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Resumen 

Una parte fundamental de las ciencias sociales y de la salud, como la Psicología, 

es cuantificar las capacidades, los rasgos o los atributos psicológicos con los que cuentan 

las personas. Para que esta cuantificación sea verdaderamente representativa y pueda ser 

útil, es necesario que el proceso de medición sea preciso y se realice a través de 

instrumentos de medida bien construidos y contrastados, es decir, estos instrumentos 

deben cumplir una serie de mínimos que arrojen resultados confiables. El instrumento en 

cuestión debe contar con un protocolo de administración donde se determine la forma 

correcta de aplicarlo, incluyendo el rango de aplicabilidad y estableciendo el objetivo de 

dicho instrumento y el tipo de población al que va dirigido. También es importante que 

la medición sea fiable, es decir, que las diferentes aplicaciones de este arrojen resultados 

concordantes. Otro aspecto fundamental sobre el que debe construirse todo el proceso de 

medición es que las inferencias establecidas sobre el atributo o el rasgo que se pretende 

medir sean válidas, implicando una fundamentación teórica subyacente al instrumento 

bien consolidada (Abad et al., 2011). 

Bajo estas premisas y con la intención de dotar a la medición psicológica de rigor 

científico, a lo largo del siglo XX se desarrolló y profundizó la conocida Teoría Clásica 

de los Tests (TCT), siendo Charles Spearman durante los primeros 15 años su principal 

precursor (Spearman, 1904, 1907, 1913). El objetivo central de esta teoría es establecer 

un modelo estadístico que permita realizar asociaciones entre el nivel de rasgo latente o 

verdadero de la persona, y el nivel de rasgo empírico o medido por el instrumento. Este 

modelo asume que las puntuaciones de ambos niveles no van a ser idénticas, ya que 

presupone que existen multitud de factores imposibles de cuantificar que van a afectar a 
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la medida en el momento en el que se está evaluando a la persona. Es por ello que el 

modelo incluye en su formulación un componente de error asociado a todo este proceso 

de medición (Muñiz, 2018). 

Puesto que la puntuación verdadera de una persona es completamente desconocida 

e imposible de cuantificar, no podemos establecer relaciones directas entre la puntuación 

observada y la verdadera. Lo que sí podemos conocer es la relación entre dos formas 

paralelas de un mismo test diseñadas para evaluar un determinado rasgo. Estas formas 

paralelas por definición deben cumplir dos condiciones: (1) la puntuación verdadera en 

ambas formas debe ser la misma, y (2) la varianza de los errores de medida también debe 

ser la misma en las dos formas. Es decir, ambas formas deben medir exactamente lo 

mismo y con la misma precisión (Abad et al., 2011). La correlación entre ambas formas 

se denomina coeficiente de fiabilidad y nos permite inferir el grado de precisión de cada 

una de ellas y establecer la parte de varianza de las puntuaciones observadas que se deben 

a la variabilidad de las puntuaciones verdaderas. En este contexto, entendemos fiabilidad 

como una propiedad psicométrica que nos indica la replicabilidad de la medida.  

Esta replicabilidad cuantificada a través del coeficiente de fiabilidad puede 

expresarse de tres maneras distintas: en primer lugar, puede representar el grado de 

equivalencia entre diferentes formas del test, es decir, la medida será la misma cuando se 

mide el mismo rasgo con pruebas equivalentes. En segundo lugar, puede entenderse como 

estable en el tiempo, indicando que la medida es la misma en dos momentos temporales 

diferentes. Y por último, puede significar el grado de consistencia, cuando la 

replicabilidad radica en medir lo mismo con diferentes partes de un test (Abad et al., 

2011). En función de cada interpretación de la replicabilidad de la medida, pueden 

extraerse y calcularse diferentes tipos de coeficientes de fiabilidad.  



 8 

En la práctica, uno de los coeficientes de fiabilidad más utilizados es el coeficiente 

alfa de Cronbach (Cronbach, 1951), perteneciente al grupo de los coeficientes de 

consistencia interna, evaluando la concordancia de las puntuaciones entre los ítems. Este 

coeficiente se considera el límite inferior del coeficiente verdadero (Abad et al., 2011). 

Alfa está fuertemente influenciado por dos factores: por el grado de correlación promedio 

entre los ítems del test, y por el número de ítems que componen el test. Además, el rango 

de valores de este coeficiente oscila entre 0 y 1. 

Cabe señalar que la fiabilidad es propia de las puntuaciones, en ningún caso esta 

propiedad psicométrica hace referencia al instrumento de medida (Crocker & Algina, 

1986; Gronlund & Linn, 1990; Thompson & Vacha-Haase, 2000; Traub, 1994). Para 

poder generalizar el valor obtenido al instrumento en sí mismo, resulta imprescindible 

aplicar herramientas estadísticas que nos permitan calcular un valor promedio utilizando 

todas las aplicaciones previas de ese instrumento. La mejor herramienta para ese fin, es 

decir, que sea capaz de recoger y sintetizar toda la evidencia cuantitativa es el meta-

análisis. El meta-análisis es el conjunto de técnicas y procedimientos cuantitativos 

aplicados a la síntesis de la evidencia que recogen las revisiones sistemáticas. Debido al 

aumento exponencial de los estudios científicos y de los resultados empíricos, aumenta 

la necesidad de contar con herramientas que integren y proporcionen conclusiones 

rigurosas sobre los resultados arrojados por las investigaciones científicas (Botella & 

Sánchez-Meca, 2015; Cooper et al., 2019; Schmid et al., 2020). Es especialmente 

interesante este procedimiento ya que los resultados individuales de los estudios -

primarios- suelen reportar conclusiones diferentes o incluso, contradictorias. La 

integración de todos los resultados experimentales en un mismo campo de estudio 

proporcionan una visión más globalizada y realista del efecto verdadero, y se considera 
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un elemento imprescindible para la construcción del conocimiento (Botella & Sánchez-

Meca, 2015). 

 En 1998, Vacha-Haase implementó esta metodología al estudio de la fiabilidad, 

denominándolo Meta-Análisis de Generalización de la Fiabilidad (GF). De esta forma, 

los tamaños del efecto de los estudios aquí son los coeficientes de fiabilidad obtenidos en 

cada una de las aplicaciones del instrumento. Esas múltiples aplicaciones nos permiten, 

por otro lado, estudiar la influencia de variables que pueden estar contribuyendo a las 

fluctuaciones del coeficiente entre los estudios primarios. Al contrario de lo que ocurre 

en otros tipos de meta-análisis, en un meta-análisis de generalización de la fiabilidad se 

espera que el efecto de esas variables moderadoras sea limitado o insignificante, ya que 

esa invariabilidad aporta robustez a los constructos sobre los que se cimienta el 

instrumento y aporta evidencia de la validez de las puntuaciones obtenidas (Botella & 

Sánchez-Meca, 2015). 

Un aspecto fundamental de esta metodología es su flexibilidad y la ausencia de un 

protocolo estricto para implementarla. Cada investigador debe tomar las decisiones 

estadísticas oportunas en función de los datos con los que cuente y la capacidad de 

generalización de los resultados. Encontramos tres decisiones fundamentales: seleccionar 

la transformación que se aplicará a los coeficientes de fiabilidad, si se aplicara alguna; 

establecer qué modelo estadístico se asumirá; y determinar cuál será el método de 

ponderación de este.  

Respecto a la primera decisión, las transformaciones de los coeficientes más 

frecuentemente aplicadas en los meta-análisis GF son la transformación Z de Fisher, la 

transformación de Hakstian y Whalen (1976) y la propuesta por Bonett (2002). Se ha 

observado que tanto Hakstian-Whalen como Bonett normalizan la distribución y, en el 

caso de Bonett, estabiliza las varianzas. A pesar de que la Z de Fisher es una de las 
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transformaciones más utilizadas, no sería correcto utilizarla para coeficientes de 

consistencia interna, sino para aquellos coeficientes que se basen en la correlación de 

Pearson. 

En segundo lugar, la segunda decisión que se debe tomar radica en la elección del 

modelo estadístico, principalmente el modelo de Efecto-Fijo, el modelo de Efectos 

Aleatorios, el modelo de Coeficientes Variables y el método OLS (Ordinary Least 

Squares). Aunque es un modelo incorrecto, este último modelo es el más utilizado en el 

campo. Este modelo consiste en la aplicación de métodos estadísticos convencionales 

como el cálculo de una media no ponderada de los coeficientes, estimar su varianza 

muestral y construir un intervalo de confianza del 95% como si las estimaciones de 

fiabilidad pertenecieran a una única muestra de participantes. Obviar este modelo del 

trabajo sería obviar gran parte de los meta-análisis GF que hay publicados en la 

actualidad.  

Por otro lado, el modelo de Efecto Fijo asume que los coeficientes de fiabilidad 

reportados en los estudios están estimando un parámetro poblacional común, entendiendo 

así que la única fuente de variabilidad entre diferentes estimaciones de fiabilidad se debe 

al error muestral. El modelo de Coeficientes Variables asume que cada coeficiente de 

fiabilidad individual está estimando un parámetro poblacional diferente, aunque, al 

contrario que el modelo de Efectos Aleatorios, este modelo no asume que los coeficientes 

paramétricos sean una muestra representativa de una superpoblación de potenciales 

coeficientes de fiabilidad. Tanto el modelo de Efecto Fijo como el modelo de Coeficientes 

Variables (CV) no buscan generalizar sus resultados más allá de la población de estudios 

que presenten idénticas características a los incluidos en el estudio. Concretamente, si se 

sospecha de la existencia de heterogeneidad, estaría completamente desaconsejado el 

modelo de Efecto Fijo.  
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Por otro lado, el modelo de Efectos Aleatorios, en cualquiera de sus variantes, 

determina que la variabilidad encontrada no se explica únicamente por la varianza 

muestral. Al igual que en el caso del modelo CV, este modelo asume que cada coeficiente 

de fiabilidad individual está estimando un parámetro poblacional diferente, sin embargo, 

en este modelo se entiende que esos parámetros constituyen una muestra representativa 

de una potencial distribución de coeficientes de fiabilidad paramétricos. Este modelo 

incorpora dos fuentes de variabilidad: la varianza intraestudio, debida al error de muestreo 

de participantes dentro de cada muestra, y la varianza interestudios, debida al error de 

muestreo de los coeficientes de fiabilidad verdaderos a partir de una superpoblación de 

coeficientes de fiabilidad. Este modelo sería el indicado si pretendemos generalizar los 

resultados del meta-análisis a cualquier estudio, sean cuales sean sus características.  

En este punto es donde se tiene que decidir el tipo de ponderación que se va a 

aplicar. Existen dos modelos alternativos al clásico modelo de Efectos Aleatorios que 

pondera por la inversa del peso. Por un lado, encontramos el modelo de Efectos Aleatorios 

de Schmidt y Hunter (2015) que aplica una ponderación por el tamaño muestral de cada 

estudio. Por el otro lado, el modelo de Efectos Aleatorios mejorado de Hartung y Knapp 

(2001) cambia la forma de estimar la varianza muestral y asume una distribución t de 

Student con k-1 grados de libertad, siendo k el número de estudios. Este modelo tiene en 

cuenta la incertidumbre en la estimación de la varianza entre estudios τ2, por lo que ofrece 

un mejor ajuste que los modelos de Efectos Aleatorios explicados anteriormente. 

Teniendo en cuenta la literatura previa del campo, y las incompatibilidades 

teóricas entre estrategias, la cifra de combinaciones generadas se sitúa en 13 para el 

cálculo del coeficiente promedio y 18 para el cálculo de su intervalo de confianza. El 

primer estudio de esta tesis (Capítulo 2) tiene como objetivo la comparación estadística 
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de los resultados generados en cada una de las combinaciones, determinando si diferentes 

decisiones pueden dar lugar a diferentes conclusiones. 

Aunque la naturaleza de esta metodología permite utilizar cualquier estrategia 

analítica, resulta imprescindible que esta se reporte precisa y minuciosamente, 

especificando cada una de las decisiones que se han tomado para obtener dichos 

resultados. De esa forma garantizamos que cualquier investigador pueda reproducirlos o 

replicarlos. El segundo estudio de esta tesis (Capítulo 3) presenta un trabajo de 

reproducción de los meta-análisis de generalización de la fiabilidad publicados en revistas 

científicas. Este estudio, además, presenta una revisión del reporte de las categorías 

indispensables para reproducir los resultados de cada meta-análisis.  

Los meta-análisis de generalización de la fiabilidad también presentan desventajas 

en su aplicación. Una de ellas radica en el hecho de que no se tienen en cuenta las posibles 

relaciones de dependencia que pudieran surgir. Cuando un test tiene una estructura 

multidimensional con varias subescalas, todas formando parte de un mismo constructo 

psicológico y, además, ese test se está aplicando a diferentes grupos dentro del mismo 

estudio científico, esta dependencia puede aparecer. Esto significa que un tamaño del 

efecto observado nos puede estar dando información sobre la dirección o el grado de 

desviación de otro efecto más allá de lo esperado por el modelo (Assink & Wibbelink, 

2016; Van den Noortgate et al., 2013). Tradicionalmente para acabar con estas redes de 

dependencia, lo que se ha propuesto es dividir cada subescala o grupo muestral en meta-

análisis independientes. Esta estrategia no es la más adecuada, ya que los resultados que 

se obtienen son menos precisos y los análisis estadísticos pierden potencia (Assink & 

Wibbelink, 2016; Van den Noortgate et al., 2013). 

Una alternativa es tratar de modelar la dependencia aplicando modelos multinivel. 

Como no es necesario que todos los estudios primarios reporten exactamente la misma 
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información, una de las ventajas de este modelo es que pueden utilizarse todos los 

tamaños del efecto relevantes que aporten los estudios. Además, posee una estructura 

muy flexible, por lo que puede adaptarse a cualquier tipo de datos. Otra ventaja de estos 

modelos es que los datos automáticamente se ajustan a la estructura jerárquica del análisis 

(Van den Noortgate et al., 2013). El modelo multinivel que más se utiliza y que parece 

que mejor funciona es el modelo estructurado en tres niveles (Assink & Wibbelink, 2016; 

Van den Noortgate et al., 2013, 2015). Esta estructura distribuye los componentes de la 

varianza en tres niveles: el primero, la varianza muestral de los tamaños del efecto (en 

este caso, de los coeficientes de fiabilidad); el segundo nivel hace referencia a la varianza 

entre efectos dentro del mismo estudio, y, por último, el tercer nivel incorpora la varianza 

entre los estudios. 

Teniendo en cuenta el tipo de estudios que componen un meta-análisis GF no parece 

muy descabellado que aparezcan relaciones de dependencia. Sobre todo, si tenemos en 

cuenta que habitualmente un instrumento de medida se administra a varios grupos dentro 

de un mismo estudio, o que los instrumentos están compuestos por varias subescalas que 

miden diferentes componentes de un mismo rasgo psicológico. Es por ello que el tercer 

estudio de esta disertación (Capítulo 4) tiene por objetivo comprobar si los resultados 

difieren estadísticamente cuando se realiza un meta-análisis GF desde el punto de vista 

convencional, que rompe las posibles redes de dependencia realizando meta-análisis 

independientes, y los resultados de un meta-análisis multinivel de tres niveles, que modela 

dicha dependencia dentro de un único análisis. Además, se han tenido en cuenta otros 

factores como la transformación de los coeficientes o el método de cálculo del intervalo 

de confianza del coeficiente de fiabilidad promedio. 

En resumen, esta tesis tiene tres objetivos fundamentales: determinar si las decisiones 

estadísticas que se toman a lo largo del proceso de realización de un meta-análisis de 
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generalización de la fiabilidad condicionan los resultados obtenidos; comprobar si los 

resultados distan entre un meta-análisis que abole las posibles relaciones de dependencia 

y uno que las integra y modela; y, por último, comprobar el grado de reproducibilidad de 

este tipo de estudios, así como el grado de transparencia y reporte de la información 

fundamental para repetir los análisis. 
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Chapter 1 

Introduction 

1.1 Classical Test Theory 

Quantifying the psychological capacities, traits or attributes of individuals is a 

fundamental part of social and health sciences such as psychology. Personality traits, 

intellectual level, or the severity of symptoms of a certain disorder are some examples. 

To ensure that this quantification is truly representative and useful, the assessment 

process must be precise and be carried out using well-constructed and contrasted 

measurement instruments, that is, these instruments must meet a series of minimum 

requirements that yield reliable results. The instrument concerned must have an 

administration protocol that determines the correct way to apply it. This protocol must 

also have a range of applicability, specifying the purpose of the instrument and its target 

population. Another important point is that the measurement should be reliable, that is to 

say, that the different applications of the instrument should yield consistent results. A 

further essential element on which the whole assessment process must be built is that the 
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inferences drawn about the attribute or trait to be measured are valid, implying a well-

established theoretical foundation underlying the instrument (Abad et al., 2011).  

Under these premises and in order to provide psychological measurement scientific 

rigour, throughout the 20th century the well-known Classical Test Theory (CTT) was 

developed and deepened, with Charles Spearman being its main precursor during the first 

15 years (Spearman, 1904, 1907, 1913). The main focus of this theory is to establish a 

statistical model that allows to make associations between the latent or true trait level of 

the person, and the empirical trait level measured by the instrument. This model assumes 

that the scores at both levels will not be identical, due to the fact that there are a multitude 

of unquantifiable factors that affect the measure at the moment the person is being 

assessed. For this reason, the model includes in its formulation an error component 

associated with the whole measurement process (Muñiz, 2018). Mathematically, the 

model is expressed as: 

𝑋 = 𝑉 + 𝑒 [1.1] 

where X refers to the observed score, V to the true score, and e to the error associated with 

the measurement process.  

Since a person's true score is completely unknown and impossible to quantify, no 

direct relationship can be established between the observed and true score. However, the 

relationship between two parallel forms of the same test designed to assess a certain trait 

can be known. These parallel forms, by definition, must meet two conditions: (1) the true 

score in both forms must be the same, and (2) the variance of the measurement errors 

must also be the same in both forms. That is, both forms must measure exactly the same 

and with the same precision (Abad et al., 2011). The correlation between the two forms 

is called the reliability coefficient and allows to infer the degree of precision of each of 
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them and to establish the part of the variance of the observed scores that is due to the 

variability of the true scores. In this context, reliability is understood as a psychometric 

property that indicates the replicability of the measure.  

This replicability quantified through the reliability coefficient can be understood in 

three main ways: first, it can be understood as the degree of equivalence between different 

forms of the test. That is, replicability indicates that the measure should be the same when 

the same trait is measured with equivalent tests. Secondly, it can be understood as stable 

over time, if replicability indicates that the measure is the same at two different points in 

time. And finally, it can be understood as the degree of consistency, when the replicability 

lies in measuring the same thing with different parts within the same test (Abad et al., 

2011). Depending on each interpretation of the replicability of the measure, different 

types of reliability coefficients can be extracted and calculated.  

In practice, one of the most widely employed is Cronbach's alpha coefficient 

(Cronbach, 1951), belonging to the group of internal consistency coefficients, which 

assesses the concordance of scores between items. Mathematically, the alpha coefficient 

is expressed as: 

𝛼 =
𝐽

𝐽 − 1
 
∑ 𝜎𝑋𝑗𝑋

𝑗′𝑗≠𝑗′

𝜎𝑋
2  

[1.2] 

where J is the number of items, ∑ 𝜎𝑋𝑗𝑋
𝑗′𝑗≠𝑗′  is the sum of the empirical covariances 

between items, and 𝜎𝑋
2 is the variance of the empirical test scores. This coefficient is 

considered to be the lower limit of the true coefficient, that is, it will always be higher 

than the coefficient obtained with the formula [𝛼 ≤ 𝜎𝑉
2 𝜎𝑋

2⁄ ] (Abad et al., 2011). Alpha is 

strongly influenced by two factors: the average degree of correlation between test items, 

and the number of items in the test. The range of this coefficient is between 0 and 1.  
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1.2 Reliability Generalization Meta-Analysis 

Note that reliability is a psychometric property of the scores and not of the 

instrument (Crocker & Algina, 1986; Gronlund & Linn, 1990; Thompson & Vacha-

Haase, 2000; Traub, 1994). In 1998, Vacha-Haase developed the concept of "reliability 

generalization" in order to synthesize all the results of the reliability coefficient 

calculation of multiple applications of the same test into an average coefficient for the 

instrument itself. For this purpose, she developed this concept under the umbrella of the 

best and most complete tool for synthesis of evidence: meta-analysis. 

Meta-analysis is a set of quantitative techniques and procedures applied to the 

synthesis of evidence collected in systematic reviews. Given the rise of science and 

empirical results, there is a growing need for tools that integrate and provide rigorous 

conclusions on the results of scientific research (Botella & Sánchez-Meca, 2015; Cooper 

et al., 2019; Schmid et al., 2020). These individual results of the -primary- studies often 

report different or even contradictory conclusions. Therefore, the integration of all of 

them, as well as the analysis of the different variables that may affect these results, can 

give us a more comprehensive view about what is happening under this topic. In fact, the 

integration of research that shares the same focus of study is considered an essential 

element in the construction of knowledge (Botella & Sánchez-Meca, 2015). Currently it 

is the most frequently employed and most reputable technique in the field of evidence 

synthesis. Glass (1976) is considered the first published meta-analysis, and it was carried 

out in the field of effectiveness evaluation in psychotherapy. 

Applying this technique to psychometric analyses of instrument reliability, the 

reliability generalization meta-analysis collects all the reliability coefficient estimates 

obtained in each application of the instrument and provides a combined estimate for all 

of them. These multiple applications allow, in addition, to study the influence of variables 
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that may be contributing to fluctuations in the coefficient between primary studies. 

However, contrary to what happens in other types of meta-analyses, in a reliability 

generalization meta-analysis is expected that the effect of these moderating variables is 

limited or insignificant, since this invariance provides robustness to the constructs 

underlying the instrument and provides evidence of the validity of the scores obtained 

(Botella & Sánchez-Meca, 2015). 

A peculiarity of this type of meta-analysis resides in the fact that when Vacha-Haase 

(1998) proposed this methodology, she did not include a single analytical strategy to 

perform it, but left it to the discretion of each researcher to choose the analyses that best 

fit the data of the study or the generalization of the conclusions that are intended to be 

drawn. It should be noted that, although it is possible to use any analytical strategy within 

this type of meta-analysis, it is essential that this be reported precisely and thoroughly in 

the papers. In this way it can be ensured that any researcher can reproduce or replicate 

the results.  

In recent years, the reproducibility and replicability of the psychological research has 

become an important topic (McNutt, 2014; Open Science Collaboration, 2015; Pashler & 

Wagenmakers, 2012). Meta-analyses are not free from these problems; therefore, efforts 

to investigate factors that may affect the reproducibility of meta-analyses are warranted 

(Lakens et al., 2016).  

1.2.1 Phases of Reliability Generalization Meta-Analysis 

The procedure for conducting a reliability generalization meta-analysis follows the 

same steps as a conventional effect size meta-analysis: (a) definition of the research 

question, (b) literature search, (c) coding of studies and data extraction, (d) statistical 

analysis and interpretation of results, and (e) publication. 
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(A) Definition of the research question 

The first step for conducting a reliability generalization meta-analysis, as in any 

empirical study, is to define the objectives of the research itself. To do this, it is necessary 

to determine what is to be analysed and to define the research problem theoretically and 

operationally. Expressing it with an example, we could establish as an objective the study 

of a specific measurement tool that assesses symptoms of obsessive-compulsive disorder, 

setting out the meta-analysis on the reliability of the instrument..  

(B) Literature search 

Once the main objective of the research is known, the search strategy must be 

established. This strategy has to be sufficiently precise and thorough to collect as many 

published and unpublished studies and papers as possible that have applied the instrument 

to be meta-analyzed. 

At this point, the search engines and databases for the electronic search of the primary 

studies are determined. Also at this stage, the characteristics of this search will be defined, 

such as the keywords, the time range, or the inclusion criteria of the studies. Regarding 

the latter, what is defined are all those characteristics that the studies must present in order 

to form part of the study (the type of reliability coefficient used, whether it has been 

calculated with the study's own sample, whether the study is a clinical or population-

based sample, etc.). Exclusion criteria are also established at this point. 

(C) Coding of studies and data extraction 

Following the filtering of the studies that appear in the search according to the 

inclusion and exclusion criteria, the coding criterion is established for the articles that 

include all the variables that the author considers to be of interest for the work. It is also 
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recommended that a coding manual be drawn up specifying each of the variables and their 

coding code. 

From this, a database is set up to record all the data extracted from the primary studies 

according to the variables highlighted.   

(D) Statistical analysis and interpretation of results 

Statistical analysis involves selecting the analytical strategy to be carried out. This 

strategy must be chosen according to the type of data we are analyzing and the degree of 

generalization that is intended to be achieved with the conclusions of the study. The 

statistical model on which the meta-analysis is to be performed, whether the coefficients 

are to be transformed or not, and the weighting to be applied must be chosen. In the vast 

majority of studies, the average reliability coefficient and its confidence interval are 

calculated at this point, and different heterogeneity estimators are also used (I2 and 

Cochrane’s Q indices, prediction intervals, etc.). Also at this stage, the quantitative and 

qualitative moderator variables that can be analyzed are established to determine the 

degree of influence they have on the reliability coefficient (gender of the sample, type of 

population, mean age, mean test scores, etc.). 

(E) Publication 

Empirical research should share its results with the scientific community and 

promote the advancement of knowledge to be accessible to any researcher. One of the 

ways to carry out this diffusion of new knowledge is the publication of research as 

scientific articles in impact journals. In addition, in order to allow other researchers to 

replicate or reproduce the results, as well as to assess the methodological quality of the 

research, it is important that the article is written with full transparency and clarity.  
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For this purpose, guidelines have been developed to help researchers to correctly 

report all relevant information in their works. For reliability generalization meta-analysis, 

the guideline developed specifically for the correct reporting of this type of study is The 

REGEMA checklist (Sánchez‐Meca et al., 2021).  

1.2.2 Analytical strategies for conducting an RG meta-analysis 

Sánchez-Meca et al. (2012) identified a variety of methods to statistically integrate 

reliability coefficients. Differences among the methods refer to the statistical model 

assumed, whether reliability estimates must be transformed to normalize their distribution 

and stabilize their variances, and whether to weight the reliability estimates when they 

are statistically integrated.  

The result of these different methods has led to large variability in statistical methods 

applied in RG meta-analyses. An issue not yet investigated is whether the choice of 

different statistical methods can lead to substantial changes in RG meta-analysis results. 

If different methods applied to the same RG meta-analysis have an impact in their results, 

then their conclusions will be conditioned by the methods applied. In addition, the results 

of RG meta-analyses applying different methods cannot be compared. As a consequence, 

the diversity of methods to statistically integrate reliability coefficients in RG meta-

analyses has consequences in the comparability of their results, as well as in their 

reproducibility by other researchers. 

1.2.2.1 Transformation of coefficients 

When conducting an RG meta-analysis of reliability coefficients, the meta-analyst 

must decide whether coefficients should be transformed to normalize distribution and 

stabilize variances. Some authors advise against transforming reliability coefficients 
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(Henson & Thompson, 2002; Mason et al., 2007), whereas others are in favor (Rodriguez 

& Maeda, 2006; Sánchez-Meca et al., 2012). Not all transformations are recommended 

for all types of reliability coefficients. For example, for indices based on Pearson’s 

correlation coefficient, which ranges between -1 and +1, such as split-half reliability 

coefficients and test-retest reliability, the most appropriate transformation would be 

Fisher’s Z transformation. However, for those coefficients ranging between 0 and 1 

(Cronbach’s alpha, McDonald’s omega or split-rater reliability, among others), it would 

be theoretically more correct to use the transformations proposed by Bonett (2002) or 

Hakstian and Whalen (1976) Hakstian and Whalen (1976).  

The difference between the application of the different coefficient transformations as 

well as their implications will be discussed further in Chapter 2. 

1.2.2.2 Statistical models 

Another important decision in a meta-analysis is choosing the statistical model 

under which the statistical analyses will be accomplished. Fixed-effect (FE) and random 

effects (RE) models are the two most commonly used statistical models in meta-analysis. 

Under an FE model the meta-analyst assumes that the reliability coefficients reported in 

the studies are estimating a common population parameter, so that the only variability 

source among reliability estimates is due to sampling error.  

When an RE model is assumed, the meta-analyst is then acknowledging that the 

reliability estimates exhibit more variability than sampling error can explain. The extra 

heterogeneity is due to the fact that each reliability coefficient is estimating a different 

parameter, these parameters constituting a representative sample of a distribution of 

potential parametric reliability coefficients. RE models take into account two variability 

sources: within-study variance (i.e., the same as in the FE model) due to sampling of 
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participants in each sample and between-studies variance owing to sampling of true 

reliability coefficients from a super-population of reliability coefficients.  

Another model that seems to be situated between the two is known as the varying-

coefficient (VC) model was proposed in the meta-analytic arena by Laird  and Mosteller 

(1990) and advocated by Bonett (2010) to be applied in RG meta-analysis. Like the RE 

model, VC assumes that each individual reliability coefficient is estimating a different 

population parameter, but contrary to the RE model, VC does not assume that the 

parametric reliability coefficients are a representative sample of a larger population of 

potential reliability coefficients. 

Finally, a model that is certainly controversial but widely used in this field is the 

ordinary least squares (OLS) method. OLS method consists of applying conventional 

statistical methods, that is, to calculate an unweighted mean of reliability coefficients, to 

estimate its sampling variance, and to construct a 95% confidence interval as if the 

reliability estimates were single data from a sample of participants. Although the OLS 

method can be thought of as an FE model, it is recommendable to consider it separately. 

as many RG meta-analyses have applied OLS methods without declaring the statistical 

model assumed.  

An extension on the different statistical models that have frequently been assumed 

in this type of meta-analysis can be found in Chapter 2. 

1.2.2.3 Other statistical methods 

The previous sections have dealt with meta-analytical analysis from the 

conventional perspective, that is, the one that has been applied in the vast majority of the 

literature. Nevertheless, this perspective does not consider the dependency relationships 

that may arise between the scores.  
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When a test has a multidimensional structure with different subscales, all forming 

part of the same psychological construct and, in addition, these scales are applied to 

different groups within the same scientific study, dependence between scores can arise. 

This means that an observed effect size may be providing information about the direction 

or degree of deviation of another effect from that expected by the model (Assink & 

Wibbelink, 2016; Van den Noortgate et al., 2013). This dependence is not considered in 

the traditional meta-analysis approach to reliability generalization. 

A solution to the dependency problem is to try to model it through multivariate 

models such as the one proposed by Raudenbush et al. (1988). Another way of modelling 

it is also through the application of multilevel models. These alternative models will be 

explained in more detail in chapter 4. 

1.2.3 Replicability and Reproducibility of Reliability Generalization 

Meta-Analysis 

Throughout this chapter it has been noted that there are multiple strategies 

available when carrying out a reliability generalization meta-analysis. Consequently, 

variability in the results may arise depending on the strategy followed. One of the 

advantages, given that this type of methodology does not have a pre-established analysis 

protocol, is that it allows for flexibility in the statistical analysis of the empirical data 

collected and the inferential conclusions to be drawn from the results. However, such 

flexibility implies that meta-analysts are aware of the importance of reporting the method 

of the work in a detailed and accurate form, specifying each of the decisions that have 

been taken to obtain these results. If the researcher is not transparent about the reporting, 

it makes the reproduction of the study complicated and, in some cases, impossible. It 

should not be forgotten that both the reproducibility and replicability of scientific research 
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are among the fundamental pillars of the scientific method and are essential to the 

robustness of the conclusions.  

As a consequence, and taking into account that to date no work has been published 

on this issue, in Chapter 2 we have conducted a study comparing the meta-analytical 

results obtained when applying different analysis strategies. Specifically, the techniques 

that are commonly used to carry out a meta-analysis of reliability generalization have 

been collected and their results have been compared both for the calculation of the 

average reliability coefficient and for the calculation of its confidence interval. Based on 

this work, we will be able to determine whether these different strategies can really 

influence the conclusions of the study. It should be noted that this study has been carried 

out on real data from published meta-analyses. 

Following the thread of Chapter 2, we proposed to study the reproducibility 

indices in this type of meta-analysis. Especially in recent years, different authors (Artner 

et al., 2021; Hardwicke et al., 2018; Lakens et al., 2016; Maassen et al., 2020; Nosek et 

al., 2022) have published on the replicability and reproducibility of meta-analyses, mostly 

in the field of psychology. However, in the field of reliability generalization, no study or 

approach has been published on reproducibility rates in this specific type of meta-

analysis. Thus, Chapter 3 is a reproducibility study of the reliability generalization meta-

analyses included in Chapter 2.  

Finally, Chapter 4 presents the last study that composes this doctoral thesis. Following 

the thematic on the incidence of the different analysis strategies when computing a 

reliability generalization meta-analysis, it seems relevant to know whether, when we are 

carrying out a meta-analytic study that implies, by its own nature, that dependence 

relationships may arise between the scores, the results obtained through an RG meta-

analysis performed in the conventional method, that is, abolishing such dependence and 
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separating the analyses, differ statistically from the results obtained through multilevel 

models that try to model that dependence and deal with it. In this study, different statistical 

models within the multilevel perspective have been compared with the conventional 

model of analysis, manipulating the conditions of the scales that have been included. This 

study has also been carried out on real empirical data from published meta-analyses, as 

the aim was not to identify which model works best, but to assess whether there are 

differences between different analytical decisions. 
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Chapter 2 

Study 1:  
 

“Reliability Generalization Meta-analysis: 

Comparing Different Statistical Methods” 

 

 

2.1 Introduction 

To date, a large number of RG meta-analyses have been carried out in psychology 

on different measurement instruments. A systematic search has identified more than 150 

RG meta-analyses conducted on psychological measurement tools between 1998 and 

2019 (Sánchez-Meca et al., 2019). Examples of RG meta-analyses are those of the Beck 

Depression Inventory (Yin & Fan, 2000), the Childhood Autism Rating Scale (Breidbord 

& Croudace, 2013), the Yale-Brown Obsessive-Compulsive Scale (López-Pina et al., 

2015), or self-report measures of muscle dysmorphia (Rubio-Aparicio et al., 2020). As 

mentioned in the previous chapter, a reliability generalisation meta-analysis can be 

carried out using different analytical strategies. Thus, it is possible that by applying 

different strategies, different results may also arise.  
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2.1.1. Purpose 

Applying different statistical models and methods to synthesize a set of reliability 

coefficients on a given test can lead to different findings, affecting their conclusions. To 

our knowledge, attempts to investigate this problem have not yet been accomplished. The 

main purpose of this research was to examine the extent to which different statistical 

methods to obtain a pooled reliability coefficient and a confidence interval around it can 

lead to different results. With this aim, a methodological review was conducted of all RG 

meta-analyses on psychological tools published to date. An exhaustive search was 

performed to identify RG meta-analyses carried out on psychological scales, to obtain 

their datasets, to apply different statistical methods, and to compare their results. This 

study is an empirical comparison of alternative statistical methods to conduct an RG meta-

analysis in order to examine the extent to which different methods can affect the meta-

analytic results. 

As internal consistency is the most frequently reported type of reliability in RG 

meta-analyses, our study focused on Cronbach’s alpha coefficients. In particular, we tried 

to ascertain the extent to which different methods to average a set of internal consistency 

reliability coefficients provide heterogeneous results depending on whether to transform 

reliability coefficients, the statistical model assumed, and the weighting factor applied. In 

addition, we also aimed to compare different methods to construct a confidence interval 

for the average reliability coefficient, as regards confidence interval width. Another 

purpose consisted of examining the extent to which different transformation methods 

devised to normalize reliability coefficient distribution achieve this objective. Finally, we 

also wished to compare the amount of heterogeneity (quantified with the I2 index and 

prediction intervals) exhibited by untransformed and transformed reliability coefficients. 

In the next sections, different methods to statistically integrate reliability coefficients are 
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presented and the methodology of this meta-review is outlined. Findings comparing the 

results of the different methods applied to the RG meta-analyses are then described, and 

finally the scope of our results is discussed. 

2.1.2. Statistical methods in RG meta-analysis 

In this meta-review we have selected those transformations that have been most 

frequently found in RG meta-analyses. Table 1 presents the different methods to 

transform internal consistency coefficients with their corresponding sampling variances, 

as well as formulas to back-transform the transformed coefficients to the original metric 

(Sánchez-Meca et al., 2012). Note that in Table 1 the typical symbol to represent 

Cronbach’s alpha reliability coefficients is used (𝛼̂𝑖), as most RG meta-analyses use this 

coefficient to estimate the internal consistency of scales. This is due to alpha coefficients 

being routinely reported in primary studies. However, formulas shown in Table 1 can be 

applied to other types of internal consistency reliability coefficients. 

Table 1.  

Transformation methods for internal consistency coefficients, with back-transformations and sampling variances. 

 
Transformation Back-transformation Sampling variance V(yi)¶ 

No Transformation 𝛼̂𝑖 — 𝑉(𝛼̂𝑖) =
2𝐽𝑖(1 − 𝛼̂𝑖)

2

(𝐽𝑖 − 1) {𝑛𝑖 − 2 − [(𝐽 − 2)(𝑘 − 1)]
1

4⁄ }
 

Fisher’s Z 𝑍𝑖 =
1

2
ln (

1 + 𝛼̂𝑖

1 − 𝛼̂𝑖

) 𝛼̂𝑖 =
𝑒2𝑍𝑖 − 1

𝑒2𝑍𝑖 + 1
 𝑉(𝑍𝑖) =

1

𝑛𝑖 − 3
 

Hakstian-Whalen 𝑇𝑖 = √1 − 𝛼̂𝑖
3

 𝛼̂𝑖 = 1 − 𝑇𝑖
3 𝑉(𝑇𝑖) =

18𝐽𝑖(𝑛𝑖 − 1)(1 − 𝛼̂𝑖)
2

3⁄

(𝐽𝑖 − 1)(9𝑛𝑖 − 11)2
 

Bonett 𝐿𝑖 = ln (1 − |𝛼̂𝑖|) 𝛼̂𝑖 = 1 − 𝑒𝐿𝑖  𝑉(𝐿𝑖) =
2𝐽𝑖

(𝐽𝑖 − 1)(𝑛𝑖 − 2)
 

Note: 𝛼̂𝑖: alpha coefficient reported in the ith study. 𝑛𝑖: sample size of the ith study. 𝐽𝑖: number of items of the test version used in the 

ith study. 𝑘: number of alpha coefficients of the RG meta-analysis. ¶The sampling variance formula for the untransformed internal 

consistency coefficients is that proposed by Bonett (2002). ln: natural logarithm. Hakstian-Whalen: Hakstian and Whalen’s (1976) 

transformation. Bonett: Bonett’s (2002) transformation. 
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The next decision, as previously mentioned, concerns the statistical model to be 

assumed. We have already seen the theoretical differences in each of the models 

presented. However, it is also well known that assuming one or another statistical model 

has consequences on how statistical analyses are accomplished and on the degree of 

generalizability of the meta-analytic results. In particular, how the reliability estimates 

are weighted is different depending on the statistical model assumed. Under an FE model 

the optimal weighting factor is the inverse of the sampling variance of each reliability 

coefficient, wi
FE = 1/V(yi), with V(yi) being the within-study sampling variance of the 

reliability coefficient of the ith study. Alternatively, under an FE model the meta-analyst 

can decide not to weight the reliability estimates, that is, wi
FE = 1. Under an RE model, 

the optimal weights are defined as the inverse of the sum of the sampling variance and 

the between-studies variance, wi
RE = 1/[V(yi) + 2], with 2 being an estimate of the 

between-studies variance (Borenstein, 2019; Cooper et al., 2019). Alternatively, an RE 

model can be applied by weighting the reliability coefficients by its sample size instead 

of its inverse variance (Schmidt & Hunter, 2015). On the other hand, regarding the VC 

model, as it is theoretically in a middle point between the FE model and the RE model, 

its results can only be generalized to a set of studies with identical characteristics to those 

of the studies included in the meta-analysis, and the optimal estimate of the average 

reliability coefficient implies not weighting the individual coefficients (wi
VC = 1). The 

mathematical formulation of the three statistical models can be found in Table A2.1 in 

Appendix 2A.  

Regardless of the statistical model assumed, in an RG meta-analysis it is usual to 

calculate an average reliability coefficient, its sampling variance, and a 95% confidence 

interval to estimate the average population reliability coefficient. Veroniki et al. (2019) 

have identified 15 alternative methods to construct a confidence interval for the average 
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effect size under an RE model. Out of the large number of methods to construct 

confidence intervals, those usually applied in RG meta-analysis have been selected to be 

compared in this study. These methods are presented in Table 2. The methods differ on 

whether to transform the reliability estimates, the statistical model assumed, and how to 

weight reliability coefficients. Thus, we have considered methods under the FE, RE, and 

VC statistical models. In addition, we have included methods based on ordinary least 

squares (OLS). OLS method consists of applying conventional statistical methods, that 

is, to calculate an unweighted mean of reliability coefficients, to estimate its sampling 

variance, and to construct a 95% confidence interval as if the reliability estimates were 

single data from a sample of participants. Although the OLS method can be thought of as 

an FE model, here we consider it separately, as many RG meta-analyses have applied 

OLS methods without declaring the statistical model assumed. Note that in OLS and FE 

methods the reliability coefficients can be transformed or not to normalize their 

distribution and stabilize variances (in Table 2 the term ‘yi’ interchangeably represents 

the transformed or untransformed reliability coefficient of the ith study). Under the VC 

model advocated by Bonett (2010), the average of the population reliability coefficients 

is estimated by calculating an unweighted average of the untransformed internal 

consistency coefficients; however, to construct a 95% confidence interval the average 

reliability coefficient must be transformed by Bonett’s method. Table 2 also shows three 

methods under an RE model. The standard RE method implies estimating the sampling 

variance of the average reliability coefficient as the inverse of the sum of the weights 

(𝑤𝑖
𝑅𝐸) and a standard normal distribution to construct a confidence interval 

(Konstantopoulos & Hedges, 2019). Following Schmidt and Hunter's (2015) approach, 

the REn method consists of not transforming the reliability coefficients and weighting 

them by the sample size of each study. Finally, the REi method is based on an improved 
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method proposed by Hartung and Knapp (2001) to estimate the sampling variance of an 

average effect size and to assume a Student t-distribution with degrees of freedom equal 

to k – 1, k being the number of studies (Sánchez-Meca & Marín-Martínez, 2008). REi 

method offers better adjustment to the nominal confidence level than the RE and REn 

methods, as it takes into account uncertainty in estimation of between-studies variance, 

2 (Hartung & Knapp, 2001; Rubio‐Aparicio et al., 2018; Sánchez-Meca & Marín-

Martínez, 2008; Veroniki et al., 2019). 

Table 2.  

Computational formulas to calculate an average reliability coefficient, its sampling variance, and a 95% 

confidence interval for different statistical models.  

Model Average (𝒚̅) Variance (𝑽(𝒚̅)) Confidence Interval (CI) 

OLS 𝑌̅𝑂𝐿𝑆 =
∑ 𝑦𝑖𝑖

𝑘
 𝑉(𝑌̅𝑂𝐿𝑆) =

𝑆𝑦
2

𝑘
 𝐶𝐼𝑂𝐿𝑆 =  𝑌̅𝑂𝐿𝑆 ± |𝑡𝑘−1,𝛼/2|√𝑉(𝑌̅𝑂𝐿𝑆) 

FE 𝑌̅𝐹𝐸 =
∑ 𝑤𝑖

𝐹𝐸𝑦𝑖𝑖

∑ 𝑤𝑖
𝐹𝐸

𝑖

 𝑉(𝑌̅𝐹𝐸) =
1

∑ 𝑤𝑖
𝐹𝐸

𝑖

 𝐶𝐼𝐹𝐸 =  𝑌̅𝐹𝐸 ± |𝑧𝛼 2⁄ |√𝑉(𝑌̅𝐹𝐸) 

VC 𝑌̅𝑉𝐶 =
∑ 𝛼𝑖̂𝑖

𝑘
 𝑉(𝑌̅𝑉𝐶) =

∑ 𝑉(𝛼𝑖̂)𝑖

𝑘2
 

𝐶𝐼𝑉𝐶 = 1 − 𝑒𝑥𝑝 [ln(1 − 𝑌̅𝑉𝐶) − 𝑏

± |𝑧𝛼 2⁄ |√𝑉(𝑌̅𝑉𝐶) (1 − 𝑌̅𝑉𝐶)2⁄ ] 

RE 𝑌̅𝑅𝐸 =
∑ 𝑤𝑖

𝑅𝐸𝑦𝑖𝑖

∑ 𝑤𝑖
𝑅𝐸

𝑖

 𝑉(𝑌̅𝑅𝐸) =
1

∑ 𝑤𝑖
𝑅𝐸

𝑖

 𝐶𝐼𝑅𝐸 =  𝑌̅𝑅𝐸 ± |𝑧𝛼 2⁄ |√𝑉(𝑌̅𝑅𝐸) 

REi 𝑌̅𝑅𝐸𝑖 =
∑ 𝑤𝑖

𝑅𝐸𝑦𝑖𝑖

∑ 𝑤𝑖
𝑅𝐸

𝑖

 𝑉(𝑌̅𝑅𝐸𝑖) =
∑ 𝑤𝑖

𝑅𝐸(𝑦𝑖 − 𝑌̅𝑅𝐸𝑖)2
𝑖

(𝑘 − 1) ∑ 𝑤𝑖
𝑅𝐸

𝑖

 𝐶𝐼𝑅𝐸𝑖 =  𝑌̅𝑅𝐸𝑖 ± |𝑡𝑘−1,𝛼/2|√𝑉(𝑌̅𝑅𝐸𝑖) 

REn 𝑌̅𝑅𝐸𝑛 =
∑ 𝑛𝑖𝛼𝑖̂𝑖

∑ 𝑛𝑖𝑖

 𝑉(𝑌̅𝑅𝐸𝑛) =
∑ 𝑛𝑖(𝛼̂𝑖 − 𝑌̅𝑅𝐸𝑛)2

𝑖

𝑘 ∑ 𝑛𝑖𝑖

 𝐶𝐼𝑅𝐸𝑛 =  𝑌̅𝑅𝐸𝑛 ± |𝑧𝛼 2⁄ |√𝑉(𝑌̅𝑅𝐸𝑛) 

Note: OLS: Ordinary Least Squares method. FE: Fixed-Effect model. VC: Varying-Coefficient model. RE: Random-

Effects model. REi: Random-Effects model with the improved method of Hartung and Knapp (2001). REn: Random-Effects 

model weighting by sample size. yi = transformed or untransformed reliability coefficient of the ith study. 𝛼̂𝑖 = 

untransformed internal consistency reliability coefficient of the ith study. ni = sample size of the ith study. k = number of 

studies. 𝑆𝑦
2 = variance of the k transformed or untransformed reliability coefficients. 𝑡𝑘−1,𝛼/2 = (α/2)x100% percentile of 

the Student t-distribution with k-1 degrees of freedom. 𝑧𝛼/2 = (α/2)x100% percentile of the standard normal distribution. 

𝑏 = 𝑙𝑛[𝑛̅ (𝑛̅ − 1⁄ ], ln being the natural logarithm and 𝑛̅ being the harmonic mean of the sample sizes: 𝑛̅ = 𝑘 ∑(
1

𝑛𝑖
)⁄ .  
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Statistical theory predicts OLS methods as exhibiting the largest confidence 

widths, as they do not take advantage of cumulating the sample sizes of the primary 

studies when computing a confidence interval for the average reliability coefficient. They 

are followed by REi method, as it takes into account two sources of error among the 

reliability estimates (within- and between-study variability) and uncertainty in estimating 

the between-studies variance. RE and REn methods will offer narrower confidence widths 

than REi method, as they do not consider uncertainty in the estimation of the between-

study variance. The VC method will present narrower confidence widths than the three 

RE methods, as it does not aim to estimate an average reliability coefficient from a super-

population of potential reliability coefficients, but the average population coefficient of 

the studies included in the RG meta-analysis. Finally, the FE method will exhibit the 

narrowest confidence widths, as it assumes that the reliability estimates share a common 

population reliability coefficient (Sánchez-Meca et al., 2012). 

2.2 Method 

2.2.1. Study selection criteria 

To be included in this methodological review, studies needed to fulfil the 

following selection criteria: (a) to be an RG meta-analysis on one or several psychological 

tools; (b) to report the complete dataset of the individual reliability estimates extracted 

from the primary studies; (c) to report at least one dataset of internal consistency 

reliability coefficients (Cronbach’s alpha, omega coefficients, parallel-forms, etc.) with 

at least five individual reliability coefficients, and (d) studies had to be written in English 

or Spanish. Above all, to be part of our investigation the dataset had to include at least 

the internal consistency coefficient and sample size of each individual study. 
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2.2.2. Search strategy 

Electronic searches were carried out in the Scopus and EBSCOhost databases. The 

Google Scholar search engine was also used to broaden the search. The keywords used 

were “Reliability Generalization”, “Meta-Analysis of Internal Consistence” and “Meta-

Analysis of Alpha Coefficients”. The temporal range was from 1998 to July 2020. The 

initial date of the search was established due to the seminal article by Vacha-Haase 

(1998).  The full search strategy followed in each database is available in Appendix 2B. 

Figure 1 presents a flow diagram outlining the selection process of studies. The 

electronic searches yielded 385 references. Additional informal searches produced 

another 30 references. On discarding duplicated references, a total of 239 references were 

identified as potentially eligible for this research. From these, 207 references were 

excluded for not fulfilling some inclusion criteria (e.g., methodological studies which did 

not focus on internal consistency coefficients, did not present the whole dataset with the 

individual reliability coefficients, the dataset contained less than 5 reliability coefficients, 

or the psychological tool had only one item). Therefore, 32 RG meta-analyses were 

included in this research. The references of the 32 RG meta-analyses selected are openly 

available in Appendix 2C. As many of these studies included several psychological tests, 

or one psychological test with different subscales, we were able to obtain 138 datasets 

comprising scales or subscales contributing 4,350 internal consistency coefficients. 

Although our purpose was to include any type of internal consistency coefficients, all RG 

meta-analyses selected for this research used only Cronbach’s alpha reliability 

coefficients. 
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Figure 1. 

Flow diagram of study selection process. 

 

2.2.3. Data extraction  

If one RG meta-analysis reported data from more than one psychological scale or the 

scale had several subscales, we took these as independent datasets for our statistical 

analyses. Consequently, the 32 RG meta-analyses selected in this methodological review 

gave a total of 138 datasets of alpha coefficients on psychological scales and subscales. 

From each dataset, we extracted the alpha coefficients of the primary studies included in 

each meta-analysis, number of items of each scale/subscale used, sample size, and the 

mean and standard deviation of test scores. 
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2.2.4. Data analysis 

Statistical methods shown in Table 2 were applied on each of the 138 datasets of 

alpha coefficients. To estimate the between-studies variance (2), DerSimonian and 

Laird’s (DL) moments method was applied because it is one of the most widely used, 

although it is not the best one (cf. Blázquez-Rincón et al., 2023; Boedeker & Henson, 

2020; Langan et al., 2017; Sánchez-Meca et al., 2012; Sánchez-Meca & Marín-Martínez, 

2008; Veroniki et al., 2016; Viechtbauer, 2005). In order to assess whether the 2 

estimator can affect the results of an RG meta-analysis, the restricted maximum likelihood 

(REML) estimator was also applied. Thus, sensitivity analyses were carried out by means 

of ANOVAs (one for the average alpha coefficient and the other for its confidence width) 

comparing the meta-analytic results for DL and REML 2 estimators. With the purpose 

of assessing whether the 2 estimator has an influence on the meta-analytic results, two-

way ANOVAs with repeated measures in the two factors were applied, taking the average 

alpha coefficient and the confidence width as the dependent variables. The two factors 

being the 2 estimator (DL vs. REML) and the transformation method. Four 

transformation methods of the reliability coefficients were considered (not 

transformation, Fisher’s Z, Hakstian and Whalen’s and Bonett’s transformations) and six 

statistical models: OLS, FE, VC, and three RE models (standard RE, REi, and REn 

models). Although a total of 24 combinations could be applied to obtain an average 

reliability coefficient, only 13 different methods were compared. This is due to the fact 

that VC (Bonett, 2010) and REn (Schmidt & Hunter, 2015) models do not admit 

coefficients to be transformed, therefore these statistical methods were applied for 

untransformed alpha coefficients only. In addition, note that RE and REi methods apply 

the same formula to calculate an average reliability coefficient (see Table 2). The 

difference between RE and REi methods is in how to construct a confidence interval. The 
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13 methods compared to obtain a combined reliability coefficient can be found in Table 

2A.2 in Appendix 2A. 

In addition, 18 different methods to calculate a confidence interval for the average 

reliability coefficient were applied (see Table 2). Out of these, 16 methods were obtained 

by combining the statistical models OLS, FE, RE, and REi with the four transformation 

methods (not transformed, Fisher’s Z, Hakstian and Whalen’s, and Bonett’s 

transformations). Two additional methods were based on the VC model for Bonett’s 

transformation and the REn model for untransformed coefficients. The 18 methods 

compared have been described in Table 2A.3 in Appendix 2A. 

In addition, Shapiro-Wilk’s normality test and skewness and kurtosis indices were 

applied for each of the 138 datasets and on the three transformed coefficients (Fisher’s Z, 

Hakstian and Whalen’s, and Bonett’s transformations) as well as on those untransformed. 

This enabled examination of how much the different transformation methods of the 

internal consistency coefficients achieved the aim of normalizing coefficient distribution. 

Another comparison criterion was the amount of heterogeneity exhibited among 

the alpha coefficients. With this purpose, Q statistic and I2 index were calculated for the 

three transformation methods and for the untransformed alpha coefficients in each of the 

138 datasets. When applied to an RG meta-analysis, the I2 index quantifies the amount of 

true heterogeneity exhibited by a set of alpha coefficients, that is, the variability exhibited 

by the alpha coefficient that cannot be explained by sampling error, but which is due to 

the influence of the composition and variability of the study samples and of how each 

individual study was conducted (Borenstein, 2019).  

Another way to assess heterogeneity under a RE model is by constructing a 

prediction interval. Prediction intervals were calculated for each of the coefficient 

transformations. In an RG meta-analysis a prediction interval estimates the range of 
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values expected for the population reliability coefficient if a new study with similar 

characteristics to those included in the meta-analysis is conducted (Borenstein et al., 

2009; Borenstein, 2019). Theoretically, prediction intervals and confidence intervals 

should coincide if no heterogeneity between studies is present; in presence of 

heterogeneity, prediction intervals tend to be wider than confidence intervals (Higgins et 

al., 2009).  

In order to compare the 13 alternative methods to calculate an average reliability 

coefficient and to compare the confidence width of the 18 methods to construct a 

confidence interval for the average reliability coefficient, two-way ANOVAs were 

applied. The two factors introduced in the model were the assumed statistical model and 

the transformation of the coefficients (with four conditions). For the average coefficient 

estimate, the two factors included in the ANOVA had four levels, while for the confidence 

width the statistical model had 6 conditions. In case of finding statistically significant 

results for any of the factors, post hoc comparisons were applied with Bonferroni’s 

method.   

The 13 methods to calculate an average reliability coefficient and the 18 methods 

to construct a confidence interval for the average reliability coefficient were computed in 

four different metric scales: those of the untransformed alpha coefficient and the three 

transformation methods (Fisher’s Z, Hakstian and Whalen’s and Bonett’s 

transformation). In order to make them comparable, results for the three transformation 

methods were back-transformed to alpha metric by means of the formulas presented in 

Table 1.  

The 138 meta-analytic datasets as well as the script codes used to analyse them 

are openly available at: https://bit.ly/vtgf7. All meta-analytic calculations were 

programmed in R (R Core Team, 2020). Shapiro-Wilk’s normality test and skewness and 

https://bit.ly/vtgf7.The
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kurtosis indices were calculated with the R package moments (Komsta & Nomovestky, 

2015). ANOVAs and post hoc comparisons were carried out with the statistical programs 

IBM SPSS Statistics (v28; IBM Corp, 2021) and JAMOVI (v2.2; The Jamovi Project, 

2021). Finally, to illustrate the results, multiple violin displays were constructed with the 

package ggplot2 in R (Wickham, 2016). 

2.3 Results 

2.3.1 Characteristics of the meta-analytic datasets 

The 138 RG datasets were extracted from 32 studies that fulfilled our inclusion 

criteria. The RG datasets had a number of studies (k) that ranged between 5 and 319 

primary studies or alpha coefficients, with an average of 31 primary studies (Median = 

14 studies; Q1 = 9; Q3 = 319). The histogram of the number of studies showed a clear 

positive asymmetry, with 70.3% of datasets exhibiting fewer than 30 primary studies (k 

< 30) and only 6 datasets (4.3%) with k larger than 100. Sample sizes distribution of the 

more than 4,500 alpha coefficients ranged between 38 and 799, with a mean of 209 

(Median = 220; Q1 = 125; Q3 = 249). A summary of the descriptive statistics for both 

number of studies and sample sizes can be found in Table 2A.4 in Appendix 2A. Figure 

2A.1 is available also in Appendix 2A.  

2.3.2 To transform or not to transform reliability coefficients 

One controversial point in the RG meta-analytic arena is whether alpha 

coefficients should be transformed to normalize their distribution. To examine the extent 

to which different transformation methods achieved their objective of normalizing the 

alpha coefficient distribution, Shapiro-Wilk’s test and skewness and kurtosis statistics 

were calculated for each transformation method in each RG dataset. Table 3 presents the 
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results. Regarding untransformed alpha coefficients, almost half of datasets (44.9%) 

reached statistical significance with Shapiro-Wilk’s normality test, indicating a clear 

departure from the normality assumption. Compared to the untransformed alpha 

coefficients, the three transformation methods (Fisher’s Z, Hakstian and Whalen’s, and 

Bonett’s transformations) substantially improved the normality adjustment of the alpha 

coefficient distribution, with rejection percentages of about 26%. In addition, the 

skewness indices for untransformed alpha coefficients (Table 3) clearly departed from 

symmetry (Mean =   -.75; Median = -.71), whereas transformed coefficients improved the 

symmetry (Fisher’s Z: Mean = .005, Media = .07; Hakstian and Whalen: Mean = .20, 

Median = .14; Bonett: Mean = -.09, Median = -.12). To determine whether these 

differences were statistically significant, a repeated-measures ANOVA was performed. 

The results confirmed these differences, F(3, 411) = 31.1, p < .001, ɳ2 = .185. Post hoc 

comparisons showed differences between no transformation of the coefficients and the 

three transformations, and between Hakstian and Whalen’s and Bonett’s transformation. 

Table 2A.5 in Appendix 2A presents the post hoc comparisons. 

However, kurtosis indices for untransformed alpha coefficients were close to 

normality (Mean = 3.74, Median = 2.95), whereas those of the transformed coefficients 

led to slightly platykurtic distributions (Fisher’s Z: Mean = 2.98, Median = 2.61; Hakstian 

and Whalen: Mean = 3.01, Median = 2.61; Bonett: Mean = 2.94, Median = 2.59). A 

repeated-measures ANOVA performed to compare the four transformation conditions 

yielded statistically significant differences, F(3, 411) = 27.8, p < .001, ɳ2 = .169, 

specifically between the coefficients without transforming and applying the three 

transformations.  Table 2A.6 in Appendix 2A presents these results. 
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Table 3.  

Shapiro-Wilk’s normality test, skewness, and kurtosis for each transformation method of alpha coefficients 

through the 138 meta-analytic datasets.  

Transformation method 

S-W test Skewness¶ Kurtosis§ 

Rejection 

percentage (p < .05) Mean Median Mean Median 

No transformation 44.9% -.757 -.736 3.75 2.951 

Fisher’s Z 26.1% -.017 .066 2.968 2.614 

Hakstian-Whalen 26.8% .19 .143 3.007 2.607 

Bonett 26.8% -.098 -.12 2.934 2.591 

Note: S-W test: Shapiro-Wilk’s normality test. ¶ Skewness indices equal to 0 indicated perfect symmetry of the distribution. 

§ Kurtosis indices equal to 3 indicated adjustment to normality.  

2.3.3 Between-study variance estimator 

In order to examine whether the choice of the 2 estimator in an RE model could 

affect the average alpha coefficient and the confidence width, a sensitivity analysis was 

conducted consisting of applying two 2 estimators: DL and REML. This comparison only 

affected to the RE model for the average alpha coefficient and for the RE and REi models 

for the confidence width and the four transformation methods. The results can be found 

in Tables 2A.7-2A.13 in Appendix 2A. Regarding the average alpha coefficient, using 

DL or REML 2 estimators did not affect the results (see Table A8), F(1, 137) = 1.11, p 

= .294, ɳ2 = .008. However, an interaction between the 2 estimator and transformation 

method was found, F(3, 411) = 26.29, p < .001, ɳ2 = .161. Post hoc comparisons revealed 

statistically significant differences between the average alpha coefficient for DL and 

REML 2 estimators when alpha coefficients were not transformed (see Table A9). 

Regarding the confidence width, Table A10 presents the results as a function of the 2 

estimator (DL vs. REML), transformation method, and statistical model (RE vs. REi). 

Table A11 presents the results of a three-way ANOVA. No statistically significant 
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differences were found for the 2 estimator, F(1, 137) = 2.12, p = .147, ɳ2 = .015. Like 

with average alpha coefficient, a statistically significant interaction was found between 

the 2 estimator and transformation method, F(3, 411) = 4.50, p = .004, ɳ2 = .032, although 

with negligible proportion of variance accounted for. In fact, any of the post hoc 

comparisons for this interaction reached statistical significance (see Table A12). Similar 

results were found for the interaction between 2 estimator and statistical model (see 

Tables A11 and A13). As 2 estimator did not affect the results, meta-analytic calculations 

were presented using DL estimator only. 

2.3.4 Averaging a set of reliability coefficients 

A total of 13 different methods were applied to average a set of reliability 

coefficients. In Table 4 some descriptive statistics of the results are shown when an 

average alpha coefficient was calculated. Both the mean and median indicated that the 

average alpha coefficients were slightly larger under an FE model without transforming 

the coefficients, in comparison with the remaining methods. While the lowest average 

alpha coefficients were found under the OLS method with raw coefficients, the maximum 

values were found in all transformations within the FE model, with the untransformed 

coefficients and Hakstian-Whalen’s transformation yielding the highest values. The 

distribution of the average alpha coefficients is shown in multiple violin and boxplots 

presented in Figure 2 as a function of statistical model and transformation method. 
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Table 4. 

Results of average alpha coefficients for each analytic strategy 

 Average Alpha 

Model Transformation Mean SD Min Q1 Median Q3 Max Range 

OLS No Transformation .819 .072 .595 .775 .829 .873 .974 .379 

Fisher’s Z .832 .07 .612 .786 .84 .887 .986 .373 

Hakstian-Whalen .828 .07 .61 .785 .837 .883 .98 .369 

Bonett .833 .069 .618 .787 .841 .888 .986 .368 

FE No Transformation .867 .063 .634 .831 .865 .914 1 .366 

Fisher’s Z .836 .074 .527 .791 .839 .89 .987 .46 

Hakstian-Whalen .848 .069 .621 .804 .848 .901 1 .378 

Bonett .837 .072 .544 .793 .84 .891 .987 .443 

RE/REi No Transformation .83 .07 .622 .791 .836 .883 .975 .353 

Fisher’s Z .833 .069 .62 .787 .84 .887 .986 .366 

Hakstian-Whalen .832 .069 .622 .789 .838 .885 .98 .358 

Bonett .834 .068 .624 .788 .842 .887 .986 .361 

REn No Transformation .826 .076 .486 .783 .83 .881 .974 .487 

OLS: Ordinary Least Squares model. FE: Fixed-Effect model. RE: Standard Random-Effects model. REi: Random-

Effects model with the improved method of Hartung and Knapp (2001). REn: Random-Effects model weighting by 

sample size. Results for the VC model were not shown in this Table as they coincide with those of the OLS model 

with untransformed coefficients. Results for RE and REi models are coincident. SD: Standard Deviation. Min. and 

Max.: Minimum and Maximum average alpha coefficient. Q1 and Q3: quartiles 1 and 3. 
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Figure 2. 

Multiple violin and boxplots of the 13 different methods for averaging alpha 

coefficients. 

  

Note: OLS = Ordinary Least-Squares model. FE = Fixed-Effect model. RE = Standard Random-Effects 

model weighting by the inverse variance. REn = Random-Effects model weighting by sample size. 

To compare methods among them, a two-way ANOVA was applied, with the 

average alpha coefficients as dependent variable and the statistical model and 

transformation method as factors. The results showed a statistically significant interaction 

between the two factors, F(6, 1781) = 3.233, p = .004, ɳ2 = .011, as well as the statistical 

model, F(3, 1781) = 8.614, p < .001, ɳ2 = .014. However, the proportion of variance 

accounted for by these factors was negligible (1.1% and 1.4%, respectively). Bonferroni’s 
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post-hoc comparisons indicated that significant differences were found between the FE 

model and the rest of the models (see Table 2A.14 in Appendix 2A). Specifically, 

significant differences were found between the untransformed average coefficients 

obtained assuming an FE model and the rest of the models, as well as within the FE model 

itself using Bonett’s and Fisher’s Z transformations (Table 2A.15 in Appendix 2A). 

2.3.5 Constructing a confidence interval for the average reliability 

coefficient 

Differences among the 18 methods to construct a confidence interval for the 

average reliability coefficient were also compared in terms of their confidence width. 

Table 5 presents descriptive statistics obtained by calculating the confidence width across 

the 18 analytical strategies. Both the mean and median indicated that larger confidence 

widths were found when OLS method was assumed without transforming the coefficients. 

While the lowest values were found under an FE model, the maximum values were found 

under OLS and REi models (i.e., RE model with the improved method of Hartung and 

Knapp). Figure 3 presents multiple violin and boxplots to illustrate the confidence widths 

through the different analytic methods compared. A two-way ANOVA was applied on 

the confidence widths as a function of the statistical model and transformation method. 

Statistically significant differences were found for the statistical model assumed, F(5, 

2466) = 108.675, p < .001, ɳ2 = .181, but not for the interaction, F(9, 2466) = .347, p = 

.959, ɳ2 = .001, nor for the transformation method, F(3, 2466) = .532, p = .66, ɳ2 = .00). 

Regarding the multiple comparisons (see Table 2A.16 in Appendix 2A), a significant 

result appears between almost all models. Post hoc comparisons revealed statistically 

significant differences between all the different statistical models, with three exceptions 

only: FE vs. VC models, OLS vs. REi, and RE vs. REn. 
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Figure 3. 
Multiple violin and boxplots of the 18 different methods for calculating the confidence 

width. 

 

Note: OLS: Ordinary Least-Squares model. FE: Fixed-Effect model. RE: Standard Random-Effects model 

weighting by the inverse variance. REi: Random-Effects model with the improved method of Hartung and 

Knapp (2001). REn: Random-Effects model weighting by sample size. VC: Varying-Coefficient model. 
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Table 5. 

Results of confidence widths for each analytic strategy. 

  Confidence Width 

Model Transformation Mean SD Min Q1 Median Q3 Max 

OLS 

No Transformation .089 .077 .015 .04 .067 .105 .54 

Fisher’s Z .085 .077 .013 .039 .059 .11 .587 

Hakstian-Whalen .085 .075 .014 .038 .061 .108 .572 

Bonett .085 .08 .013 .038 .058 .11 .635 

FE 

No Transformation .014 .011 .000 .005 .01 .02 .057 

Fisher’s Z .019 .015 .002 .008 .013 .026 .072 

Hakstian-Whalen .015 .012 .000 .006 .01 .021 .06 

Bonett .016 .014 .001 .006 .011 .022 .071 

RE 

No Transformation .059 .052 .009 .03 .043 .072 .412 

Fisher’s Z .07 .057 .01 .035 .054 .089 .421 

Hakstian-Whalen .068 .059 .01 .034 .051 .086 .46 

Bonett .069 .058 .01 .034 .052 .089 .417 

REn No Transformation .062 .05 .01 .029 .049 .081 .353 

REi 

No Transformation .079 .071 .011 .035 .059 .099 .543 

Fisher’s Z .084 .077 .012 .037 .058 .107 .589 

Hakstian-Whalen .082 .075 .012 .036 .06 .104 .573 

Bonett .084 .08 .012 .037 .058 .107 .637 

VC Bonett .025 .018 .002 .013 .018 .032 .092 

OLS: Ordinary Least Squares model. FE: Fixed-Effect model. RE: Standard Random-Effects model. REi: Random-

Effects model with the improved method of Hartung and Knapp (2001). REn: Random-Effects model weighting by 

sample size. VC: Varying-Coefficient model. SD: Standard Deviation. Min. and Max.: Minimum and Maximum 

confidence widths. Q1 and Q3: quartiles 1 and 3. 
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2.3.6 Assessing heterogeneity 

To assess heterogeneity exhibited by a set of alpha coefficients, the I2 index was 

calculated for each of the 138 RG datasets and for each transformation method, with the 

purpose of examining the extent to which different transformation methods lead to 

different I2 indices. Table 6 and Figure 4 show the descriptive statistics of the I2 indices 

and their distributions for each of the transformations. On average, I2 index was over 90% 

in all transformation methods, except for Fisher’s Z (88.21%). There was only one dataset 

with an I2 value lower than 25% for Fisher’s Z (I2 = 14.64%). When this I2 value was 

deleted from the analyses, the average I2 for Fisher’s Z slightly increased (from 88.21% 

to 88.75%) and its variability decreased (SD = 11.5 and 9.65, respectively). In the 

remaining datasets and transformation methods all I2 indices exceeded 25%, and only a 

few showed I2 values below 75%, the threshold usually established to assume high 

heterogeneity. Bonett’s and Hakstian and Wallen’s transformations performed very 

similarly. In addition, these two transformation methods yielded I2 indices with lower 

variability (Range = 53.01% and 54.63%, respectively) than Fisher’s Z and 

untransformed coefficients (Range = 84.77% and 60.32%, respectively). 

Table 6. 

Results of aggregating the 138 I2 indices for each transformation method. 

 I2 Index 

Transformation method Mean SD Min. Q1 Median Q3 Max. 

No Transformation 90.833 8.616 39.129 88.845 93.21 96.382 99.452 

Fisher’s Z 88.212 11.502 14.639 85.672 91.58 95.252 99.413 

Hakstian-Whalen 91.7 7.826 45.174 89.741 93.68 96.723 99.797 

Bonett 91.693 7.795 46.686 89.652 93.954 96.656 99.698 

Fisher’s Z¶ 88.749 9.653 48.653 85.878 91.583 95.269 99.413 

¶Results for Fisher’s Z once deleted the dataset with I2 = 14.64%. SD: Standard Deviation. Min. and Max.: Minimum and 

Maximum values. Q1 and Q3: quartiles 1 and 3.  
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Figure 4. 

Multiple boxplots of the I2 indices for each transformation method. 

 

Z* = Fisher’s Z once deleted the dataset with I2 = 14.64% 

 

To determine whether there were statistical differences in the I2 indices as a 

function of the transformation method of the alpha coefficients, a repeated measures 

ANOVA was performed, finding statistically significant differences, F(3, 411) = 66.6, p 

< .001, ɳ2 = .327. Post hoc comparisons revealed statistically significant differences 

between all the transformation methods, with the exception of Hakstian and Whalen vs. 

Bonett transformations (see Table 2A.17 in Appendix 2A). Due to the presence of an 

outlier I2 index (I2 = 14.64%), another repeated measures ANOVA was also performed 

without it. However, deleting this outlier did not change the ANOVA results.  
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Heterogeneity was also assessed by calculating 95% prediction intervals. Table 7 

presents descriptive statistics for the width of these prediction intervals as a function of 

the transformation method of the alpha coefficients. As expected, prediction intervals 

were wider than the confidence intervals (compare Tables 5 and 7). Figure 5 shows the 

distribution of prediction interval widths according to the transformation of the alpha 

coefficients.  

Figure 5.  

Multiple boxplots of the widths of the prediction intervals for each transformation method around 

the 138 RG datasets. 
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Table 7. 

Results of aggregating the 138 prediction intervals width for each transformation method 

 95% Prediction Interval Width 

Transformation method Mean SD Min. Q1 Median Q3 Max. 

No Transformation .207 .127 .057 .127 .172 .247 .998 

Fisher’s Z .273 .163 .055 .168 .228 .326 1.037 

Hakstian-Whalen .254 .154 .063 .16 .221 .313 1.205 

Bonett .297 .209 .067 .177 .233 .345 1.333 

Note: Hakstian-Whalen: Hakstian and Whalen’s transformation. Bonett: Bonett’s transformation. SD: Standard 

Deviation. Min. and Max.: Minimum and Maximum widths. Q1 and Q3: quartiles 1 and 3.  

To assess whether the transformation method of the alpha coefficients affected the 

width of prediction intervals, a repeated measures ANOVA was applied. The results 

showed statistically significant differences, F(3, 411) = 43.2, p < .001, ɳ2 = .24. Table 2A.18 

in Appendix 2A shows the results of post-hoc comparisons, with statistically significant 

differences between all transformation methods. Larger interval widths were found with 

Bonett’s transformation followed by Fisher’s Z and Hakstian and Whalen’s 

transformation. 

2.4 Discussion 

With the purpose of determining the extent to which different statistical methods 

used to integrate a set of reliability coefficients lead to different results, 138 datasets from 

32 RG meta-analyses on psychological tests were analysed by applying multiple 

statistical methods developed in the meta-analytic arena. Regarding the different 

transformation methods of the reliability coefficients, our findings revealed that Fisher’s 

Z, Hakstian and Whalen’, and Bonett’s transformations improved the normality 
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adjustment of coefficient distribution than untransformed coefficients. Although the three 

transformation methods performed similarly, there are conceptual reasons for not using 

Fisher’s Z to transform internal consistency coefficients like alpha and similar 

coefficients, as Fisher’s Z was devised to transform correlation coefficients, whereas an 

internal consistency reliability coefficient is not a correlation coefficient, but a squared 

correlation coefficient (a ratio between true score and total score variance). Fisher’s Z is 

adequate to transform test-retest reliability coefficients or parallel-forms coefficients, as 

these are calculated as correlation coefficients. For alpha coefficients, Hakstian and 

Whalen’s and Bonett’s transformations are most recommendable. Therefore, although 

there are proponents of not transforming reliability coefficients, transformation methods 

seem to normalize coefficient distribution, which is advisable as standard meta-analytic 

methods assume normality in their inference methods (cf., e.g., Borenstein & Hedges, 

2019; Cooper et al., 2019). 

RG meta-analyses always report an average reliability coefficient. Thirteen 

methods to calculate an average alpha coefficient were compared, depending on the 

statistical model assumed, weighting factor, and transformation method. An ANOVA 

applied with the statistical model and transformation of the coefficients as factors showed 

a statistically significant result for the interaction between them, as well as for the 

statistical model. However, the proportion of variance accounted for by these factors was 

negligible (about 1% only), revealing a limited influence. Post hoc comparisons indicated 

that the average alpha coefficients under an FE model were larger than those of other 

models (Table 4). REn model gave the lowest average alpha coefficients as well as the 

largest ones (from .487 to .974), exhibiting the largest variability. REn method consists 

of weighting the untransformed reliability coefficients by sample size. If in an RG meta-

analysis reliability coefficients and sample sizes are correlated, then models that include 
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sample size in the weighting factor can offer biased estimates of the average alpha 

coefficient. Our findings do not enable determine the extent to which different statistical 

models can lead to biased estimates of the population alpha coefficient in presence of 

alpha-sample size correlation, but an important recommendation when conducting an RG 

meta-analysis is to calculate the correlation between alphas and sample sizes. If a negative 

correlation is found, then we can assume that this RG meta-analysis can be suffering what 

in the meta-analytic arena is usually named ‘small study effects’, that is, studies with 

small sample sizes present higher alpha coefficients than larger ones (Rothstein et al., 

2005). Through the 138 RG datasets, correlations between alpha coefficients and sample 

sizes varied from -.79 to .73, with Median equal to .06 (Mean = .07, SD = .28). These 

results evidenced that it is usual to find positive or negative correlations between alphas 

and sample sizes in RG meta-analyses. Therefore, in presence of correlation it is very 

advisable to apply methods to assess whether ‘small study effects’, ‘reporting bias’, 

‘publication bias’ or any other biasing factors can affect the meta-analytic results. Such 

techniques as funnel plots, Egger’s test, or trim-and-fill methods should be applied to 

assess whether these biasing effects can affect the meta-analytic results (Rothstein et al., 

2005; Vevea et al., 2019). In case of a negative correlation between alphas and sample 

sizes, the meta-analyst can decide to apply the FE weighting factor to calculate an average 

alpha coefficient, as this model is less likely to give biased estimates. 

Conventional RE model weights alpha coefficients by their inverse variance, this 

being the sum of the sampling variance (V(yi)) and the between-studies variance (2). Note 

that the between-studies variance is a constant in the RE weighting formula, so that when 

2 is large in comparison with the sampling variances (V(yi)), the weights become more 

similar to each other and will therefore approach the OLS method. On the other hand, by 
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including a constant component in the weighting factor will lead to increase the 

differences between RE and FE models.  

A confidence interval for the average reliability coefficient is also typically 

reported in RG meta-analyses. A total of 18 alternative methods to construct confidence 

interval for the average alpha coefficient were compared, in terms of the confidence 

width. Coinciding with previous research, our findings indicated that the different 

transformation methods of the alpha coefficients barely affected the confidence width for 

a given statistical model (Romano et al., 2010). However, the statistical model assumed 

dramatically affected confidence width. ANOVA results showed statistically significant 

differences as a function of the statistical model, with a proportion of variance accounted 

for of medium to large magnitude (ɳ2 = .181).  

The largest confidence widths were obtained with the OLS methods, as they do 

not take advantage of the accumulation of sample sizes through the studies. On average, 

REi method was that which exhibited confidence widths more similar to those of the OLS 

method. As expected, the RE and REn methods on average exhibited narrower confidence 

widths than the REi and OLS methods, with average confidence widths varying between 

.059 and .070. Unlike the REi method, the RE and REn methods do not consider the 

uncertainty in estimating the between-studies variance, providing narrower confidence 

intervals than those of REi method (Sánchez-Meca & Marín-Martínez, 2008; Sidik & 

Jonkman, 2002; Stijnen et al., 2021). Both the FE and VC models exhibited the narrowest 

confidence intervals. The confidence width of VC model was, on average, .025, whereas 

under the FE model the average confidence widths varied between .014 and .019, being 

the narrowest widths of all models. The reasons for such narrow confidence widths are 

different for VC and FE methods. The FE model considers that all studies are estimating 

a common population reliability coefficient implying that the statistical calculations only 
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take into account one error source: that due to sampling of participants (Borenstein et al., 

2009; Sánchez-Meca et al., 2012). The VC model obtains narrower confidence widths 

than OLS and RE models as this model does not assume that the reliability coefficients 

from the studies are one random sample of a larger super-population of potential 

reliability coefficients (Bonett, 2010).  

Parameters under the RE model can be estimated by means of alternative 

estimators. In particular, a large number of between-study variance estimators have been 

proposed (cf., e.g., Blázquez-Rincón et al., 2023). Comparing the results of applying 

different variance estimators was beyond the scope of this study. Nevertheless, we 

compared the results for two between-study variance estimators, DL and REML 

estimators, which are the most commonly used. Negligible differences were found on the 

calculation of the average alpha coefficient. 

Regarding variability of reliability coefficients, I2 indices revealed large 

heterogeneity in most RG datasets, indicating that reliability estimates reported in primary 

studies are affected by such study characteristics as composition and variability of 

samples and methods and context of application. In addition, heterogeneity was 

maintained regardless of the transformation method of the alpha coefficients. Therefore, 

the search for study characteristics that can explain heterogeneity is warranted in 

practically any RG meta-analysis. An additional finding was found about prediction 

intervals under an RE model. The width of the prediction intervals clearly varied as a 

function of the transformation method of the alpha coefficients, with wider intervals when 

Bonett’s transformation was applied, followed by Fisher’s Z and Hakstian and Whalen’s 

transformation. Therefore, the choice of the transformation method is an important 

decision to interpret the width of the prediction intervals in an RE model. 
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2.4.1 How to select the statistical model? 

If, as our findings evidence, the selection of the statistical model greatly affects 

the meta-analytic results, then an important question concerns the arguments that must 

guide the selection of the statistical model. It is important to note that our investigation 

does not enable determining which statistical model is most appropriate in an RG meta-

analysis, as we have not conducted simulation studies, but empirical research based on 

real RG datasets. Therefore, our recommendations in this section are not based on our 

findings, but on previous theoretical work and results of simulation studies. The main 

question which must guide selection of statistical methods in an RG meta-analysis is to 

what extent the meta-analyst intends to generalize their results as well as the heterogeneity 

exhibited by the reliability coefficients. If the aim is to generalize to a set of studies with 

identical characteristics to those of studies in the meta-analysis, then the FE or the VC 

models are most recommendable. To decide between FE and VC models, the key question 

is whether the reliability estimates obtained in the primary studies exhibit heterogeneity. 

If this is not the case, then the FE model is most appropriate. However, if the reliability 

estimates exhibit heterogeneity among them, then VC should be chosen. How can we 

determine whether a set of reliability coefficients are heterogeneous? Several methods 

can be applied, such as the calculation of the I2 index, such that if I2 is larger than 25%, 

there is evidence of heterogeneity. Another method consists of testing the homogeneity 

hypothesis with Cochran’s Q statistic, such that if the Q statistic reaches statistical 

significance (e.g., p < .05) there is evidence of heterogeneity. Other related methods 

involve calculating a prediction interval around the average reliability coefficient, or 

interpreting the magnitude of the between-studies standard deviation,  (Borenstein, 

2019; Stijnen et al., 2021). Our results evidenced that RG meta-analyses exhibit large 

heterogeneity (I2 indices clearly over 25% and prediction intervals were wider than 
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confidence intervals). As a consequence, FE models will be warranted in exceptional 

cases only. Even in the presence of apparent homogeneity, applying this model will be 

risky because heterogeneity statistics may have low power when the number of studies is 

small. Regarding OLS methods, we included it in our comparisons because they have 

been applied in many RG meta-analyses published in psychology. However, their 

application in RG meta-analysis, like in other kinds of meta-analysis, is not advisable 

under any circumstances, as they do not take into account the distributional properties of 

the reliability coefficients, leading to misspecification errors. RG meta-analyses that have 

estimated their parameters using OLS may have achieved clearly different results than if 

they had applied RE, VC or FE models.  

When the meta-analyst intends to generalize their results to a larger population of 

studies with similar but not exactly identical characteristics to those of the studies 

included in the meta-analysis, then an RE model is best. From the three RE models here 

described, the RE, REi, and REn models, the REi model should be mainly chosen. This 

is because this model takes into account the uncertainty in estimating the between-studies 

variance (2). However, to be adequately applied, RE models need several assumptions 

to be fulfilled: normality of the true reliability coefficient distribution, a stable estimate 

of the between-studies variance, and random sampling of studies from a larger population 

of primary studies. Strictly speaking, random sampling assumption cannot be met, as 

studies included in an RG meta-analysis are never randomly selected from a larger 

population of potential studies. Nevertheless, it is sufficient if the meta-analyst can 

reasonably assume, under a conceptual basis, that studies included in an RG meta-analysis 

are a representative sample of the super-population of primary studies; for example, when 

there is not correlation between alpha coefficients and sample sizes, or there is not 

publication bias, small study effects, nor other potential biasing factors (Laird & 
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Mosteller, 1990; Sánchez-Meca et al., 2012). On the other hand, the normality assumption 

can be relaxed, as recent simulation studies have demonstrated that RE and REi methods 

are not very affected by departures from normality (Kontopantelis & Reeves, 2012; 

Rubio‐Aparicio et al., 2018). A more serious problem is to obtain an accurate estimate of 

the between-studies variance (2). A meta-analysis with a small number of studies will 

have difficulty in accurately estimating 2. Note that 2 is an important parameter in 

calculating an average reliability coefficient and to construct confidence intervals and 

prediction intervals around it. To warrant a stable estimate of 2, results from previous 

simulation studies recommend applying RE and REi methods for meta-analyses with 

more than 20 studies (Aguinis et al., 2011; Sánchez-Meca et al., 2012). RG meta-analyses 

with fewer than 20 studies and in the presence of heterogeneity should apply REn method, 

as it is not necessary to estimate 2, provided reliability coefficients and sample sizes are 

not correlated. Otherwise, the VC model should be the most reasonable choice and the 

meta-analyst should limit results generalization to studies included in the meta-analysis 

only.  

Finally, it is advisable to apply sensitivity analyses. One of these consists of 

conducting the statistical analyses both with untransformed and transformed reliability 

coefficients to assess the strength of findings. In addition, the meta-analyst can apply the 

leave-one-out technique, consisting of repeating the analyses by deleting one to one each 

reliability coefficient, with the purpose of identifying outliers. Finally, the correlation 

between reliability coefficients and sample sizes must always be calculated, as well as 

constructing a funnel plot, applying Egger’s test and, in case of asymmetry of the funnel 

plot, to apply the trim-and-fill method in order to assess biasing factors related to 

publication bias and small study effects. 
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2.4.2 Limitations of study 

This investigation has several limitations. Although we were able to analyze a 

large number of RG datasets (138), they were obtained from 32 RG studies only, a scarce 

number compared with the approximately 150 RG meta-analyses currently published in 

psychology. The majority of the RG studies did not report datasets or did not offer the 

possibility of accessing them. Perhaps due to space limitations in journals, RG meta-

analyses with a large number of studies did not report the datasets, such that the RG 

studies included in our investigation can be a negatively biased sample in terms of number 

of studies. It is to be expected that, as the transparency and reproducibility principles of 

the Open Science are implemented in psychological research, meta-analytic databases 

will be more accessible (Lakens et al., 2016; McNutt, 2014; Pashler & Wagenmakers, 

2012). Another limitation was the language, as we only included RG meta-analyses 

published in English or Spanish. This limitation can reduce the generalizability of our 

results. On the other hand, although we intended to analyze RG datasets of internal 

consistency coefficients, we were only able to include alpha coefficients. Until now, it 

has been very rare to find primary studies reporting coefficients other than alpha (e.g., 

omega, parallel-forms, etc.). However, Cronbach’s alpha coefficient has received strong 

criticism in the last years (Flake & Fried, 2020; Sijtsma, 2009; Yang & Green, 2011), as 

its very strict assumptions are rarely met in realistic conditions (unidimensionality, tau-

equivalence of item factor loadings, uncorrelated errors, multivariate normality). As 

primary studies report other internal consistency coefficients and other types of reliability 

(test-retest correlations, inter-rater coefficients), future RG meta-analyses will be able of 

synthesizing these and then it will be possible to examine the questions considered in this 

investigation. However, it is reasonable to expect that the majority of our results for alpha 
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coefficients will be applicable to other types of internal consistency coefficients, as well 

as to other types of reliability, such as temporal stability or inter-rater agreement.  

Finally, the main limitation of our investigation was that our findings were not 

based on the results of a simulation study, but on empirically comparing meta-analytic 

results from real databases. We devised our study as a previous step to carry out future 

simulation studies comparing the performance of the different statistical methods to 

address the typical results in an RG meta-analysis. Our results can be useful for future 

simulation studies in two ways. First, it was important to know whether different analytic 

methods applied to real RG meta-analyses exhibit relevant differences in the meta-

analytic results (in terms of average reliability coefficient, confidence interval, 

heterogeneity, and so on). If different statistical methods to synthesize reliability 

coefficients exhibit only negligible discrepancies, then to carry out a simulation study 

might not offer useful answers. Second, our results can help researchers interested in 

carrying out future simulation studies in to design the manipulated conditions based on 

real characteristics of RG meta-analyses typically published in psychology (e.g., in terms 

of number of reliability coefficients, average reliability, sample sizes of the single studies, 

heterogeneity variance, etc.). Thus, future simulation studies can base their parameter 

conditions on our findings. Descriptive statistics reported in tables in the paper as well as 

in the Supplementary file will be useful for this purpose. 

2.4.3 Future research 

The large heterogeneity exhibited in all the RG datasets here analyzed evidenced 

the need to search for study characteristics that can explain at least part of the reliability 

coefficient variability. Future research should investigate the extent to which different 

statistical methods to determine the influence of moderator variables reach different 
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results. The statistical methods here compared are based on a univariate approach to RG 

meta-analysis. Recent methodological work in meta-analysis has developed methods to 

apply multivariate approaches to RG meta-analyses, such as meta-analytic structural 

equation modelling (MASEM; Scherer & Teo, 2020). These sophisticated methods 

require obtaining from each primary study that has applied a given test, the item-item 

correlation matrix of the test in question, or other statistical data from the factor analyses 

(factor loadings, residual covariance matrices, etc.). Thus, future research should examine 

the extent to which univariate and multivariate approaches reach different results when 

applied to a same RG meta-analysis. 

2.5 Conclusion 

In this research we have demonstrated that the results of an RG meta-analysis are affected 

by the statistical model assumed, weighting scheme selected, and other decisions on how 

to statistically integrate a set of reliability coefficients. Different statistical models 

estimate different population parameters, so that results are not directly comparable 

among them. The key point is that the meta-analyst must select the most realistic 

statistical model, that is, the statistical model that adequately addresses the questions of 

interest and that better fits the characteristics of the reliability coefficient distribution, 

their sample composition and variability and sampling framework. Our results also 

evidence the need for researchers to adhere to the transparency and openness principles 

of Open Science to guarantee the replicability and reproducibility of psychological 

research. 
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Chapter 3 

Study 2:  
 

“Reliability Generalization Meta-Analysis: 

A Reproducibility Study” 

 

 

3.1 Introduction 

The proliferation of empirical evidence and scientific studies must be supported 

by analytical techniques and strategies that make it possible to synthesize results and 

conclusions that can be generalized. As we have already seen, meta-analysis has emerged 

as a tool for compiling and synthesising information from a multitude of empirical studies 

on the same subject in order to extract generalisable results. One of the distinctive features 

of meta-analysis is that it does not have a single analytical strategy, but rather there are 

numerous statistical techniques for conducting it that depend on and vary according to 

the primary data collected and the final objective of the study. 

Due to the number of decisions that the meta-analyst has to make, it is important 

that all of them are carefully considered and taken, and always reported with total clarity 
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and transparency. This implies, in addition to verifying the use of good methodological 

practices, ensuring that the work is reproducible and opened to the scientific community 

(Maassen et al., 2020).   

Discussing reproducibility implies a proper distinction between the terms 

replicability and reproducibility. Reproducibility is based on reusing the same data and 

strategies as the original researcher to check that the results are consistent, while 

replicability is about starting the whole process again, beginning with the initial search, 

and verifying whether the results are congruent with those obtained in the first study 

(Artner et al., 2021). Focusing on the specific type of meta-analysis under study in this 

thesis (Reliability Generalization Meta-Analysis -RG MA-), an RG reproducibility study 

would imply redoing all the analyses using the database of the original study following 

the same procedure as stated by the investigator. A replicability study, in contrast, would 

involve starting the whole process over again. In a replicability study it is not necessary 

to follow each step of the method as specified by the original researcher, however it is 

essential to contrast whether the results obtained are congruent or not with the original 

ones, being a successful replicability if both strategies result in congruent values. It is 

important to emphasize that one of the fundamental principles of the scientific method is 

the possibility of replicating the experimental results, thus consolidating the conclusions 

drawn from them (Artner et al., 2021). 

To date, no work has researched the reproducibility/replicability of RG meta-

analyses. Nevertheless, Maassen et al. (2020) did investigate the reproducibility of meta-

analyses within the field of psychology. The main result was that the reproducibility rate 

for primary effects was 55%, while the rate for meta-analyses was 61%. They also 

reviewed the reasons for this lack of reproducibility in both the reanalysis of the primary 

effects and the meta-analysis results and found that the main problems were the lack of 
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information to carry out the reanalysis, the ambiguity of the report on the applied 

estimation methods and the lack of transparency on the extraction of the relevant effects 

chosen. However, regarding the irreproducibility rate of the meta-analyses, they also 

concluded that most of the discrepancies they collected were negligible. On the other 

hand, Artner et al. (2021) reproduced 70% of the primary claims (PC) of unpublished raw 

data from experimental studies in the field of psychology. They defined a PC as an a 

priori hypothesis that is evaluated through the null hypothesis significance test (NHST). 

What is clear from all this is that for replication to be successful, it is imperative 

that the researcher is transparent about the whole research process. In fact, simply by 

maximizing transparency and reporting, the rate of replicability improves. And, if 

replicability increases, so does the robustness of the results and the credibility of the 

conclusions. Consistently maintaining a low replicability rate is a symptom of poor 

research practices and weak conclusions (Nosek et al., 2022). 

3.1.1 Current Study 

The main purpose of this study was to assess the extent to which the results of 

reliability generalization meta-analyses are reproducible. As a consequence, the 

transparency of reporting information on the reproducibility of the analyses was also 

evaluated. To achieve this, we collected RG meta-analyses published on psychological 

scales and constructs from 1998 to December 2020, which included openly, in the article 

itself, in a supplementary file or in an online repository, the database with all the necessary 

information extracted from the primary studies. 

The meta-analytic strategies explained by the authors in the original meta-analyses 

were reproduced and two measures of comparison of the reproduced results were 

established: Pearson’s correlation between the reported values and the reproduced values, 
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and a discrepancy index that determined the percentage by which the results differed from 

each other. By means of this index, three categories of reproduction success were 

determined: successful, approximate, and erroneous reproduction. 

The variables to be reproduced were the average reliability coefficient and its 

confidence interval, and the two typical measures of heterogeneity in this type of work: 

I2 index and Cochran’s Q statistic.  

3.2 Method 

This study is an extension of the one carried out in the previous chapter, gathering 

the information we obtained from the databases collected and examining the 

reproducibility rate we found in this particular type of meta-analysis. All the materials 

necessary for the reproduction of this work are available in https://bit.ly/65w8nn 

3.2.1 Study selection criteria and search strategy 

As in the previous chapter, to be part of this research, meta-analytic studies had to 

fulfil several conditions: (a) the study had to be a meta-analysis of reliability 

generalization on one or more psychological scales; (b) the study had to provide, in the 

article itself, in an online repository or in a supplementary file, the complete database 

with the individual reliability coefficients, and their sample size, extracted from the 

primary studies; (c) the reliability coefficients analysed had to be Cronbach's alpha 

coefficients; and, finally, (d) all the articles had to be written in English or Spanish. In 

addition, and in order to carry out the analyses, at least two or more coefficients per scale 

or subscale had to be provided. 

The electronic search was performed in the previous study and there was no 

modification for this study.  

https://bit.ly/65w8nn
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3.2.2 Data extraction  

Data extraction was done following two independent strategies. First, data were 

extracted for the primary studies that comprised each of the meta-analyses. In this first 

step, the individual reliability coefficients, the sample size of each primary study and the 

number of items composing each scale/subscale were extracted from the databases 

provided by the meta-analyses.  

On the other side, data were extracted on the method and results of these meta-

analyses, essential to evaluate the transparency of the report, to establish the type of 

analysis used in each case and to check whether replication had been successfully 

achieved. In this case, we extracted the average reliability coefficients together with their 

confidence intervals (also the estimation method applied), the typical heterogeneity 

indices in this type of study (I2 and Q), the statistical model assumed, the transformation 

of the coefficients applied if specified, and the statistical software in which the analyses 

were carried out. 

In the case that a study performed several independent meta-analyses because it 

had different scales or the same test had different subscales, each of them was taken 

independently and analysed separately. 

Data extraction was done with a single coder, at two different time moments. The 

results were checked for intra-rater agreement. In the event that the computed results 

differed from the reported results, the databases were rechecked to verify that the 

inconsistency was not due to problems in the coding.  
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3.2.3 Data analysis 

Data reanalysis was carried out with the metafor package (Viechtbauer, 2010). 

The graphical part was performed with the packages ggplot2 (Wickham, 2016), 

patchwork (Pedersen, 2022), cowplot (Wilke, 2020), and forcats (Wickham & RStudio, 

2023). All these packages have been used in R software (R Core Team, 2020). 

Each of the meta-analyses reproduced was analyzed following the process 

specified by the original authors in terms of the model assumed for the analysis, the model 

estimator used if random effects were assumed, and the transformation applied to the 

coefficients. In the case that other details of the analysis were reported, such as the 

weighting of the model or the method of estimating the confidence intervals of the 

average reliability coefficient, this was also considered. When the authors did not report 

information on any of these categories, the analyses were computed as follows: if they 

did not specify the model, the OLS method was assumed as the statistical model. If they 

reported that the model was a random effects model, but the heterogeneity variance 

estimator used was not specified, the DerSimonian-Laird (DL) estimator was computed, 

since it is the most widely used estimator, although it is not the most correct one (Langan 

et al., 2017; Sánchez-Meca et al., 2012; Sánchez-Meca & Marín-Martínez, 2008; 

Viechtbauer, 2005). And finally, if no transformation of the coefficients applied was 

reported, it was assumed that none had been applied and the raw coefficients were taken. 

Having performed all the reanalyses, to determine the extent to which the results 

were reproductions of the original results, two testing strategies were carried out. First, 

the Pearson correlation between the reported values and the reproduced values was 

computed. In this way we could study the similarity between the reported and reproduced 

values. According to Cohen (Cohen, 1977), when the value of rxy is greater than .5, the 

correlation is moderate, and when it exceeds .8, the correlation is significantly strong. 
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Furthermore, a discrepancy index has been calculated (Artner et al., 2021; 

Sánchez-Meca et al., 2012) that provided information on the percentage, in absolute 

value, of change between the reported value and the reproduced value, following the 

formula: 

𝐷𝐼𝑗 = |(
𝑌̅𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 − 𝑌̅𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑

𝑌̅𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑

)| × 100, (1) 

where 𝑌̅𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 refers to the value calculated here and 𝑌̅𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 is the value reported 

in the original article. The results have been classified into three categories: DI < 5%, 

reproduced result; between 5 and 10%, approximate result; and, greater than 10%, error 

in reproduction, that is, the reproduced result is significantly discrepant from the reported 

value. 

3.3 Results 

3.3.1 Characteristics of the Meta-Analytic Studies 

In the previous chapter, Figure 1 showed the flowchart with the study selection 

process. Although 152 studies initially met the criteria to form part of this study, 92 

(60.53%) did not provide the database used to calculate the meta-analysis with primary 

study information, 23 (15.13%) did not provide sufficient information to reproduce these 

analyses and 5 (3.29%) did not employ the coefficients allowed in this study. 

Finally, we had 32 studies that met all the inclusion criteria. From these 32 studies, 

we were able to extract 170 databases corresponding to independent meta-analyses of 

different scales or subscales. Regarding their characteristics, Figure 1 shows the statistical 

models, transformations and statistical software most frequently reported. The most 

frequently assumed model was the random-effects model weighted by sample size (RE-
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N; 43 meta-analyses) and the random-effects model that used the restricted maximum 

likelihood estimator as the heterogeneity estimator (RE-REML; 42 meta-analyses). The 

most frequently used transformation was the Hakstian-Whalen transformation (49) and, 

finally, the most frequently used software was metafor. It should be noted that not 

reporting the software was more frequent (56) than the use of metafor (55). 

Figure 1.  

Reporting frequency of each model (A), transformation (B) and software (C) 

 

Note. RE-N = Random Effects model weighted by sample size. RE-REML = Random Effects model fitted with 

Restricted Maximum-Likelihood estimator. FE = Fixed-Effect model. RE = Random Effects model. OLS = Ordinary 

Least Squares model. RE-DL = Random Effects model fitted with DerSimonian-Laird estimator. RE-EB = Random 

Effects model fitted with Empirical Bayes estimator. RE-ML = Random Effects model fitted with Maximum-

Likelihood estimator. HW = Hakstian and Whalen’s transformation. Bonett = Bonett’s transformation. Z = Fisher’s Z 

transformation. NT = untransformed alpha coefficients. CMA = Comprehensive Meta-Analysis  
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3.3.2 Transparency Practices 

Of the 170 scales/subscales that reported the average reliability coefficient 

computed, only 102 reported the confidence intervals of the average coefficient (60%). 

Regarding the heterogeneity indices, 71 provided the value of the I2 index (41.76%) and 

74 the value of the Q statistic (43.53%). Practically all the studies reported the statistical 

model assumed (164 meta-analyses; 96.47%) and the coefficient transformation applied 

(158; 92.94%). Finally, 114 meta-analyses (67.06%) reported the software used to 

compute the statistical analyses. In Figure 2 we can observe graphically the transparency 

rates for each category, the x-axis being the percentage value of the report and the inner 

value the absolute number of cases.  

Figure 2.  

Assessment of transparency practices for each variable.  

 

Note. The x-axis shows the percentage of the total number of scales/subscales (N = 170). The internal values show the 

absolute values for each variable. LL = Lower Limit of the confidence interval. UL = Upper Limit of the confidence 

interval. Transf. = transformation of the coefficients.   
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3.3.3 Reproducibility Results 

Although 170 scales/subscales were those that provided at least the average 

reliability coefficient, not all of them could be part of the reproducibility study: six of 

these subscales only provided one or two primary coefficients, making meta-analytic 

calculations impossible. In addition, the database provided by another study did not 

include data for one of the subscales reported in the article. That is, only 163 (95.88%) 

average coefficients, 95 (55.88%) confidence intervals, 68 I2 indices (40%) and 71 Q 

statistics (41.76%) could be reproduced. 

Table 1 shows the results of the descriptive statistics (mean, standard deviation, 

median, minimum and maximum values, and quartiles 1 and 3) for each variable both in 

its original form (reported) and in its recalculated form (reproduced). It is worth noting 

that both heterogeneity indices showed slight changes between the reported and 

reproduced. Specifically, for the mean value, in the case of the Q statistic (𝑄𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑= 

1076.04, 𝑄𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑= 1241.81), for the SD in the case of the I2 index (𝐼𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑
2 = 13.79, 

𝐼𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
2 = 7.48), and for the minimum values, in the case of both heterogeneity indices 

(𝐼𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑
2 = 0, 𝐼𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

2 = 56.17; 𝑄𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑= 0, 𝑄𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑= 6.84). The results for the 

rest of the variables are quite similar.  

Table 1.  

Descriptive Statistics for reported and reproduced results in each variable 

    Mean SD Min Q1 Median Q3 Max 

Reported 

Alpha .83 .07 .51 .79 .84 .89 .98 

CILL .77 .12 .23 .73 .8 .84 .93 

CIUL .84 .09 .5 .81 .86 .91 .99 

I2 90.05 13.79 0 91.39 94.1 95.94 98.31 

Q 1076.04 2250.7 0 123.19 482.72 927.83 12947.87 
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Reproduced 

Alpha .83 .07 .5 .79 .84 .88 .97 

CILL .78 .12 .23 .73 .8 .85 .93 

CIUL .84 .1 .42 .81 .86 .91 .95 

I2 92.37 7.48 56.17 91.68 94.73 96.56 98.86 

Q 1241.81 2326.83 6.84 139.26 486.58 1151.32 12945.37 

Note. CI: confidence interval. LL: lower limit. UL: upper limit. SD: Standard Deviation. Min. and Max.: Minimum 

and Maximum. Q1 and Q3: quartiles 1 and 3. 

As explained above, two analysis strategies were carried out to determine the 

degree to which reproduction was successful. The descriptive results of the reproduction 

as a function of the discrepancy index are shown in Table 2. While the median remains 

below 5% discrepancy in all cases, the mean is above 10% in the case of the Q statistic 

(18.485). This is mainly due to the fact that the mean is a statistic that is very sensitive to 

the presence of extreme values, as we can see in the column of maximum values found, 

where this index presents the highest value (262.088), a value notably higher than the 

rest. However, the rest of the variables also obtained maximum values well above 10%, 

the lowest value being that of the I2 index of heterogeneity (29.636). 

Table 2.  

Descriptive statistics of Discrepancy Index 

Variables N Mean SD Min. Q1 Median Q3 Max. N>5% N>10% 

Alpha 163 1.394 5.774 0 .18 .443 .957 62.313 4 2 

CILL 95 2.251 9.265 .004 .17 .463 1.07 79.077 4 2 

CIUL 95 2.143 6.935 .006 .179 .46 1.024 54.087 6 5 

I2 68 2.509 6.207 0 .004 .093 1.219 29.636 8 5 

Q 71 18.485 46.014 0 .002 .163 12.208 262.088 25 18 

Note. CILL:  Lower Limit confidence interval.  CIUL:  Upper Limit confidence interval. SD: Standard Deviation. Min. and Max.: 

Minimum and Maximum. Q1 and Q3: quartiles 1 and 3. N>5% = number of times the index exceeded 5%. N>10% = number of 

times the index exceeded 10%. 
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These results can be seen graphically in Figure 3, where the results have been 

classified according to the result obtained in the DI. On the x-axis we find the percentage 

values, while inside the bars we can observe the absolute values. The highest rate of 

successful reproduction (DI < 5%) was found when the alpha coefficient was reproduced 

(97.55%), followed by the lower limit of the confidence interval of the alpha coefficient 

(95.79%). However, the lowest reproducibility rate was found in the heterogeneity 

indices, specifically in the Q statistic (64.79%). 

Figure 3.  

Reproducibility results for the discrepancy index.  

 

Note. The x-axis shows the percentage of the total number of reproductions for each variable. The internal values show 

the absolute values of each category of DI. LL = Lower Limit of the confidence interval. UL = Upper Limit of the 

confidence interval.  
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The summary of the results of the correlations between the reported and 

reproduced values are shown in Table 3. It is evident that, in all cases, the values of all 

correlations are above .8 and statistically significant. 

Alpha Coefficient  

DI results (Table 2) obtained by reproducing the average alpha coefficients 

showed that only in four occasions the discrepancy rate between the reported and 

reproduced values exceeded the 5% limit (in two occasions, 10%). Although the 

maximum discrepancy value was 62.313, in 159 occasions (97.55%) the DI was below 

5%, which means successful reproduction. Figure 4 shows graphically the distribution of 

the Discrepancy Indices. 

 

 

 

 

 

Table 3. 

Correlation results between reported and reproduced values. 

  95% CI     

 rxy LL UL R2 t df p 

Alpha .868 .824 .901 .753 22.151 161 <.001 

CILL .901 .854 .933 .811 20.001 93 <.001 

CIUL .889 .838 .925 .791 18.736 93 <.001 

I2 .823 .728 .887 .678 11.777 66 <.001 

Q .988 .981 .992 .976 52.792 69 <.001 

Note.  CILL:  Lower Limit confidence interval.  CIUL:  Upper Limit confidence interval. LL = Lower Limit confidence 

interval of rxy. UL = Upper Limit confidence interval of rxy 
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Figure 4. 

Violin plot of the distribution of the discrepancy index for the mean coefficients. Above 

5%, the differences were significant and beyond 10%, replication had been unsuccessful. 

 

Moreover, concerning the results of the correlation between the reported values 

and the reproduced values (Table 3), we found a statistically significant correlation (.868). 

Figure 5 shows graphically the situation between reported and reproduced values, as well 

as the value of the coefficient of determination (R2 = .753).  
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Figure 5. 

Scatter plots of reported and reproduced alpha coefficients. The coefficient of 

determination of the relationship between the two coefficients has also been calculated.  

 

Confidence Intervals  

Ninety-five confidence intervals of the average coefficient were recalculated. 

Results of the DI between the reported and reproduced values are shown in Table 2. For 

the lower limit, we found that the 5% limit was exceeded in four occasions, two of them 

being greater than 10%. On the other hand, with respect to the upper limit, the value of 

5% was exceeded in six occasions, five of them being greater than 10%. Figure 6 shows 

graphically the distribution of this index, both for the lower limit (A) and the upper limit 

(B). 
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Figure 6. 

Violin plot of the distribution of the discrepancy index for both limits of confidence 

interval of the average coefficients. From 5% onwards, the differences were noticeable 

and beyond 10%, the reproduction had been unsuccessful. 

 

Therefore, referring to the classification established to determine reproduction 

success, in 91 occasions (95.79%) of the lower limit and 89 (93.68%) of the upper limit, 

reproduction was practically perfect. Two occasions, for the lower limit, were considered 

as reproduction error (2.11%), and five (5.26%) for the upper limit. 

The correlation results can be found in Table 3. Statistically significant results 

have been observed for both limits (rxy_LL =.901; rxy_UL =.889). Figure 7 shows this 

relationship graphically for both the lower (A) and upper (B) limits, as well as their 

coefficients of determination (𝑅𝐿𝐿
2 = .811; 𝑅𝑈𝐿

2 = .791). 
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Figure 7.  

Scatter plots of reported and reproduced lower (A) and upper (B) limit of the confidence 

interval of the average coefficient. The determination coefficient of the relationship 

between the reported and reproduced lower limit of the confidence interval has also been 

calculated. 

 

Heterogeneity Indices 

The most notable case of underreporting has been in the case of heterogeneity 

indices: in more than half of the meta-analyses none of the indices were reported. 

The discrepancy index limit was also exceeded most often in this variable: in eight 

occasions the I2 index showed values above 5% (five of them above 10%), and as regards 

the Q statistic, the limit was exceeded in 25 occasions (18 above 10%). Employing the 

DI classification, in 60 occasions (88.24%) a successful reproduction of the I2 index was 

achieved and in 46 occasions (64.79%) of the Q statistic. It should be noted that in the Q 

statistic the percentage of non-reproduced results was over 25% (NQ = 18; 25.35%). 

Figure 8 shows graphically the distribution of these results.  
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Figure 8. 

Violin plot of the distribution of the discrepancy index for (A) I2 index and (B) Q statistic. 

From 5% onwards, the differences were noticeable and beyond 10%, the reproduction 

had been unsuccessful. 

 

As we observed in Table 3, both indices presented statistically significant 

correlations with quite strong results, mainly in the case of the Q statistic, which showed 

a practically perfect correlation (rxy_I = .823; rxy_Q = .988). Figure 9 also shows the 

coefficients of determination for both indices (𝑅𝐼2
2 = .678; 𝑅𝑄

2 = .976). 

. 
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Figure 9. 

Scatter plots of reported and reproduced I2 index (A) and Q statistic (B). The coefficient 

of determination of the relationship between the reported and reproduced upper limit of 

the confidence interval was also reported. 

 

3.4 Discussion 

In this research we have conducted a reproducibility study of reliability 

generalization meta-analyses. In particular, we reproduced 163 average alpha coefficients 

and 95 confidence intervals (CI) of that coefficient. Moreover, we recalculated the 

heterogeneity indices: 68 I2 indices and 71 Cochran's Q statistics. To evaluate the results 

obtained with respect to the original reported in the literature, we established two analytic 

strategies: first, we calculated a discrepancy index (DI) that indicated the percentage in 

absolute value of difference between a reported result and the reproduced one (Equation 

1); and secondly, we calculated the correlation between the reported and the reproduced 

values. In order to establish whether the difference was significant or not, we classified 

the DI result into three categories: if the result was below 5%, the reproduction was 

considered successful; secondly, if the value exceeded 5% but not 10%, we considered 
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the reproduction result to be approximate; and, finally, if the value exceeded 10%, the 

reproduction failed and there were notable differences between the reproduced and 

reported values. In terms of the results of the correlations, to consider that the 

reproduction was successful, these were expected to be above .80 and statistically 

significant.  

As seen in the previous section, our results showed that for all the variables studied 

(α, CI, I2 and Q) the correlation between the reported and reproduced values was higher 

than .80 (Table 3). However, we found much more variability when interpreting the DI 

values (Table 2). For the average coefficient and its confidence interval, the DI was below 

5% almost 95% of the cases (α = 97.55%, CILL= 95.79%, CIUL= 93.68%), whereas, for 

the heterogeneity indices, this rate was reduced (I2 = 88.24%, Q = 64.79%). 

Overall, these results showed a positive outlook, since, with the exception of the 

Q statistic, the fact that the variables studied exceed 80% of successful reproductions is 

not usual in this type of study (Artner et al., 2021; Hardwicke et al., 2018; Maassen et al., 

2020). Attempting to explain why the total number of reproductions has not been reached, 

we have detected an error produced on a specific scale. In this work, two subscales 

showed the results of the meta-analysis for each subscale changed between them. The 

problem was found to come from the database itself, where each primary study was 

classified according to the version of the test used (some primary studies had used 

different test versions than those specified in the database). Without identifying the 

specific studies that this error affected, removing the results of these two subscales that 

clearly showed erroneous data, we found that, for example, the correlation between the 

average reported and reproduced coefficients changed from 𝑟𝑥𝑦
2 =  .868 to 𝑟𝑥𝑦

2 =  .989 

(Figure 9). The discrepancy rate was also reduced for average alpha, with only two studies 
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having between 5 and 10% discrepancy. This change in the results was common to all the 

variables considered. 

Figure 9. 

Violin and scatter plots of reported and reproduced average alpha coefficients. The violin 

plots show the distribution of the discrepancy index for (A) all the average alpha 

coefficients and (B) average alpha coefficients without the erroneous subscales. The 

scatter plots show the correlation between average alpha (C) with all the subscales and 

(D) without the erroneous subscales. The coefficient of determination of the relationship 

has also been calculated. 

 

Note. ** = Average alpha coefficients without the two erroneous subscales. 
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Despite this error being an anecdotal case, which showed its influence on the 

results, the lack of reproducibility that we have found, especially in the heterogeneity 

indices, cannot be explained solely by this error. Focusing on the case of the Q statistic, 

one plausible explanation for this phenomenon is that the values that Q takes are between 

0 and +∞, thus implying that the results of Q tend to be much higher than other variables 

that we have tested such as average alpha, whose values are between 0 and 1. 

Furthermore, we have to be aware that the data have context and, in this case, the value 

of the Q statistic provides information about the presence of heterogeneity, together with 

its associated probability value. In a hypothetical case where Qreported = 790 and Qreproduced 

= 700 the result of its DI would exceed 10%. However, from a substantive point of view, 

this difference does not affect the conclusion to be drawn from it. In other words, the 

result remains congruent. Something similar happens with the I2 index, although in this 

case the results of the DI are more positive (DI<5% = 88.24%). We might think that this 

discrepancy index works best when the values it evaluates are small and clearly bounded. 

With another strategy for analysing the results, we can see that this explanation makes 

sense, since the Pearson correlation for the reported and reproduced values of the Q 

statistic has been rxy =.988 and for the I2 index, rxy = .823, both statistically significant.  

Figure 10 shows a scatter plot of the reported and reproduced Q-values including 

quartiles 1 and 3 of both groups of values, as well as their averages. From this figure we 

can see that the distributions of the reported and reproduced values are quite similar, with 

the values corresponding to the reproduced group being slightly higher at quartile 3 and 

at the mean. Though not included in the figure, the median values were also very similar 

(Qreported = 496.14, Qreproduced = 486.58). With all this we can deduce that using more than 

one interpretation strategy makes both complement each other, giving a more complete 

view of the phenomenon under study. 
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Figure 10. 

Scatter plots of reported and reproduced Q index. This plot shows the correlation, the 

quartiles 1 and 3 and the mean value for each group of values. 

 
Note. Q1 = quartile 1. Q3 = quartile 3. 

It is important to note that, while the results showed a good replication rate for 

each variable, the reporting rate could be improved. For example, of the 152 studies 

initially collected, 92 studies (60.53%) did not report the database with the primary 

studies, so had to be directly discarded. From the 170 average coefficients reported, only 

60% of them also provided the value of the confidence interval, 42% the value of the I2 

index and 44% the value of the Q statistic. In some cases, these indices may not have 

been reported because the researchers assumed a fixed-effect model. Nevertheless, the 

fixed-effect model has not been the most common (Figure 1) and it is still recommended 

to verify that the assumed model is correct by assessing the heterogeneity of the 

component studies. 
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The issue of information reporting has also been recently studied in the study of 

Sánchez‐Meca et al. (2021). Specifically, they elaborated a systematic review of 150 RG 

meta-analysis studies applying the REGEMA guideline (Sánchez‐Meca et al., 2021). Of 

the 30 items that compose this guide, in 12 of them the reporting rate was less than 50%. 

The use of such guidelines is helpful in facilitating the reporting and improving the 

transparency of experimental studies. These guidelines specify what information must be 

reported in order for the study to be fully transparent and reproducible or replicable. For 

systematic reviews or meta-analyses, the most widely used and most popular guideline is 

the PRISMA guideline (Preferred Reporting Items for Systematic reviews and Meta-

Analyses) (Liberati et al., 2009), while, in the case of reliability generalization meta-

analyses, the REGEMA (Reliability Generalization Meta-Analysis) checklist (Sánchez‐

Meca et al., 2021) is particularly designed for this kind of meta-analysis. Additionally, 

pre-registration tools, such as PROSPERO, also help to maximise information reporting 

and improve transparency practices. 

This lack of good practice in terms of transparency and reporting means that 

research results are not completely reliable and that these results are not a good 

representation of real phenomena. Publicising materials, tools, datasets, scripts and, in 

fact, everything necessary to reproduce the results obtained in a scientific study, should 

be imperative. 

It is also important that all available materials are easily understandable, as it is 

often not only a lack of information but also a lack of clarity that hinders the reproduction 

process. Indeed, some of the errors identified throughout the research have been related 

to confusing explanations of the process of analysing and obtaining the results, and to the 

appearance of different values in different parts of the same article (for example, the 

sample size of the primary studies changed from one table to another, or the meta-
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analytical results were different in the text and in the table). Some recommendations for 

improving transparency and open science practices can be found in (Artner et al., 2021).  

3.4.1 Limitations and Future Research 

Despite the fact that the results we have found are overall positive, it should not 

be forgotten that we were able of analysing 32 meta-analytic studies out of the 152 that 

met our initial criteria. In other words, we only recalculated the meta-analytic results of 

20% of the studies that met our inclusion criteria in the first place. A limitation of this 

work may have been the lack of contact with the corresponding authors to request such 

primary data. 

Updating the search and completing the range to 2023 is the next objective, with 

a deeper revision of the errors in reporting and lack of transparency of meta-analyses, as 

well as studying whether there is a real relationship between improved research practices 

and the year of publication of the studies. Broadening the type of coefficients allowed in 

the inclusion criteria is also an objective of the upcoming research. 

3.5 Conclusion 

In this study, we have evidenced that the reliability generalization meta-analyses 

published to date show replication rates between 98 and 65%. Moreover, the correlation 

rate between reported and recalculated results is above .80 for all parameters evaluated. 

This result is positive with respect to the results of previous studies on other types of 

meta-analysis, giving solidity and credibility to this type of work. However, there is still 

a long way to go in terms of transparency and open science in this area. It seems important 

to point out that both the researchers themselves and the publishers of the scientific 

journals where these studies are published are aware of the importance of providing the 
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necessary materials to corroborate the results obtained and the conclusions drawn by 

them. Without a good report of the method established to carry out the analyses of the 

work and without publicizing in some way the materials used, it is impossible to carry 

out this type of work that can corroborate that the meta-analysis of reliability 

generalization is a useful tool that provides robust results. 
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Chapter 4 

Study 3:  
 

“The Reliability Generalization Meta-Analysis through 

the multilevel approach: A comparison between the 

traditional technique and the multilevel perspective” 

 

4.1 Introduction 

In the previous chapters it was seen that the meta-analysis is considered the best 

tool for synthesising and integrating empirical results. Despite all its advantages, the 

application of this tool also has some drawbacks. Focusing exclusively on the meta-

analysis of reliability generalization (RG), on one side, by relying on primary studies, it 

is not possible to carry out an RG study with the most suitable coefficients for each 

instrument, but only to carry out the meta-analysis with the coefficients provided by these 

studies. For example, although the use of Cronbach's alpha coefficient to determine the 

reliability of questionnaires, especially those with a multidimensional nature, has recently 

been questioned, if the primary studies do not provide the empirical data from their 

research, or only apply this coefficient, without consider more robust coefficients (such 
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as omega coefficients), the meta-analysis cannot obtain as accurate results as one would 

wish. On the other hand, another drawback of the conventional procedure of conducting 

a meta-analysis is the way in which it deals with the dependency relationships that may 

arise. For example, a test that has different subscales and these have been applied to the 

same group of participants will show some dependence between them, especially 

considering that what these subscales assess are different dimensions within the same 

psychological construct. It is common in sciences such as Psychology for data to have a 

hierarchical structure, thus introducing dependency into the data. Hierarchy must be 

considered when performing the relevant statistical analyses that assume the 

independence of the residuals (Fernández-Castilla et al., 2019, 2020). 

As mentioned in the introduction to this thesis, when a test has a multidimensional 

structure with different subscales, all forming part of the same psychological construct 

and, in addition, these scales are applied to different groups within the same scientific 

study, dependence between scores can arise. This is especially important as the observed 

effect size may be providing different information than expected by the model (Assink & 

Wibbelink, 2016; Van den Noortgate et al., 2013). When a reliability generalization meta-

analysis is performed in the conventional method, this dependence is not considered, 

because if a test has a multidimensional structure, each of the dimensions is analysed in 

separate meta-analyses, thus abolishing any dependence that may exist between scores. 

This practice is not particularly suitable because by selecting only a part of the available 

data, the results obtained are less accurate and the statistical analyses are less powerful 

(Assink & Wibbelink, 2016; Van den Noortgate et al., 2013, 2015).  Moreover, in many 

cases, by taking only a part of the sample for each subscale, it is impossible to meta-

analyse these coefficients, as they have an insufficiently small number of observations. 
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The best way to deal with the problem of dependency is to try to model it.  

Raudenbush et al. (1988) proposed the multivariate model for analysing multivariate 

effect sizes. This model uses the estimated covariance matrix of the multivariate effect 

sizes, which makes it possible to use all available information in a single analysis and 

estimate the treatment effect for each dependent variable. However, the application of 

this model to the actual data found in primary studies is complicated, since to obtain such 

a matrix it is also necessary to have the correlations between the dependent variables, 

which are rarely reported in primary studies, as is the case with the raw data, which are 

also often not available to the meta-analyst. Fortunately, the rise of open science is 

changing things.  

An alternative way to model dependence in meta-analyses is the application of 

multilevel models.  Raudenbush and Bryk (1985) were the first to propose the use of 

multilevel models to perform meta-analyses. The major advantage of this model is that it 

uses all relevant effect sizes, thus preserving all the information provided by the primary 

studies (Assink & Wibbelink, 2016). That is, it is not necessary that all studies report 

exactly the same results. Moreover, this model is very flexible, as the data can be 

structured in the most convenient way and the model will adapt to it. Another advantage 

is that it automatically accounts for the hierarchical structure of the data when entering 

the analysis (Van den Noortgate et al., 2013).  

It seems that the three-level structure of the multilevel model is the best method 

to deal with dependence (Assink & Wibbelink, 2016; Van den Noortgate et al., 2013, 

2015). This structure states that the variance components are distributed over three levels: 

the first level refers to the sample variance of effect sizes (or reliability coefficients), the 

second level is the variance between effect sizes drawn from the same study, and the third 

level is the variance between studies.  
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Considering the type of data, we are dealing within a meta-analytic reliability 

generalization study, there is nothing to indicate that there are no dependence 

relationships between the scales if they have been administered to the same sample of 

participants. Hence, it is of particular interest to apply such an approach to an RG study.  

Therefore, the main objective of this study was to test whether there are differences 

between the application of a meta-analytic model of reliability generalization from the 

traditional approach and from the multilevel approach. To our knowledge, whenever 

multilevel models have been applied in a study of this nature, the subscales have been 

analysed independently, not as part of the same analysis (e.g. Maes et al., 2015).  

Another model also employed to model dependency by focusing on standard error 

adjustment is the Robust Variance Estimation (RVE) model, proposed by Hedges et al. 

(2010). One of the advantages of this model is that it does not require information on the 

covariance structure of the effect size estimates. The RVE model establishes two types of 

dependence in meta-analyses: the first one called "correlated effect sizes" refers to 

multiple effect size estimates reported by a primary study, when the different underlying 

measures are correlated or even when the same control group has been used for all 

treatment groups. The second type of dependency has been called "hierarchical effect 

size" and occurs when the same researchers publish multiple studies on the same topic 

but using different population samples, including when the reports are due to independent 

experiments (Pustejovsky & Tipton, 2022; Tanner-Smith & Tipton, 2014). Another 

advantage of the RVE model is that it is not particularly relevant to correctly identify in 

the analysis whether it corresponds to the hierarchical or the correlational method, as the 

results do not vary substantially between one or the other method (Tanner-Smith & 

Tipton, 2014). 
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The main difference between multilevel meta-analysis and RVE is the way 

heterogeneity is addressed. Unlike the multilevel model, the RVE model uses the 

heterogeneity parameters to estimate the inverse variance weights. Heterogeneity is only 

incidental to RVE (Tanner-Smith & Tipton, 2014). 

4.1.1. Current Study 

The main objective of this work was to study how different meta-analytic 

perspectives behave with the same set of scales. On the one hand, we were interested in 

testing whether there were differences between the application of multilevel models in 

different conditions and the application of the conventional procedure, which separates 

each subscale into independent meta-analyses. These different conditions were stipulated 

in terms of the number of subscales and the number of primary coefficients per subscale. 

Two other aspects we compared were the application of Bonett’s transformation ( 2002) 

to the coefficients and the improved Knapp-Hartung’s method (2001) for the calculation 

of confidence intervals. Including a transformation of the coefficients and an alternative 

method for the construction of the confidence intervals introduces a minor sensitivity 

analysis to the results obtained procedurally. To facilitate the interpretation of the results, 

a discrepancy index has been calculated to check the percentage change we found 

between them.  

Table 1 presents the different comparisons carried out to calculate the discrepancy 

index: 4 comparisons have been established for the calculation of the average coefficient 

and 5 comparisons for the calculation of the confidence width.  
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Table 1. 

Study comparisons for average coefficient and confidence width 

 Average alpha coefficient Confidence Width 

Conventional vs Multilevel ✓ ✓ 

Conventional vs Homo/Heteroscedastic ✓ ✓ 

Homoscedastic vs Heteroscedastic ✓ ✓ 

Untransformed vs Transformed ✓ ✓ 

Standard vs Knapp-Hartung’s - ✓ 

4.2 Method 

4.2.1. Study Selection Criteria  

To test all these analytical approaches, four different scales were selected that had 

been meta-analysed by our research group. This was decided in order to have as much 

information as possible. These four scales were selected according to two criteria: the 

number of subscales that made up the scale itself (many vs. few) and the number of 

observations in each of the subscales (many vs. few). The aim of this selection was to 

observe how the different methods performed in different situations, trying to identify if 

there was any pattern in the results. With these two parameters, we selected the 4 scales 

shown in Table 2.  

Table 2. 

Selected scales 

  Number of subscales 

  1-3 > 4 

Number of observations 

(primary coefficients) 

< 20 FOCI PI-R 

> 21 CAPS DOCS 
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4.2.2. Scales Included  

FOCI (Florida Obsessive-Compulsive Inventory) 

The Florida Obsessions and Compulsions Inventory (FOCI; (Storch et al., 2007) allows 

us to examine both obsessive-compulsive symptoms and their severity in a self-report 

format. It is composed of two subscales: the Symptom Checklist, which assesses the 

presence or absence of ten common compulsions in this disorder; and the Symptom 

Severity consisting of 5 items in Likert-type scale with 5 options (from 0 to 4). Table 3 

shows a summary of the reliability results (Sandoval‐Lentisco et al., 2023). 

Table 3.  

Summary of FOCI’s psychometric properties obtained in Sandoval‐Lentisco et al. (2023) 

   95% CI 95% Cr. I   

Subscales k  LL UL LL UL Q I2 

FOCI 

Checklist 
17 .826 .815 .838 .794 .859 26.243 40.57 

FOCI 

Severity 
15 .882 .861 .903 .816 .948 118.633** 90.04 

Note: k = number of studies;  = mean coefficient alpha; LL and UL = lower and upper limits of the 95% 

confidence and credibility interval for α; Q = Cochran’s heterogeneity Q statistic; I2 = heterogeneity index. 

**p<.0001.  

PI-R (Padua Inventory-Revised) 

The Padua Inventory Revised (PI-R; Van Oppen et al., 1995) is a scale that assesses 

obsessive-compulsive symptomatology and is composed of 41 items grouped into 5 

subscales: impulses (7 items), washing (10 items), checking (7 items), rumination (11 

items) and precision (6 items). Each item is answered in Likert-type scale with 5 options 

(0-4). Table 4 shows a summary of the reliability results (Núñez-Núñez et al., 2022).  
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 Table 4. 

Summary of PI-R’ psychometric properties obtained in Núñez-Núñez et al. (2022) 

   95% CI 95% PI   

Subscales k α LL UL LL UL Q I2 

Whole Scale 28 .92 .91 .93 .85 .96 458.306** 94.6 

Impulses 19 .79 .76 .82 .65 .87 176.122** 90.6 

Washing 20 .89 .86 .91 .68 .96 777.177** 97.6 

Checking 18 .88 .86 .89 .80 .93 175.537** 91.4 

Rumination 19 .87 .85 .89 .75 .93 313.529** 94.6 

Precision 18 .74 .69 .77 .49 .86 224.948** 94 

Note: k = number of studies; α = mean coefficient alpha; LL and UL = lower and upper limits of the 

95% confidence/prediction intervals for α; Q = Cochran’s heterogeneity Q statistic; I2 = heterogeneity 

index. **p<.0001 

CAPS (Child and Adolescent Perfectionism Scale) 

The Perfectionism Scale for Children and Adolescents (CAPS; Flett et al., 2016) is the 

most widely used instrument to assess perfectionism in children over 8 years of age. It 

consists of 22 items on a Likert-type scale with 5 response options and two subscales: 

Self-Oriented Perfectionism (12 items), which assesses the motivation and effort to be 

perfectionist and the tendency to self-criticism; and Socially Prescribed Perfectionism (10 

items), which assesses beliefs about the demands of perfectionism from the environment. 

In Table 5 shows the reliability results of the scale (Vicent et al., 2019). 
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Table 5.  

Summary of CAPS’ psychometric properties obtained in Vicent et al. (2019) 

   95% CI 95% P I   

Subscales k  LL UL LL UL Q I2 

Whole Scale 11 .87 .84 .90 .73 .94 174.97** 96.8 

SPP 51 .84 .82 .85 .72 .91 851.738** 93.4 

SOP 47 .83 .81 .84 .66 .91 1010.134** 95 

Note: k = number of studies;  = mean coefficient alpha; LL and UL = lower and upper limits of the 95% 

confidence and prediction intervals for α; Q = Cochran’s heterogeneity Q statistic; I2 = heterogeneity 

index. **p<.0001.  

DOCS (Dimensional Obsessive-Compulsive Scale)  

Dimensional Obsessive-Compulsive Scale (DOCS; Abramowitz et al., 2010) is 

composed of 20 items structured in 4 dimensions -5 items each-: contamination, 

responsibility for harm, unacceptable thoughts, and symmetry. This scale assesses both 

the presence of symptoms and the distress caused by such symptomatology. Items are 

evaluated on a Likert-type scale with five options, where scores on each subscale can 

range from 0 to 20, and from 0 to 80 on the full scale. Table 6 shows a summary of the 

reliability properties (López-Nicolás et al., 2021).  

Table 6. 

Summary of DOCS’ psychometric properties obtained in López-Nicolás et al. (2021) 

   95% CI   

Subscales k α LL UL Q I2 

Whole Scale 72 .925 .92 .931 567.646** 91.34 

Contamination 58 .881 .863 .899 2475.88** 98.32 

Responsibility 50 .905 .893 .917 996.208** 96 

Unacceptable 

thoughts 
51 .913 .904 .922 641.066** 93.97 

Symmetry 49 .914 .906 .922 481.511** 91.83 

Note: k = number of studies; α = mean coefficient alpha; LL and UL = lower and upper limits of the 95% 

confidence interval for α; Q = Cochran’s heterogeneity Q statistic; I2 = heterogeneity index. **p<.0001 
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4.2.3. Data analysis 

To carry out the conventional meta-analysis, separate meta-analyses were 

conducted for each subscale, as indicated by the authors in the original RG meta-analyses. 

All analyses were computed in R with the metafor package (v3.4-0; Viechtbauer, 2010). 

Parameters were estimated using the restricted maximum likelihood estimator (REML). 

The multilevel models were arranged with a 3-level structure: the sample variance of the 

coefficients at level 1, the variance between coefficients within each study at level 2 and 

the variance between studies at level 3. The intercept was not included in the model 

because the interest was not in the overall effect. The structuring of the data and the 

computational script were developed following the tutorial of Assink and Wibbelink 

(2016). All multilevel model analyses were also calculated with the same software, 

package and estimator as the conventional analyses. On the other hand, to calculate the 

RVE model, the weighting method used was the correlated effects, and the analyses were 

carried out with the R package robumeta (v2.0; Fisher & Tipton, 2015).  

In order to establish comparisons and to be able to determine whether these are 

significant or not, we calculated a discrepancy index by setting one of the values as a 

reference value and comparing the rest of the results with it. This reference value has been 

changing according to the objective comparison. The formula applied to calculate this 

index was: 

𝐷(𝐴𝑙𝑝ℎ𝑎)𝑗 = (
𝛼𝑗 − 𝛼𝑐

𝛼𝑐
) × 100, 

Where αj refers to the value we want to compare with respect to αc which is the 

value we define as reference. 



 99 

To establish the differences between the results in the calculation of the average 

coefficient, 4 different discrepancy indices were calculated. 

The first comparison was between the conventional model and the multilevel 

model (both raw and transformed coefficients). In this case, the reference value was the 

average coefficient obtained using the conventional model. The second comparison was 

between the conventional model and the homo- and heteroscedastic multilevel model 

(both raw and transformed coefficients). The reference value was the average coefficient 

obtained using the conventional model. The following comparison was performed 

between the two multilevel models: homo- and heteroscedastic model (both raw and 

transformed coefficients). The reference value used was the average coefficient obtained 

using the homoscedastic model. And finally, the last comparison was between the average 

coefficient with raw coefficients and the average coefficient using Bonett’s 

transformation (within each model). The last reference value was the untransformed 

average coefficient in each model.  

To establish the differences between the results in the calculation of confidence 

intervals, 5 different discrepancy indices were calculated.  

The first discrepancy index was calculated by comparing the conventional model 

with the multilevel model (both using the improved Knapp-Hartung’s formula for 

calculating confidence intervals or the standard method and using raw or transformed 

coefficients). This index used the confidence width obtained through the conventional 

model as the reference value. The second index was calculated by comparing the 

conventional model and the homo- and heteroscedastic multilevel model (both using raw 

and transformed coefficients and applying the standard or Knapp-Hartung’s method). The 

reference value used was the confidence width obtained using the conventional model. 

The next index was estimated by comparing homo- and heteroscedastic multilevel model 
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(both using raw and transformed coefficients and applying either the standard or the 

Knapp-Hartung’s method). This index set as the reference value the confidence width 

obtained using the homoscedastic multilevel model. The fourth index was generated by 

comparing the results of the confidence width calculation using Knapp-Hartung’s or the 

standard method (within each model and including the comparison between raw and 

transformed coefficients). In this case, the reference value was the confidence width 

obtained using the standard method. Finally, the last discrepancy index was calculated by 

comparing the impact of using Bonett's transformation on the average coefficient to 

calculate confidence intervals (within each model and including the comparison with 

Knapp-Hartung’s versus the standard method). This index used as reference value the 

confidence width obtained with the untransformed average coefficient in each model.  

Tables 4A.1-4A.6 in Appendix 4A summarise the different combinations that 

were compared both for the calculation of the alpha coefficient and for the calculation of 

its confidence interval. The complete dataset as well as the script codes used to analyse 

them are openly available at: http://bit.ly/40eykLj 

4.3 Results 

4.3.1 Characteristics of the Scales 

The 17 subscales were extracted from 4 complete scales. These subscales had a 

number of primary coefficients (k) that ranged between 14 and 72. Table 7 contains the 

results of median, mean, SD, minimum and maximum, and first and third quartiles of 

alpha coefficient and sample size for each subscale.  

 

 

http://bit.ly/40eykLj


 101 

Table 7. 

Descriptive data for each scale and subscale  

Scale Subscale  Mean SD Min Q1 Median Q3 Max 

DOCS 

Whole Scale 
α .92 .029 .8 .91 .93 .94 .97 

N 281.82 278.32 16 87 201.5 391.5 1299 

Contamination 
α .875 .075 .61 .83 .865 .95 .97 

N 318.31 412.89 31 100 189 354.8 2636 

Responsability 
α .903 .043 .79 .87 .915 .94 .96 

N 340.22 437.68 31 100 206.5 371 2636 

Unacceptable 

Thoughts 

α .911 .033 .83 .88 .92 .94 .96 

N 338.22 435.19 31 99 205 391 2636 

Symmetry 
α .913 .028 .85 .89 .92 .93 .96 

N 342.9 441.97 31 100 205 372 2636 

PIR 

Whole Scale 
α .92 .032 .83 .908 .925 .94 .96 

N 371.13 606.56 39 135.8 210 317.5 2976 

Impulses 
α .787 .059 .67 .76 .79 .84 .87 

N 461.65 704.56 93 150 223 360 2976 

Washing 
α .874 .061 .76 .83 .88 .92 .96 

N 459.47 705.79 58 150 222 360 2976 

Checking 
α .874 .029 .82 .858 .875 .89 .92 

N 484.88 720.96 120 192 243 367.8 2976 

Rumiation 
α .861 .044 .76 .83 .87 .88 .93 

N 461.59 704.55 93 150 224 360 2976 

Precision 
α .712 .085 .58 .658 .71 .778 .83 

N 484.94 720.92 120 192 244 367.5 2976 

FOCI 

Symptom 
α .819 .029 .75 .8 .83 .84 .86 

N 235.06 264.85 18 52 101 352 986 

Severity 
α .874 .051 .72 .86 .88 .91 .92 

N 356.6 329.68 47 87.5 352 437.5 1224 

CAPS 

PSP 
α .829 .053 .68 .8 .84 .86 .92 

N 399.79 448.76 37 82.3 236.5 582 1815 

PAO 
α .825 .068 .6 .8 .84 .87 .94 

N 458.26 548.74 37 90.5 253 569 2142 

Whole Scale 
α .827 .061 .6 .8 .84 .87 .94 

N 430 501.67 37 86 246 578 2142 

Note: α = average alpha coefficient. N = sample size. 
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4.3.2 Comparing the procedures to obtain the average alpha coefficient 

Overall, in terms of the average coefficient results, the 5% limit was not exceeded 

in any of the conditions compared. Calculating an average discrepancy index between the 

different scales in absolute values, the highest discrepancy percentage was 0.659%, 

comparing the conventional model with RVE applying Bonett’s transformation. 

Disregarding the results of the RVE model, the largest discrepancy was found within the 

conventional model when comparing the average alpha with and without transformation 

of the coefficients (0.553%). The lowest discrepancy index was 0.152%, comparing the 

homoscedastic and heteroscedastic multilevel models with transformed coefficients.   

Conventional vs Multilevel model 

Table 8 shows the results of the comparison between the conventional RG meta-

analysis model (separating each subscale into independent meta-analyses) with the 

multilevel model that integrates all subscales within the same analysis establishing a 

hierarchical order (the whole-scale score has been considered as another subscale). Both 

models have been compared considering whether the primary coefficients were used raw 

-untransformed- or transformed using Bonett's formula -transformed-. 

The discrepancy index never exceeded the 5% boundary. The highest value was 

found in the PI-R's precision subscale, when comparing the conventional model with the 

multilevel model, both with the coefficients untransformed (1.664%); while the lowest, 

also in absolute terms, was found on several occasions (0%). The highest absolute mean 

was found in the comparison between the conventional model and the RVE model when 

the coefficients were transformed (0.659%); while the lowest absolute mean was found 

in the comparison between conventional and multilevel model with untransformed 

coefficients (0.292%). 
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Table 8. 

Discrepancy indices obtained comparing the multilevel model vs the conventional model. 

Reference value: 

Conventional model 

 Conventional vs Multilevel 

 Untransformed Transformed 

k Multilevel RVE Multilevel RVE 

DOCS 

Whole Scale 72 .22 0 -.43 .22 

Contamination 58 .57 .68 -1.23 1.24 

Responsibility 50 0 .44 -.55 .77 

Unacceptable 

Thoughts 
51 0 .11 -.33 .33 

Symmetry 49 -.111 .33 -.33 .55 

PIR 

Whole Scale 24 -.11 -.65 0 -.43 

Impulses 17 -.13 .76 -.5 1.77 

Washing 17 .23 .46 -.34 .34 

Checking 16 -.34 .34 -.34 .57 

Rumination 17 0 -1.04 -.23 -.92 

Precision 16 1.66 1.25 -.96 1.53 

FOCI 
Symptom 17 -.12 -.48 .37 -.61 

Severity 15 .11 -.11 .23 -.45 

CAPS 

SPP 58 .24 .24 .24 .12 

SOP 48 .49 .61 .36 .24 

Whole Scale 14 .35 -.35 .12 -.46 

Average (absolute values) .292 .49 .409 .659 

Note: k = number of primary studies; ML = Multilevel Model; RVE = Robust Variance Estimator; SPP = 

Socially Prescribed Perfectionism; SOP = Self-Oriented Perfectionism 

Conventional model vs Multilevel models (homo- and heteroscedastic models) 

Table 9 shows the results of the comparison between the conventional meta-

analysis model and two multilevel models: the homoscedastic and heteroscedastic model. 

The homoscedastic model assumes that the residuals error variance is homogeneously 

distributed across all subscales, whereas the heteroscedastic model calculates its own 
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residuals error variance in each of the subscales (Hox, 2010). The three models have been 

compared considering whether the primary coefficients were used raw -untransformed- 

or transformed using Bonett's formula -transformed-. 

The discrepancy index never exceeded the 5% boundary. The highest value was 

found in the PI-R's precision subscale, when comparing the conventional model with the 

homoscedastic multilevel model, both with the coefficients untransformed (1.664%); 

while the lowest, also in absolute terms, was found on several occasions (0). The highest 

absolute mean was found in the comparison between the conventional model and 

heteroscedastic multilevel model when the coefficients were transformed (0.313%); while 

the lowest absolute mean was found in the comparison between conventional model and 

homoscedastic multilevel model with transformed coefficients (0.193%). 

Table 9. 

Discrepancy indices obtained comparing the conventional model and the two different 

multilevel models (homo- and heteroscedastic model) 

Reference value: 

Conventional model 

Conventional model vs Multilevel models 

Homoscedastic Heteroscedastic 

Scales Subscales k UT Bonett UT Bonett 

DOCS 

Whole Scale 72 .22 0 -.11 -.32 

Contamination 58 .57 0 .68 .45 

Responsibility 50 0 0 .11 .11 

Unacceptable 

Thoughts 
51 0 0 .11 .11 

Symmetry 49 -.11 0 0 0 

PIR 

Whole Scale 24 -.11 0 0 0 

Impulses 17 -.13 -.5 0 -.25 

Washing 17 .23 -.34 .11 -.79 

Checking 16 -.34 -.34 -.23 -.34 

Rumination 17 0 -.23 .12 -.35 

Precision 16 1.66 -.96 .83 -1.1 
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FOCI 
Symptom 17 -.12 0 0 .24 

Severity 15 .11 0 0 0 

CAPS 

SPP 58 .24 .24 .24 .24 

SOP 48 .49 .36 .49 .49 

Whole Scale 14 .35 .12 .23 .23 

Average (absolute values) .292 .193 .204 .313 

Note: k = number of primary studies; UT = Untransformed coefficients; Bonett = Bonett’s transform 

coefficients; SPP = Socially Prescribed Perfectionism; SOP = Self-Oriented Perfectionism 

Homoscedastic vs Heteroscedastic model 

Table 10 shows the results of the comparison between two multilevel models, 

homo- and heteroscedastic models. Both models have been compared considering 

whether the primary coefficients were used raw -untransformed- or transformed using 

Bonett's formula -transformed-. 

The discrepancy index never exceeded the 5% boundary. The highest value, in 

absolute terms, was found in the PI-R's precision subscale, when comparing the 

homoscedastic model with the heteroscedastic multilevel model, both with the 

coefficients untransformed (0.82%); while the lowest, also in absolute terms, was found 

on several occasions (0). The highest absolute mean was found in the comparison between 

the homo- and heteroscedastic models when the coefficients weren’t transformed 

(0.157%), although the results are virtually identical when the transformation was applied 

(0.152%). 

Table 10. 

Discrepancy indices obtained comparing the two multilevel models: homoscedastic vs 

heteroscedastic model 

Reference value: 

Homoscedastic model 

 Homo- vs Heteroscedastic model 

Heteroscedastic 

Scales Subscales k Untransformed Transformed 
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DOCS 

Whole Scale 72 -.32 -.32 

Contamination 58 .11 .45 

Responsibility 50 .11 .11 

Unacceptable 

Thoughts 
51 .11 .11 

Symmetry 49 .11 0 

PIR 

Whole Scale 24 .11 0 

Impulses 17 .13 .25 

Washing 17 -.11 -.45 

Checking 16 .11 0 

Rumination 17 .12 -.12 

Precision 16 -.82 -.14 

FOCI 
Symptom 17 .12 .24 

Severity 15 -.11 0 

CAPS 

SPP 58 0 0 

SOP 48 0 .12 

Whole Scale 14 -.12 .11 

Average (absolute values) .157 .152 

Note: k = number of primary studies; SPP = Socially Prescribed Perfectionism; SOP = Self-Oriented 

Perfectionism 

Untransformed vs Transformed coefficients 

Table 11 shows the results of the comparison within the two models (multilevel 

and conventional) between applying or not a transformation of the coefficients. Bonett's 

formula has been used because it has been found to work suitable in normalising the 

distribution and stabilising its variances (Badenes-Ribera et al., 2023; Sánchez-Meca et 

al., 2012). 

The discrepancy index never exceeded the 5% boundary. The highest value, in 

absolute terms, was found in the DOCS’ contamination subscale, when comparing   the 

application of the Bonett’s transformation within the conventional model (1.930%); while 
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the lowest, also in absolute terms, was found on several occasions (0). The highest 

absolute mean was found in the comparison within the conventional model (0.553%); the 

lowest absolute mean was found within the comparison of the multilevel model (0.318%). 

Table 11. 

Discrepancy indices obtained comparing the untransformed average coefficient and 

the Bonett’s transformation. 

Reference value: 

Untransformed coefficients 
 Untransformed vs Transformed 

 k Conventional Multilevel RVE 

DOCS 

Whole Scale 72 .32 -.32 .11 

Contamination 58 1.93 .11 1.24 

Responsibility 50 .66 .11 .44 

Unacceptable 

Thoughts 
51 .33 0 .22 

Symmetry 49 .33 .11 .22 

PIR 

Whole Scale 24 .22 .33 .44 

Impulses 17 .25 -.13 .75 

Washing 17 1.48 .91 1.02 

Checking 16 .11 .11 0 

Rumination 17 .35 .12 .23 

Precision 16 .83 -1.77 .14 

FOCI 
Symptom 17 -.48 0 -.24 

Severity 15 -.11 0 -.23 

CAPS 

SPP 58 .24 .24 .36 

SOP 48 .61 .49 .61 

Whole Scale 14 .58 .34 .58 

Average (absolute values) .553 .318 .426 

Note: k = number of primary studies; RVE = Robust Variance Estimator; SPP = Socially Prescribed 

Perfectionism; SOP = Self-Oriented Perfectionism 
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4.3.3 Comparing the procedures to obtain the confidence intervals of 

the average alpha coefficient 

Contrary to what happened when comparing the different statistical methods for 

calculating the average coefficient, when applying these methods to the calculation of the 

confidence interval, we found that the 5% threshold was exceeded on most occasions. 

Calculating an average discrepancy index between the different scales in absolute values, 

the largest discrepancy percentage was 32.42%, comparing the conventional model with 

homoscedastic multilevel model applying Knapp-Hurtung’s with raw coefficients. The 

lowest discrepancy index was 0.975%, comparing the standard method to calculate 

confidence intervals with Knapp-Hartung’s method within the multilevel model with raw 

coefficients. That comparison in the method for calculating confidence intervals was the 

comparison with the least difference between conditions. The largest differences were 

found in Table 13 when comparing the conventional and multilevel models in their two 

versions (homo- and heteroscedastic).  

Conventional vs Multilevel model 

Table 12 provides the results of comparing the conventional RG meta-analysis 

model with the multilevel model when calculating confidence intervals around the 

average coefficient. Both models have been compared considering whether the primary 

coefficients were transformed by Bonett -transformed- or used raw -untransformed-; and 

whether the intervals were calculated according to the standard procedure -standard- or 

by applying the method proposed by Hartung and Knapp -Knapp-Hartung-. 

The discrepancy index exceeded the 5% threshold in most cases. The highest 

value, in absolute terms, was found in the whole score of the PI-R scale, when comparing 

the conventional model with the RVE model, both with untransformed coefficients 
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(100%). Disregarding the RVE model, the highest discrepancy index was observed in 

FOCI’s symptom subscale when the coefficients were transformed and the Knapp-

Hartung formula was applied (91.67%). The lowest discrepancy index observed in 

absolute terms was found on four occasions (DOCS: responsibility; PI-R: washing; 

CAPS: Self-Oriented Perfectionism -SOP-), always in the condition in which the 

coefficients were transformed (0). The highest absolute mean was found in the 

comparison between the conventional model and the multilevel model when the raw 

coefficients were used and the Knapp-Hartung formula was applied (32.04%); the lowest 

absolute mean was found in the comparison between the conventional model and the RVE 

model when the coefficients were transformed (25.18%). The remaining comparisons 

showed very similar absolute means (26.56%; 26.17%; 26.71%). 

Table 12. 

Discrepancy indices obtained by comparing the conventional model and the multilevel model 

to calculate confidence intervals. 

Reference value:  

Conventional Model 

Conventional vs Multilevel 

Knapp-Hartung Standard RVE 

Scales Subscales k UT Bonett UT Bonett UT Bonett 

DOCS 

 

Whole Scale 72 72.73 25 80 36.36 27.27 25 

Contamination 58 -41.67 -35.14 -38.24 -33.33 33.33 45.95 

Responsibility 50 -8.33 0 -4.35 0 -4.17 -4.55 

Unacceptable 

Thoughts 
51 22.22 23.53 29.41 23.53 5.56 17.65 

Symmetry 49 37.5 46.67 37.5 40 6.25 6.67 

PIR 

 

Whole Scale 24 50 -4.17 71.43 4.55 100 83.33 

Impulses 17 -20.69 31.03 -13.21 37.04 -10.35 -6.9 

Washing 17 -30.16 -34.92 -22.81 -29.31 -12.7 0 

Checking 16 45.16 40.63 57.14 50 16.13 12.5 

Rumination 17 18.42 6.67 13.16 12.19 97.37 77.78 
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Precision 16 -43.82 13.33 -37.5 21.69 16.85 20 

FOCI 
Symptom 17 43.48 91.67 33.33 72 26.09 33.33 

Severity 15 -33.33 -31.82 -17.65 -25.64 7.14 22.73 

CAPS 

 

SPP 58 7.69 16 16.67 16 11.54 20 

SOP 48 -18.42 -8.11 -13.89 -8.11 -2.63 0 

Whole Scale 14 19.05 -16.33 19.05 -8.89 50 26.53 

Average (absolute values) 32.042 26.562 31.583 26.165 26.711 25.182 

Note: UT = Untransformed; RVE = Robust Variance Estimator; k = number of primary studies; SPP = Socially 

Prescribed Perfectionism; SOP = Self-Oriented Perfectionism  

 

Conventional vs Multilevel models (homo- and heteroscedastic models) 

Table 13 presents the results of comparing the conventional RG meta-analysis 

model with the two multilevel models (homo- and heteroscedastic model) when 

calculating confidence intervals around the average coefficient. All models have been 

compared considering whether the primary coefficients were transformed by Bonett -

transformed- or used raw -untransformed-; and whether the intervals were calculated 

according to the standard procedure -standard- or by applying Knapp and Hartung’s 

method -Knapp-Hartung-. 

The discrepancy index exceeded the 5% threshold in most cases. The highest 

value, in absolute terms, was found in the FOCI’s symptom subscale when comparing the 

conventional model with the homoscedastic model, both with transformed coefficients 

and applying Knapp-Hartung’s method (91.67%). The lowest discrepancy index observed 

in absolute terms was found in different occasions (0). The highest absolute mean was 

found in the comparison between the conventional model and the homoscedastic 

multilevel model when the raw coefficients were used and the Knapp-Hartung formula 

was applied (32.04%); the lowest absolute mean was found in the comparison between 
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the conventional model and the heteroscedastic model when the coefficients were 

transformed and applied Knapp-Hartung’s method (8.23%). It should be noted that in the 

conditions where the conventional model was compared with the heteroscedastic model, 

the results of the absolute mean of all comparisons resulted in values very close to 10% 

discrepancy. 

Table 13. 

Discrepancy indices obtained by comparing the conventional model and the two multilevel models to calculate 

confidence intervals. 

Reference value:  

Conventional model 

Conventional vs Multilevel 

Knapp-Hartung Standard 

Homoscedastic Heteroscedastic Homoscedastic Heteroscedastic 

Scales Subscales k UT Bonett UT Bonett UT Bonett UT Bonett 

DOCS 

 

Whole Scale 72 72.73 25 18.18 -8.33 80 36.364 30 0 

Contamination 58 -41.67 -35.14 -5.56 -5.41 -38.24 -33.33 0 -2.78 

Responsibility 50 -8.33 0 0 4.55 -4.35 0 4.35 4.545 

Unacceptable 

Thoughts 
51 22.22 23.53 11.11 11.77 29.41 23.53 17.65 11.765 

Symmetry 49 37.5 46.67 25 26.67 37.5 40 25 26.667 

PIR 

 

Whole Scale 24 50 -4.17 12.5 -4.17 71.43 4.55 28.57 4.545 

Impulses 17 -20.69 31.03 -24.14 -10.35 -13.21 37.047 -18.87 -3.704 

Washing 17 -30.16 -34.92 -6.35 3.18 -22.81 -29.31 1.75 12.069 

Checking 16 45.16 40.63 25.81 18.75 57.14 50 39.29 26.667 

Rumination 17 18.42 6.67 2.63 0 13.16 12.2 0 9.756 

Precision 16 -43.82 13.33 -13.48 7.78 -37.5 21.69 -5. 16.867 

FOCI 

Symptom 17 43.48 91.67 8.7 8.33 33.33 72 0 0 

Severity 15 -33.33 -31.82 -9.52 0 -17.65 -25.64 5.88 7.692 

CAPS SPP 58 7.69 16 0 4 16.67 16 4.17 0 
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 SOP 48 -18.42 -8.11 0 0 -13.89 -8.11 0 0 

Whole Scale 14 19.05 -16.33 2.38 -18.37 19.05 -8.89 -2.38 -11.111 

Average (absolute values) 32.042 26.562 10.335 8.227 31.583 26.165 11.432 8.635 

Note: UT = untransformed; k = number of primary studies; SPP = Socially Prescribed Perfectionism; SOP = Self-Oriented 

Perfectionism 

Homoscedastic vs Heteroscedastic model 

Table 14 contains the results of comparing the two multilevel models (homo- and 

heteroscedastic) with each other when calculating confidence intervals around the 

average coefficient. Both models have been compared considering whether the primary 

coefficients were transformed by Bonett -transformed- or used raw -untransformed-; and 

whether the intervals were calculated according to the standard procedure -standard- or 

by applying Knapp and Hartung’s method -Knapp-Hartung-. 

The discrepancy index exceeded the 5% boundary on a large number of occasions. 

The highest value, in absolute terms, was found in DOCS’ contamination subscale when 

the homoscedastic model was compared with the heteroscedastic model, with raw 

coefficients and applying both methods of estimating the confidence intervals (61.91%).  

The lowest discrepancy index observed in absolute terms was found in the total 

score of the PI-R scale (0), when the coefficients were transformed and with the two 

interval estimation methods. The highest absolute mean was found in the comparison 

between the homoscedastic model and the heteroscedastic model when the raw 

coefficients were used and the Knapp-Hartung formula was applied (23.03%); the lowest 

absolute mean was found in the comparison between the homo- and the heteroscedastic 

model when the coefficients were transformed and Knapp-Hartung was not applied 

(19.86%). 



 113 

Table 14. 

Discrepancy indices obtained by comparing the homo- and heteroscedastic model to calculate 

confidence intervals. 

Reference value: 

Homoscedastic model 

Homo- vs Heteroscedastic 

Knapp-Hartung’s Standard 

Scales Subscales k UT Bonett UT Bonett 

DOCS 

Whole Scale 72 -31.58 -26.67 -27.78 -26.67 

Contamination 58 61.91 45.83 61.91 45.83 

Responsibility 50 9.09 4.55 9.09 4.55 

Unacceptable 

Thoughts 
51 -9.09 -9.52 -9.09 -9.52 

Symmetry 49 -9.09 -13.64 -9.09 -9.52 

PIR 

Whole Scale 24 -25 0 -25 0 

Impulses 17 -4.35 -31.58 -6.52 -29.73 

Washing 17 34.09 58.54 31.82 58.54 

Checking 16 -13.33 -15.56 -11.36 -15.56 

Rumination 17 -13.33 -6.25 -11.63 -2.17 

Precision 16 54 -4.90 52 -3.96 

FOCI 
Symptom 17 -24.24 -43.48 -25 -41.86 

Severity 15 35.71 46.67 28.57 44.83 

CAPS 

SPP 58 -7.14 -10.35 -10.71 -13.79 

SOP 48 22.58 8.82 16.13 8.82 

Whole Scale 14 -14 -2.44 -18 -2.44 

Average (absolute values) 23.034 20.549 22.106 19.862 

Note: UT = untransformed; k = number of primary studies; SPP = Socially Prescribed Perfectionism; SOP = Self-

Oriented Perfectionism 

Untransformed vs transformed coefficients 

Table 15 collects the results of comparing within each model -conventional and 

multilevel-, the influence of transforming the primary coefficients when constructing 

confidence intervals around the average coefficient. Both models have been compared 
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considering whether the intervals were calculated according to the standard procedure or 

by applying the method of Knapp and Hartung. 

The discrepancy index exceeded the 5% boundary on part of the cases. The highest 

value, in absolute terms, was found in PI-R’s precision subscale when the influence of 

transforming was compared within multilevel model applying Knapp-Hartung’s method 

(104%). The lowest discrepancy index observed in absolute terms was found in several 

cases (0). The highest absolute mean was found in the comparison within the multilevel 

model applying Knapp-Hartung (21.03%); the lowest absolute mean was found within 

the conventional model applying the standard method (5.41%).  It should be noted that, 

except for the multilevel model, the discrepancy index was close to 5% in all 

comparisons. 

Table 15. 

Discrepancy indices obtained by comparing within the conventional model and the multilevel model, 

the application of a transformation of the coefficients to calculate confidence intervals. 

Reference value: 

Untransformed coefficients 

Untransformed vs Transformed 

Knapp-Hartung Standard RVE 

Scales Subscales k Conventional Multilevel Conventional Multilevel  

DOCS 

Whole Scale 72 9.09 -21.05 10 -16.67 7.14 

Contamination 58 2.78 14.29 5.88 14.29 12.5 

Responsibility 50 -8.33 0 -4.35 0 -8.7 

Unacceptable 

Thoughts 
51 -5.56 -4.55 0 -4.55 5.26 

Symmetry 49 -6.25 0 -6.25 -4.55 -5.88 

PIR 

Whole Scale 24 0 -36.11 4.76 -36.11 -8.33 

Impulses 17 0 65.22 1.89 60.87 3.85 

Washing 17 0 -6.82 1.75 -6.82 14.55 

Checking 16 3.23 0 7.14 2.27 0 
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Rumination 17 18.42 6.67 7.9 6.98 6.67 

Precision 16 1.12 104 3.75 102 3.85 

FOCI 
Symptom 17 4.35 39.39 4.17 34.38 10.35 

Severity 15 4.76 7.14 14.71 3.57 20 

CAPS 

SPP 58 -3.85 3.57 4.17 3.57 3.45 

SOP 48 -2.63 9.68 2.78 9.68 0 

Whole Scale 14 16.67 -18 7.14 -18 -1.59 

Average (absolute values) 5.440 21.030 5.414 20.268 7.006 

Note: k = number of primary studies; RVE = Robust Variance Estimator; SPP = Socially Prescribed 

Perfectionism; SOP = Self-Oriented Perfectionism 

Knapp-Hartung’s method vs standard method 

Table 16 presents the results of comparing within each model -conventional and 

multilevel- the influence of calculating confidence intervals using the Standard method 

or applying the Knapp-Hartung’s method. Both models have been compared considering 

whether the primary coefficients were transformed by Bonett’s -transformed- or used raw 

-untransformed-. 

The discrepancy index exceeded the 5% boundary in very few cases. The highest 

value, in absolute terms, was found in FOCI’s severity subscale within the conventional 

model using the raw coefficients (23.53%). The lowest discrepancy index observed in 

absolute terms was found in most cases (0). The highest absolute mean was found in the 

comparison within the conventional model using raw coefficients (7.74%); the lowest 

absolute mean was found within the multilevel model when the coefficients weren’t 

transformed (0.98%).  It should be noted that the discrepancy index was close to 5% in 

all comparisons. 
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Table 16. 

Discrepancy indices obtained by comparing within the conventional model and the multilevel model, 

the application of Knapp-Hartung’s method to calculate confidence intervals 

Reference value: 

Standard Method 

Standard vs Knapp-Hartung’s method 

Untransformed Transformed 

Scales Subscales k Conventional Multilevel Conventional Multilevel 

DOCS 

Whole Scale 72 10 5.56 9.09 0 

Contamination 58 5.88 0 2.78 0 

Responsibility 50 4.35 0 0 0 

Unacceptable 

Thoughts 
51 5.88 0 0 0 

Symmetry 49 0 0 0 4.76 

PIR 

Whole Scale 24 14.29 0 9.09 0 

Impulses 17 9.43 0 7.41 2.7 

Washing 17 10.53 0 8.62 0 

Checking 16 10.71 2.27 6.67 0 

Rumination 17 0 4.65 9.76 4.35 

Precision 16 11.25 0 8.43 .99 

FOCI 
Symptom 17 -4.17 3.13 -4 6.98 

Severity 15 23.53 0 12.82 3.45 

CAPS 

SPP 58 8.33 0 0 0 

SOP 48 5.56 0 0 0 

Whole Scale 14 0 0 8.89 0 

Average (absolute values) 7.744 0.975 5.472 1.452 

Note: k = number of primary studies; SPP = Socially Prescribed Perfectionism; SOP = Self-Oriented 

Perfectionism 
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4.4 Discussion 

In this study we have compared different analytical strategies to carry out a meta-

analysis of reliability generalization when the scale has several subscales. As mentioned 

above, this type of scales can lead to dependence between scores because the same 

participants complete all the subscales and, at the same time, these subscales represent 

different dimensions of the same construct. As a first approach to this type of comparison 

studies between techniques and models, we thought it congruent to apply it to real data 

from meta-analyses already published in impact journals. We believe that this work 

represents a very novel study both in the field of multilevel analysis and in the field of 

RG meta-analysis, since so far there is no study that applies this type of 3-level structure 

to psychometric scales with more than one subscale. 

Evaluating the results in the calculation of the average coefficient, we have 

observed that there are practically no differences between the models applied. The 

numerical results are around 0-1% (in absolute terms) and in no circumstance has the 

limit of 5% been exceeded. We found that the largest discrepant value was 1.93%, which 

occurred in the condition where the transformations of the coefficients within each model 

were compared. On this case, this percentage corresponds to comparing the average 

coefficient of the Contamination subscale of the DOCS in the conventional model, with 

the reference value being the coefficient without transformation and the compared value 

being the transformed coefficient. The minimum discrepancy value was 0%, which was 

repeated many times throughout all comparison conditions. Nor was any pattern observed 

according to the number of subscales or the number of primary coefficients of the chosen 

scales. 
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On the other hand, the results concerning confidence width are more complex. 

First, we found that the discrepancy indices calculated here were systematically higher 

than 5%. This result indicated that the main differences in following one or the other 

analytical strategy are to be found when calculating the confidence intervals of the 

average coefficient. Of the five comparisons that were carried out, the comparison with 

the lowest values was the one that tested the method of estimating the intervals within 

each model (Table 16). That is, the comparison that controlled whether the estimation had 

been performed by the standard method or whether the Knapp and Hartung’s improved 

formula had been applied. The results were to be expected: the percentage discrepancy of 

more than 5% was found in the conventional method (7.74% and 5.47%) and not in the 

multilevel model (0.98% and 1.45%). Moreover, a 2% decrease in the discrepancy was 

observed when the coefficients were transformed. The highest value was found in the 

Severity subscale of the FOCI scale (23.53%) when the coefficients were not transformed 

within the conventional model. 

A relevant result was found in the comparison between transforming or not 

transforming the coefficients within each model (Table 15). While, in the conventional 

model, the results were around 5%, the multilevel model showed average variations of 

20%. The highest discrepancy index appeared in the Precision subscale of the PI-R scale 

(104%). The RVE model seemed to represent an intermediate point of discrepancy 

between the two models, although it tended more towards the conventional model, with 

an average discrepancy rate of 7%. In other words, it seemed that the decision between 

transforming the coefficients or not could imply more different results in the multilevel 

model than in the conventional model. What has also not been observed is that these 

results are not very different regarding whether Knapp-Hartung’s method was applied or 
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not (21.03% vs. 20.27% in the multilevel model; 5.44% vs. 5.41% in the conventional 

model). 

Another consistent result was found in Table 13, when comparing the 

conventional model with the two forms of the multilevel model (homo- and 

heteroscedastic). While, when comparing the homoscedastic model with the conventional 

model the results reached 32%, when compared with the heteroscedastic model the results 

were found to be between 8 and 11%. This is explained by the fact that, when separating 

each scale into independent analyses, these results have more similarities with the 

heteroscedastic model, which calculates the residuals error variance for each component 

of the model, than with the homoscedastic model, since that model estimates the average 

residuals error variance of all components. Here again, we did not observe large distances 

between the application or non-application of Knapp-Hartung's method (32% vs. 31.5% 

in homo- model; 10% vs. 11% in hetero- model; 26.5% vs. 26% in homo- model with 

transformation; 8% vs. 8.6% in hetero- model with transformation). Where we did find a 

small variation was when we considered whether or not the coefficients were transformed. 

We found that the homoscedastic model went from 32% to 26.5% discrepancy if we 

transformed the coefficients; while in the heteroscedastic model, the discrepancy went 

from 10% to 8%. When comparing the two multilevel models, the results are completely 

expected: around 20% discrepancy in all conditions. Finally, the relationship between the 

conventional model and the RVE model presented in Table 12 showed very similar results 

to those found between the conventional model and the homoscedastic model ( ~26% 

discrepancy), a result that was expected and consistent with the model.  

Regarding the relationship between the number of observations and the number 

of subscales, there did not seem to be a clear pattern of trend in any of the five 

comparisons. To study this relationship in depth, it would be interesting to carry out a 
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simulation study to better understand how each of the analysis strategies we have tested 

works and what influence the conditions have on each of the strategies. 

4.4.1. Conventional model or multilevel model? 

So which model is the most appropriate? An empirical study of this kind could never 

draw conclusions about the advantages of one model or the other, but what we can 

highlight is the trend we have found in the results. Regarding the estimation of the average 

alpha, we have not found any variation that depends on the specific analytical strategy, 

so we are going to focus on highlighting only the conclusions drawn from the results in 

terms of the confidential width of the average alpha. 

First, when applying the multilevel model, we recommend transforming the coefficients. 

As we already mentioned, in this study we have found very discrepant results between 

not transforming and transforming the coefficients (~20%). Great part of the literature 

recommends transforming in all circumstances (Sánchez-Meca et al., 2012), although the 

most recommendable transformations -for internal consistency coefficients- are those 

proposed by Hakstian and Whalen (1976) and Bonett (2002). As we discussed in Chapter 

2, these transformations normalize the distribution of the coefficients and, in addition, 

Bonett’s also stabilizes their variances. 

Regarding the application of Knapp and Hartung’s method, we also found favourable 

results for the application of this method in the previous literature. However, in our results 

the differences between applying it or not have been limited, exceeding the 5% boundary 

only within the conventional model (~6%). In other words, we believe that it would be 

advisable to apply it when conducting a meta-analysis in the conventional model, but not 

as indispensable within the multilevel model. 



 121 

Finally, the great question would be whether we would choose to apply the conventional 

model or the multilevel model when carrying out a meta-analysis of reliability 

generalization. Based on the results we have obtained, we are able to say that the 

differences between one and the other are notable (with any of the multilevel models, the 

differences exceed 5%), but we cannot highlight the advantages of one model over the 

other. From a theoretical point of view, an RG study with scales that have several 

subscales or with scales that, in the different primary studies, have been administered to 

different groups within the same study, the application of the multilevel model would be 

more accurate. This is because the inclusion of these two assumptions would yield 

dependency between scores. In fact, given the assumptions, the question would be 

whether to choose between the homoscedastic model or the heteroscedastic model, since 

we also found discrepant results between the two models. 

4.4.2. Limitations and Future Research 

The main limitation of this study is that the conclusions are reduced to detecting 

only whether there are notable differences between the analysis strategies, but we cannot 

determine which strategy is the most appropriate or the most accurate on each 

circumstance. In order to be able to go deeper into this study and have empirical results 

that allow us to conclude on the suitability of each model for each specific case, it would 

be interesting to carry out a simulation study. On the other hand, from one of our 

hypotheses on the influence of the number of observations and the number of scales, we 

have not been able to draw clear conclusions that we could control and determine through 

a simulation. It would also be interesting to include in that study how the moderating 

variables that have traditionally been found to influence the data in meta-analyses of 
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reliability generalization -such as standard deviation of the scores- work in each of the 

models: conventional and multilevel. 

4.5 Conclusion 

In this research we have evaluated the discrepancies in the results of meta-analysing four 

different scales composed of different subscales by means of different analysis strategies. 

We found that the differences appear mainly when estimating the confidence intervals of 

the average reliability coefficients; when these coefficients were estimated, no notable 

differences appeared between any of the different strategies implemented. The main 

results indicate that when estimating the confidential width discrepancies appear between 

the conventional model and the two multilevel models, being the differences between the 

conventional and the homoscedastic multilevel model and between the two multilevel 

models and each other more remarkable. Also, the results suggest that when the multilevel 

model is applied, the transformation of the coefficients is substantially more important 

than in the conventional model, as the discrepancy was very high between the two 

conditions. The next step in this research is to develop a simulation that will allow us to 

obtain information on which model is more appropriate when conducting a reliability 

generalization meta-analysis under certain circumstances.  
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Chapter 5 

Conclusions 

Reliability is a psychometric property that refers to the replicability of the scores 

on a measuring instrument. As the definition suggests, this property is not inherent to the 

instrument, but to the scores, so it is essential to apply statistical tools that allow us to 

generalize the results obtained from the different applications of an instrument to the 

instrument itself. To date, the best tool for synthesising quantitative evidence is meta-

analysis. A key aspect that makes meta-analysis stand out is that, on most occasions, the 

primary studies may yield different and even contradictory results; however, meta-

analysis allows for grouping all these results together and obtaining a more accurate value 

that integrates all the information. This methodology can also be applied to reliability 

coefficients. Vacha-Haase (1998) developed this concept and called it Reliability 

Generalization Meta-Analysis (RG). 

As we have seen throughout this dissertation, there is no single protocol for 

application, but rather it is the responsibility of the meta-analyst to decide which 

analytical strategy is most appropriate for the type of study being carried out. Because of 

this variability in decision-making, this dissertation has elaborated two comparative 
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studies between different statistical procedures for the computation of an RG meta-

analysis (Chapter 2 and Chapter 4). The first study (Chapter 2) compared the different 

strategies most frequently used in this field in a conventional way, i.e., without 

considering any kind of dependency relationship. However, the third study (Chapter 4) 

compared this conventional procedure with a procedure that takes into account these 

dependency networks within studies and scales by applying different multilevel models. 

The main conclusion we found in both Chapter 2 and Chapter 4 is that, as 

expected, there are statistically significant differences between applying one procedure 

and the other. 

Beginning with the first study and the first comparisons between analytical 

strategies, 138 databases of RG meta-analyses on psychological scales and subscales were 

collected. The statistical procedures most frequently used for such meta-analyses were 

applied to these databases: on the one hand, we selected three transformations that are 

regularly applied to the reliability coefficients and compared them also with the raw - 

untransformed - coefficients; on the other hand, we also took into account the assumed 

statistical model and the weighting method. Due to the theoretical nature of some 

strategies, we compared 13 procedures for the computation of the average reliability 

coefficient and 18 procedures for the computation of the confidence interval. We also 

took into account whether coefficient transformations influenced the distribution of 

coefficients and the estimation of different heterogeneity indices, such as the I2 index and 

the prediction intervals. 

The first conclusion we can draw from this study is that, in numerical terms, the 

different procedures significantly affect the construction of the confidence interval of the 

average reliability coefficient, but not the calculation of the average reliability coefficient. 

Nevertheless, we did find statistically significant results at the level of the average 
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coefficient when we looked at how the transformations influenced its distribution: all the 

proposed transformations improved the adjustment to normality, in some cases bringing 

it closer to a more platykurtic distribution, and also improved the degree of skewness of 

the distribution. 

Regarding the construction of the confidence interval, it is the assumed statistical 

model and not the transformations that determine whether the confidential width will be 

wider or narrower. As expected, the OLS and REi models presented a wider width of the 

interval than the other models, the narrowest being the VC and FE models, the latter being 

the one with the narrowest interval of all. Furthermore, within the RE models, no 

differences were observed between the DL and REML 2 estimators. 

In Chapter 4, comparisons were made considering any dependency relationships 

that may arise within the studies that comprise the meta-analysis. In this study we have 

compared the conventional method of calculating a meta-analysis with scales that are 

composed of several subscales (separating each one into an independent meta-analysis) 

and the multilevel model that integrates them all in the same meta-analysis. In addition, 

within this model we have also compared the homoscedastic and heteroscedastic 

multilevel model. Complementarily, comparisons with the RVE model, Bonett’s 

transformation of the reliability coefficients and Hartung-Knapp’s method for the 

construction of confidence intervals were included. All this was applied to 4 

psychological scales that had been the subject of a published RG MA and differed from 

each other in terms of number of subscales (less or more than 4) and number of 

observations per subscale (less or more than 20 observations). 

The main conclusion we draw from this study coincides with that obtained in 

Chapter 2: the numerically significant results were found when constructing the 

confidence interval, but not when computing the average coefficient. The main 



 126 

differences in terms of discrepancy index were found when comparing this conventional 

model with the homoscedastic multilevel model (approx. 32% with transformation, 26% 

without transformation), reducing as expected when compared with the heteroscedastic 

model (approx. 10% without transformation, 8% with transformation). On the other hand, 

Bonett’s transformation of the coefficients showed a larger discrepancy within the 

multilevel model (approx. 21%) than within the conventional model (approx. 8%). The 

application of the Hartung-Knapp method did not seem to have any influence on the 

results of any of the models, nor was there a clear trend in the results taking into account 

the number of subscales or the number of observations. 

Finally, Chapter 3 reports a reproducibility study of RG meta-analyses, including 

a review of their transparency and reporting practices. Due to the very large database 

collected in Chapter 2, this study was conducted in parallel and was intended to be a first 

contact between reproducibility studies and RG meta-analyses, something that had not 

been considered before. In addition to the databases collected in Chapter 2, this study 

compiled all the information reported by the studies on the estimation method used to 

calculate the meta-analysis and repeated the analyses following these procedures. To 

determine the extent to which the results were reproduced, a discrepancy index between 

the reported and reproduced results and the Pearson correlation was calculated. 

The main conclusion that can be drawn from this study is that in all the variables 

that were tested (average reliability coefficient, confidence interval and heterogeneity 

indices I2 and Q), the correlation between the reported and reproduced values was higher 

than .80 and statistically significant. Regarding the discrepancy index, not all variables 

responded equally: on the one hand, both the average coefficient and its confidence 

interval were reproduced more than 95% of the time, with only anecdotal cases where the 

discrepancy exceeded 10% variation. However, the results on heterogeneity did show 
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greater variability, mainly in the Q statistic, where the discrepancy index showed values 

of less than 10% variation in 75% of the cases. One of the conclusions we draw from this 

is that, as the value of the Q statistic is a value that fluctuates between 0 and +∞, it is more 

sensitive to large numerical variations. This leads to the discrepancy index also being 

higher. In this case, the correlation value complements the results of the discrepancy index 

by determining that the variations that occur do not affect breeding success as directly (rxy 

= .99). 

Finally, the last conclusion that we highlight in this chapter is the great loss of 

information that occurs due to the systematic lack of reporting in this type of work. Not 

only the absence of certain important results such as the confidence interval or a 

heterogeneity index, but also the loss of data in relation to the statistical procedures 

implemented or the lack of reporting of the database used to perform the meta-analysis. 

Almost 60% of the studies found in the search did not share the database. On the other 

hand, with respect to the variables that have been reproduced, of the total alpha 

coefficients collected, in 40% of the cases the confidence interval was not reported, and 

in more than 50% no heterogeneity index was reported. 

In recent years, tools have been developed and implemented which make it easier 

to correct these practices, such as the use of reporting guidelines and free online 

repositories where the materials used in the studies, such as databases or programming 

codes, can be stored. It is now up to researchers to take responsibility for being more 

aware of the importance of sharing everything necessary for research to be reproducible 

and replicable. We should not forget that one of the fundamental pillars of science is the 

replicability of experimental results and that such replications only ensure that the 

conclusions are solid and stable. 
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In summary, and taking into account the results obtained in this thesis, the main 

recommendations are the following: 

The researcher carrying out this type of meta-analysis must be clear about the 

nature of the data to be analyzed (presence of heterogeneity and relationships, or 

suspicions, of dependence). In addition, it is essential to establish the scope of its results 

(more or less generalisable). For an RG meta-analysis without the presence of 

heterogeneity or dependence relationships, which aims to generalize the results to studies 

with identical or very similar characteristics, it should choose to apply an FE model. If 

heterogeneity is present, then the assumed model must be a Varying Coefficients model. 

On the other hand, if the results are intended to be generalized to a larger 

population of studies, and there is no suspicion of dependence networks, the random 

effects model in one of its forms (RE, REi and REn) should be the model of choice. In 

this case, it is important to note that random effects models must meet three fundamental 

assumptions: normality of the true reliability coefficient distribution, a stable estimate of 

the between-studies variance, and random sampling of studies from a larger population 

of primary studies. 

In any of the above cases, if it is suspected that dependency relationships may 

exist within the meta-analysis, it would be advisable to perform it from a multilevel 

approach applying a homo- or heteroscedastic model. 

These recommendations, coming from empirical studies with real data, do not 

determine which model works best or is the most appropriate according to a particular 

type of data. These recommendations are based on theoretical knowledge prior to this 

work and how it can be applied taking into account the results obtained (i.e., that there 

are differences between performing an RG meta-analysis following different statistical 

procedures).  
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A final recommendation from Chapter 3 is the use of reporting guidelines and 

online repositories to improve the transparency and reporting rates of this type of meta-

analysis. Specifically, for RG meta-analyses, the REGEMA checklist (Sánchez‐Meca et 

al., 2021) is designed to correctly report the necessary and fundamental information on 

this type of meta-analysis. 
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Appendices 

Appendix 2A: 

Supplementary Tables and Figures for Chapter 2 

Tables 

 

Table 2A.1  

Mathematical formulation of the three statistical models proposed in RG meta-analysis. 

 Mathematical model Parameter to estimate 

Fixed-effect model 𝜃𝑖 = 𝜃 + 𝑒𝑖 θ 

Varying-coefficient model 𝜃𝑖 = 𝜃𝑖 + 𝑒𝑖 𝑘−1 ∑ 𝜃𝑖

𝑘

𝑖=1
 

Random-effects model 𝜃𝑖 = 𝜇𝜃 + 𝑒𝑖 + 𝜀𝑖 𝜇𝜃
 

Note: 𝜃̂𝑖: reliability estimate reported in the ith study. θ: population reliability coefficient common to all individual 

reliability estimates when assuming a FE model. ei: sampling error of the ith reliability estimate. 𝜇𝜃: pooled 

parametric reliability coefficient when assuming an RE model. εi: error due to sampling of population reliability 

coefficients. 
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Table 2A.2  

Statistical methods to calculate an average reliability coefficient. 

Transformation method 

Statistical Model 

OLS FE VC RE/Rei REn 

No transformation ✓ ✓ ✓
a ✓ ✓ 

Fisher’s Z ✓ ✓ - ✓ - 

Hakstian and Whalen ✓ ✓ - ✓ - 

Bonett ✓ ✓ - ✓ - 

Note: OLS: Ordinary Least Squares (unweighted conventional statistical methods). FE: Fixed-effect model. VC: 

Varying-Coefficient model. RE: Standard Random-Effects model weighting by the inverse variance. REi: 

Random-Effects model with the improved method of Hartung and Knapp (2001). REn: Random-effects model 

weighting by sample size. aNote that the average reliability coefficient calculated under the VC model coincides 

with that of the OLS model for untransformed reliability coefficients. 

 

 

Table 2A.3 

Methods to construct a confidence interval around the average reliability coefficient. 

Transformation method  

Statistical Model 

OLS FE VC RE REi REn 

No transformation ✓ ✓ - ✓ ✓ ✓ 

Fisher’s Z ✓ ✓ - ✓ ✓ - 

Hakstian and Whalen ✓ ✓ - ✓ ✓ - 

Bonett ✓ ✓ ✓ ✓ ✓ - 

Note: OLS = Ordinary Least Squares (unweighted conventional statistical methods). FE = Fixed-Effect model. 

VC = Varying-Coefficient model. RE = standard Random-Effects model weighting by the inverse variance. REi 

= Random-Effects model with the improved method of Hartung and Knapp (2001). REn: Random-Effects model 

weighting by sample size. 
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Table 2A.4 

Descriptive statistics of number of studies included in each meta-analysis, sample sizes, kurtosis and 

skewness. 

 
  Mean SD Min Q1 Median Q3 Max Range 

 
Number of Studies 31.34 47.37 5 9 14 40 319 314 

 
Sample Size 209.19 107.03 38 125.25 220 249.38 799 761 

Kurtosis 

No Transformation 3.74 2.53 1.42 2.21 2.95 4.15 18.48 17.06 

Fisher’s Z 2.98 1.21 1.52 2.18 2.61 3.44 8.32 6.81 

Hakstian-Whalen’s 3.01 1.36 1.49 2.16 2.61 3.26 9.44 7.95 

Bonett’s 2.94 1.14 1.53 2.15 2.59 3.34 7.00 5.47 

Skewness 

No Transformation -.75 .85 -3.47 -1.18 -.71 -.2 1.21 4.69 

Fisher’s Z .01 .73 -1.95 -.42 .07 .48 2.29 4.24 

Hakstian-Whalen’s .2 .73 -1.6 -.29 .14 .63 2.22 3.81 

Bonett’s -.09 .72 -2.3 -.55 -.12 .33 1.84 4.14 

Note: SD: Standard Deviation. Min. and Max.: Minimum and Maximum. Q1 and Q3: quartiles 1 and 3. 

 

 

Table 2A.5 

Post-hoc comparisons between different transformations of the coefficients regarding to skewness 

Transformation Transformation Mean Difference SE pBonferroni 

No Transformation Fisher’s Z -.756 .040 < .001 

Hakstian-Whalen -.948 .132 < .001 

Bonett -.664 .126 < .001 

Fisher’s Z Hakstian-Whalen -.192 .124 .74 

Bonett .092 .123 1 

Hakstian-Whalen Bonett .284 .014 < .001 

Note. SE = Standard Error of the mean difference. 
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Table 2A.6 

Post-hoc comparisons between different transformations of the coefficients regarding to kurtosis 

Transformation Transformation Mean Difference SE pBonferroni 

No Transformation 
 

Fisher’s Z .769 .144 < .001 

Hakstian-Whalen .736 .116 < .001 

Bonett .802 .160 < .001 

Fisher’s Z Hakstian-Whalen -.033 .034 1 

Bonett .033 .020 .548 

Hakstian-Whalen Bonett .066 .050 1 

Note. SE = Standard Error of the mean difference. 

 

 

Table 2A.7 

Descriptive statistics of average alpha coefficients for each τ2 estimator 

2 Transformation Mean SD Min Q1 Median Q3 Max Range 

DL 

No Transformation .831 .07 .622 .791 .837 .883 .975 .353 

Fisher’s Z .833 .069 .62 .787 .84 .887 .986 .366 

Hakstian-Whalen .832 .069 .622 .789 .838 .885 .98 .358 

Bonett .834 .068 .624 .788 .842 .887 .986 .361 

REML 

No Transformation .828 .069 .616 .791 .832 .877 .975 .359 

Fisher’s Z .833 .069 .619 .786 .841 .887 .986 .366 

Hakstian-Whalen .831 .069 .62 .789 .838 .884 .98 .36 

Bonett .834 .068 .624 .789 .842 .887 .986 .361 

Note. DL= DerSimonian-Laird estimator. REML= Restricted Maximum-Likelihood estimator. SD: Standard 

Deviation. Min. and Max.: Minimum and Maximum. Q1 and Q3: quartiles 1 and 3. 
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Table 2A.8 

Results of the repeated measures ANOVA to calculate the average alpha coefficient 

  
Sum of 

Squares 
df 

Mean 

Square 
F p η² 

Transformation .004 3 .001 43.43 < .001 .241 

Residual .011 411 .000    

2 estimator .000 1 .000 1.11 .294 .008 

Residual .022 137 .000    

Transformation * 2 estimator .000 3 .000 26.29 < .001 .161 

Residual .002 411 .000    

 

 

 

Table 2A.9 

Post-hoc comparisons for the interaction between 2 estimator and transformation of the 

coefficients regarding the average alpha coefficient. 

 Transformation  Transformation 
Mean 

Difference 
SE pBonferroni 

DL No Transformation REML No Transformation .003 .001 .037 

Fisher’s Z Fisher’s Z .000 .001 1 

Hakstian-Whalen Hakstian-Whalen .000 .001 1 

Bonett Bonett .000 .001 1 

Note. DL= DerSimonian-Laird estimator. REML= Restricted Maximum-Likelihood estimator. Only those 

combinations that were of interest for the study have been included in the table. 
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Table 2A.10 

Descriptive statistics of confidence width for each random-effects model and τ2 estimator. 

2 Model Transformation Mean SD Min Q1 Median Q3 Max Range 

DL 
 

RE 
 

No Transformation .059 .052 .009 .03 .043 .072 .412 .403 

Fisher’s Z .07 .057 .01 .035 .054 .089 .421 .411 

Hakstian-Whalen .068 .059 .01 .034 .051 .086 .46 .45 

Bonett .069 .058 .01 .034 .052 .089 .417 .407 

REi 
 

No Transformation .079 .071 .011 .035 .059 .099 .543 .532 

Fisher’s Z .084 .077 .012 .037 .058 .107 .589 .578 

Hakstian-Whalen .082 .075 .012 .036 .06 .104 .573 .561 

Bonett .084 .08 .012 .037 .058 .107 .637 .625 

REML 
 

RE 
 

No Transformation .069 .055 .011 .032 .054 .083 .387 .376 

Fisher’s Z .071 .056 .011 .037 .054 .089 .412 .401 

Hakstian-Whalen .07 .055 .011 .035 .054 .087 .402 .39 

Bonett .071 .057 .012 .037 .052 .088 .422 .411 

REi 
 

No Transformation .082 .075 .012 .035 .061 .1 .544 .532 

Fisher’s Z .084 .077 .012 .038 .058 .11 .589 .577 

Hakstian-Whalen .083 .075 .012 .037 .06 .107 .574 .562 

Bonett .084 .08 .012 .038 .058 .109 .637 .625 

Note. DL= DerSimonian-Laird estimator. REML= Restricted Maximum-Likelihood estimator. RE= Random-Effects model. 

REi: Random-Effects model with the improved method of Hartung and Knapp (2001). SD: Standard Deviation. Min. and 

Max.: Minimum and Maximum. Q1 and Q3: quartiles 1 and 3. 
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Table 2A.11 

Results of the repeated measures ANOVA to calculate the confidence width. 

  
Sum of 

Squares 
df 

Mean 

Square 
F p η² 

Transformation .007 3 .002 5.81 < .001 .041 

Residual .17 411 0    

2 .032 1 .032 2.12 .147 .015 

Residual 2.072 137 .015    

Model .105 1 .105 41.39 < .001 .232 

Residual .348 137 .003    

Transformation * 2 0 3 .002 4.5 .004 .032 

Residual .16 411 0    

Transformation * Model .002 3 0 2.19 .088 .016 

Residual .15 411 0    

2 * Model .003 1 .003 5.72 .018 .04 

Residual .062 137 0    

Transformation * 2 * Model .001 3 0 1.18 .316 .009 

Residual .134 411 0    

 

 

 

Table 2A.12 

Post-hoc comparisons for the interaction between 2 estimator and the transformation of the 

coefficients regarding the confidence width. 

2 Transformation 2 Transformation 
Mean 

Difference 
SE pBonferroni 

DL No Transformation REML No Transformation -.013 .006 1 

Fisher’s Z Fisher’s Z -.007 .006 1 

Hakstian-Whalen Hakstian-Whalen -.007 .006 1 

Bonett Bonett -.004 .003 1 

Note. DL= DerSimonian-Laird estimator. REML= Restricted Maximum-Likelihood estimator. Only those 

combinations that were of interest for the study have been included in the table. 
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Table 2A.13 

Post-hoc comparisons for the interaction between 2 estimator and the two random effects 

models regarding the confidence width. 

2 Model 2 Model Mean Difference SE pBonferroni 

DL RE REML RE -.01 .006 .643 

 REi  REi -.005 .005 1 

Note. DL= DerSimonian-Laird estimator. REML= Restrictied máximum-likelihood estimator. RE= Standard 

Random-Effects model weighting by the inverse variance. REi= Random-Effects model with the improved 

method of Hartung and Knapp (2001). Only those combinations that were of interest for the study have been 

included in the table. 

 

 

Table 2A.14 

Post-hoc comparisons between statistical models to calculate average alpha 

Model Model Mean Difference SE PBonferroni 

FE OLS .019 .004 < .001 

RE .015 .004 .003 

REn .021 .007 .008 

OLS RE -.004 .004 1 

REn .002 .007 1 

RE REn .007 .007 1 

Note. FE: Fixed-Effect model. OLS: Ordinary Least Squares. RE: Random-Effects model. REn: Random-

Effects model weighted by sample size. SE: Standard Error.  
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Table 2A.15 

Bonferroni’s post hoc comparisons for analytic strategy to calculate average alpha coefficient. 

Model Transformation Model Transformation 
Mean 

Difference 
SE t pBonf. 

FE 
 

Bonett  FE 
 

Hakstian-Whalen -.011 .008 -1.277 1 

No Transformation -.029 .008 -3.48 .04 

Fisher’s Z .001 .008 .148 1 

OLS Bonett .004 .008 .48 1 

RE Bonett .003 .008 .393 1 

FE 
 

Hakstian-Whalen FE No Transformation -.019 .008 -2.203 1 

Fisher’s Z .012 .008 1.425 1 

OLS Bonett .015 .008 1.757 1 

Hakstian-Whalen’ .02 .008 2.32 1 

RE Hakstian-Whalen .016 .008 1.94 1 

FE 
 

No Transformation  FE Fisher’s Z .031 .008 3.628 .023 

OLS No Transformation .048 .008 5.67 < .001 

RE No Transformation .036 .008 4.275 .002 

REn No Transformation .041 .008 4.86 < .001 

FE Fisher’s Z OLS Fisher’s Z .004 .008 .509 1 

RE Fisher’s Z .003 .008 .395 1 

OLS Bonett OLS 
 

Hakstian-Whalen .005 .008 .563 1 

No Transformation .014 .008 1.71 1 

Fisher’s Z .001 .008 .177 1 

RE Bonett -.000 .008 -.087 1 

OLS Hakstian-Whalen OLS No Transformation .01 .008 1.147 1 

Fisher’s Z -.003 .008 -.386 1 

RE Hakstian-Whalen -.003 .008 -.38 1 

OLS 
 

No Transformation  OLS Fisher’s Z -.013 .008 -1.533 1 

RE No Transformation -.012 .008 -1.395 1 

REn No Transformation -.007 .008 -.811 1 

OLS Fisher’s Z RE Fisher’s Z -.000 .008 -.114 1 

RE No Transformation REn No Transformation .005 .008 .585 1 

Note. FE: Fixed-Effect Model. OLS: Ordinary Least Squares. RE: Random Effects Model. REn: Random Effects 

Model weighted by sample size. NT: untransformed reliability coefficients. Z: Fisher’s Z transformation. HW: 

Hakstian and Whalen’s transformation. B: Bonett’s transformation. SE: Standard Error. Only those combinations 

that were of interest for the study have been included in the table. 
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Table 2A.16 

Post-hoc comparisons between statistical models to calculate the confidence width of 

average alpha coefficient 

Model Model Mean Difference SE pbonferroni 

FE OLS -.070 .004 < .001 

 RE -.051 .004 < .001 

 REi -.067 .004 < .001 

 REn -.047 .006 < .001 

 VC -.009 .006 1 

OLS RE .02 .004 < .001 

 REi .004 .004 1 

 REn .024 .006 < .001 

 VC .061 .006 < .001 

RE REi -.016 .004 < .001 

 REn .004 .006 1 

 VC .041 .006 < .001 

REi REn .197 .006 .007 

 VC .057 .006 < .001 

REn VC .038 .007 < .001 

Note. FE: Fixed-Effect Model. OLS: Ordinary Least Squares. RE: Random Effects Model. REi: Random-

Effects model with the improved method of Hartung and Knapp (2001). REn: Random-Effects model 

weighting by sample size. VC: Varying-Coefficient model. SE: Standard Error.  
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Table 2A.17  

Post-hoc comparisons between the transformation of the coefficients regarding the I2 index 

Transformation Transformation Mean Difference SE pBonferroni 

No Transformation Fisher’s Z 2.62 .396 < .001 

Hakstian-Whalen -.868 .163 < .001 

Bonett -.86 .22 < .001 

Fisher’s Z Hakstian-Whalen -3.488 .361 < .001 

 
Bonett -3.481 .351 < .001 

Hakstian-Whalen Bonett .008 .07 1 

 

 

 

Table 2A.18  

Post-hoc comparisons between transformation of the coefficients regarding prediction 

intervals width. 

Transformation Transformation Mean Difference SE pBonferroni 

No Transformation Fisher’s Z -.066 .009 < .001 

Hakstian-Whalen -.047 .005 < .001 

Bonett -.091 .013 < .001 

Fisher’s Z Hakstian-Whalen .019 .001 .009 

Bonett -.024 .005 < .001 

Hakstian-Whalen Bonett -.043 .009 < .001 
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Figures 

Figure 2A.1 

Distribution of the number of studies for the 138 RG datasets. 
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Appendix 2B: 

Full search strategies and screening process summary 

Table 2B.1  

Full search strategy for each database 

Database Search strategy 

SCOPUS 

(TITLE-ABS-KEY (“reliability 

generalization”) OR TITLE-ABS-KEY 

(“meta analysis of internal consistence”) 

OR TITLE-ABS-KEY ("meta analysis of 

alpha coefficients")) AND PUBYEAR > 

1997 AND PUBYEAR < 2021 

Google Scholar 

allintitle: "reliability generalization" 

"meta analysis of internal consistency" 

"meta analysis of alpha coefficients" 

Range: 1998-2020 

EBSCOHOST (MEDLINE, APA 

PscycInfo, Education Sourse, APA 

PsycArticles, Gender Studies Database, 

PSICODOC) 

TI “Reliability Generalization Meta-

Analysis” OR AB “Reliability 

Generalization Meta-Analysis” OR TI 

“Meta-Analysis of Internal Consistence” 

OR AB “Meta-Analysis of Internal 

Consistence” OR TI “Meta-Analysis of 

Alpha Coefficients” OR AB “Meta-

Analysis of Alpha Coefficients” 
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Appendix 4A: 

Supplementary Tables for Chapter 4 

Average alpha coefficients 

Table 4A.1 

Summary table of the comparisons established with respect to the calculation of 

average alpha coefficients. 

Model (I) Transformation (I) Model (II) Transformation (II) 

Conventional Not Transformed Multilevel Not Transformed 

Conventional Bonett’s Multilevel Bonett’s 

Conventional Not Transformed Homoscedastic Not Transformed 

Conventional Not Transformed Heteroscedastic Not Transformed 

Conventional Bonett’s Homoscedastic Bonett’s 

Conventional Bonett’s Heteroscedastic Bonett’s 

Homoscedastic Not Transformed Heteroscedastic Not Transformed 

Homoscedastic Bonett’s Heteroscedastic Bonett’s 

Conventional Not Transformed Conventional Bonett’s 

Multilevel Not Transformed Multilevel Bonett’s 

Note: the reference value is the combination of the first and second columns 
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Confidence width 

Table 4A.2 

Summary table of the first comparison established with respect to the calculation of 

confidence width. 

Model (I) 
Transformation 

(I) 

Confidence 

Width 

method (I) 

Model 

(II) 

Transformation 

(II) 

Confidence 

Width 

method (II) 

Conventional Not Transformed Standard Multilevel Not Transformed Standard 

Conventional Bonett’s Standard Multilevel Bonett’s Standard 

Conventional Not Transformed 
Knapp-

Hartung 
Multilevel Not Transformed 

Knapp-

Hartung 

Conventional Bonett’s 
Knapp-

Hartung 
Multilevel Bonett’s 

Knapp-

Hartung 

Conventional Not Transformed - RVE Not Transformed - 

Conventional Bonett’s - RVE Bonett’s - 

Note: the reference value is the combination of the first three columns 

 

Table 4A.3 

Summary table of the second comparison established with respect to the calculation of confidence 

width. 

Model (I) 
Transformation 

(I) 

Confidence 

Width 

method (I) 

Model (II) 
Transformation 

(II) 

Confidence 

Width 

method (II) 

Conventional Not Transformed Standard Homoscedastic Not Transformed 
Not 

Transformed 

Conventional Not Transformed Standard Heteroscedastic Not Transformed 
Not 

Transformed 

Conventional Bonett’s Standard Homoscedastic Bonett’s Standard 



 164 

Conventional Bonett’s Standard Heteroscedastic Bonett’s Standard 

Conventional Not Transformed 
Knapp-

Hartung 
Homoscedastic Not Transformed 

Knapp-

Hartung 

Conventional Not Transformed 
Knapp-

Hartung 
Heteroscedastic Not Transformed 

Knapp-

Hartung 

Conventional Bonett’s 
Knapp-

Hartung 
Homoscedastic Bonett’s 

Knapp-

Hartung 

Conventional Bonett’s 
Knapp-

Hartung 
Heteroscedastic Bonett’s 

Knapp-

Hartung 

Note: the reference value is the combination of the first three columns 

 

Table 4A.4 

Summary table of the third comparison established with respect to the calculation of confidence 

width. 

Model (I) 
Transformation 

(I) 

Confidence 

Width 

method (I) 

Model (II) 
Transformation 

(II) 

Confidence 

Width 

method (II) 

Homoscedastic Not Transformed Standard Heteroscedastic Not Transformed Standard 

Homoscedastic Bonett’s Standard Heteroscedastic Bonett’s Standard 

Homoscedastic Not Transformed 
Knapp-

Hartung 
Heteroscedastic Not Transformed 

Knapp-

Hartung 

Homoscedastic Bonett’s 
Knapp-

Hartung 
Heteroscedastic Bonett’s 

Knapp-

Hartung 

Note: the reference value is the combination of the first three columns 
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Table 4A.5 

Summary table of the fourth comparison established with respect to the calculation of confidence 

width. 

Model (I) 
Transformation 

(I) 

Confidence 

Width 

method (I) 

Model (II) 
Transformation 

(II) 

Confidence 

Width 

method (II) 

Conventional Not Transformed Standard Conventional Not Transformed 
Knapp-

Hartung 

Conventional Bonett’s Standard Conventional Bonett’s 
Knapp-

Hartung 

Multilevel Not Transformed Standard Multilevel Not Transformed 
Knapp-

Hartung 

Multilevel Bonett’s Standard Multilevel Bonett’s 
Knapp-

Hartung 

Note: the reference value is the combination of the first three columns 

 

Table 4A.6 

Summary table of the fifth comparison established with respect to the calculation of confidence 

width. 

Model (I) 
Transformation 

(I) 

Confidence 

Width 

method (I) 

Model (II) 
Transformation 

(II) 

Confidence 

Width 

method (II) 

Conventional Not Transformed Standard Conventional Bonett’s Standard 

Conventional Not Transformed 
Knapp-

Hartung 
Conventional Bonett’s 

Knapp-

Hartung 

Multilevel Not Transformed Standard Multilevel Bonett’s Standard 

Multilevel Not Transformed 
Knapp-

Hartung 
Multilevel Bonett’s 

Knapp-

Hartung 

Note: the reference value is the combination of the first three columns 
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