interpret that

the classification of an observation in t will be determined by the decision of the qualified

majority of classifications in the iterations. If the majority of times we have classified

observation t + h as an expansion (ŝmt+h = −1) and we got it right (αm large) the sign

that will predominate for the weighted mean will be negative and then it will be finally

classified as an expansion, since ŝt+h = −1.

In applications of this algorithm, it has been observed that the classification ability remains

more or less constant for relatively small values of M when the trees used to generate ŝmt+h
in step a) above are the result of minimizing the classification error of trees from only two

regions. For more complex trees that generate more regions, the algorithm tends to converge

much earlier, albeit at the cost of increased computational complexity. In either case, we can

determine the classification error obtained at each iteration of the discrete Adaboost algorithm

up to a value of M∗ large and obtain the optimal number M of trees.

Friedman, Hastie, and Tibshirani (2000), provide statistical arguments to understand
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why Adaboost algorithms give such good empirical results. In this influential contribution,

they propose that it is easier to understand the process of classifiying observations between

recessions and expansions as the search for the classifier St which minimizes the expectation of

an exponential loss function

E(FP (St+h)) = E[exp(−st+hSt+h)]. (C.10)

When St+h classifies right, the signs of st+h and St+h coincide and the loss function is small.

However, when St+h misclassifies, the loss function is large. Deriving the above expression and

setting it equal to zero, it can be shown that the value of the classifier St+h that minimizes the

above expectation is

S∗t+h =
1

2
ln[

p(st = 1∣xt)

p(st = −1∣xt)
], (C.11)

which coincides with half the logarithm of the odds ratio or ratio between the probability of a

recession taking place and the probability of an expansion ocurring. Similar to logistic models,

the conditional logistic models, the conditional probability that a recession occurs is

p(st+h = 1∣xt) =
exp(2St+h)

1 + exp(2St+h)
=

exp(St+h)

exp(−St+h) + exp(St+h)
. (C.12)

In logistic models, the logarithm of the odds ratio is estimated as a weighted sum of the

observations by the regression coefficients. Friedman et al. (2000) propose to estimate S∗t+h
using a nonparametric approach based on additive regression models

ŜM
t+h =

M

∑
m=1

αmŝ
m
t+h(cm), (C.13)

where it has been made explicit that the classifier, ŝmt+h, depends on the thresholds, cm, which

need to be estimated for the partitions. The optimization problem involves finding numerically

the value ŜM
t+h that minimizes the exponential cost function (Eq.C.10), which implies finding the

sequence of optimum weights and thresholds αm, cmM
m=1. From a given value of Ŝm−1

t+h , sequential

optimization algorithms applied in additive regression models are based on sequentially finding

the pair αm, cm which minimizes

αm, cm = argMin
M

∑
m=1

exp(−st+h(Ŝ
m−1
t+h + αmŝ

m
t+h(cm))). (C.14)

Friedman et al. (2000) show that the optimum classifier, Ŝm
t+h(cm) is the one that minimizes

the weighted error shown in expression C.6, that the weights that minimize the exponential loss

function, αm, coincide with those in C.7, and also that the optimal update of the error weights

is provided by C.8.
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(Stochastic) Gradient Boosting

Friedman (2001) proposes an algorithm known as Gradient Boosting which generalizes the

Adaboost algorithms proposed by Friedman et al. (2000). As prevously mentioned, AdaBoost

focuses on applying simple trees to observations weighted by the error up to the previous

iteration. In contrast, Gradient Boosting uses the algorithm Functional Gradient Descent

algorithm to iteratively find the minimum of a function so that, at each iteration, the direction

and size of update aimed at optimize the reduction of the function value is searched. Specifically,

at each iteration the function updated in proportion to the negative of the gradient of the loss

function that marks the direction of the update. For this reason, in practice, Gradient Boosting

applies simple trees to try to approximate the negative of the gradient of the loss function

evaluated in the classification of the previous iteration.

If we use an exponential loss function as in Eq.C.10, the objective is to find St that

minimizes the loss function using a nonparametric approximation based on additive regression

models ŜM
t+h as in Eq.C.13. Following Schapire and Freund (2012), the algorithm consists of

the iterative application of two steps. Starting from a classification Ŝm−1
t+h , the first step in each

iteration m we must calculate the direction of the update that is marked by the negative of the

derivative of the exponential loss function evaluated at Ŝm−1
t+h

gt+h =
∂FP (St+h)

∂St+h

∣
St+h=Ŝm−1

t+h
= st+hexp(−st+hŜ

m−1
t+h ). (C.15)

The values of this expression are known as pseudo-residuals and will be larger for misclassified

observations. Omitting the normalization, we can find the tree ŝmt+h that best fits the pseudo-

residuals as the one that maximizes the function

PE =
1

T − h

T−h

∑
t=1

st+hŝ
m
t+h(cm)exp(−st+hŜ

m−1
t+h ). (C.16)

It must be noted that maximizing this function is equivalent to minimize the error (6) in

Adaboost. Moreover a quadratic loss function could be used to choose the tree minimizing the

distance with the gradient, although the impact will not be significant in ŜM
t+h.

Gradient Boosting also puts emphasis on classifying well in iteration m the observations

that have been misclassified in the previous iteration. An observation misclassified at iteration

m − 1 will imply a high value for exp(−st+hŜm−1
t+h ), and if it were to be misclassified again the

sign of st+hŝmt+h(cm) would be negative so it would imply a burden to maximizing Eq.C.15.

Once the direction of the improvement has been estimated with ŝmt+h, the second step

consists of determining the size of the adjustment. Specifically, αm is chosen as the value

which minimizes the exponential loss function and we know from Friedman et al. (2000) that
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it coincides with the expression C.7. Alternatively, Friedman (2001) proposes that, using the

criterion of minimization of the loss function, a distinct weight αmj could be found for each

region j of the estimated tree in the iteration m. Another option is to assume that the weight

of the trees at all iterations is a constant, αm = α for all m.

Lastly, Friedman (2001) incorporates a tuning parameter that controls the size of the

jumps in the algorithm,

Ŝm
t+h = Ŝ

m−1
t+h + ηαmŝ

m
t+h(cm), (C.17)

where 0 < η ≤ 1. The smaller the value of the fit parameter, the better the classification

in the training period, but the greater the number of iterations needed to reach the optimum.

On the other hand, very large values may underestimate the number of trees needed. The

empirical results of Friedman (2001) suggest to use values η ≤ 0.1.

Finally, Friedman (2002) will incorporate an additional element in the Stochastic Gradient

Boosting algorithm: the random sampling of a percentage ν of observations that are part of the

training period. Specifically, at each iteration of the algorithm, the new decision tree is adjusted

using only a fraction θ of data from the training period, extracted randomly from the training

period. This procedure improves the classification capacity and speeds up the computation.

In practice, to reduce computation time, θ will be smaller the greater the number of available

indicators is.

3.2.5. Relative importance and interaction effect

In order that the classification trees can be used to automatically select the most influential

indicators in anticipating the economic cycle, Friedman (2001) proposes a measure of relative

importance in the boosting algorithm. Let Imk be the relative importance of the indicator xk

in each m tree out of the M generated by boosting, and obtained using expression (4). The

relative importance of the indicator k x in the classification obtained with the boosting will be

the average of its relative importance in the M trees generated:

IBK =
1

M

P

∑
p

Imk , (C.18)

where k = 1, ...,K. Economic indicators that are never used for partitioning will be discarded

as business cycle indicator variables.

Finally, it is important to have some tool to clarify the black box that might appear

to be the result of the decision trees estimated with boosting. To examine the role played

by the indicators in the construction of the tree, Friedman (2001) proposes the use of Partial
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Dependence Graphs. These graphs show the value taken by the result of the classification tree

ŜM
t+h for different values of some economic indicators. One must recall that ŜM

t+h is an estimate

of the half logarithm of the odds ratio and that, therefore, a higher value on the ordinate axis

is related to a higher probability of recession. Therefore, these graphs will help us to examine

whether the relationship between the probability of recession and economic indicators is null,

linear, or more complex.

Without loss of generality, let us suppose that we want to measure the effect of the first in-

dicator x1 on ŜM
t+h(x1t, x2t, ..., xKt). The first step is to build the decision tree using boosting for

the original database. In the second step, we replace the value of x1 by a succession of possible

values of the indicator x1i = x11, x12, ..., x1N . In the third step, we estimate ŜM
t+h(x1t, x2t, ..., xKt)

for all t = 1, ..., T − h and for each i = 1, ...,N . Finally, we calculate the mean

¯̂
SM
t+h(x1i) =

1

T − h

T−h

∑
t=1

ŜM
t+h(x1i, x2t, ..., xKt), (C.19)

with i = 1, ...,N . The graph of x1i,
¯̂
SM
t+h(x1i) for i = 1, ...,N is the Partial Dependence Plot for

x1.

Using boostrap techniques, confidence intervals can be estimated for the Partial Depen-

dence Graphs. For this purpose, a number of randomly constructed B subsamples that include

a percentage µ of the original data can be randomly constructed. For each of these samples,

the mean response
¯̂
SMb
t+h(x1i), with b = 1, ...,B, is calculated. If one works at a confidence level

of confidence level of λ%, the partial dependence will be the median of the observations and

appears in the graph next to the quantiles 0.5λ and (100 − 0.5λ)%.

In a simple way, the Partial Dependence Graph can be generalized for any set of xt

indicators. Although graphs of complex combinations of indicators are difficult to interpret,

the most frequent combination is the one that measures the interaction effect between two

indicators. In order to measure the interaction effect between two indicators a and b , the

sequence xai, xbi,
¯̂
SM
t+h(xai, xbi) for i = 1, ...,N is used to be represented.

3.3—Empirical application

For the empirical analysis we have selected a sample of 270 monthly economic indicators. After

adjusting the observations, the effective sample period is from 1971.01 to 2020.03. However,

many of the Spanish economic indicators start to be constructed from more recent dates, which

prevents us from performing the analysis with all the indicators for the entire sample period. For

this reason, we have divided the analysis into four partial studies, using respectively indicators

starting in 1971, 1978, in 1988 and in 2004. We will refer to these four studies as 71s, 78s, 88s

and 04s, respectively.
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Specifically, economic indicators were obtained from the OECD’s Main Economic Indi-

cators (MEI) database, while indicators related to interest rates were from the International

Monetary Fund (IFS), and monetary aggregates data from Bloomberg. When necessary, the

indicators have been conveniently transformed to work with their stationary versions. The

number of indicators used to carry out these analyses is growing. In the 71s analysis, 36 in-

dicators are used, including the OECD leading indicators. OECD leading indicators related

to production, car sales, capacity utilization, employment, employment capacity utilization,

employment, prices, exchange rates and trade.

Analysis 78s incorporates 39 new OECD indicators related to construction and interest

rates, in addition to other production, employment and price series. In the analysis 88s, 58

new consumer confidence, stock market and interest rate indicators,as well as new production,

prices, trade and employment indicators. The largest expansion of indicators appears in the

analysis of 04s with 137 new indicators, mainly for employment, prices and interest rates. The

importance of the analysis carried out with these 270 indicators is that we can make inferences

about the probability of recession during the on the probability of recession during the Great

Recession with a large battery of indicators, as well as for the recent Covid-19 crisis.

To establish the recession periods we have used the Spanish benchmark business cycle

dating provided by the Spanish Business Cycle Dating Committee created by the Spanish

Economic Association in 2012. In the sample used, the Committee classifies five recession

periods that account for 13% of the observations in this sample.

The analysis of the predictive capacity of the indicators has been made at prediction

horizons h of 3 and 6 months. The estimation is performed using the GBM package of R. We

have used the ”adaboost” loss function. The maximum number of trees allowed is 2000 and the

optimum M has been chosen by five-fold cross validation. The minimum number of observations

per node is 5. The minimum number of observations per node is 5, and 6 final regions are built

in the trees to allow for the interaction effect between the indicators. Boosting adjustment

parameter is = 0.005 Boosting is η = 0.005 , while in Stochastic Gradient Boosting the fraction

θ of data from the training period is 50%. To make inference in the partial dependence plots

we have used a total of B = 0.005. partial dependence plots we have used a total of B = 1000

bootstrap replications.

3.3.1. In sample analysis

The relative importance of the economic indicators is shown in Figure 3.3. As an illustration,

we will focus on the cases that include more sample period (71s) and more economic indicators

(04s). For ease of interpretation, the importances have been scaled to sum up to 100 and only the

10 indicators with the highest relative importance are shown. Using the 71s analysis, the main

indicators are those of the OECD leading indicators for the evolution of GDP, unemployment
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and car sales. If we focus on the 04s analysis, which only includes the two recessions that are

known as the Great Recession, production and the leading indicator for construction, price

indexes, and financial indicators gain prominence. However, car sales remain important.

Using the relative importance criterion of the 70s analysis, Figure 3.4 shows the evolu-

tion (top plots) and partial dependence (bottom plots) of two of the most important economic

indicators: the year-on-year growth rates of the leading indicator of car sales and registered

unemployment. (the upper graphs show shaded areas marking the periods Cycle Dating Com-

mittee classifies as recessions along with the evolution of the indicators while in the lower

graphs, along with the partial dependence, the 95% confidence intervals are included as shaded

areas). Appendix A shows two other possible applications of relative importance to the study

of business cycles, on the one hand, to analyze which country is the most relevant for predicting

the probability of recession in the world cycle (with particular reference to the OECD), and on

the other hand, to develop a measure of synchronization between two countries, with particular

reference to the case between the United States and Spain.

In the partial dependence plots, the value of the economic indicators is shown on the

x-axis while half of the logarithms of the odds ratio at a 6-month prediction horizon for those

values and their respective confidence intervals are shown on the ordinate axis. As one would

expect, the relationship between the value of the indicators and the probability of recession is

negative in the case of the leading indicator of car sales, while the relationship is positive in

the case of the unemployment indicator. In all cases, there is a clear non-linear effect of the

indicators on the estimated probability of recession. In the case of the car sales indicator, the

lower left graph shows a drop in the probability of recession(measured on the odds ratio scale)

when the year-on-year rate of the indicator falls below 20%. The upper left graph shows that

these negative rates of the indicator coincide with the Committee’s recessions. In the case of

unemployment, the steep rise in the probability of recession appears for rates close to 40% in

the lower right graph. The upper right graph shows that these values are correlated with the

Committee’s recessions.

To illustrate the importance of the interaction effect between economic indicators, Figure

3.5 shows the effect on the logarithm of the odds ratio (right scale) at a 6-month forecast

horizon of the joint values of the growth rates of the leading indicator of car sales (y-axis) and

of registered unemployment (abscissa axis). The interpretation of the graph is very simple:

the lighter the shaded area, the greater the probability of recession (measured on the odds

ratio scale) of the combination of leading indicator and employment values is. For a given

value of the change in unemployment, the color of the area becomes lighter when the leading

indicator value of car sales falls, while, for a given value of the year-on-year change in the

leading indicator of car sales, the area is lighter the higher the growth of unemployment is.

However, the combination of low values of the year-on-year rate of the leading indicator of car

sales and high values of the year-on-year change in the unemployment indicator are especially
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alarming in terms of the probability of recession.

Figure 3.6 shows the inference on the estimate of the recession probability p(st+h = 1∣xt)

obtained by models 71s, 78s, 88s and 04s for prediction horizons h of 3 and 6 months. In

addition, shaded areas are included to mark the recessions of the Spanish economy, according

to the Spanish Business Cycle Dating Committee.

It is observed that the ability of the boosted classification tree to make inference about the

probability of recession increases as economic indicators are added, especially from model 78s

onwards, where production,prices, and interest rates indicators basically come into play. Using

the information from these indicators, the estimate of the probability of recession rises to almost

one at times classified as recessionary by the Committee. This represents a significant gain in

relative efficiency in the classification, compared to the inference that the longer indicators used

in the prediction of recessions since 1971. In addition, all four models are able to predict the

current recession caused by Covid-19 from the March 2020 data with probability of almost 1.

3.3.2. Pseudo real time analysis

It is not possible to evaluate in real time how the model would perform in predicting 3-month

and 6-month ahead recessions in the Spanish economy because we can not obtain real-time

indicator data for all the variables included in the model at each point in time at which the

predictions would be made. However, we will use an approximation to this exercise by taking

subsamples from the longer database and making recursive forecasts with those subsamples.

Let us take as an example of how recursive predictions are constructed for the 3-month

prediction exercise of the 71s analysis. To make the first prediction, we start the database

in 1974.05, build the classification tree with the Stochastic Gradient Boosting algorithm, and

make a prediction of the probability of recession in 1974.08. To make the second prediction

in 1974.09, we repeat the operation, but using data up to 1974.06. Following this process

iteratively, the last database used is the one truncated in 2020.03 with which the probability

of 2020.06 is predicted.

The recursive predictions from the four analyses, 71s, 78s, 88s, and 04s are shown in Figure

3.7, along with the Cycle Dating Committee recessions that are identified by shaded areas. The

out-of-sample exercise corroborates the results obtained with the in-sample analysis. As a first

remark, it is important to highlight the high ability of the classification trees to predict recession

probabilities that rise from almost zero to almost one in recessions in the Spanish economy.

The ability to classify the business cycle increases with the 88s model when the information

contained in the confidence, stock market, and interest rate indicators is added. To anticipate

the Great Recession, prices, financial and construction indicators took a leading role.

As the out-of-sample analysis involves a recursive estimation of the model, we can analyze
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the evolution of the relative importance of the indicators. Figure 3.8 depicts this information

with some of the most important variables in terms of their highest relative importance. In

particular, it represents the relative imporances for the trend-related leading indicator of GDP,

car sales leading indicator, registered unemployment, housing construction, the future tendency

production indicator from the business tendency survey, the consumer price index, and the

monetary market spread with the 78s data set. As in previous cases, recessions in the Cycle

Dating Committee are represented with shaded areas. Although the relative importance at

the end of the sample is closer for all indicators, the importance differs greatly in its evolution

over this period. At the beginning of the sample, consumer price index, employment, car sales

and GDP indicators were more important. However, in the mid-1990s, the spread becomes

increasingly important and they become the most important leading indicator of the Great

Recession together with the consumer price index, while construction indicators during the

Great Recession became one of the main coincident indicators. With regard to the recession

caused by Covid-19, the GDP, and production indicators seems to increased, opposed to the

financial or construction-related ones, since it is a recession caused by the production, due to

the forced confinement of economic agents, although not much can be said yet due to data

availability4.

3.4—Conclusions

The analysis of the business cycle in Spain has gained interest in the scientific literature after

the last two recessions, the Great Recession and the crisis derived from covid-19, due to their

major economic consequences, in terms of employment, production and, in general, evidenced

shortcomings in the Spanish economy. In addition, the availability of more complete databases

allows the use of more complex techniques for the analysis.

In this chapter we present boosting regression trees as an alternative capable of synthesiz-

ing the information contained in large databases of economic indicators to anticipate recessions

in the Spanish economy. For a sample of 270 indicators comprised between 1971.01 and 2020.03,

the recursive predictions of recession probabilities 3 and 6 months in advance are almost zero

except for the moments identified by the Spanish Cycle Dating Committee, where they rise to

almost one.

Using the partial dependence charts we have identified which economic indicators are most

influential in predicting recessions in Spain. Over the whole period, among the best indica-

tors for predicting recessions are the leading trend indicators of GDP and car sales, consumer

price indexes, and registered unemployment. The ability to anticipate recessions increases

4During the recession of 1992 the producer price index had a sharp increase, to later dissapear. It should
be mention that including the Labour Force Survey, the unemployment indicator increases systematically while
maintaining the dynamic.
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when confidence, stock market and interest rate indicators are added. In the Great Recession,

construction indicators and some financial indicators related to deposit holdings gained promi-

nence. In the recession generated by Covid-19, indicators of production, unemployment and

consumption were once again the most important indicators, since it was a production and

consumption crisis rather than a financial crisis.

The approach is not free of limitations and raises future lines of action. In particular, in

the applied methodology , temporal dynamics does not play a key role in the elaboration of

the tree, being entirely dependent on the richness of the database. In this sense, an alternative

would be to analyze the performance and conclusions obtained from incorporating dynamics

in the creation of the tree, as is taken into account in autoregressive decision trees (Meek,

Chickering, and Heckerman, 2002). Furthermore, to try to lessen the problem of imbalance in

the series that we want to classify in the database, expansions and recessions, one could try

to adapt some of the recent transfer learning algorithms such as SER or STRUT (Segev et al.,

2016).
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3.6—Appendix A

Alternative applications of relative importance

Relative importance is a very useful tool in the case of a sufficiently accurate prediction

of the probability of recession. In addition to the analysis of variables carried out for the case

of Spain in the main part of the chapter, this appendix shows two other possible applications

of this tool.

First, the use of relative importances in our context can help us also to analyze which

countries are the most helpful in predicting the probability of a global recession. If we get a

good prediction of global recessions in terms of accuracy, through the out-of-sample exercise

we would obtain information on which country at each point in time was key to predicting an

adverse economic situation, or which country is most helpful in establishing that the probability

of global recession is low.

As an example, we use a sample of seven countries such as the United States, Japan,

United Kingdom, Germany, France, Spain and Italy to predict global recessions, and thus to

analyze which countries helped at each period to make the prediction of recession in the world

economic cycle. We use the IMF’s criteria to define a global recession as a decrease in the yearly

per capita real global Gross Domestic Product accompanied by a deterioration in at least one of

the next seven additional global macroeconomic indicators: industrial production, international

trade, capital movement, oil consumption, unemployment rate, per capita investment, or per

capita consumption (IMF, 2009). On the one hand, Figure A1 shows in the upper panel an

adequate prediction, although it does not reach a maximum level of probability of recession.

On the other hand, from the lower panel it can be noted how initially UK and US were the

most relevant in terms of importance to make the prediction, although after the 1991 recession
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the US is dominant for it, with a certain decline around 2001 (dotcom crisis) when Japan gains

weight, to recover it with the Great Recession, loosing some importance from 2015, and gaining

some Spain and UK.

Figure A1. Out-of-sample probability of worldwide recession and country relative im-

portances

Notes. Panel A. Probability of recession estimated with Production indexes from USA, Japan, UK, Germany,

France, Italy, and Spain. Shaded areas identify recessions according to IMF definition. Panel B. Relative

importances for each of the countries to produce probabilities.

Second, through relative importance we can also create a measure of synchronization

between two economies. In particular, let us use the same variables, representative of the

economy, to create the recession probabilities for two countries. If a similar recession probability

is indicated in both cases, and, moreover, the relative importance of the different variables in

creating the recession probability are similar in both cases, both economies will have a degree

of synchronization both temporally and structurally.

Therefore, we will be able to simply create a measure of temporal and structural syn-

chronization by measuring the distance between the recession predictions and a measure of
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similarity of the two vectors of relative importances, which can be measured in time through

the out-of-sample estimation. The latter can be obtained by a similarity measure, such as the

cosine similarity, which is defined as the inner (or scalar) product of two vectors,

cosineij,t =
∑

N
n=1 IBin,tIBjn,t

√

∑
5
n=1 IB

2
in,t∑

5
n=1 IB

2
jn,t

,

where n represents the N relative importances at time t of the N variables used to create

the probability of recession, and i, j the respective countries. Thus, the synchronization will be

estimated as

syncij,t = (1 − ∣p
R
i − p

R
j ∣) ⋅ cosineij,t,

for t = 1, ..., T − h. In particular, we gathered eight variables for both United States and

Spain, which are available at least from 1986, from the st. Louis Fred database: production

index, consumer price index, total share prices, OECD composite indicator of confidence from

consumer opinion survey, 10-year goverment bond yields, composite indicator of confidence

from business tendency surveys for manufacturing, unemployment rate, and spread from 10-

year treasury minus federal funds rate. All variables where used in year over year terms. Figure

A2 depicts the predicted recessions probabilities and the synchronicity measure together with

the recession from NBER and Spanish Business Cycle Dating Committee. It can be noted that

the predictions match the recessions and besides, that in periods of expansions the synchronicity

measure tends to be larger while in recessionary periods uses to fluctuate.
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Figure A2. Out-of-sample synchronicity for US and Spain

Notes. Panel A. Probability of recession estimated with the same indicators for USA (black line) and Spain

(light blue line). Shaded areas in grey identify Cycle Dating Committee recessions and shaded areas in light

red identify NBER recessions. Panel B. Synchronicity measure between US and Spain.Shaded areas in grey

identify Cycle Dating Committee recessions and shaded areas in light red identify NBER recessions.
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3.7— Figures

Figure 3.1. Classification tree example

Notes. Classification tree analysis applied to the quarterly aggregation of industrial production and registered

unemployment data (EPA survey). In the upper graph, each node shows the classification, the percentage

of recessions and the percentage of recessions observations. In the lower graph the shaded areas are darker

the higher the estimated probability of recession.
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Figure 3.2. Relative importance example.

Notes. Variables are the quarterly aggregation of industrial production and the registered unemployment

data from EPA survey.

Figure 3.3. In-sample relative importance

(a) Panel A. Sample from 1971. h=3 (b) Panel B. Sample from 1971. h=6

(c) Panel C. Sample from 2004. h=3 (d) Panel D. Sample from 2004. h=6

Notes. Relative importance have been scaled so that they add up to 100.
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Figure 3.4. Partial dependence

(a) (b)

(c) (d)

Notes. Top charts: year-on-year growth rates of the leading indicator of car sales and registered unemploy-

ment; shaded areas are recessions according to the Cycle Dating Committee. Lower graphs: effect on the

logarithm of the 6-month odds ratio; shaded areas show 95% confidence intervals. Sample period: 1971.01-

2020.03.

Figure 3.5. Interaction effect.

Notes. Joint effect on the logarithm of the 6-month odss ratio of the year-on-year growth rates of the leading

indicator of car sales and the year-on-year increase in registered unemployment.



3.7. FIGURES 75

Figure 3.6. In-sample probability of recession

Notes. Estimate with indicator samples starting in 1971, 1978, 1988 and 2004. Shaded areas identify Cycle

Dating Committee recessions.
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Figure 3.7. Out-of-sample probability of recession

Notes. Estimate with indicator samples starting in 1971, 1978, 1988 and 2004. Shaded areas identify Cycle

Dating Committee recessions.

Figure 3.8. Relative importance evolution.

Notes. Results obtained with the database since 1978. The shaded areas make reference to the recessions

of the Cycle Dating Committee. A zoom representation from 2008 to 2012 is presented in the upper right

corner.



Chapter 4
Predictive ability of a dynamic factor

model predicting homicides with gun

4.1— Introduction

The tracking of crime levels is valuable for many economic sectors, given its potential impact

on decision making and risk management. For instance, insurance companies assess the risk

associated with their clients’ locations by assigning higher premiums in areas with higher crime

levels (Barr and Pease, 1990), whereas real estate agents consider crime levels while pricing

properties (DeLisle, Never and Grisson, 2020). In addition, tourism industry benefits from safe

destinations (Altindag, 2014), which might boost for example local economies. Thus, crime

data analysis is essential not only for public policy design and for its impact on economic

growth (Estrada and Ndoma, 2014), but also for resource allocation and strategic planning in

multiple economic sectors.

Despite years of drastic reductions in crime levels, certain types of violent crimes have

recently increased in the US (Rosenfeld and Lopez, 2020). Gun violence is especially on the

rise, as suggested by Albrecht (2022). Lately, we are witnessing a steady increase in non-fatal

crimes, as documented by the Police Executive Research Forum (Police Executive Research

Forum, 2021) and supported by the Giffords Law Center (Giffords Law Center, 2022). Just as

non-fatal shootings are spiking across several cities in the country, fatal shootings are rising,

as noted by the Pew Research Center (Gramlich, 2022) from data on gun death rates. This

dramatic trend has attracted media attention and raised concerns in Americans about gun

violence. The 2022 Election Tracking Survey from Ipsos (IPSOS, 2022) identifies gun violence

as the second most important issue for Americans.

As an example of this recent trend, Figure 4.1 shows the 10-year relative increase in homi-

cide offenses rates for different weapons registered on the National Incident-Based Reporting

System (NIBRS) (Bureau of Justice Statistics, 2022). While those performed with firearm

have dramatically increased, assaults with knives (jackknifes, cutting instruments, etc.), per-

sonal weapons (hands, feet, etc.), and other weapons (blunt objects, motor vehicles, explosives,

77
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etc.) have remained at the same level, or even decreased, in the last ten years (Rosenfeld and

Fox, 2019).

The ability of policymakers to efficiently make decisions that can reduce crime relies on

wide and quick access to real-time data, as suggested, for instance, in Neumayer (2003), Drake et

al. (2009), and Barreras et al. (2016). Evidence-based legislation is being embraced throughout

the world. In the US, the Foundations for Evidence-Based Policymaking Act of 2018 became

a law in 2019 (Congress.Gov, 2019), thereby requiring public access to agencies’ data1 and use

of statistical evidence for any bill. Likewise, the Organisation for Economic Co-operation and

Development points that countries should coordinate their strategies for policy evaluation with

those related to evidence and data governance (OECD, 2020). However, several pitfalls persist

with respect to availability, quality, and saliency of firearm-related violence data in the US

(Strom and Smith, 2017; Roman and Cook, 2021).

According to the July 2014 National Criminal Justice Report from the Bureau of Justice

Statistics (Regoeczi et al., 2014), the Wonder database of the National Center for Health

Statistics from the Centers for Disease Control and Prevention (CDC) and the Supplementary

Homicide Report (SHR) from Federal Bureau of Investigation (FBI) are the only source of

detailed information on homicides (Centers for Disease Control and Prevention, 2021) While

SHR is published with an annual frequency and suffers from missing or incomplete reports

(Fox and Swatt, 2009), the CDC database contains granular data at a monthly resolution.

Such an improvement in data quality comes at the expense of a significant delay in its release,

as acknowledged by Mancik et al. (2021). Specifically, in the CDC database all deaths for

each month of the year are released all at once at the end of the following year. In this way,

January data is released on December of the following year (23 months later) and December

data is released on December of the following year (12 months later). The large amounts of

data that need to be collected and processed are partly the reason why this data is published

with such a hold-back. As a result, the actual picture of the homicides with firearm in the

US can have a delay between 12 to 23 months, depending on the month of the analysis. This

time delay cannot be compensated by using other series that are released with shorter delays

without losing relevant information, since only 40% of violent crimes are reported to the police

(Morgan and Thompson, 2021).

Mathematical tools could be used to overcome some of the practical drawbacks in data

access, thereby supporting evidence-based interventions. However, to date, there is a paucity of

reliable tools to gauge firearm violence in the US. Several efforts from the scientific community

have tackled the problem of modeling temporal dynamics of crime-related rates, but these

methods have seldom been applied to homicides and almost never to homicides with firearms

– the objective of this chapter. Back in 2003, Gorr et al. (2003) already proposed a Holt

exponential model to forecast crime series, which, however, is questionable when attempting

1An agency is defined under section 901(b) of title 31.
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long-term predictions (Chatfield and Yar, 1988; Alonso-Brito et al., 2021) and is fragile for its

excessive reliance on data extrapolation (Gardner and McKenzie, 1985). Since then, a range of

methods based on time-series analysis have been adapted to study crime rates in general (Berk,

2008), including homicides (Phillips, 2016).

Recently, Feng et al. (2018) has suggested that, among artificial intelligence (AI) tech-

niques, tree models may outperform other approaches, such as k-nearest neighbors or naive

Bayes for the prediction of crime, an observation which is in line with the previous findings by

Nasridinov et al. (2013). In this vein, Berk et al. (2009) used random forests to specifically

forecast homicides of paroles within two years after intake. Meskela et al. (2020) and Devi and

Kavitha (2021) have proposed the use of a specific type of neural network particularly useful

in time-series modeling, the long short-term memory recurrent neural network, to automate

crime prediction. While promising, AI techniques are data hungry, whereby their performance

is controlled by the richness of their training dataset (Carvalho et al., 2018), so that overfitting

is difficult to avoid (Vezhnevets and Barinova, 2007).

In parallel to implementations of AI techniques, Cesario et al. (2016) and Yadav and

Sheoran (2018) have used autoregressive integrated moving average (ARIMA) models to predict

crime rates. These models are known to systematically revert the forecasts to the mean of the

series (Deadman et al. 2001), making it difficult create reliable predictions. Building on the

classical ARIMA, researchers have examined the percent change techniques (McDowall, 2002),

ARIMA with fan charts (Yim et al., 2020), spatio-temporal autoregressive models (Shoesmith,

2013), and generalized least squares regression to study homicides.

Beyond univariate autoregressive models, classical multivariate autoregressive approaches

were also adopted to study crime (Blumstein and Rosenfeld, 2008). The ability to account for

multiple drivers in a multivariate sense allows for capturing salient phenomena that would be

otherwise missed. For instance, one of the argued reasons for the registered increase in violence

with firearm from 2014 to 2018 is the “Ferguson effect” (Hoffman et al., 2021; Cheng and Long,

2022). According to this theory, the police has been more scrutinized following the protests

in Ferguson in 2014 in the wake of Michael Brown’s death, thereby changing their approach

to law enforcement, and, in turn, to crime prevention. Likewise, the number of active law

enforcement officers has been suggested to drive the dynamics of crimes (Parker et al., 2017),

along with economic fluctuations (Rosenfeld and Fornango, 2007) and firearm possession (Cook

and Ludwig, 2006).

In this vein, Pratt and Lowenkamp (2002) related homicides to time-series of coincident

economic indicators through a bivariate ARIMA model, whereas Cherian and Dawson (2015)

has employed a vector autoregressive (VAR) model to predict several category crimes and

Parkin et al. (2020) studied, within the same approach, the relation between deadly force

incidents, line of duty deaths, and homicides rates. Although offering a much more complete

view of homicide dynamics, most of the series that may be useful for multivariate time-series
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analysis could have very different sample periods and sampling frequency (so-called “ragged

edge” problem identified by Wallis (1986)). Bringing the series to the same sampling period

and frequency might cause an excessive reduction in the dataset, thereby hindering the use of

any VAR model.

To bestow improved prediction of homicides, we relied on a single-index dynamic factor

model (DFM) approach (Sargent et al., 1977; Sotck and Watson, 1991), which allows for the

integration of information from multiple, easily accessible time-series to predict a variable of

interest. Single-index DFM relies on the co-movement of different series, thereby reducing di-

mensionality compared to a VAR approach and improving the reliability of the identification.

The DFM framework allows for the use of data with different frequencies, as shown in Har-

vey (1990) and Mariano and Murasawa (2003), to create common and idiosyncratic dynamics.

By using Kalman filtering to fill any missing observations (Brockwell and Davis, 2009), DFM

forecasts benefit from the different delays of the time-series. The proposed approach solves

some of the limitations of the existing state-of-the-art. First, DFM is less prone to overfit-

ting than AI techniques when working with real datasets of crimes that have limited size and

potentially missing data (Mitchell and Mitchell, 1997; Ying, 2019; Soybilgen, 2020). Second,

the identification of common and idiosyncratic dynamics within DFM avoids the problems of

autoreregressive models related to the reversion to the mean (Beshears et al., 2013; Nau, 2014)

and the inability to detect abnormal periods (Stock, 1994; Wheeler and Kovandzic, 2018; Yim

et al., 2020).

Through the proposed DFM, we are able to predict homicides with firearm in the short

term better than other benchmark models, such as tree-based models, neural networks, and

classical autoregressive approaches. Specifically, through an out-of-sample exercise, we find

that the DFM is the only approach that can perform a better prediction than a benchmark

ARIMA model, on average for every month in the year. Furthermore, the model shows an

improved ability to timely and accurately capture unexpected changes in the direction of the

series, as those experienced in the recent COVID-19 outbreak. Not only does the model offer

improved qualitative agreement with real data, but also it begets higher predictive accuracy.

The enhanced ability to predict homicides with firearm offers a vantage point to policymakers

and practitioners, allowing for timely predictions that would be otherwise unfeasible.

The rest of the chapter is organized as follows. Section 2 details a preliminary analysis

of the data and depicts the the methodology of the dynamic factor model. Section 4 applies

the approach to describe the dynamics of the homicides with guns, and analyzes the accuracy

of the nowcast and forecast ability. This section also compares the estimation from the model

with machine learning techniques. Section 4 concludes and outlines some further research lines.

This is followed by the references, appendices, tables and figures referred to in the chapter.
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4.2—Data and methods

Data

Homicides with firearm was our main variable of interest. On the Wonder database, we collected

data on deaths whose “injury intent” was “homicide” and whose “injury mechanism and all

other leading causes” were “firearm” from January 1999 to December 2020. This data is

updated by the CDC once a year at a monthly resolution, and it is based on death certificates

of US residents from the National Center of Health Statistics. Since there is no official monthly

population data, we used the monthly population estimates (Bureau of Economic Analysis,

2022) from the Economic Bureau of Analysis to compute per-capita homicides with firearm.

Our approach is based on the use of a single-index dynamic factor model, which seeks to

unveil a general co-movement in the data. To construct a common dynamics in the dynamic

factor model, we should consider homicide-related data with a certain degree of co-linearity

with homicides with firearm. The model’s ability to deal with missing observations allows

for taking into account data with different sampling periods. In this vein, the integration of

series whose data is released before the official release of data about homicides with firearm

is expected to improve predictions. With this in mind, we collected the following additional

variables:

� A provisional estimation of homicides with firearm. Since January 2017, the CDC

publishes a provisional quarterly estimation of the rate of homicides with firearm, released

ten months after the end of the quarter (that is, a cumulative monthly series with two

missing observations). The rate for the third quarter of 2020 was the highest recorded in

our observation window ending in December 2020, with an annualized rate of 15 homicides

with firearm per 100,000 inhabitants.

� Data on deaths in incidents involving guns. From January 2014, the Guns Vi-

olence Archive (Guns Violence Archive, 2022), a non-profit corporation, registers daily

gun violence incidents from law enforcement, media, and commercial sources. Based on

the incidents, they report the victims of gun violence, including murders, accidents, or

suicides. We specified the filter selection “Shot-Dead (murder, accidental, suicide)” as

“Incident Characteristic” to create a monthly series of deaths in incidents with guns from

January 2014 to December 2020. The highest number of deaths was recorded on July

2020, with 1,964 deaths.

� Data on homicides from three of the main cities in the US. We collected daily

crime rates in New York City, Chicago, and Philadelphia from the police departments.

These data are publicly available from January 2006, weekly updated, and registered
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within the Unified Crime Report guidelines from the FBI. The Census Bureau Population

data for each city was used to estimate the per-capita rates, which were further averaged

among each other to create a baseline estimate. In our observation window from January

2006 to Decemeber 2020, the highest average rate was recorded on July 2020, with 2.41

homicides per 100,000 inhabitants.

� Media output. According to Phillips and Hensley (1984), when publicity is given in mass

media to violence events, an increase in mortality is likely to follow. We collected media

output from January 1999 to December 2020, using the Proquest Database, by searching

for the number of news articles containing the words “homicide” and “shot” from the New

York Times (2,997 news articles) and the Washington Post (6,175 news articles). Daily

data was aggregated to create a monthly time-series where the highest media output was

recorded on December 2020, with 107 news articles. Similarly, we collected the number

of news containing the word “riots” (24,801 news articles) and those containing the word

“unemployment” (6,925 news articles). The highest media output on riots was recorded

in June 2020, when 744 news articles were published, whereas the peak of news articles

about unemployment was in July 2020, with 195 news articles registered.

� Google Trends. Building on recent work on crime analysis with Google Trends (Gamma

et al., 2016), we collected data from Google Trends with the search term “homicide” from

January 2004 to December 2020 at a monthly resolution. The highest output was recorded

on January 2013 (index of 100). We repeated the procedure with the term “gun”, for

which the highest output was observed on December 2012.

� Background checks. This classical proxy of firearm sales (Lang, 2013; Wallace, 2015)

is made available by the FBI at a monthly resolution via the National Instant Crimi-

nal Background Check System (NCIS) (FBI, 2022a). In our observation window from

January 1999 to December 2020, the highest number of background checks was recorded

on December 2020, when 3,937,066 background checks were performed throughout the

nation.

� Economic uncertainty. The Economic Policy Uncertainty (EPU) index, available at a

monthly resolution from January 1999 from Baker et al. (2016), was chosen as a proxy of

economic uncertainty. In our observation window from January 1999 to December 2020,

the highest score was registered in May 2020, with an index of 350.

� Microblogging data. Building on recent work (Chen et al., 2015) on the use of Twitter

data in modeling crime, we collected the number of daily geo-located tweets in the US

containing the word “homicide” from January 2010 to December 2020. We collected a

total of 146,661 posts and created a monthly time-series, whose peak was registered on

May 2015 with 1,862 tweets.
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For all the series mentioned except of the media output, a monthly seasonal adjustment

was performed to remove seasonal effects. Besides, all the series except of homicides with

firearm, monthly and provisional, and deaths in incidents with guns, were also detrended. The

resulting time-series are plotted in Figures 4.2a to 4.2j. All the raw and processed data are

available at Github.

The data differ in their resolution and release date throughout the year (Table 1). While

variables such as background checks and media output are available in the same time-span of

homicides with firearm (starting January 1999), Google Trends’ data is available only from

2004 and homicides data in the three cities from 2006. All the variable, except of homicides

with firearm and their provisional estimates, are released with no delay. Firearm homicides

have a delay of 12 up to 23 months; for example data from January 2020 to December 2020 of

homicides with firearm was released in December 2021. The provisional quarterly estimation

is released with a fixed ten months of delay. Other variables available at yearly resolutions and

released with similar delays as homicides with firearm (number of police officers (FBI, 2019),

the National Crime Victimization Survey (Bureau of Justice Statistics, 2017), or the FBI violent

crime index (FBI, 2019)), were not taken into account as they would not improve predictive

power. Likewise, the registered murders in the recently released Quarterly Tables from NIBRS

(FBI, 2022b) were not used due to its short historic period (three editions released up to date).

Dynamic factor model

Single-index dynamic factor models decompose the dynamics of the chosen observable variables

yi,t, for i = 1, ..., n and t = 1, ..., T , as the sum of two unobservable and orthogonal components:

one affecting all the time-series, ft, and the other one accounting for their idiosyncratic variation,

ui,t. More specifically, we write

yi,t = bift + ui,t, (C.1)

where bi is the loading factor of each variable on the common factor2. Any variable at a coarser

resolution than the variable of interest (like the provisional estimate of homicides with firearm in

Table 1) can be written as the sum of unobserved variables at the chosen resolution with proper

delays3. The dynamics of the common factor and idiosyncratic components are described as

2Other more complex specifications can be accommodated. For example, Guerrón-Quintana, Khazanov,
and zhong, (2021) propose that the factor be composed by the addition of two terms, one based on first-order
derivatives and the second based on more complex second order derivatives, with time-varying volatility and an
interaction between the factor and the factor’s innovation. However, this requires a more complex estimation
by means of an Unscented Kalman Filter, and in our case, with a simpler and more limited database, its
convergence would be unlikely to be achive, so we opted for the more standard formulation.

3For example, let i = 2 be a time-series with a quarterly resolution, then, we would write y2,t =
b2 (ft + ft−1 + ft−2) + u2,t.

https://github.com/dynamicalsystemslaboratory/Homicides-with-firearm
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autoregressive processes of orders p and q, that is,

ft = β1ft−1 + ... + βpft−p + ϵ
f
t

ui,t = ci,1ui,t−1 + ... + ci,qui,t−q + ϵ
u
i,t,

(C.2)

where ϵft captures the errors in the common factor and ϵui,t the errors in the ith idiosyncratic

terms. Errors in the common factor and in the ith idiosyncratic term are considered independent

and identically distributed (i.i.d.) in cross-section and time, following N (0, σ2
ϵf
) and N (0, σ2

ϵui
)

distributions, respectively, where σϵf and σϵui are the standard deviations. Since the common

factor is not observed either in mean and variance, σϵf must be chosen to make the model

identifiable (in particular, we set it equal to one).

The model in equations (C.1) and (C.2) can be cast in a state-space representation of the

form

Yt =Hht, (C.3)

where ht is the state vector created from the common and idiosyncratic components in time.

The transition equation is written as

ht = Fht−1 + ϵt, (C.4)

with ϵt being i.i.d. N (0,Q) and Q = diag(σ2
ϵf
,0,0, σ2

ϵu1
,0,0, ..., σ2

ϵun
,0,0).

For example, considering a model with p, q = 2 and all variables at a monthly resolution

expect of y2,t chosen to be quarterly, equation (C.3) reads
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and equation (C.4) becomes
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, (C.6)

where, due to the definition of ϵt and Q, the error terms of the period t − 1 will be zero. The

terms in these equations could be estimated by maximum likelihood through a Kalman filter.

In the case of missing observations, such as when treating quarterly data within our

monthly resolutions, we use the approach given by Mariano and Murasawa (2003). Specifically,

the missing values are replaced by random draws, αt, from a distribution that does not depend

on the parameter space that characterizes the filter, for example N (0, σ2
α).

The estimation algorithm for obtaining the parameters can be summarized as follows.

Let ht∣τ be the estimate of ht with information up to period τ , that is, the expected value of

the state vector conditioned on the past. Denoting Pt∣τ its covariance matrix, the prediction

equations for the Kalman filter are

ht∣t−1 = Fht−1∣t−1, (C.7a)

Pt∣t−1 = FPt−1∣t−1F
′ +Q, (C.7b)

where a prime indicates transposition.

Then, the error in the prediction is defined as

ηt∣t−1 = Yt −Htht∣t−1, (C.8)

and its covariance matrix is

χt∣t−1 =HtPt∣t−1H
′
t −Rt, (C.9)

where Rt is the covariance matrix of the added noise that the approach of Mariano and Mura-

sawa (2003) uses to treat missing values in equation (C.3). Hence, the Gaussian log-likelihood
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function can be evaluated as

lt = −
1

2
ln(2π∣χt∣t−1∣) −

1

2
η
′
t∣t−1(χt∣t−1)

−1ηt∣t−1. (C.10)

The next step in the Kalman filter is updating the estimation with the Kalman gain,

typically defined as Kt = Pt∣t−1H
′
t(χt∣t−1)

−1, such that

ht∣t = ht∣t−1 +Ktηt∣t−1, (C.11)

Pt∣t−1 = Pt∣t−1 −KtHtPt∣t−1. (C.12)

The initial parameters used to start the filter are typically a vector of zeros for (C.11)

and a diagonal matrix for (C.12); the parameters that ultimately minimize the log-likelihood

function in equation (C.10) are used as model fit parameters. The minimization is carried out

through the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (Liu and Nocedal,

1989). Finally, missing values can be added at the end for doing forecast. This operation can

be done since if not observed at period τ , the updating equation will be hτ ∣τ = hτ ∣τ−1, which will

not change the dynamics of the model.

Comparison models and performance metrics

To quantify the ability of the DFM to predict the dynamics of homicides with firearm, its per-

formance is compared to other benchmark models. Specifically, we examined models from two

different families: AI and classic autoregressive models. Details about model implementation

are presented in Appendix A and related codes are available at Github.

Within AI models, we considered two tree-based family models (random forest, RF, fol-

lowing Berk et al. (2009), and gradient boosting trees, GBOOST, following Kim et al. (2018))

and a long short-term memory recurrent neural network (LSTM), following Muthamizharasan

and Ponnusamy (2022). In all cases, we created predictions by accounting for time variations

in the availability of data. Specifically, in each time-segment, the models were trained using

all the covariates available and predictions were made using models trained up to the latest

available datapoint.

With respect to classical autoregressive models, we considered the univariate ARIMA

model as the standard benchmark for time-series modeling. To acknowledge variations in levels

and trends of the homicides with firearm series, we also implemented a Holt-Winters model

(Winters,1969, Gardner Jr. and McKenzie, 1985). For completeness, we considered a VAR

modeling as the benchmark for multivariate analysis, following Parkin et al. (2020) – Results

are presented in Appendix B.

https://github.com/dynamicalsystemslaboratory/Homicides-with-firearm
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The main measurement used for comparison is the mean absolute error (MAE) of the

model for the entire year at every month of prediction. To compare the predictive powers of

the methods, we considered the HLN -statistic based on the difference in the model residuals,

established by Diebold and Mariano (1995) and refined by Harbey et al. (1997) to deal with

short series. To assess the ability of the forecasts to accurately anticipate changes in the series’

directionality we used the PT -statistic (Pesaran and Timmermann, 1992), by which one can

monitor the extent to which a model can anticipate the sign of the variation between two

different time-steps of a series.

4.3—Results

In-sample model estimation

The smallest model that achieved convergence in the optimization of the parameters over the

entire sample period consisted of the following four variables: monthly homicides with firearm,

provisional quarterly estimates of homicides with firearm, deaths in incidents with guns from

Guns Violence Archive, and media output of “homicide” + “shot”. To improve the model

accuracy, we systematically added one of the remaining variable if: i) its inclusion did not

affect convergence, and ii) the new loading factor of the DFM was statistically significant at a

confidence level of α = 0.05. Such a procedure for model enrichment was conducted on both

lagged and non-lagged variable. The final model also included the variables of homicides from

three cities and background checks with seven months of lag. The bi’s parameters in equation

(C.2) and their p-values are shown in Table 2.

The fitted model explained 59.80% of the variance, as estimated through linear regression

of monthly homicides with firearm and the common factor. The resulting common factor, along

with the reconstructed series of monthly homicides with firearm, are shown in Figure 4.3 for

the sample period.

To ascertain test the robustness and appropriateness of the obtained model, we inspected

the features of the residuals of the decomposed series. Specifically, we checked whether the

residuals were normally distributed and serially uncorrelated. With respect to nornality, we

utilized four different tests settled in the literature: the Kolmogorov-Smirnov test (Massey Jr.,

1951) and its corrected version by Lilliefors (1967), the non-parametric entropy-based test by

Vasicek (1976), and the Shapiro-Francia test (Shapiro and Francia, 1972; Royston, 1993) for

censored data after censoring extreme data. To test for serial correlation, we employed both

the Box-Pierce (Box and Pierce, 1970) and the Ljung-Box (Ljung and Box, 1978) tests.

Results in Table 3 offer evidence in favor of normality and non-serial correlation. First, all

of the normality tests yield large p-values for the null that the residuals are Gaussian, with the
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unique exception of background checks. Such a departure from normality should not be treated

as a major concern. In fact, according to Durbin and Koopman (2012), if the true distribution

of the error is non-Gaussian, then the Kalman filter would still provide the minimum variance

linear unbiased estimator of the state variables, especially when only a handful of the residuals

depart from normality (Barigozzi and Luciani, 2019). Second, all the residuals are serially

uncorrelated, with the unique exception of those of quarterly annualized estimates of homicides

with firearm – which should be expected given the time resolution of this variable. Similar

to isolated lack of normality, serial correlation of a few variables have limited effect on the

estimators and forecast in DFMs Stock and Watson (2002).

Out-of-sample comparison

An out-of-sample pseudo-real-time exercise was performed to evaluate DFM predictions. For

each period of the sample history, a database was created with data available in that period.

For each database, we estimated model parameters and recorded the corresponding forecasts.

We compared forecasts with the true values and computed the MAE for each forecasted year at

every month. The DFM was utilized to forecast future homicides with firearms and to provide

missing values in the previous (backcasting) and present years (nowcasting). For example, in

March 2017, the last available data for homicides with firearm is for December 2015, although

information about other covariates can be available until March 2017. Through the DFM,

we backcast from January 2016 until February 2017, nowcast March 2017, and forecast from

April 2017 till December 2017. In what follows, we organize our comparisons between DFM

predictions and real data in terms of MAE values for the previous (backcasting) and present

year (backcasting, nowcasting, and forecasting for all months except January and December).

The same analysis was carried out for AI models. Since these models do not systematically

impute missing values, we interpolated quarterly data using splines with the imputeTS R

package. For the case of RF and GBOOST, multiple models were trained according to the

availability of data. Should a variable not be available at a given month, it was excluded from

the model training. For the case of LSTM, the procedure was based on training with sequences

of three periods, using the Keras R package. The parameters of the RF and GBOOST models

were identified using cross-validation over the whole sample period; for the latter model we

used a Gaussian loss function. The networks’ composition of the LSTM was based on training

over the whole sample. A dropout layer was included after each LSTM layer, with a final

time-distributed layer, and an adam optimizer (Kingma and Ba, 2015) was used. In addition

to AI models, an ARIMA model was included as a benchmark. The number of parameters

was chosen through the Akaike information criterion, yielding an ARIMA(3,0,3) as the model

that minimized the score. Since new data for homicides with firearm appears in December of

every year, such a univariate model provides the same prediction for any month from January

to December.
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The MAE associated with predictions of the past and present year at every month is shown

in Figure 4.4. With respect to backcasting the series of homicides with firearm in the previous

year, the DFM outperformed every other model, which all showed a comparable performance

to an ARIMA. Likewise, the DFM performed better than any other model in the prediction

of homicides with firearm in the present years. Importantly, the DFM shows an improved

learning ability than any other model, whereby its MAE decays faster than any other model

as a function of the month within the year. In other words, the DFM is effective in using

information about homicides with firearm and all its covariates in the past to draw accurate

predictions in the present year. Additionally, we performed a comparison between DFM and

alternative autoregressive models (Holt-Winters and VAR models), whose results, displayed in

Appendix B, offer further backing to the predictive power of DFM for backcasting, nowcasting,

and forecasting homicides with firearm, together with up to five alternative approaches for RF

and GBOOST models, displayed in Appendix C and also with results in favor to the DFM.

The qualitative observations drawn from the study of Figure 4.4 were further supported

by statistical analyses using the HLN -statistic, as shown in Table 4. We tested whether the

accuracy of the DFM was better than any of the other four models (RF, GBOOST, LSTM,

and ARIMA). In agreement with our expectations, we registered a consistent improvement in

forecasting using DFM, whereby any comparison yielded a significant difference in the HLN -

statistic. With regards to backcasting, the DFM offered improved predictive capacity, yet,

some of the comparisons failed to reach statistical significance. In particular, comparisons with

ARIMA and GBOOST pointed at a marginal improvement bestowed by DFM.

We also tested the ability of the models to capture changes in directionality through the

PT -statistic, that is, we studied the extent to which they were able to forecast changes in

direction over different prediction periods. In particular, the analysis of Table 5 offers strong

support for the systematic ability of DFM to predict the changes in directionality of homicides

with firearm. In addition to reliable predictions of changes in directionality for the first backcast

period, the DFM also yielded some predictive abilities for longer backcast periods. Importantly,

the DFM was the only model that was able to reliably predict such changes for any forecast

horizon4.

4.4—Conclusions

In the 2010s, violent crimes exhibited a downward trend in the US (Friedman et al., 2017).

However, some types of crimes, mainly those related to firearms, have increased in the period

2015-2020 (Albrecht, 2022), thereby attracting media attention and fueling gun policy debates

(Barry et al., 2019). The spark in homicides with firearm during the lockdown in 2020 was the

dramatic culmination of such a trend, which, however, remained officially undetected for two

4All data and codes are available at Github.

https://github.com/dynamicalsystemslaboratory/Homicides-with-firearm
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years – until official data was released. Such a systematic delay represents a major hurdle for

policymakers and practitioners to promptly react to changes in violence. Establishing reliable,

statistical tools to predict homicides with firearm is a key, open challenge.

Standard methods, like univariate autoregressive models, are known to yield unreliable

predictions, whose error grows over time (Huang et al., 2020). Multivariate vector autoregres-

sive models could, in principle, stabilize error growth, but the limited length of the time-series

challenges the estimation of salient model parameters. The short length of the time-series also

hampers the use of AI methods, which may overfit the data and fail to capture underlying pat-

terns. Such an issue is further exacerbated by the wide difference in the range of the available

time-series, which further restricts the dataset available for training. To address these issues,

we propose a dynamic factor model, as a parsimonious monthly representation of the dataset

that is updated in real time as any new information about homicides with firearm and any

other explanatory variable (provisional quarterly estimates of homicides with firearm, deaths

in incidents with guns from Guns Violence Archive, and media output of “homicide” + “shot”)

becomes available.

The investigation carried out in this effort bears key methodological and practical insights

that should be highlighted. From a methodological point of view, we find that decomposing the

time-series of homicides with firearm into common and idiosyncratic components through a dy-

namic factor model yields superior predictions than standard autoregressive and AI models.The

superior performance of the dynamic factor model is likely due to asynchronous reporting cal-

endar for official mortality statistics by the CDC, which strain the applicability of the existing

machinery. The dynamic factor model thrives on this asynchronicity, where its Kalman filter

allows for the incorporation of any information as it becomes available, thereby easing the

processes of backcasting, nowcasting, and forecasting.

Despite their increased computational costs, AI techniques failed to contribute significant

improvement with respect to a benchmark ARIMA model, in contrast with the dynamic factor

model that systematically outperformed ARIMA in backcasting, nowcasting, and forecasting

in terms of HLN -statistic (Harvey et al., 2017). The improved ability to detect trends of

the dynamic factor model comes with the further additional advantage of reliably anticipating

changes in directionality in the time-series of homicides with firearms, a key element to effective

policymaking. Through PT -statistic (Pesaran and Timmermann, 1992), we demonstrated an

improved ability to detect such changes for both backcasting and nowcasting, in contrast with

any other model that can only be reliably used for very narrow backcasting periods.

To our surprise, a new research has been recently conducted by AH firm (AH Datalitycs,

2022), as highlighted by the New York Times (New York Times, 2022), pointing at a reduction

of homicides this year. Gun deaths, injuries, and mass shootings are also down this year,

compared to the previous year. The New York Times provides an interesting interpretation

of the findings, relating to a return to normalcy after a long pandemic, and touches on some
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“bad news bias” that have prevented such a funding to reach a wider audience. Data by the

CDC regarding this very same time period will not be available until December 2023: our new

approach to prediction of homicides with firearm could be key in accelerating the validation

stage of any new findings like those by AH firm. More in general, the superior performance of the

dynamic factor model has important, practical implications for policymakers and practitioners

who are tasked with making timely decisions on pressing topics around violence with limited

and often outdated data. In this vein, the model may be used to fill data gaps and anticipate

outbreaks of violence, thereby offering a concrete aid to evidence-based interventions.

Our approach is not free of limitations. One of the key shortcomings of the proposed

dynamic model is that, as a single index model, it relies on unique common dynamics. In

principle, multiple grouped dynamics might coexist when working with large datasets, so that

more than one common factor would be needed. In such a case, homicides with firearm could

be associated with more than a single common factor, thereby challenging the use of a dynamic

factor model with a single factor for reliable predictions. Likewise, the loading factors of the

dynamic factor model could be time-varying; for example, during a certain period, homicides

with firearm might be closely related to social unrest and in another period, they might be tied

to gun-related dynamics. Such time-varying dynamics might have occured in the last section of

the observation, entailing the COVID-19 lockdown, when it is tenable that additional social and

economic variables might have played a role. In addition to these methodological drawbacks, we

should acknowledge limitations in the process of data curation, whereby data from media can

be noisy and crowdsource databases are not officially verified, leading to potentially inaccurate

estimations.

In the future, several research directions can be pursued. First, Bayesian estimation

following Del Negro and Otrok (2008), or extended/unscented Kalman filters can be leveraged

to cope with richer dynamics and nonlinear behaviors. Second, the approach can also be

adapted to a spatio temporal setting, as in Lopes et al. (2011), working with time-series of

homicides with firearm for distinct US states. Lastly, we envision the inclusion of further data,

like the Quarterly Tables from NIBRS (FBI, 2022b) to enrich the existing dataset and enhance

the accuracy of our predictions.
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4.6—Appendix A

Description of methods used for comparison

AI and ARIMA models

Here, we present a brief description of the AI and ARIMA models that are used in the main

manuscript to assess the performance of the DFM. First, we offer some intuition behind tree-

based methods (random forest, RF and gradient boosting trees, GBOOST) and then turn our

attention to long short-term memory neural networks (LSTM) and the ARIMA model.

RF. Tree-based methods (Breiman, 2001) involve the segmentation/partition of the pre-

dictor space into a finite set of regions by minimizing a given loss function. Toward improved

robustness, RF and GBOOST produce multiple trees that are combined to yield a single consen-

sus prediction. More specifically, RF builds multiples decision trees on bootstrapped training

samples and averages them to obtain the prediction. To avoid the creation of correlated trees

that would grow the variance of the final predictor, the algorithm considers a random sample

of m predictors among the full available set at each split of any tree. From cross-validation

of the whole sample, we set m = 48, the number of bootstrapped trees equal to 200, and the

minimum node size equal to 5.

GBOOST. GBOOST does not involve bootstrap sampling. Instead, the trees are grown

sequentially and each of them is fit to a modified version of the original dataset. Specifically,

the algorithm has three parameters: the number of trees B, the shrinkage parameter λ, and the

number of splits d in each tree, which controls the complexity of the boosted ensemble. The

algorithm implements the following steps:

1. Initialize the algorithm with a null tree (f̂ = 0) and residuals equal to the observations of

the dependent variable (ri = yi, for all i in the training set).

2. For b = 1,2 . . . ,B, create multiple trees by

(a) fitting a tree f̂ b with d splits;

(b) update the tree by adding a shrunken version of the new tree,

f̂ ← f̂ + λf̂ b,
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(c) update the residuals

ri ← ri − λf̂
b(xi),

where xi is the value of the independent variable in the training set.

3. Output the boosted model

f̂ =
B

∑
b=1

λf̂ b.

After cross validation with the whole sample, we choose B = 20, λ = 0.5, and d = 3.

LSTM. The long short-term memory networks, LSTM, are a particular case of recurrent

neural networks (RNN) that were proposed by Rumelhart et al. (1986) to process variable

length sequences of inputs. The LSTM network is created with different layers where a back-

propagation algorithm (typically through the stochastic gradient descent procedure) is used

to estimate the network parameters during the training process. In contrast with standard

RNN, the LSTM networks do not suffer from the so-called “long short-term memory problem”,

as pointed out in Hochreiter (1991), from which during back-propagation the gradient might

vanish or explode and therefore artificially affecting the training process. In our case, the adam

optimizer was used, which is an extension of the standard stochastic gradient descent procedure,

to minimize the mean absolute error (MAE). Moreover, the networks composition were first

trained with the whole sample, minimizing the error the configuration with two LSTM layers,

with 50 and 20 neurons respectively. A dropout layer was included after each LSTM layer, with

a dropout rate of 0.5 to avoid overfitting, and a final time-distributed layer was added at the

end. The training was performed through 10 epochs.

ARIMA. The univariate autoregressive model assumes that the dynamics of a time series,

yt, is driven by its own past. In particular, assuming the number of lag-observations to be equal

to p and mean value to be equal to µ, the time-series can be written as

yt = µ + a(L)(yt−1 − µ) + εt, (C.13)

where L is the lag-operator, a(L) = (a1+a2L+ ...+apLp−1), and the errors εt are i.i.d. following

N (0, σ2). By choosing the order of the moving average to be equal to q and the degree of

differencing to be equal to d, we obtain ARIMA(p, d, q), defined as

(1 − a1 − a2L − ... − apL
p−1)((1 −L)dyt − µ) = (1 + θ1 + θ2L + ... + θqL

q)εt, (C.14)

For the time-series of homicides with firearm, we used an ARIMA(3,0,3) as a parsimonious,

yet descriptive model; the estimated coefficients and their respective p-values are presented in

Table A1.
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Table A1. Estimated coefficients for the ARIMA(3,0,3) for homicides with firearm.

a1 a2 a3 θ1 θ2 θ3

Value -0.09 0.12 0.95 0.68 0.64 -0.35
p-value < 10−2 < 10−2 < 10−2 < 10−2 < 10−2 < 10−2

Notes. The intercept was not statistically significant and the resulting AIC was −7510.

Alternative autoregressive models

In addition to the ARIMA examined in the main manuscript, we considered two alternative au-

toregressive models: the Holt-Winters’ method, initially proposed by Holt (1957) and extended

to account for seasonality by Winters (1960), and the vector autoregressive (VAR) model, the

natural extension of univariate models to multivariate settings Sims (1980).

Holt-Winters. The Holt-Winters’ method uses exponential smoothing to encode the

values of a time-series, yt, as a combination of three components: the level (lt), trend (bt),

and seasonal factor (st). The three components are determined using smoothing methods as

follows:

lt = α(yt − st−m) + (1 − α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1 − β)bt−1

st = γ(yt − lt−1 − bt−1) + (1 − γ)st−m,

(C.15)

where α, β, and γ are the corresponding smoothing parameters, and m denotes the frequency of

the seasonality. The parameters of the model can be estimated by minimizing the residual sum

of squares (in our case, α = 0.3, β = 0.1, and γ = 0.1), and lt, bt, and st can be obtained by simply

initializing at the first time-step. For forecasting h time-steps in the future, we implement the

following:

yt+h = lt + hbt + st+h−m(k+1), (C.16)

where k is the integer part of (h − 1)/m.

VAR. Let Yt be a vector of n stationary time- series y1,t, ..., yn,t with expected value ν.

The reduced form of a VAR model with p lags, VAR(p), is

Yt = ν +C(L)(Yt−1 − ν) + ut, (C.17)

where C(L) = (C1+C2L+...+CpLp−1) is the matrix of lag polynomials and the errors are serially

uncorrelated with zero mean and covariance matrix Ω. In our database, the in-sample estima-
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tion is performed with only four variables: homicides with firearm, media output on “homicide”

+ “shot”, homicides from three cities, and background checks, while deaths in incidents with

guns from the Guns Violence Archive and provisional quarterly annualized estimate rate for

homicides with firearm from the CDC are omitted because they start very late The model can

be estimated by ordinary least squares in each equation and the lag-length is typically chosen

by using model selection criteria (in our case, we used AIC and obtained p = 3). In-sample

parameter estimates are shown in Table A2.

Table A2. Estimated coefficients for the VAR(3) model.

HF1 MOH1 H31 BCs1 HF2 MOH2 H32 BCs2 HF3 MO3 H33 BCs3 ν

HF 4⋅10−1 2⋅10−4 2⋅102 2⋅10−8 3⋅10−1 2⋅10−5 -7⋅102 -1⋅10−9 1⋅10−1 1⋅10−4 1⋅102 1⋅10−2 6⋅10−10

MOH 2⋅101 3⋅10−1 1⋅105 -8⋅10−6 1⋅10−2 9⋅10−2 -3⋅105 7⋅10−6 4⋅10−1 3⋅10−3 3⋅105 -3⋅10−7 -3⋅101

H3 2⋅10−6 9⋅10−9 2⋅10−1 2⋅10−12 1⋅10−5 -2⋅10−9 2⋅10−1 -
2⋅10−12

-1⋅10−5 2⋅10−8 3⋅10−1 7⋅10−13 -2⋅10−6

BCs 1⋅106 2⋅103 6⋅109 8⋅10−1 -1⋅106 4⋅102 -6⋅109 -2⋅10−1 1⋅106 2⋅103 -1⋅1010 2⋅10−1 -4⋅10−6

Notes. HF refers to monthly homicides with firearm from CDC, H3 to monthly homicides in the three cities,

MOH to monthly media output with “homicide”+“shot”, and BCs to monthly background checks. Subscript

refers to the lag of the variable in the model.

4.7—Appendix B

Comparison with alternative autoregressive mod-
els

Here, we compare the DFM with Holt-Winters’ method and VAR. Similar to ARIMA,

the Holt-Winters’ method yields the same forecast for every estimation period from January

to December as new data for homicides with firearm appear in December every year. With the

VAR model, we implemented two different approaches for prediction. In the first, we performed

an iterative forecast from the last time period where all observations for all the four variables

were available and we refer to these results as VAR4. For predictions after 2017, there is

the possibility to include deaths in incidents with guns from the Guns Violence Archive; the

VAR model accounting for this extra variable is referred to as VAR5. In the second approach,

which we refer to as VAR “fill”, we performed a one-step-ahead forecast from the period where

all observations were available. For the next period, if some variables became available, we

disregarded the forecast of those variables and used observations in their place. In this case,

the forecasts computed with the four original variables are called VARfill4, while those that

include also deaths in incidents with guns from the Guns Violence Archive are referred to as

VARfill5.

The results of the out-of-sample analysis are displayed in Figure B1. As in the case of AI

models, the DFM was the only model with better performance than the ARIMA benchmark

model. Holt-Winters and VARfill4 performed similarly to the ARIMA model in the previous
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years, while just VARfill4 did it in the present years. Finally, VAR4, VAR5, and VARfill5

predictions perform poorly.

Figure B1. Out-of-sample pseudo real-time comparison between DFM and other au-

toregressive models in the period from January 2008 to December 2020, in terms of

MAE: (a) previous and (b) present years.

(a)

(b)

Notes. Each point represents an MAE value for either the entire year preceding the month at which the

prediction is made (a) or the entire year when the prediction is made (b). DFM (red, ∎), VAR with four

variables and “fill” schema (orange, ⊕), VAR with four variables (turquoise, +), VAR with five variables

and “fill” schema (pink, ⊠), VAR with five variables (yellow, ∗), Holt-Winters’ method (light blue, ×), and

ARIMA(3,0,3) (violet, |). In (b), VAR predictions with five variables with “fill” scheme are not shown for

their higher range. VAR and VAR models with “fill” scheme do not contain predictions for years 2013 and

2008, respectively, due to their outlier performance.
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4.8—Appendix C

Accuracy comparison within different approaches
for RF and GBOOST models

Due to the fact that RF and GBOOST don’t take into account missing values in a con-

solidated framework as DFM does, several estimation and prediction schemes can be adopted.

To ensure the robustness of the results depicted in the main text of this chapter, we carried

out the same out of sample exercise in pseudo real time to backcast and nowcast the homicides

with firearm for the period between 2008 and 2020 with up to five additional approaches, three

for the RF and two for the GBOOST procedure.

Specifically, within the RF modeling, whereas in the standard approach used in the study

the parameters were optimized with the whole sample and kept fixed in the out of sample

exercise, an alternative where the optimization was done at every period of estimation. However,

these procedures are based on a univariate output, since typically RF trains several covariates

to regress (or classify) a single variable as the output. Therefore, two alternatives were also

adopted with a multioutput framework. For both, the procedure to create the prediction is

different than the one described in the main text. At each estimation period t where homicides

with firearm is not available, a prediction for each variable in the next period is made. Thus, a

prediction of every variable in the dataset is obtained for t+1. If any of the variables is available

at t + 1 its prediction is discarded, so that for t + 2 the prediction is created with the available

data and the forecasted values of the nonavailable data. This procedure is repeated for the

whole backcast and nowcast estimations. We refer to this repeated procedure as ”fill” scheme.

It must be noted, that every time a new variable appeared, the training has to be restarted. In

particular, it had to be done at three moments, when the variable of tweets containing the word

“homicide” appears, and also with deaths in incidents involving guns and with the appearance

of the provisional quarterly estimate of homicide with firearm.

In the first alternative adopted, the Python package caret allows being estimated within

the multioutput regressor class, which turns into a univariate output estimation for each vari-

able in the data. Regarding the second alternative, Rahman et al. (2017) adapted in the

MultivariateRandomForest package in R the joint estimation proposal in Segal and Xiao

(2011) where the split function is extended by replacing the node impurity measure with a co-

variance weighted analog. Nevertheless, to apply thus approach in out case, only the variables

recommended by the DFM were used due to the size of the dataset, as the use of more variables

did not allow for the required estimation of the inverse of the covariance matrix of the output

response matrix. The MAE when predicting the backcasted and nowcasted year every month

is shown in Figures C2 and C4. For the backcast exercise, the DFM had a significantly better
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performance than any of the RF models. Moreover, the results were similar for the four differ-

ent approaches with the RF, slightly better that of the univariate response which optimized the

parameters just with the whole sample. For the nowcast exercise, a similar conclusion can be

deducted but for the first four month where the multipoutput approach with the caret package

had a slightly better performance although still far from the DFM results.

Within the GBOOST approach, the first alternative consisted also of the optimization of

the parameters at every estimation and prediction period. On the other hand, in the second

alternative procedure adopted the estimation was performed by using the mvtboost package in

R Miller et al., 2016, an adaptation of the gbm package that allows for multioutput response

estimation by a different univariate output estimation for each variable, a similar approach to

that previously described for the RF when using the caret package in Python within the multi-

output response class. Figures C1 and C3 represent the MAE when predicting the backcasted

and nowcasted year every month. For the backcast exercise, the DFM again had a signifi-

cantly better performance than any of the GBOOST approaches. The results for the univariate

response model that optimized the parameters just with the whole sample where similar to

the ones obtained with the multioutput response approach. Furthermore, the univariate out-

put model that optimized the parameters at every period was slightly worse. Regarding the

nowcast exercise, again the univariate output model with a single optimization had a better

perfomance but for the first months of estimation, where the multioutput one improves its

performance. Nevertheless, the results are still far from those from DFM.
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Figure C1. Out of sample pseudo real-time 2008-20.

Notes. A value represents the MAE produced for the whole backcasted years at a certain month. MAE

series of DFM (red, ∎), RF (dark green, ●), RF with multioutput from caret and “fill” schema (mustard,

|), RF with multioutput and “fill” schema (olive green, ▽) and RF with univariate output and periodic

optimization (black, ▲).

Figure C2. Out of sample pseudo real-time 2008-20.

Notes. A value represents the MAE produced for the whole backcasted years at a certain month. MAE

series of DFM (red, ∎), GBOOST (light green, ▲), GBOOST with multioutput response (pine green, ▽),

GBOOST with univariate output and periodic optimization (mint green, ●).
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Figure C3. Out of sample pseudo real-time 2008-20.

Notes. A value represents the MAE produced for the whole nowcasted years at a certain month. MAE

series of DFM (red, ∎), RF (dark green, ●), RF with multioutput from caret and “fill” schema (mustard,

|), RF with multioutput and “fill” schema (olive green, ▽) and RF with univariate output and periodic

optimization (black, ▲).

Figure C4. Out of sample pseudo real-time 2008-20.

Notes. A value represents the MAE produced for the whole nowcasted years at a certain month. MAE

series of DFM (red, ∎), GBOOST (light green, ▲), GBOOST with multioutput response (pine green, ▽),

GBOOST with univariate output and periodic optimization (mint green, ●).
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4.9—Tables

Table 1. Data features

Variable Frequency Sample Delay

Homicides with firearm monthly 1999M1-2020M12 12-23
months

Provisional estimate of homicides with firearm quarterly 2017Q1-2020Q4 10
months

Deaths in incidents with guns monthly 2014M1-2020M12 no delay
Monthly homicides (averaged in three cities) monthly 2006M1-2020M12 no delay

Google Trends on “homicide” monthly 2004M1-2020M12 no delay
Background checks monthly 1999M1-2020M12 no delay

Media output on “homicide”+“shot” monthly 1999M1-2020M12 no delay
Media output on “riots” monthly 1999M1-2020M12 no delay

Media output on “unemployment” monthly 1999M1-2020M12 no delay
Economical Policy Uncertainy index monthly 1999M1-2020M12 no delay

Google Trends on “gun” monthly 2004M1-2020M12 no delay
Number of tweets about “homicide” monthly 2010M1-2020M12 no delay

Notes.Sampling frequency, time-interval, and delays (in months) for each of the variables forming

the dataset used to model and predict homicides with firearm at a monthly resolution.

Table 2. Loading factors for the model fitted over the entire sample period from January
1999 to December 2020.

HF PQE HF GVA H3 MOH BCs(-7)

bi 0.34 0.07 0.20 0.21 0.16 0.10
p-value < 10−2 < 10−2 < 10−2 < 10−2 < 10−2 < 10−2

Notes. HF refers to monthly homicides with firearm from CDC, PQE HF to provisional quarterly

annualized estimate of homicides with firearm from CDC, GVA to deaths in incidents with guns

from Guns Violence Archive, H3 to monthly homicides in the three cities, MOH to monthly media

output with “homicide”+“shot”, and BCs(-7) to monthly background checks lagged seven periods.
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Table 3. Diagnostic tests on the DFM residuals.

Normality Serial correlation

K-S L V S-F B-P L-B

ϵft 0.036 (0.883) 0.036 (0.554) 0.098 (0.062) 1.315 (0.094) 1.327 (0.249) 1.343 (0.247)

ϵu1t 0.077 (0.950) 0.077 (0.775) 0.153 (0.911) -0.527 (0.701) 9.536 (0.002) 10.252

(0.001)

ϵu2t 0.054 (0.439) 0.054 (0.066) 0.091 (0.174) -0.068 (0.527) 1.274 (0.259) 1.288 (0.256)

ϵu3t 0.063 (0.884) 0.063 (0.592) 0.130 (0.445) -0.543 (0.707) 0.124 (0.725) 0.128 (0.720)

ϵu4t 0.043 (0.749) 0.043 (0.320) 0.120 (0.078) 1.720 (0.044) 0.106 (0.745) 0.107 (0.744)

ϵu5t 0.042 (0.913) 0.042 (0.624) 0.104 (0.504) -0.592 (0.723) 2.194 (0.139) 2.231 (0.135)

ϵu6t 0.154 (¡0.001) 0.154 (¡0.001) 0.414 (¡0.001) 2.116 (0.017) 2.231 (0.345) 0.135 (0.342)

Notes. ϵft refers to the error of the common factor and ϵuit to the errors of the idiosyncratic compo-

nents: i=1 for provisional quarterly annualized estimate of homicides with firearm from CDC; i=2

for monthly homicides with firearm from CDC; i=3 for deaths in incidents with guns from Guns

Violence Archive; i=4 for monthly media output with “homicide”+“shot”; i=5 for monthly homi-

cides in the three cities; and i=6 for monthly background checks lagged seven periods. Numbers

in parentheses are p-values. We use the following acronyms: K-S (Kolmogorov-Smirnov test), L

(corrected version of the Kolmogorov-Smirnov by Lilliefors test), V (non-parametric entropy-based

test by Vasicek), S-F (Shapiro-Francia test), B-P (Box-Pierce test), and L-B (Ljung-Box test).
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Table 4. Statistical analysis of DFM performance in backcasting and forecasting against
other AI models and ARIMA using the HLN-statistic.

DFM vs RF DFM vs

GBOOST

DFM vs LSTM DFM vs

ARIMA

Backcast

h = 1

HLN -3.01 -1.21 -3.00 -1.54

p-value < 10−2 0.23 < 10−2 0.12

h = 2

HLN -2.23 -1.42 -3.64 -1.54

p-value 0.03 0.15 < 10−2 0.01

h = 3

HLN -1.77 -1.92 -1.12 -1.82

p-value 0.08 0.05 0.07 0.07

Forecast

h = 1

HLN -4.94 -5.54 -5.32 -5.12

p-value < 10−2 < 10−2 < 10−2 < 10−2

h = 2

HLN -4.78 -4.87 -4.57 -4.55

p-value < 10−2 < 10−2 < 10−2 < 10−2

h = 3

HLN -4.78 -4.80 -4.74 -4.70

p-value < 10−2 < 10−2 < 10−2 < 10−2

h = 4

HLN -4.95 -5.89 -4.51 -4.22

p-value < 10−2 < 10−2 < 10−2 < 10−2

h = 5

HLN -5.62 -5.59 -4.56 -4.17

p-value < 10−2 < 10−2 < 10−2 < 10−2

h = 6

HLN -5.01 -5.33 -4.43 -4.04

p-value < 10−2 < 10−2 < 10−2 < 10−2

Notes. The comparisons are carried out for different forecast/backcast horizons (h); bold values

indicate a significant statistic at α = 0.05.
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Table 5. Statistical analysis of direction predictive accuracy of DFM, AI models, and
ARIMA using the PT -statistic.

DFM RF GBOOST LSTM ARIMA

Backcast

h =1

PT 2.38 1.83 1.14 3.06 1.83

p-value < 10−2 0.03 0.13 < 10−2 0.03

h = 2

PT 1.06 0.61 0.61 0.10 -0.61

p-value 0.14 0.27 0.27 0.46 0.73

h = 3

PT 2.34 0.61 1.83 -0.61 -1.83

p-value < 10−2 0.27 0.03 0.73 0.97

Forecast

h = 1

PT 5.42 0.72 1.02 -2.32 0.00

p-value < 10−2 0.24 0.15 0.99 0.5

h = 2

PT 4.67 -1.02 -1.41 -0.61 -1.99

p-value < 10−2 0.85 0.92 0.73 0.98

h = 3

PT 4.34 0.20 0.51 -0.71 -2.27

p-value < 10−2 0.42 0.31 0.76 0.99

h = 4

PT 3.82 0.28 0.58 -2.23 -1.64

p-value < 10−2 0.39 0.28 0.99 0.95

h = 5

PT 3.90 0.94 0.89 -0.75 -1.85

p-value < 10−2 0.17 0.19 0.77 0.97

h = 6

PT 3.85 0.27 -0.10 -0.68 -1.18

p-value < 10−2 0.39 0.54 0.75 0.88

Notes. The comparisons are carried out for different forecast/backcast horizons (h); bold values

indicate a significant statistic at α = 0.05.
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4.10— Figures

Figure 4.1. Relative changes in homicide offenses rates by type of weapon in the period

from January 2011 to December 2020, from NIBRS.

Notes. “Firearm” (red, ●) refers to any type of gun (shotgun, rifle, handguns), “knife” (dark green, ▲)

to cutting instruments, “personal weapons” (light green, ∎) to the use of the body (hands, feet, etc.) as

weapon, and “all other” (blue, +) to blunt objects, vehicles, and any other object used as a weapon.
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Figure 4.2. Monthly time-series collected for the period from January 1999 to December

2020.

(a) (b)

(c) (d)

(e) (f)

Notes. (a) Monthly homicides with firearm rate per 100,000 inhabitants from CDC (seasonally adjusted).

(b) Provisional quarterly annualized estimate rate per 100,000 inhabitants for homicides with firearm from

CDC. (c) Deaths in incidents involving guns from Guns Violence Archive (seasonally adjusted). (d) Monthly

homicides rate for the aggregated cities of New York, Chicago, and Philadelphia (seasonally adjusted and

detrended). (e) Monthly Google Trends for the word “Homicide” (seasonally adjusted and detrended). (f)

Monthly background checks from NCIS (seasonally adjusted and detrended).
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Figure 4.2. Monthly time-series collected for the period from January 1999 to December

2020 (continued).

(g) (h)

(i) (j)

(k) (l)

Notes.(g) Media output for the news containing the words “homicide” with “shot”. (h) Media output for

the news containing the word “riots” (seasonally adjusted and detrended). (i) Media output for the news

containing the word “unemployment” (seasonally adjusted and detrended). (j) Monthly Economic Policy

Uncertainty (EPU) index (seasonally adjusted and detrended). (k) Monthly Google trends for the word

“gun” (seasonally adjusted and detrended). (l) Monthly geo-located tweets in the US containing the word

“homicide” (seasonally adjusted and detrended).
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Figure 4.3. Adjusted model fitted for the whole sample period from January 1999 to

December 2020.

Notes. The dashed line represents the common factor (right vertical axis) and the black line the reconstructed

series from the model on monthly homicides with firearm.
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Figure 4.4. Out-of-sample pseudo real-time comparison between the DFM, AI models,

and ARIMA for the period from January 2008 to December 2020, in terms of MAE:

(a) previous and (b) present years.

(a)

(b)

Notes. Each point represents an MAE value for either the entire year preceding the month at which the

prediction is made (a) or the entire year when the prediction is made (b). DFM (red, ∎), RF (dark green,

●), GBOOST (light green, ▲), LSTM (light blue, ▽), and ARIMA(3,0,3) (violet, |).



Chapter 5
What drives the EMU business cycles

connectedness: evidence from a TAR

dynamic panel model

5.1— Introduction

In recent years, the global economy has encountered economic shocks that have posed unprece-

dented economic challenges. Building upon the aftermath of the Great Recession, the Covid-19

pandemic, followed by the Ukrainian War, further exacerbated these challenges. Consequently,

the economic effects of these shocks have spurred increased academic research in business cy-

cle analysis. These shocks come at a time when the use of telecommunications has become

widespread (Gomez-Barroso and Marbán-Flores, 2020), tourism has become a key activity

worldwide (UNWTO, 2020) and trade has reached its highest levels (UNCTAD, 2022). Con-

sequently, in this globalized economy, economic shocks are no longer an idiosyncratic problem

to be studied in isolation; rather, they entail a certain degree of contagion and transmission to

other countries (Sebestyen and Ilokskics, 2020). This enhances the need to investigate the role

of globalization in the propagation of shocks, still unclear as highlighted by Kose, Prasad, and

Terrones (2003), and Eickmeier (2007), to gain a deeper understanding of the interconnected-

ness and interdependence of economies.

Within the framework of this globalized and interdependent economy, the study of the

transmission of shocks and the synchronization of business cycles assumes even greater sig-

nificance within the European Union and the Economic Monetary Union (EMU), owing to

their economic integration (Camacho and Perez-Quirós, 2006; Giannone, 2010). In this regard,

Gehringer and König (2021) argue that, while monetary integration helped synchronicity, the

debt crisis halted the tendency. Nevertheless, there is no consensus on the role of monetary

integration in synchronisation, since previously Crespo-Cuaresma and Lopez-Amador (2013)

for instance, contend that monetary integration did not enhance synchronization but instead

fostered greater interdependencies among a group of countries. Therefore, the study of inter-

117
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dependencies between EMU countries has assumed crucial importance in the current juncture,

and a more in-depth analysis of them and their drivers has become even more relevant.

While there is no single methodology for studying the transmission of shocks and inter-

dependencies, a convenient approach to analyze the transmission of shocks is the connected-

ness measure given by Diebold and Yilmaz (2009). Based on the Vector Autoregressive (VAR)

model, the method focuses on the analysis of the forecast error variance decomposition (FEVD)

to gauge spillovers and dependencies. This method, supposes two main advantages from other

approaches to measure spillovers such as the inference through a Global VAR set up in Dees

and Vansteenkiste (2007), the Minimum Spanning Tree in Matesanz et al. (2017), or the mul-

tilevel dynamic factor model approach in Camacho, Pacce and Perez-Quirós (2020). First, it

provides a simple procedure to obtain interdependencies between economies based on a well-

established econometric tool as the FEVD of a VAR model is. Second, its widespread adoption

and popularity in recent years underscores its practicality, in contrast to recent alternatives

such as the joint spillover index by Lastrapes and Wiesen (2021) (based on joint conditional

forecasts), the model-free connectedness approach in Gabauer, Chatziantoniou, and Stenfors

(2023) (which constrains Diebold and Yilmaz’s proposal), or the PCMCI algorithm by Runge

(2018), a time-lagged causal discovery framework based on conditional independence testing but

whose relationships, while allowing for nonlinear relationships, are more difficult to interpret

in terms of magnitude in a system.

Noteworthy applications of this measurement include Diebold and Yilmaz (2015) exami-

nation of the connectivity of business cycles from G-6, or the evaluation among the European

Union, China, and the United States in Antonakakis, Chatziantoniou, and Filis (2016), and

the analysis in Arčabić and Škrinjarić (2021) for EU countries. Albeit there exists a growing

number of studies on connectivity in business cycles, there is a lack of analysis for the EMU,

beyond that of Magkonis and Tsopanakis (2020), which, however, focuses on the banking sec-

tor and money markets. Nonetheless, its progressive construction process together with their

common monetary policy but with a different exposition to the Ukrainian war and previous

shocks, make their analysis a topic of interest.

Moreover, this definition of connectivity enables to evaluate different granularity levels,

ranging from the measurement of connectivity between the business cycles of two specific coun-

tries, to a measure of global connectivity involving a set of countries. Through this method,

not only a static analysis is possible but also a dynamic one from which we are able to identify

periods of higher agreement. Moreover, the method also allows for an offset between the agents

(in this case, countries), enabling asynchronous responses to each other’s actions.

Nevertheless, to the best of our knowledge, no econometric models have yet been set up to

ascertain the factors that determine interdependences. Related to this, Dees and Vansteenkiste

(2007) rely on the variance decomposition of a Factor Structural VAR to explain linkeages into

common, idiosyncratic and spillovers shocks, whereas Ngene (2021) explores the drivers of the
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connectedness of the U.S equity sectors during different business cycles, and Crespo-Cuaresma

(2022) analyzes the role of uncertainty in the synchronisation of business cycles. In this study

we take a different aproach, based on the adaptation of the gravity model for trade, proposed

first by Tinbergen (1962), and extended by Anderson and van Wincoop (2003), to the context

of spillovers. This strategy entails a comprehensive exploration of interdependence between

pairs of countries, encompassing considerations such as geographical distance and economic

size. Additionally, we incorporated other bilateral data such as tourist and export exchanges,

along with a measure of production similarity.

In addition, the persistence of the series and its susceptibility to fluctuations serve as in-

dicators of potential temporal non-linear dynamics, which should be considered when modeling

spillovers. Within the realm of nonlinear dynamic panel models, Kremer et al. (2013) develop

the dynamic panel threshold model which utilizes the forward orthogonal deviations transfor-

mation. However, the approach requires the assumption of exogeneity for the variable that

determines the non-linearity. In contrast, Seo and Shin (2016) propose an alternative approach

based on first-difference GMM, where both the threshold variable and regressors are permitted

to be endogenous. Building upon these findings, we propose a dynamic Threshold Autore-

gressive (TAR) panel model to elucidate the dynamics of the spillovers (obtained by applying

the Diebold methodology to monthly industrial production as a proxy for the business cycle)

employing the global connectivity index as the defining series characterizing the states of these

dynamics. Subsequently, we conducted a rigorous comparative analysis of our proposed model

against the temporal gravity model and its extension to a dynamic panel model estimated by

GMM.

The empirical findings yielded several noteworthy insights. First, the estimation of

spillovers revealed a high degree of integration between the countries in our sample, with Spain,

Germany, and France as the main transmitters of business cycles (both in terms of their ability

to originate and transmit shocks, as well as their ability to cope with external shocks). In addi-

tion, the connectedness is sensitive to the fluctuations in the business cycles, notably increasing

during periods of economic downturns, aligning with findings observed Arčabić and Škrinjarić

(2021). On top of that, the inferred network’s topology (i.e. the structure of the network cre-

ated by the interrelathionships) revealed different interaction groups, which also change while

analyzing the topologies of other sectors where interaction between countries is important, such

as tourism or exports. These communities, defy the conventional core-periphery view, align-

ing with outcomes reported in Matesanz et al. (2017). Second, outcomes derived from the

extended gravity model with time dimension suggested that distance and differentiated GDP

play an important role in the spillovers dynamics together with exports, tourism and indus-

trial production similarity. Nevertheless, when extending the analysis to encompass a dynamic

nonlinear panel approach, we observed a nuanced picture. Specifically, the previous time step

level of the spillovers together with the exports and tourism are the ones that play a more

important role in both upper and lower regimes, with the differentiated GDP being relevant
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just in the upper regime and industrial similarity marginally just in the lower regime. This

nonlinear extension also enables the creation of an indicator with two differentiated states with

different levels of connectivity, with the upper regime indicative of high global connectedness.

These results hold significant implications and offer valuable guidance for policymakrs

seeking to mitigate the effects of economics downturns period. In order to enhance the ef-

fectiveness of their measures, our results suggest a shift from country-specific strategies to

measures common to countries with similar productive structure, together with a special care

on tourism and exports. Moreover, the indicator derived from our model stands as a valuable

tool for identifying strategic intervention points, where countries are more interconnected and

thus where interventions are likely to yield the most impactful results

The rest of the chapter is organized as follows. Section 2 introduces the approach to

compute spillovers and the adaptation of the gravity model to a nonlinear dynamic panel

frame. Section 3 details a preliminary analysis of the data. Section 4 applies the approach

to obtain the spillovers from EMU countries, analyzes the connectedness dynamics, and fits

the panel data models to explain their dynamics. This section compares the estimation from

the gravity model, the dynamic panel data alternative and our nonlinear dynamic proposal.

Section 5 concludes and outlines some further research lines. This is followed by the references,

appendices, tables and figures referred to in the chapter.

5.2—Methods

5.2.1. Connectedness measurement

The measurement of connectivity proposed by Diebold and Yilmaz (2009) is based on the fore-

cast error variance decomposition (FEVD) from a VAR model. In particular, FEVD specifies

the proportion of the variability of a variable i of the VAR model which is explained by an un-

expected shock in each of the N endogenous variables of the system. For our case, by stacking

the monthly industrial production indexes from the Organisation for Economic Co-operation

and Development (OECD) database in a vector Yt, we can model it as a vector autoregression

of order p, which in its structural form can be defined as

A0Yt = δ +A1Yt−1 + ... +APYt−p + ϵt, (C.1)

where, ϵt is a vector of i.i.d. shocks following N (0,Σ), with Σ their covariance matrix. One

possibility is to estimate the FEVD from the structural shocks is by identifying the model in

its reduced form after imposing restrictions, such as short run, long run or sign restrictions.

Another alternative is to compute the generalized forecast error variance decomposition
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instead, proposed by Pesaran and Shin (1998), which is the one we adopted in our study.

Without going into detail, this procedure does not assume a specific identification structure is

assumed for structural shocks and Montecarlo techniques are used to estimate the unrestricted

variance decomposition in the identification of shocks. Therefore is no need to estimate the

parameters in the structural form of the model, and the elements of the covariance matrix of

the forecast errors are obtained as

∆h
ij =

σ−1jj ∑
h−1
r=0 (e

′
iψrΩej)2

∑
h−1
r=0 (e

′
i(e

′
iψrΩψ

′
rei))

, (C.2)

where ψr is the matrix that measures the response of the variables to a shock in the MA

expression of the reduced form r periods ahead, ej is a vector of zeros but in the j − th position

and σjj is the j − th element in the diagonal of the Ω matrix of covariances. These elements are

usually expressed normalized, so the columns of the matrix sum up to one each,

dhij =
∆h

ij

∑
N
j=1∆

h
ij

. (C.3)

The elements dhij will form the matrix of the variance decomposition. Once the forecast

error variance decomposition is obtained, connectivity at horizon h can be defined as the share

of the year-on-year growth rate of a country’s industrial production index that is explained

by shocks in the other countries analyzed. Thus, the directional connectivity of country j to

country i will be defined as

Ch
i←j = d

h
ij, (C.4)

so there will be N2 −N directional pairwise connectivities, and in general Ch
i←j ≠ C

h
j←i. The net

directional connectivity between two countries will be defined as

Ch
ij = C

h
j←i −C

h
i←j, (C.5)

resulting positive when the business cycle of country i has a larger influence on the business

cycle of country j than from j to i. On top of that, the net effect from the rest of the countries

in a specific country can be obtained by adding the directional connectivities in each row but

the elements in the main diagonal of the matrix

Ch
i←⋅ =

N

∑
j=1

dhij, j ≠ i, (C.6)

while one can also compute the connectivity “to others” adding up in each column but for the

elements in the diagonal, this is how much country j affect the rest of the countries

Ch
⋅←j =

N

∑
i=1

dhij, i ≠ j, (C.7)
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from which we infer the ability of a country to transmit its business cycle to other countries.

As a consequence, the net total connectivity of a country, this is the net transmission of the

shocks of its business cycle to the rest of the countries in the sample will be

Ch
i = C

h
⋅←i −C

h
i←⋅, (C.8)

with the sign of the expression determines whether a country is a net transmitter or a net

receiver. The connectivity matrix is then adjusted to normalize the values of its elements,

allowing them to be interpreted as percentages relative to the total prediction error variance,

all while preserving the original connectivity ratios. The adjustment consists of dividing the

connectivity by the number of countries in the set, in the same way as the global connectivity

index has been calculated.

Finally, the total connectedness of the system, known as the connectedness index, will

summarize to which extent countries in the sample influence into each other. The higher the

index, the higher connectedness will result. It will be obtained by adding up the elements

outside of the main diagonal divided by the number of countries in the sample (as in the

transformation of the connectiviy matrix) and will vary from 0 up to 100, i.e. from a complete

lack of spillovers to a complete explanation of shocks by spillovers. Additionally, connectedness

can be also analyzed in a dynamic frame by estimating the model for a rolling window of a

particular size, w, obtaining a different estimation of the model’s parameters for each sample.

So that, with T the sample size, we might get T −w measurements of connectivity, allowing us

to analyze its evolution in time.

5.2.2. Dynamic Panel Gravity modeling

Just as gravity models (Tinbergen, 1962) are employed in their application to trade, a similar

rationale can be extended to spillovers. Thus, it would stand to reason that a country could be

more influenced by another country if they are in close proximity (greater exchanges of human

capital and goods capital), and this influence, in turn, could also be thought as a function of

the size of the economy, since it would be reasonable for a larger economy to have a greater

influence on a smaller economy. In this vein, the simpler version of the generalized gravity

model of trade (Anderson and van Wincoop, 2003) can be adapted to the spillovers as

Cj←i = β0
K

∏
k

Xβk

j←i,kϵj←i, (C.9)

with Xj←i,k the K covariates that explain the bilateral connectedness, including bilateral data

but also unilateral, and ϵj←i i.i.d. errors. In the simpler setup, the gravity model will include

GDP of each country of the repective pair together with the distance among them, measured

as physical distance as in our case, or through alternatives measures (sharing borders, language
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or colonial relation in the past). However, the inclusion of additional explanatory variables is

widely accepted in the literature of gravity models (Bussière, Fidrmuc and Schnatz, 2008), and

based on this we will add to the model bilateral data of different sectors.

On top of that, and due to data availability for the time span, the time dimension can be

added to the model, which can be rewritten in logarithms as

lnCj←i,t = β0 +
K

∑
k=1

βilnXj←i,k,t + uj←i, (C.10)

The traditional approach of gravity models is their estimation through GLS, however,

Silva and Teneyro (2006) showed that this configuration can lead to problems in the very

likely presence of heteroscedasticity, demonstrating that the estimation through Pseudo Poisson

Maximum Likelihood (PPML) is more appropriate, and provides advantages over alternative

methods such as feasible GLS or nonlinear least squares.

One element to be taken into account that has recently appeared in the literature is the

fact that gravity models of trade tend to include dynamics into the panel-data model, once

the high persistence of the series of trade has been accepted (Eichengreen and Irwin, 1997).

This persistence results also to be the case for spillovers, so that by paralleling the reasoning,

equation C.10 can be extended as

lnCj←i,t = β0 + β1lnCj←i,t−1 +
K

∑
k=2

βilnXj←i,k,t + uj←i. (C.11)

Nonetheless, the introduction of dynamics in the series creates an inconsistency problem in

the estimation for fixed effects panel models (Nickel, 1981), and, as shown by Olivero & Yotov

(2012) also for PPML estimations. To overcome this issue, De Benedictis and Vicarelli (2005),

and Martinez-Zarzoso (2013), find that the system-GMM (Blundell and Bond, 1998) procedure

is robust and preferred to the first-difference GMM from Arellano-Bond (1991), as the latter is

not suitable in the presence of persistence.

Besides, the spillovers will be characterized by an asymmetric behavior, as business cycles

do (Burns and Mitchell, 1946), thereby implying a source of uncertainty in accepting linearity

in the models. In this vein, in the recent years the literature has analysed the problem of

non-linearities in panel models. For instance, Hansen (1999) proposes a static panel threshold

model where the coefficient can vary depending on the value of an exogenous variable. Based

on this analysis, and to allow for endogenous regressors, Kremer et al. (2013) combined the

forward orthogonal deviations transformation by Arellano and Bover (1995) and the instru-

mental variable estimation. However, to avoid the assumption of exogeneity on the threshold

variable, Shin and Seo (2016) developed a threshold autoregressive model estimated through

first-differenced GMM, in which both regressors and the threshold variable are allowed to be
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endogenous, so that

lnCj←i,t = (1,X
∗
j←i,k,t)β11(qit ≤ γ) + (1,X

∗
j←i,k,t)β

′
11(qi,t ≥ γ) + uj←i. (C.12)

where X∗j←i,k,t the covariates including also the lagged connectivity in our case, and qi,t

is the threshold variable at time t which in our case is the inferred global connectivity index.

Based on this approach, a TAR model (Tong, 1990) can be considered to be applied where both

the intercept and coeffients changes according to the threshold variable. Thus, for this proposal

any possible problem of endogeneity of this treshold variable and the spillovers will not result

into a problem as in the other approaches would be. Through grid search the threshold γ that

minimizes the mean square error of the fitting through pooled least squares estimation can be

obtained. This approach yields an indicator function of global connectivity, I(qit < γ) with qit

the global connectivity index, for the entire time dimension of the panel, indicating one state

with a high connectivity and another state with low connectivity for the panel.

5.3—Data

To characterize the business cycles, we chose the monthly industrial production indexes from

the OECD database. The frequency of publication of Industrial production is higher compared

to Gross Domestic Product, enabling a larger number of observations and a better gauge of the

economic cycle. This is especially significant in the case of short-lived recessions, such as the

one experienced during the health crisis.

Specifically, we use their year-on-year rates for the period from January 1966 to Novem-

ber 2022 for eleven of the eurozone countries with a longer period of data available: Austria,

Belgium, Finland, France, Germany, Greece, Italy, Luxembourg, The Netherlands, Portugal,

and Spain. During this period, there will be fluctuations both with positive growth and con-

tractions. By utilizing a year-on-year rate, we can overcome issues related to stationarity and

seasonality that are commonly encountered in industrial production series.

To get a picture closer to economic reality, a systematic outlier detection process was

performed. In particular, we considered as outliers any of the observations identified as such

by Isolation Forests (Liu et al., 2008) with a larger anomaly score than 0.9, Local Outlier

algorithm (Breunig et al., 2000) with a larger factor than 3, or DBSCAN (Ester & Sander,

1996) with a distance larger than 3.5 (around 10% of the average range), with this parameter

making reference to the maximum distance that two points can be from one another while still

included in the same cluster, and with at least two points in the cluster of outliers. Through this

preprocessing, we take into account both global outliers and local outliers. For the COVID-

19 period, we just adjusted the year-to-year rates from March to August 2021, to avoid a
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sudden increase after a sudden decrease that might affect autoregressive models estimation.

The outliers points obtained in the process were filled in using a Kalman filter procedure

for univariate ARIMA models (Hyndman and Khandakar, 2008; Moritz and Bartz-Beielstein,

2017). Although the Dicky Fuller tests rejected the presence of unit roots, which is required

for the estimation of the VAR model, the series presented different outliers peaks (due to, for

example, wars or turmoil).

To elaborate the explanatory model of the spillovers, we first gathered data from GDP,

which was monthly linearized, and we defined the distance between pairs of countries as the

physical distance between the capital and the closest border. Nevertheless, despite the avail-

ability of these two variables for the same time span as industrial production, the inclusion of

three more additional explanatory variables can only be implemented starting from the year

1995 since bilateral Eurostat data became available from that year onward, restricting the

analysis to that period. First, tourist exchange data were obtained from Eurostat’s monthly

series of inter-country air passengers. This would be, in some cases of missing values, extended

back to 1995 using the dynamics of the series of nights by country of origin, available from

Eurostat from 1995 to 2011. Second, bilateral export data were collected using the EU trade

series by Eurostat’s BEC by partner, available since since 1988. Third, we created a measure

of the similarity of the industrial production. To this end, we reconstruct the composition of

countries’ production as follows. Firstly, we obtained the production weights for the countries

as a percentage of production of intermediate goods, durable goods, non-durable goods, capital

goods, and energy, published for the year 2015. Then, using the dynamics of each of these

productions from Eurostat, we reconstructed the weights for the period up to 1995 and forward

to 2020. At this stage, we computed the cosine similarity between each pair of countries at

time t based on the industrial composition for each country at time t, ici,t, calculated as the

inner (or scalar) product of the two vectors,

cosineij,t =
∑

5
n=1 icin,ticjn,t

√

∑
5
n=1 ic

2
in,t∑

5
n=1 ic

2
jn,t

,

where n represents the five groups of production. Although already described in Appendix

A of Chapter 3, it should be recalled that the similarity can range from -1 to 1, where -1

represents total dissimilarity, zero represents no similarity and 1 complete similarity. As can be

noted from Figure 5.1, countries such as France and Germany present a more similar industrial

composition than for instance Greece and Germany, as Greece is a country whose economy is

mainly based on tourism and its production therefore is focused on.
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5.4—Results

5.4.1. Connectedness and network structure

For the VAR model estimation from which we will obtain connectivity, we followed the Schwartz

criteria, with the configuration of p = 2 yielding the optimum setting (SC: 25.66) with the

whole sample. The connectivity table is usually transformed to relativize the value of each of

the elements so that they can be interpreted as the percentage they represent over the total

variance of the prediction error. The transformation involves dividing the connectivities by the

total number of variables, utilizing the previously computed connectedness index. Tables 1 and

2 present the static connectedness during the short-term and long-term, specifically two and

twelve months following the unexpected shock.

In the short run, the total connectedness index is 36.69%, unveiling that more than one-

third of the forecast error variance is due to shocks transmitted between countries, while 63.31%

is due to shocks from the countries themselves. As can be expected, the elements in the diagonal

are the largest in the matrix, since they represent to which extent a shock with origin in one

country affects that country. Nevertheless, there are certain significant relations. For instance

for a 2-month horizon, while Italy has a 1.26 connection to France, the latter has a connection of

1.15 to Spain, and Germany a connection of 1.13 to Austria. The opposite direction relations

are smaller, with France having a connection to Italy of 1.06, Spain to France of 1.03, and

Austria to Germany of just 0.50. As a summary in a visual shape, the resulting whole network

representation with significant connections (larger than 0.05) is depicted in Figure 5.2. To

ensure that the number of parameters to be estimated in the VAR model does not pose an

estimation problem in our case, we conducted a robustness test. We examined the accuracy of

the inferred configuration using the GNAR methodology introduced by Knight et al. (2020),

which analyzes network dynamics. The proposed configuration was among the tested options

that exhibited lower fitting errors (see Appendix A for more details).

On its part, the total connectedness index for the long term increases up to 56.85%,

meaning that more than half of the forecast error variance is due to shocks transmitted between

countries. On top of that, this result shows that perturbations are still being transmitted after

several months. In this case, the connection from Italy to France rises up to 1.31 and 1.12 in

the opposite direction, while from Spain to France is 1.49 (1.13 in the opposite direction), and

1.51 from Germany to Austria (decreases to 0.36 in the opposite direction).

Moreover, the net receivers and transmitters from the countries in the sample can be

obtained. From Tables 3 and 4, Austria, Belgium, Finland, Greece, The Netherlands, and Por-

tugal are the receiver countries, while Germany, Italy, and Spain are the transmitter countries.

For the case of Luxembourg and France, in the short run is a receiver but in the medium term
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turns to be a transmitter. In addition, we can suspect that COVID-19 pandemic increased the

role of Italy as a transmitter, as it was the country where the virus appeared first among the

countries in the sample. This is actually confirmed by performing the analysis up to December

2019, reflected in Table 5 which shows the differences at horizon h = 2 between both cases.

Indeed, the large positive difference of 3.26 in the case of transmission for Italy, larger than the

difference in reception (1.10), although still smaller than its net connectedness with the whole

sample (2.41 in Table 3), represents a significant amount of the transmission estimated, showing

that, effectively, the pandemic intensifies Italy’s classification as a transmitting country. For

the rest of the countries, their nature also did not change.

Once a certain topology has been inferred, descriptive measures of the system can be

obtained, as well as analyzing areas of closer interaction. In terms of the former, and identifying

an edge as a connection from a country to another and a node as a production indicator time

series of a country, the main measures that describe the structure of a network are: the density

of edges per node (as the quantity of spillovers that a country takes part of), the clustering

coefficient (as the proportion of connections among the neighbours of a node which are actually

take place compared with the number of all possible connections), the average path length (as

the mean quantity of the inverse of the connections), the diameter of the network (understanding

distance as the inverse of the weight of an edge) as the maximum distance, the mean degree

(to analyze the average number of edges that arrive to an average node) and reciprocity (to

study the proportion of connections bidirectional between two nodes). In our case, to obtain

the main features of the topology inferred, only edges that accounted for more than 5 percent

of a node’s connectivity were retained to discard irrelevant connections and analyze network

characteristics. The network with two months horizon had a density of 0.43, a diameter of

0.45, a reciprocity of 0.58, and an average path length of 0.19, indicating a network with a

high density of edges, with nodes close together, and largely bi-directional edges. Besides,

the features indicate indeed that the nodes (or countries) are largely influenced by the other

nodes: if the nodes were mostly explained by their own behavior, the number of edges with a

connection of more than 5 % would be small.

Also very informative about the nature of a network structure, is the detection of commu-

nities in terms of interactions, where a community is understood as a set of nodes (i.e. industrial

productions in our case) that are more densely connected to each other than to nodes outside

of the community. Regarding the partition of the network, one of the most popular algorithms

to detect communities in a graph is the Louvain algorithm (Pujol, Erramilli, and Rodriguez,

2009). In particular, the algorithm optimizes the quality of the partition of the network by

maximizing iteratively the modularity, a measure of the strength of a particular partition of

the network which is defined as

Q =
1

2m
∑
ij

[Cj←i −
(C⋅←i +Ci←⋅)(C⋅←i +Cj←⋅)

2m
]δ(ci, cj), (C.13)
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where Cj←i is the edge weight (connection) between nodes (countries in our case) i and j, m

is the sum of all the weights in the network, ci and cj are the communities assigned to the nodes,

δ is Kronecker’s delta function, and where the numerator of the fraction represent the product

of the degree of both nodes. The algorithm of optimization is based on initially assigning a

community to each node, for which it is analyzed how much modurality will be increased when

moving the node to another neighbor community (in the initial case that assigns a community to

every node, these correspond simply to the neighbors of each node), choosing the configuration

that increases it the most. Thus, a new graph is created with the nodes as the communities

previously found, defining the weights (i.e. the connections) between communities as the sum

of the weights of the nodes in the respective communities. Through iteration between both

steps, the optimum membership in communities that maximizes modularity can be obtained.

In terms of communities, Figure 5.3 shows how, according to the Louvain algorithm

applied through the multinet package (Magnani, Rossi, and Vega, 2021), exterior countries

are more isolated from the rest of the EMU countries, such as Finland and Greece, and which

are assigned as isolated communities, while two large groups are obtained, one characterized

by Austria, Spain, Italy, and Germany, and the other by the Benelux countries, Portugal and

France, the latter being the closest country to serve as a link between communities. These

clusters found do not map the core-peripherical view (Lehwald , 2013), in line with the results

also obtained in Matesanz et al., (2017). 1.

In addition to knowing that the connectedness is larger in the long term as obtained, it is

a matter of interest to analyze up to which period this is the case, since at a certain period the

forecast error variance has to stabilize. Figure 5.4 depicts the global connectivity index up to a

horizon of 18 months. Two insights stand out. First, the shocks in the errors do not decrease

with time in this system. Second, after around 12 months, the connectedness remains around

60%, increasing in that period by around 15% although most of the connectivity is therefore

in the short term .

Once the connectivities have been obtained and their nature has been analysed, the

dynamic connectedness was explored for a two months horizon through a VAR(2) recursively

estimated. Figure 5.5 shows the connectedness index, with a rolling window of 60 months and

a forecast horizon of two months ahead, together with the chronology established by the Euro

Area Business Cycle Network Committee (EABCN). As can be noted, the connectedness seems

to follow a cyclical path, with the caveat that the dynamic window consistently encapsulates

data from a specified timeframe, and in order to effectively represent a transition, a requisite

quantity of observations must manifest such a transition (which consequently introduces a

1A comparison of the network features and of the communities obtained in the production network with the
networks obtained for two other variables with presumed cross-country influence as tourism and exports, shows
that the production network is more similar to that of tourism than to that of exports, although in all cases
the communities obtained are different, separating Mediterranean countries in the first case and traditionally
exporting countries in the second (for more details, see Appendix B).
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temporal lag before the index accurately portrays it). During economic recessions, the index

uses to first shortly decrease, followed by a large increase during and right after the period,

while in expansions the index turns to decrease after the mentioned increase that follows the

recession to later keep stay around a lower level of connectivity, pointing to a certain nonlinear

behaviour which will be discussed in the following subsection. In addition, it can be noted

that the influence of globalization is notable from 1990, creating an increasing trend on the

connectivity index, which remained stable up to the Great Recession, following again from

that point the mentioned pattern, sensitive to the cycle. The sanitary crisis consequence of

COVID-19 resulted in an unprecedented connectedness, with a peak of up to 80.

For the sake of the robustness of this insight, we performed the analysis with windows

of different sizes (always with a two months ahead horizon) and obtained the mean difference

between the peaks and the droughts and vice versa. The results summarized in Table 6 con-

firmed the dynamics and the sensitivity to the business cycles of the connectedness index. The

level of the index remained around 50 at every window and the mean difference from the end

to the beginning of recessions always stay high, with a sligh decline always in the recessions.

5.4.2. Explanatory models

Once the spillovers were estimated and their structure characterised, at this juncture we fitted

the gravity model through PPML estimation with the addition of other covariates to obtain

an explanatory view of the spillovers. The model was implemented with the inclusion of the

time dimension, encompassing also a comprehensive range of variables.2 Specifically, bilateral

tourism, exports, and the computed similarity of industrial production were incorporated into

the model together with GDP and distance. While spurious correlations typically poses smaller

concerns in gravity models than in time series, Kao and Chiang (2000) showed that fixed ef-

fects estimators in panels that do not take stationarity into account might be biased. As a

consequence, we conducted Panel Unit Root tests to check whether any covariate must be dif-

ferentiated. The results of the four tests (Levinlin, IPS, Maddala-Wu, and Hadri), are presented

in Table 7, confirming that the GDP series in logarithms (as present in our modeling) should

be differenced, while the remaining variables did not require such transformation.With the es-

tablished set up, the results presented in the first column of Table 8 show, for the unbalanced

dataset from 1995, that all the variables were significant to explain the spillovers but bilateral

exports and the differentiated GDP series. While the sign of the coefficent for distance was

negative, it was observed a positive relation in the similarity measure, tourism, differentiated

logarithm of GDP, and exports.

2In order to gain certainty of the need of including other variables out of those included in the simpler
gravity model of trade such as GDP and distance, we performed an estimation of this simpler model through
the inclusion of possible unobserved structures in the model, following Chen, Fernández-Val and Weidner (2021),
from which it was cofirmed that more variables needed to be taken into account since some hidden structures
were present. For further details, see Appendix C.
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Nonetheless, due to the persistent nature of the connectivities (a feature that can be noted

for instance in Figure 5.6 for the cases of the spillovers from Germany to France and from Greece

to Germany), we employed a dynamic panel model in our analysis. In this vein, Roodman

(2009) highlighted the possibility of weak instruments when using the Arellano-Bond estimator

in dynamic panels, and potential limitations in small sample properties with the Blundell-Bond

estimator. Thus, to address potential issues of weak instruments, we utilized a system-GMM

procedure with lagged spillovers from two to five periods as instruments since our dataset was

larger than the number of individuals in the panel. Upon incorporating the series into the

dynamic panel model through the plm package, where we specified a fixed effects model and a

two step GMM estimation, we observed that the autoregressive spillover term was a significant

variable. On its part, distance and tourism remained statistically significant, as reflected in the

second column of Table 8. Additionaly, the incorporation of autoregressive dynamics in the

model rendered the differentiated GDP in logarithms for the sender country as a significant

variable (exports and the differentiated GDP of the receiver country in logarithms also remained

non-significant in this case, changing to also non significant coefficients both exports and the

similarity in industrial production). To evaluate the presence of autocorrelation and the correct

introduction of the autoregressive term, we performed the Arellano autocorrelation test. The

test correctly rejected autocorrelation at lag one (z=-5.25, p-value<0.01) and failed to reject

it at two periods (z=1.43, p-value=0.15) as suggested by the authors to declare absence of

autocorrelation. Furthermore, the Sargan test indicated that the instruments were uncorrelated

with the error term and supported their proper exclusion from the equation, as the test did not

reject the null hypothesis of valid instruments (χ2(1659)=83.27, p-value=1.00).

Morever, a key aspect in the analysis is the presence of asymmetric behavior in connec-

tivity and spillovers, which led us to explore the possibility of extending the model and fitting

a non-linear dynamic model. To this end, we employed a TAR model as the natural choice,

where the threshold variable is the global connectivity index previously estimated with a rolling

window of 60 months. The estimation is done through first difference GMM, and in this case,

both the intercept and the slope coefficients change according to the global connectivity index

as the threshold variable, and was built based on the dptee package. The procedure used to

infer the state at each of the periods is based on minimizing the error through a grid search.

The instruments chosen for the estimations where the lagged series of the dependent variable

up to five lags.

The estimated threshold was determined to be 54.20 and significant. In the high state,

the autoregressive spillover term was found to be significant, along with the differentiated GDP

in logarithms of the sender country, tourism (all with negative sign), and exports (with positive

sign), results reflected as Model 3 in Table 8. In the low state, the autoregressive spillover term

was found to be significant (with positive sign), together with exports, tourism and, marginally,

industrial production (all with negative sign). The intercept, which also accounted for the fixed

effect of distance, was estimated to be -26.71 (significant) in the upper state (and set to zero
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in the lower state). As can be noted from Figure 5.7 the low state corresponds to one with a

lower global connectedness index, while the high state to one with a high index. In particular,

the financial crisis and the Covid period are included in the latter together with some short

perios in 2018, 2003, and 2004. Moreover, all the variables but tourism changed their sign

from state to state. With respect to that, the latter is reasonable. Tourism usually decreases

in recessionary periods, where high state is mainly present and where connectedness tend to

increase, and usually increases in expansion periods, where connectedness then to stay low or

even decrease. With respect to the positive sign of exports in recessionary periods, it is a

known fact that net exports are countercyclical (Backus, Kehoe, and Kydland, 1992), so that

gain weight in economies in recessionary periods, when internal demand looses strength but

they are not adversely affected as pointed in Abiad, Mishra, and Topalova (2014), although we

would expect a positive sign in the low regime, although this is lower and not significant at

higher confidence levels. .

Finally, to check the validity of the specifications obtained and the correct introduction on

non-linearity, tests for the null of no threshold effects and for the validity of the overidentifying

moment conditions were performed. For the former, Seo and Shin (2016) provide a test based

on the supremum type statistics, which although they do not follow standard asymptotic distri-

butions, its critical values can be found by boostrap procedures. In particular, in our case the

Wald type supremum linearity test was performed, based on the bootstrap algorithm in Seo,

Kim, and Kim (2019), whose result presented a small bootstrap p-value < 10−2, which suggests

strong evidence in favor of threshold effects and supporting the nonlinear model adopted. For

the validity of instruments, the overidentifying restrictions test (or J-test) of exogeneity of the

instruments, yielded a value of 192.77 and resulting in a high p-value, indicating that the null

hypothesis of valid instruments could not be rejected, so that it can not be ruled out that the

lagged series of the dependent variable up to five lags are exogenous instruments. Therefore,

the TAR approach is found as the valid approach in our comparison, unveiling a differentiated

behaviour of the spillovers according to the different degree of connectedness in expansionary

and recessionary periods. This result is in line with the implementation in times of recession

of economic transfer mechanisms such as the Support to mitigate Unemployment Risks in an

Emergency (SURE) mechanism in 2020, the establishment of spending rules in 2011 or eco-

nomic bailouts such as those of Greece in 2010 and Portugal in 2011, initiatives that unify the

economic response in such periods, even if shocks hit countries asymmetrically.

5.5—Conclusions

The magnitude of the last shocks in the world economies has increased the interest in the

literature about the dynamics of the business cycles. Within a global economy, the mechanism

of transimission of shocks throughout economies is a feature that needs to be taken into account
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in this analysis. Besides, this is a key feature in the EMU, where the monetary union and the

free movement of capital, goods, services, and people, create a framework of highly connected

economies.

In this study, we analyze to which extent the business cycles of eleven countries of the

EMU are connected and we propose and explanatory model of these spillovers. Initially, through

the definition of connectedness of Diebold and Yilmaz (2009) based on the forecast error vari-

ance decomposition of a VAR model, we quantify the level of connection between the countries

during more than 50 years. Moreover, the relations obtained were confirmed through a GNAR

estimation for robustness. The study yielded five results to mention in terms of the spillovers

found. First, the EMU countries analyzed present a high degree of connectedness. This in-

terdependency is not just in the short run, but even increases in the medium term with the

system stabilizes its global connectivity around 60 % after eight too twelve months, although

the larger share takes place in the short run.

Second, from the analysis of connectedness’ directionality, the key role of geography is re-

vealed. While Spain, Italy, Germany, Luxembourg, and France are net transmitters of business

cycles, Finland, Portugal, Greece, Austria, Belgium and, The Netherlands are net receivers.

Third, and related to the above, the magnitude of Covid-19 pandemics and the arrival of the

virus in first place to Italy among the countries in the sample, made this country to change

from net receiver to net transmitter of perturbations. Fourh, the cluster analysis of the network

unveiled two main community groups, which rebut the core-peripheric view, in line with the

recent findings in Matesanz et al. (2016) in their synchronicity analysis..

Fifth, regarding the dynamics of connectedness, the index of global connectivity is not

symmetric. We unveiled increases during recessions, resulting in a more compact response to

more complicated situations, and less connection during expansions. This result, which is in

line with Arčabić and Škrinjarić (2021), was also checked with analysis with different rolling

windows. On top of that, the globalization might be the cause of a more interconnected system.

However, the creation of the European Central Bank and the establishment of the euro as the

single currency do not seem to increase dramatically the interdependencies of the business

cycles for the countries in the sample. This result is in line with the finding of Giannone et

al. (2010) who claimed that the adoption of the euro did not derive into any divergence or

convergence on business cycles economies. In fact, we detected two differentiated communities

and two isolated countries as optimizing partitions of the network.

Finally, once the topology of the network was inferred, a gravity model was fitted in

a dynamic version to analyse and explain the spillovers, resulting significant variables such

as industrial similarity, bilateral tourist flow, distance and GDP on a sample from 2000 to

2022. Nevertheless, to model the persistent dynamics of the spillovers, the gravity model was

augmented to a dynamic panel model, for which the Arellano test discarded the presence of au-

tocorrelation in the dynamic set up. On top of that, a non-linear set up was adopted, which was
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supported by the supremum Wald test supporting the presence of threshold effects. Therefore,

a TAR model whose transition variable was the global connectivity index was fitted. From this

latter analysis an indicator was developped, characterised by two regimes with higher and lower

interconnectedness. In particular, recession periods are included in the upper regime together

with other periods with an observed smaller peak of conenctedness. Tourism, exports, and the

autoregressive dynamics were found significant in both regimes, although in the case of exports

the magnitude of the relation was found less intense in the lower regime, and the differentiated

logarithm of GDP of the sender country was significant just in the upper regime. These results

have important implications in terms of policy recommendations. First, it shows that countries’

interconnectivity behaves differently in different periods, where the role of different bilateral

variables changes. Second, policies will be easier to implement in times of high connectivity

such as recessions and where the role of exports is important.

The study is not free of limitations. One of the major limitations of the analysis, namely

the availability of variables for the dynamic panel exercise with a longer time sample. Thus,

being able to extend the time series would allow a larger number of periods with different

economic circumstances to be analysed and conclusions to be drawn with greater certainty.

At this point, several different courses of action can be adopted as extensions. The results of

the flows of perturbations in the business cycles allow to analyze statistically possible more

complex networks with interactions not being taken into account here. In addition, the study

of other variables might help to get a more detailed picture of the spillovers. In this vein, an

analysis of the balance of payments could be complementary to the analysis. In particular,

Diebold and Yilmaz (2015) reveal a generalized relationship between a country’s trade surplus

and its consideration as a net recipient of cycles (and vice versa). Closely related to this,

recently Barigozzi (2022), extended the measurement of spillovers to a multilayer network, so

that the analysis could take into account different networks for different sectors able to also

allow inter-network connections. Other alternative might be trying to adapt the dynamic panel

methodology to the modelling of a changing regime determined by a Markov chain could be

a natural extension of the non-linear modelling proposed in this chapter. Last but not least,

it must be noted that a country’s transmission capacity does not control whether a country

distributes a shock or whether a country is the first to receive a common shock exogenous to all

countries that ends up reaching all countries in the group. Extending the connectivity measure

by controlling for exogenous shocks as in a Global VAR could be an alternative to pursue.
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Camacho, M., Pacce, M., and Pérez-Quirós, G. (2020). Spillover effects in international business

cycles. Banco de España, Working Paper No. 2034.

Chen, M., Fernández-Val, I., and Weidner, M., 2021. Nonlinear factor models for network and

panel data. Journal of Econometrics, 220(2), 296-324.

Crespo-Cuaresma, J., and Fernández-Amador, O., 2013. Business cycle convergence in EMU:

A first look at the second moment. Journal of Macroeconomics, 37, 265-284.

Crespo-Cuaresma, J., 2022. Uncertainty and business cycle synchronization in Europe. Applied

Economics Letters, 29(11), 1047-1053.

De Benedictis, L., and Vicarelli, C., 2005. Trade potentials in gravity panel data models. The



5.6. REFERENCES 135

BE Journal of Economic Analysis & Policy, 5(1),

Dées, S., and Vansteenkiste, I., 2007. The transmission of US cyclical developments to the rest

of the world. ECB Working Paper Series No 798.

Diebold, F.,and Yilmaz, K., 2009. Measuring financial asset return and volatility spillovers,

with application to global equity markets. Economic Journal, 119, 158-171.

Diebold F.,and Yilmaz K., 2015a. Financial and Macroeconomic Connectedness: A Network

Approach to Measurement and Monitoring. Oxford University Press.

Eichengreen, B., and Irwin, D., 1997. The role of history in bilateral trade flows. National

Bureau of Economic Research working paper 5565. Cambridge, MA.

Eickmeier, S. 2007. Business Cycle Transmission from the US to Germany-A Structural Factor

Approach. European Economic Review, 51: 521–551.

Ester, M., Kriegel, H. P., Sander, J., and Xu, X., 1996. A density-based algorithm for dis-

covering clusters in large spatial databases with noise. In Proceedings of the2nd International

Conference on Knowledge Discovery and Data Mining. Portland: AAAIPress, Vol. 96, No. 34,

pp. 226-231.

Gabauer, D., Chatziantoniou, I., & Stenfors, A., 2023. Model-free connectedness measures.

Finance Research Letters, 54, 103804.

Gehringer, A., and König, J., 2021. Recent patterns of economic alignment in the european

(monetary) union. Journal of Risk and Financial Management, 14(8), 362.

Giannone, D., Lenza, M. and Reichlin, L., 2010. Business Cycles in the Euro Area. Europe

and the Euro. Ed. Alesina, A. and Giavazzi, F., 141–167. The University of Chicago Press.
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5.7—Appendix A

One of the main concerns in the estimation of VAR models is the rapid growth of parameters

to be estimated as the number of equations increases, which can lead to a lack of degrees

of freedom when estimating the model. In order to check that the configuration obtained

in our estimation is credible, we examine the error generated by the Generalized Network

Autoregressive (GNAR) model, when it was was trained on the specific obtained configuration,

using data from the last year. We then compare this error with the errors generated by 1000

randomly generated configurations.

In a nutshell, the GNAR model assumes for a given network configuration, that each node

of the network, i.e. each time series of industrial production of each country in our case, is

driven by its own autoregressive process plus the influence of neighbors (i.e. other countries) up

to r steps (this is the number of consecutive connections to arrive in the network from one node

to other, or equivalently, from one country to another) modulated by the connection as a weight.

Formally, the GNAR of order (p,s) ∈ NxNp
0 for a N × 1 vector of industrial production time

series Yt = (Y1,t, ..., YN,t)
T , based on the connection weights Cj←i between the series representing

each node i, j ∈ 1, ...,N (with i ≠ j) and time t ∈ 1, ..., T , is characterized (assuming that no

external covariate is part of the network) as

Yi,t =
p

∑
j=1

(αi,jYi,t−j +
sj

∑
r=1

βj,r ∑

j∈N
(r)
t (i)

C
(t)
j←iYq,t−j) + ui,t, (C.14)
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where p ∈N is the maximum time lag, with s = (s1, ..., sp) where sj ∈ N0 is the maximum

stage of neighbor dependence for time lag j and N0 = N ∪ 0, where N
(r)
t (i) is the rth stage

neighbor set of node i at time t, and where w
(t)
i,j [0,1] is the connection weight between node

i and node j at time t. Besides, βj,r ∈ R is the effect of the rth stage neighbors at lag j and

αi,j ∈ R are the autoregressive parameters at lag j for node i. The errors ui,t are assumed to be

i.i.d. By calculating the error of the optimal model with the network configuration obtained

by VAR modeling in the main configuration for a forecast horizon of two (in this case, it was a

GNAR(2,2) model which minimizes the error, this is two autoregressive terms and influence of

neighbors up to two steps of distance) when predicting for the years 2018 and 2019 two months

ahead, and comparing it with the errors produced by 1000 randomly created configurations,

Figure A1 shows that the error was found to be within the first decile of configurations with

the lowest cumulative error. This is an indicator that the chosen configuration is correct, i.e.

that the VAR estimation in the main manuscript is reliable.

Figure A1. Simulation of GNAR models. Prediction error distribution.

Notes. Blue dashed line represents the error of the GNAR(2,2) obtained for the VAR modeling configu-

ration. Red dashed line represents first decile level.



5.8. APPENDIX B 139

5.8—Appendix B

A comparative exercise of the different communities detected for the topologies obtained from

three sectors with certain degree of openess, such as production, tourism and exports was

performed with data from yearly growth of tourism and exports obtained from Eurostat. The

available coincident sample for the three sectors spans from 1995 up to nowadays. As mentioned

in the main text, to perform the analysis we filtered the edges with a higher level than 5 percent

of connectivity for a node, as significant connections. From Table B1 it is clear that production

and tourism topologies are more similiar in most of the descriptive features but in reciprocity,

where tourism and exports present both a higher level. The former are more dense networks

with larger interactions, while the network of exports is a less interactive network. Moreover,

production is less prone to reciprocity in the interactions than tourism and exports.

Table B1. Network layers features.

Layer dens cc apl diam d̄ cen re
Prod 0.43 0.69 0.19 0.45 0.08 0.36 0.58
Tur 0.43 0.65 0.20 0.40 0.06 0.36 0.72
Exp 0.20 0.50 0.30 0.61 0.13 0.17 0.74

Notes. dens makes reference to the density of edges in the network, cc to the clustering coefficient, apl to

the average path length, diam to the diameter, d̄ to the mean distance between nodes, cen to centrality

and re to reciprocity.

In this vein, and based on the histogram of the degree of the nodes (i.e. countries), a

measure of dissimilarity can be obtained through analyzing the divergence of the distributions,

for instance the Jeffrey dissimilarity degree measure (Jeffrey, 1948). In particular, and limited

from 0 (in case of overlapping) to 1 (in case of total dissimilarity), the networks of production

and tourism presented a low dissimilariy of 0.03, while production and exports, as tourism and

exports, presented a higher level, 0.42 and 0.46, respectively, as expected.

On the other hand, Figure B1 depicts how the Louvain partitioning algorithm shows

different communities in the different sectors. While in general more distant countries such as

Greece and Finland are more isolated, in tourism, for instance, mediterranean countries such as

Italy, Portugal or Spain share a community, while the three of them do not share community in

exports or production. The two main exporter countries, as The Netherlands and Germany are,

share community in the exports network. On the other hand, it must be noted that France and

Belgium are the only countries that share community in all three sectors, indicating a constant

relationship in all three analyzed economic areas.
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Figure B1. Community detection through Louvain algorithm.

Notes. The figure on the left represents the communities for the exports network, while the figure on the

center represents the communities for the production, and the figure of the right to the tourism sector.

5.9—Appendix C

When analyzing the different spillovers, two qualitative observations are that closer countries

seems to have a greater influence, as well as that, apparently, larger countries exert a greater

influence on smaller countries than vice versa. As a consequence, a simple first approach would

to run a static gravity model with the variables GDP and distance,

Cj←i = β0GDP
β1

i GDP β2

j Distβ3

j←iuj←i, (C.15)

where Distj←i is measured as the distance between the capital in country i to the closer border

of country j, GDP represents the size of an economy, and Cj←i the spillover from country i

to country j. Thus, we might fit the model using PPML estimation whose coefficients can be

interpreted as elasticities. However, it might be the case that estimations can be biased due

to hidden factors that are not taken into account, such as common multinationals, trade part-

nerships, or industrial composition. Within this rationale, Chen, Fernández-Val, and Weidner

(2021) propose a nonlinear panel models with factor structures in the unobservables. In par-

ticular, they apply their technique to the gravity model with an estimate based on a Poisson

maximum likelihood estimate and allows to infer the presence of latent variables not being

taken into account. Within our case, this can be written as

E[Cj←i∣GDPi,GDPj,Distj←i, β0, α1i, γ1i] = exp(β0 + β1GDPi + β2GDPj + β3Distj←i + α
′
1iγ1j),

(C.16)



5.9. APPENDIX C 141

where α1i and γ2i are vectors of factors and factor loadings, and where up to R factors can be

included. If there are no variables without taking into account the estimates with or without

factors will be similar. Nevertheless, if the estimates differ, the presence of unaccounted-for

factors is confirmed and the model in equation C.15 can be extended to include more variables.

Therefore, to verify whether we might be leaving variables out of the analysis when just

considering GDP and distance, we fitted the nonlinear panel model with factor structures and

unobservable effects. Due to the data availabliity of others variables that will be used later,

we fitted the model with the sample which already covers all countries within the EU, from

1995 and up to 2019 to avoid Covid-19 influence, although the results are qualitative consistent

with the whole sample 3. As can be noted from the first three columns of Table C1, the fitted

Poisson model with unobserved structures confirms the expected signs of the coefficients, even

unveiling a negative sign for the GDP of the receiver country, and more importantly, through

the inclusion of one and two factors, the slightly different estimations point to some missing

covariates in the model.

3We translated the original code from the authors of the model in Matlab to R, available at Github.

https://github.com/salvatoteles/TARConnectedness
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Table C1. Estimation Static Gravity model with unobserved structures.

2000-2019 1970-2019
R=0 R=1 R=2 R=0

log(distij) -0.23 [0.14] -0.28 [0.15] -0.33 [0.17] -0.31 [0.22]
log(GDPi) 1.41 [6.89] 0.99 [7.21] 0.33 [8.78] 0.53 [21.76]
log(GDPj) -1.31 [7.01] -1.19 [7.33] -0.76 [8.98] -4.82 [17.22]

Log-likelihood -0.49 -0.46 -0.44 -0.68
Beta precision 10−7 10−3 10−3 10−9

Max reps 26 6 5 9
Max steps 250 50 50 75

Notes. dist makes reference to physical distance between the capital of country i to the closer border

of country j, GDP refers to Gross Domestic Product, and R makes reference to the number of hidden

factor structures. Beta precision, Max reps and Max steps make reference to the convergence criteria in

the estimation. Number in brackets refer to standard deviations of the coefficients.
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5.10—Tables

Table 1. EMU business cycles connectivity matrix: 1966M1-2022M11. 2 months ahead forecast

Austria Belgium Finland France Germany Greece Italy Luxembourg The Netherlands Portugal Spain From others
Austria 5.29 0.26 0.10 0.47 1.13 0.02 0.75 0.34 0.17 0.06 0.50 3.80
Belgium 0.38 5.30 0.08 0.80 0.81 0.02 0.66 0.64 0.08 0.01 0.31 3.80
Finland 0.16 0.10 7.70 0.04 0.20 0.04 0.31 0.16 0.06 0.11 0.20 1.39
France 0.34 0.40 0.01 4.25 0.87 0.06 1.26 0.57 0.16 0.15 1.03 1.39

Germany 0.50 0.44 0.08 1.07 4.60 0.01 0.83 0.47 0.19 0.27 0.65 4.49
Greece 0.04 0.01 0.02 0.16 0.16 7.76 0.22 0.01 0.11 0.01 0.59 1.33
Italy 0.42 0.29 0.09 1.06 0.59 0.14 4.90 0.42 0.15 0.26 0.77 4.19

Luxembourg 0.37 0.45 0.06 0.72 0.68 0.01 0.55 5.45 0.11 0.20 0.50 3.64
The Netherlands 0.29 0.11 0.03 0.48 0.61 0.01 0.43 0.20 6.42 0.06 0.45 2.67

Portugal 0.09 0.05 0.09 0.56 0.41 0.01 0.51 0.16 0.04 6.8 0.42 2.33
Spain 0.23 0.14 0.02 1.15 0.62 0.09 1.08 0.37 0.11 0.39 4.89 4.20

To others 2.82 2.26 0.57 6.52 6.07 0.39 6.60 3.33 1.18 1.52 5.42 36.69
Total 8.11 7.55 8.28 10.76 10.67 8.15 11.50 8.78 7.60 8.28 10.31 100

Notes. Each element Dh
ij =

dh
ij

N
represents the percentage of the total forecast error variance.
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Table 2. EMU business cycles connectivity matrix: 1966M1-2022M11. 12 months ahead forecast

Austria Belgium Finland France Germany Greece Italy Luxembourg The Netherlands Portugal Spain From others
Austria 2.51 0.40 0.23 0.73 1.51 0.21 0.99 0.80 0.54 0.13 1.03 6.58
Belgium 0.30 3.27 0.16 0.96 1.33 0.09 0.94 0.87 0.37 0.05 0.77 5.82
Finland 0.18 0.22 4.02 0.44 0.37 0.22 0.75 0.84 0.64 0.16 1.24 5.07
France 0.30 0.27 0.02 2.65 1.14 0.33 1.31 0.81 0.49 0.29 1.49 6.44

Germany 0.36 0.39 0.07 1.02 3.77 0.04 0.85 0.83 0.55 0.28 0.93 5.32
Greece 0.10 0.03 0.03 0.25 0.14 5.56 0.36 0.09 0.48 0.25 1.81 3.53
Italy 0.20 0.24 0.13 1.12 0.64 0.54 3.76 0.76 0.36 0.20 1.13 5.33

Luxembourg 0.23 0.53 0.03 1.00 0.86 0.04 0.59 4.42 0.31 0.21 0.87 4.67
The Netherlands 0.21 0.20 0.05 0.62 0.93 0.24 0.75 0.59 4.23 0.11 1.16 4.86

Portugal 0.13 0.04 0.05 1.01 0.47 0.43 0.68 0.45 0.08 4.79 0.96 4.30
Spain 0.21 0.09 0.04 1.13 0.57 0.45 1.09 0.55 0.27 0.53 4.16 4.93

To others 2.20 2.41 0.82 8.28 7.96 2.58 8.32 6.59 4.10 2.21 11.38 56.85
Total 4.71 5.68 4.83 10.93 11.73 8.14 12.08 11.01 8.33 6.99 15.55 100

Notes. See Table 1.
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Table 3. EMU business cycles Net Connectedness: 1966M1-2022M11. 2 months ahead
forecast

To others From others Net Connectedness
Austria 2.82 3.80 -0.98
Belgium 2.26 3.80 -1.54
Finland 0.57 1.39 -0.81
France 6.52 4.85 -1.67

Germany 6.07 4.49 1.58
Greece 0.39 1.33 -0.94
Italy 6.60 4.19 2.41

Luxembourg 3.33 3.64 -0.31
The Netherlands 1.18 2.67 -1.49

Portugal 1.52 2.33 -0.81
Spain 5.42 4.20 1.22

Notes. Countries with negative (positive) net connectivity are business cycles receivers (transmitters).

Table 4. EMU business cycles Net Connectedness: 1966M1-2022M11. 12 months ahead
forecast

To others From others Net Connectedness
Austria 2.20 6.58 -4.38
Belgium 2.41 5.82 -3.41
Finland 0.82 5.07 -4.26
France 8.28 6.44 1.83

Germany 7.96 5.32 2.64
Greece 2.58 3.53 -0.95
Italy 8.32 5.33 2.99

Luxembourg 6.59 4.67 1.92
The Netherlands 4.10 4.86 -0.75

Portugal 2.21 4.30 -2.09
Spain 11.38 4.93 6.46

Notes. See Table 3.
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Table 5. Differences on EMU business cycles connectivity matrix from sample up to 2022M11 to 2019M12. 2 months ahead forecast

Austria Belgium Finland France Germany Greece Italy Luxembourg The Netherlands Portugal Spain From others
Austria -1.29 0.04 -0.03 0.17 0.14 0.00 0.51 0.12 -0.00 0.05 0.29 1.29
Belgium 0.07 -0.56 -0.03 0.07 0.01 -0.01 0.22 0.13 0.02 0.01 0.06 0.56
Finland 0.04 0.01 -0.06 -0.02 -0.04 0.00 0.02 0.01 0.01 0.00 0.02 0.06
France 0.13 -0.09 -0.04 -1.12 0.35 -0.03 0.49 0.09 -0.06 0.08 0.19 1.12

Germany 0.19 -0.11 -0.09 0.46 -1.45 0.00 0.52 0.12 -0.04 0.11 0.31 1.45
Greece 0.02 0.00 -0.00 0.09 0.07 -0.37 0.08 0.01 -0.01 0.01 0.10 0.37
Italy 0.25 0.03 -0.09 0.19 0.22 -0.05 -1.10 0.15 -0.01 0.11 0.29 1.10

Luxembourg 0.12 0.03 -0.02 0.17 0.12 0.00 0.31 -0.91 0.02 0.03 0.13 0.91
The Netherlands 0.07 0.01 0.00 -0.02 0.03 -0.01 0.12 0.05 -0.32 0.01 0.04 0.32

Portugal 0.08 0.03 -0.03 0.37 0.25 -0.00 0.38 0.05 -0.01 -1.41 0.29 1.41
Spain 0.20 0.02 -0.01 0.34 0.34 -0.01 0.60 0.12 -0.04 0.18 -1.74 1.74

To others 1.16 -0.03 -0.33 1.81 1.51 -0.10 3.26 0.86 -0.12 0.58 1.72 10.34
Total -0.13 -0.59 -0.39 0.70 0.06 -0.46 2.16 -0.05 -0.43 -0.83 -0.02 0

Table 6. EMU business cycles Dynamic Connectedness: 1966M1-2022M11 for different rolling windows

w = 48 w = 54 w = 60 w = 66 w = 72 w = 78 w = 84 w = 90 w = 96
Mean Connectedness Index 56.46 53.17 50.51 48.37 46.63 45.19 43.97 42.96 42.13

Mean Difference during Expansions -18.26 -21.15 -5.53 -5.66 -2.60 5.31 5.47 -4.09 -1.22
Mean Difference during Recessions 46.95 54.15 41.68 40.67 36.41 30.08 32.29 35.82 40.66
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Table 7. Panel Unit Root tests.

Levinlin. IPS Madwu Hadri
Spilloverij -21.10 [< 10−2] -26.97 [< 10−2] 1245.70 [< 10−2] 483.28 [< 10−2]
GDPi 16.35 [1.00] 15.69 [1.00] 37.45 [1.00] 1742.3 [< 10−2]
Expij -7.61 [< 10−2] -19.89 [< 10−2] 1215.1 [< 10−2] 337.67 [< 10−2]
Turij -6.36 [< 10−2] -9.16 [< 10−2] 732.67 [< 10−2] 498.92 [< 10−2]
Simij -14.78 [< 10−2] -20.54 [< 10−2] 1121.6 [< 10−2] 399.65 [< 10−2]

log(Spilloverij) -36.95 [< 10−2] -39.09 [< 10−2] 2045.1 [< 10−2] 384.00 [< 10−2]
log(GDPi) 1.67 [0.95] -10.26 [1.00] 86.01 [1.00] 2178.2 [< 10−2]
log(Expij) -10.78 [< 10−2] -21.35 [< 10−2] 1283.10 [< 10−2] 357.62 [< 10−2]
log(Turij) -9.99 [< 10−2] -13.48 [< 10−2] 750.03 [< 10−2] 395.45 [< 10−2]
log(Simij) -14.47 [< 10−2] -20.39 [< 10−2] 1114.80 [< 10−2] 397.75 [< 10−2]
∆log(GDPi) -23.20 [< 10−2] -50.73 [< 10−2] 3132.00 [< 10−2] 62.55 [< 10−2]

Notes. Figures in brackets make reference to p-values. Every test includes intercept and trend. For

Levinlin test the H0 is non stationarity for all individuals and the distribution is t. For IPS the H0 is

non stationarity and the distribution is the modified t. For Maddala-Wu test the H0 is non stationarity

and the distribution is χ2.For Hadri-LM test the H0 is that any of the individuals has a unit root and

the distribution is N(0,1). Lags of ADF regressions within the tests are selected through AIC criteria

with the maximum lag set equal to 2.

Table 8. Estimation of alternative explanatory panel models.

Parameter Model 1 Model 2 Model 3 High Model 3 Low
∆log(GDPi) 0.38 (0.71) -16.31 (< 10−2) -38.38 (< 102) 10.88 (0.38)
∆log(GDPj) -0.92 (0.37) 2.14 (0.14) 1.81 (0.40) -9.49 (0.19)
log(Expij) 0.07 (< 102) 3.10 ⋅10−3(0.28) 1.18 (< 102) -0.24 (0.03)
log(Turij) 0.04 (< 102) 0.04 (< 102) -0.53 (0.02) -0.45 (< 102)
log(Simij) 0.91 (< 102) 0.26 (0.33) 2.84 (0.41) -3.63 (0.08)
log(distij) -0.10 (< 102) -0.14 (< 102) - -
Intercept -1.79 (< 102) - -26.71 (< 102) -

log(Spillij,t−1) - 0.53(< 102) -0.33 (< 102) 0.18 (< 102)
qit - - 54.20 (< 102) -

Notes. Model 1 refers to unbalanced gravity model with time dimension for period 1995-2022 estimated

through PPML. Model 2 refers to unbalanced dynamic panel model for period 1995-2022 estimated

through system GMM. Model 3 makes reference to balanced non linear TAR dynamic model for period

2000-2022. Numbers in parenthesis represents the p-value of the coefficients.
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5.11— Figures

Figure 5.1. Industrial similitude matrix .

Figure 5.2. Static connectedness network between EMU countries at 2-months horizon.

Notes. Arrows indicate the sense and the magnitude of the shocks transmission. The darker the higher is the

relative ability of a country to influence on the other. Arrows with a level below 0.05 are not represented.
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Figure 5.3. Community detection in industrial production network for a 2-months

horizon.

Figure 5.4. Total Connectedness for different horizons.
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Figure 5.5. Dynamic Connectedness index EMU countries.

Notes. Window of w = 60 period and forecast horizon of h = 2 periods. Shaded areas represent periods of

recession according to the Euro Area Business Cycle Network (EABCN) Comittee

Figure 5.6. Spillovers Germany to France and Greece to Germany 1995-2022.

Notes. Solid line represents the Spillover from Germany to France. Dashed line represents the Spillover from

Greece to Germany
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Figure 5.7. Global Connectedness Threshold and regions

Notes. Shadow areas represent the regions inferred from TAR model.
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Conclusions

The greater availability of data has generated an increasing interest in describing economic

problems, and in particular, in establishing econometric models. Although the linear approxi-

mation is useful for simplifying problems and analyzing behavior from a descriptive perspective,

in many cases the relationships, or responses, are not strictly linear, with the respective loss of

precision. The economy, as a complex system with multiple interdependencies, is a discipline

conducive to more complex modeling to capture these relationships.

This dissertation illustrates the benefit of using nonlinear techniques for the description

of certain problems, with special emphasis on time series description. Its use is made in dif-

ferent contexts, and the application of nonlinearities is adapted to each problem of the data

used. In general, their use results in a benefit in terms of accuracy and analytical capability,

which is illustrated by comparative analysis with other techniques, simulations, and accuracy

measurements.

In the second chapter, it is shown how the adoption of nonlinear modeling is useful in

cases of a data generating process with influenceable observations. Specifically, a nonlinear and

nonparametric approach was proposed to deal with the problem of certain influential obser-

vations when fitting a model in a univariate context. In particular, the problem was focused

on the prediction of recessions after the one that occurred, of exceptional magnitude, with the

Covid-19 pandemic.

The problem of its presence in linear models was illustrated, and consequently, a nonlinear

and nonparametric extension of Wecker’s linear approximation (1979) was proposed, which

also includes a weighting system based on symbolic analysis to make predictions. By means

of simulation and comparison, it is shown and quantified that the proposal is more robust

than the linear alternatives, and that although before the Covid-19 influential observation its

performance was similar to that of the linear models, by incorporating this observation its

performance is more advisable. The approach gives rise to work on a future generalization to

a multivariate context.

In the third chapter, we show how the use of nonlinear techniques is useful to analyze

more complex databases with interrelationships of different natures. In particular, we adopt

the use of the boosting-based decision trees technique by Friedman (2002) to analyze economic

recessions in Spain, but in this case by using a large and more complex database. This is

a particularly relevant analysis due to the extraordinary economic consequences that both
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the Great Recession and the Covid-19 pandemic had on the Spanish economy. Through this

technique, more complex relationships between variables can be unveiled, further than those

that are solely linear.

By applying this technique to a database of 270 indicators, the fit of the recession pre-

diction for a horizon of three and six month ahead turns out to be accurate. In addition,

the use of this technique has provided us with a tool to evaluate which indicators are more

relevant at each moment to make the prediction, being able to analyze in cases of correct fore-

casts which indicators anticipate recessions, and also to graphically analyze interaction effects

between variables against the variable to be predicted.

Throughout the fourth chapter, it becomes clear how the inclusion of certain nonlineari-

ties can help in the description of time series dynamics. In particular, the proposed nonlinear

Kalman filter of Brockwell and Davis (2009) is applied to dynamic factor models to the now-

casting problem of homicides with firearm, so that forward information from different unofficial

databases can be exploited to describe the official series, which has a publication lag of up to

23 months.

After a model fitting exercise to determine the variables useful to describe the dynamics

of gun homicides within a pool of collected variables, through a pseudo-real time exercise, the

fitted model was compared with different linear modeling, as well as with other additional non-

linear approaches, which turned unable to have a good description due to the paucity of the

database. In this sense, the best predictive capacity of the proposed approach was statistically

determined, demonstrating that a certain introduction of nonlinearity, adjusted to the database

in question, can be beneficial. The tool can be of great utility for tracking homicides, both

for lawmakers and for economic stakeholders with a special interest in it, such as insurers or

real estate agents. Of course, the approach has limitations, and further analysis is needed to

explore specifications with a higher degree of non-linearity.

Finally, the fifth chapter shows the capacity of a nonlinear model in the description of a

problem of great interest such as that of connectivities between countries. After determining

the spillovers between the industrial productions of eleven EMU countries by means of a linear

approximation, the persistence and asymmetry of the behavior of these relationships based on

the economic cycle provide a favorable framework for the adjustment of a non-linear model.

In particular, in order to be able to describe this asymmetry, a TAR model (1978) describ-

ing two different regimes was fitted based on a variable generated by inferring the spillovers

between countries, the global connectivity index variable of the countries in the sample. We

saw the importance of variables such as tourism, and we also saw how others such as exports

or GDP played a different role depending on the regime in which the dynamics are found.

The approximation was corroborated by tests of linearity and exogeneity of instruments in

the estimation. This approach also allowed us to create a connectivity indicator, which has
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implications for effective decision-making at certain points in the cycle.
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