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Abstract

Electron tomography allows three-dimensional visuaiaabf cel-
lular landscapes in molecular detail. Segmentation is arpaunt
stage for the interpretation of the reconstructed tomogratthough
several computational approaches have been proposedhasipee-
vailed as a generic method and thus segmentation throughahan
annotation is still a common choice. In this work we introeacseg-
mentation method targeted at membranes, which define theahat
limits of compartments within biological specimens. Ourthuogl is
based on local dierential structure and on a Gaussian-like membrane
model. First, it isolates information through scale-spate finds po-
tential membrane-like points at a local scale. Then, thectiral
information is integrated at a global scale to yield the difiseg-
mentation. We show and validate the performance of the iéhgor

on a number of tomograms undeftdrent experimental conditions.
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1. Introduction

Electron tomography (ET) has consolidated its positionhasléading tech-
nique for visualizing the molecular organization of thel eivironment Lucic
et al, 2005 Frank 2006 Barcena and Koste2009 Ben-Harush et a12010. The
computational stages to derive three-dimensional renactgins (or tomograms)
from the acquired images are well establishiedc{c et al, 2005. Nevertheless,
their interpretation is not straightforward due téfeient factors such as the lim-
ited tilt range conditions, the low signal-to-noise raBNR, which is particularly
poor in cryoET) and the inherent biological complexity. 18fgcant eforts are
thus spent to facilitate the interpretation by severalesagf post-processing of
the tomograms\olkmann 2010, which, in the particular case of pleomorphic
structures, are primarily noise reduction and segmemtatio

Noise reduction intends to improve the SNR and, though thereseveral al-
ternative methods (e.gan der Heide et 312007 Fernandez2009, anisotropic
nonlinear difusion has become the standard tool in the fiEtdgakis and Hegerl
2001, Fernandez and |.R003 2005. The SNR of the tomogram and the denois-
ing method have an influence on the performance of the subaegegmentation
processYolkmann 2010. In addition, segmentation is als@fected by the arte-
facts due to the limited tilt range in ET (the ‘missing wedgeFourier space),
which produce a significant loss of resolution of the tomagadong the beam
direction, thereby making the spatial features in thatdtioa look elongated and
blurred.

Segmentation aims to decompose the tomogram into its staicdomponents
by identifying the sets of voxels that constitute them. Tdtotedious and sub-

jective, manual segmentation is the simplest and the masirmn approach,



which consists in that the user assigns the structural fesitusing visualization
tools (e.gHe et al, 2008. Several automatic or semi-automatic approaches have
been proposed in the fiel&andberg2007 Volkmann 2010. There exist meth-
ods based on simple density threshol8ar{dberg2007 or more sophisticated
optimal thresholdingQyrklaft et al, 2005, the Watershed transform extended to
3D (Wolkmann 2002, eigenvector analysis of arfiaity matrix (Frangakis and
Heger| 2002, active contoursRartesaghi et al2009, oriented filters $andberg
and Brega2007) and fuzzy logic Garduno et a).2008. Also, template match-
ing with simple 3D geometric templates has been proposetbfoograms with
relatively good SNR and contradtdbbink et al, 2007). Recent reviews discuss
about the characteristics, advantages and drawbacks diffaeent segmentation
techniques presented so far in the fiegh(dberg2007 Volkmann 2010. Out
of all computational methods, the Watershed transform ibgyes the only one
that has achieved a fairly good level of disseminatdwikmann 2010 and even
has been used as a basis to develop further methods or s €t al, 2008
Fernandez-Busnadiego et,&010. Despite the wealth of methods available and
their potential, none has stood out as a general applicablbad yet, and man-
ual segmentation still remains the prevalent method. Mopufar ET software
packages incorporate intuitive graphical tools to assistuser to segment and
annotate tomograms, and progressively they are incoipgrabme of the most
known computational techniques (hamely, thresholdingtaedVatershed trans-
form) in order to make segmentation a semi-automatic psoces

Detection of membranes plays an important role in segmientas they en-
compass compartments within biological specimens, defiadimits of the in-

tracellular organelles and the cells themselves, etc..ef@egegmentation ap-



proaches presented in the field are well suited to membraeett. The ori-
ented filters $andberg and Bregda007) showed promising results, but it worked
in 2D on a slice-by-slice basis and the 3D models were thesteteby stacking
the membrane contours. Template matching with cuboidedh&gmplatesleb-
bink et al, 2007 managed to segment fairly well membranes with high contras
However, this is not the case in cryoET. Furthermore, it wasputationally in-
tensive and high performance computikg@fnandez22008 was necessary. These
two methods have not proved to be robust to deal with high mangcurva-
ture either. The Watershed transform has shown good pesfozenin segment-
ing membranous structures, such as the Golgi apparatusoh gantrast tomo-
grams Yolkmann 2002. Nevertheless, such performance has not been exhibited
under high noise, low contrast conditions, as reportedntbc@Vioussavi et al.
2010. The latter work combined template matching with an aligtmodel for
the cell membrane and succeeded in extracting the cell lzoigsd Nevertheless,
it is so specific that it could not be applied for a general tagalving any type of
membrane-bound organelle. Some other work combined thergVegd transform
with an energy-based approadtiguyen and Ji2008, but user intervention was
still required and there were a number of parametefgedit to tune.

In this work we present an algorithm for membrane segmeamtdkiat relies
on local diterential structure. The method produces an output mapepegsents
how well every point in the tomogram fit a membrane model. Frioissmap, the
definite segmentation is obtained. We evaluate the perfocemaf the algorithm

on a number of tomograms undeffdrent SNR and contrast conditions.



2. Membrane mode

At a local level, a membrane can be considered as a plansthiketure with
certain thicknessHernandez and [.R003 2005. The density along the normal
direction progressively decreases as a function of thamtist to the centre of the
membrane. This density variation across the membrane canodelled by a

Gaussian function (Fidl(a,b)) and can be expressed as:

N

D _r
I(r) = ———e >

V2ro

wherer runs along the direction normal to the membrabgjs a constant to set

[=1 N

(1)

the maximum density value (at the centre of the membraneygnsl related to
the membrane thickness.

The eigen-analysis of the structure tensor of the densitgtion at the point
p = (Y, 2) of the membrane yields the eigenvect@isv; andv; with eigenval-
ues|u| >> |uo| ~ |us| (Fig. 1(a)) (Fernandez and L.2003 2005. This reflects
that there are two directions5( V3) with small density variation and the largest
variation runs along the direction perpendicular to the tmeme 73, parallel to
r,i.e.vilr).

The membrane thickness is modelled by means@f It is important for a
detector based on this membrane model to have this parapregeerly tuned
SO as to increase its robustness and selectivity. It is lyssel up as the typical
thickness of a membrane (in pixels) within the tomogram.

Due to its local nature, any detector based on this model isanggnerate a
high response for structuredidirent from membranes. This is particularly true in
ET where these other structures (e.g. microtubules, atamdints, etc.) also tend

to look like planes at a local level due to the artefacts peeduby the missing
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wedge, as already shown and accounted Ferjandez and |.2003. For that
reason, it is important to incorporate “global informatiamorder to discern true

membranes from these other structures.

3. Algorithm for membrane detection

The algorithm comprises a number of stages that can be gilonjogtwo main
blocks. Fig.2 shows a flow diagram of the algorithm. The first three stages ar
intended to isolate information at a suitable scale and fotdmtial membrane-like
features according to local detectors. The two last staggeawever, aimed to
analyze and integrate the structural information at a dlstele. In the following,
the diferent stages are described in detalie procedure assumes that high grey-

scale levels represent electron dense objects.

3.1. Scale-space

The scale-space theory was formulated in the 80igk{n, 1983 Koenderink
1984 and allows isolation of the information according to thats scale. At
a given scaler, all the features with a size smaller than the scale areddteut
whereas the others are preserved (B)g.

For discrete signals, a scale-space can be generated byethedrproposed
by Lindeberg(1990. Mathematically speaking, a tomogram can be modelled as
a discrete functiorf : C ¢ Z® — R, so a scale-space 6fwould be a continuous
set of tomograms : C ¢ Z3 x R* — R that can be obtained by convolution of

f and a set of kernelg; : Z2 x R* — R, with sizeo > 0:

L(x,y,z,cr)=i i iT(n,m,q;rf)f(X—n,y—mz—q) (2)

N=-c0 M=—00 Qg=—00

with L(x, Y,z 0) = f(x,V, 2).



There are a number of requirements for a function to act asreekan con-
structing a scale-spaceifdeberg 1990 (e.g. symmetry, semi-group, normal-
ization, stability). In this work, the implementation ofetlscale-space relies on a
direct convolution with a sampled Gaussian kernel. In aaldjtthis convolution
has been implemented by means of recursive filtéosiig and van Vliet1995
and exploiting the separability property of the Gaussiaméle which allows re-
duction of the computational complexity.

The scale-space applied to the membrane model proposee pmetious sec-
tion is now analyzed. Assume without loss of generality thatns along thex
direction (i.e. Vi||r||X), that1, ~ 13 ~ 0 and that1,] > 0. These assumptions
allows reduction of the problem to the one-dimensional c&ween the continu-
ous signal : R — R (coming from the membrane model with thicknesg3, its

scale-spack : RxR* — R at the scaler > 0 is defined byKoenderink 1984):

L(x; o) = G(X; o) = 1(X) (3)
with
N S~
G(x o) = @Ue 4)

Note thatl(r) can be replaced bl(x) sincer||x is assumed. The convolution of
two continuous Gaussian functions likeandG yields another Gaussian function
whose variance is the sum of the variances of the two congldiluections Florack
et al, 1992, hence verifying the semi-group scale-space propertgrdtbre, and
ignoring multiplicative constants, the membrane model with thicknegsat a

scaleo can be expressed as:

L(X; o) = G(X; Jo? + 0F) (5)



In this work, we assume that all the targeted membranousirEsathave a
similar size. Therefore, just one scatds enough.This parameter is usually set
up aso = o in order to filter out features with a size smaller than the foiemes
being sought.If features with very dierent size were to be detected, several
rounds of the algorithm using the appropriate scales shbeldun. Each run

would be in charge of detecting features at the given scale.

3.2. Local detector

Once we know what the membrane model at a given scdeks like (Eq. b)),
it is possible to define a detector for it. This detector iselolasn diferential in-
formation, as it has to analyze local structure. In order @kenit invariant to
the membrane direction and curvature, the detector islediad along the direc-
tion normal to the membrane (i.e. the direction of the maxmuurvature) at the
local scale. An eigen-analysis of the Hessian matrix is weiled to determine
such direction$ato et al.1998 Frangi et al. 1998. At every single voxel of the

tomogram, the Hessian matrix is calculated as defined by

Lxx ny Ly,
H=1Ly Ly Ly (6)
Ly, I—yz L,

whereL;; = gl—za'J Yi, ] € (X,¥,2). The Hessian matrix provides information about
the second order local intensity variation. The first eigetorv; resulting from
the eigen-analysis is the one whose eigenvaluexhibits the largest absolute
value and points to the direction of the maximum curvatueed¢ad derivative).
Detection of zero-crossings in the second derivative aktiad) direction allows

estimation of the limits of the potential membrane (Hig)).



The Hessian matrix of the membrane model of the previoussse(te. with
direction of the maximum curvature along x) at a seateas all directional deriva-

tives null, exceptyy:

Ly« O O
H={0 0 0 (7)
0 00

with
D (X2 — (0% + O'S)) 2

& 7% ®)
V2r(o2 + 02)5/2

whereD denotes the constants ignored in E5). (As a result; = Ly andv; =

Lxx =

(1,0, 0). Along the direction normal to the membrane turns out to be negative
where the membrane has significant values and its absollite peogressively
decreases from the centre towards the extremes of the meejkaa shown in
Fig. 1(c).

This derivation leads us to propose the usg gfas a local membrane detector
(also known as local gauge). In practice, in experimentaliesi, andAs are not

null, though|A,| >> |1, ~ |13| holds Therefore, a more realistic gauge would be:

A1l = VA3 A1 <0

R = | 1| 213 1 (9)
0 A, >0

where V1,13 is the geometrical mean betwegnands.

3.3. Membrane strength

Unfortunately, the gaugR is still sensitive to other local structures that may
produce false positives along the maximum curvature doect To make the

gauge robust and more selective, it is necessary to definetdet for these cases.
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First, the noisy background in the tomogram may generase fabsitives.
However, the background usually has a density le@&dént from that shown by
the structures of interest, which is especially apparehigiter scales (Fig3). A
strategy based on density thresholding, as already usetkfmising Fernandez
and Li, 2005, helps to get rid of these false positives. This thresthaklapplied
over the scale-space representation of the tomodramstead of the original to-
mogram itselff for further robustness to noise.

Local structures resembling ‘density steps’ in the tomogealso make the
gaugeR produce a false peak (see Appendix A). A detector of a loegd sbuld
be the edge saliency, which reflects the gradient strehgnidé¢berg 19998:

S=Li+L5+L2 (10)

whereL; = ‘3—: Yi € (X, Y, 2. Amembrane exhibits a high value 8fat the extremes
and a low value at the centre (Fit{d)). Based on their response to a membrane,
the ratio between the squared second-order and first-oedizatives (i.e.R?/S)
guantifies how well the local structure around a voxel fitsrtiembrane model

and not a step. We thus define membrane strength as:

o { % ,(L>1) and (Sign(g—?) # sign(%)) 11D

0 , otherwise
The first condition in Eq. X1) denotes the density thresholding described
above. The second condition represents the requiremerthnalopes oR and
S in the gradient direction must have opposite sighisis condition is important
to restrict the response of that function for steps (see AgpeA), which will be
definitely removed in the subsequent statfehe local structure approaches the

membrane modelyl will have high values around the centre of the membrane
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(high values ofR?, low values ofS). Note that the ratid:?/S strictly embodies
differential information and thus does not depend on the aceraity values.
The information about the density is then introduced Mtby means of the con-
dition L > t;. In practice, the ratio is actually implementedRig(S + €) to prevent

division by 0, wheres > 0 is suficiently small.

3.4. Improved hysteresis thresholding

The next step intends to threshold the membrane strengtias@dxels with
low values ofM are definitely discarded. Hysteresis thresholding has bleewn
to outperform the standard thresholding algoritfearidberg2007). Here two
thresholds are used, the large valyendersegments the tomogram whereas the
othert, oversegments it. Starting from the undersegmented tomo(geaed vox-
els), adjacent voxels are added to the segmented tomogramogyessively de-
creasing the threshold until the oversegmenting léyed reached.Though this
procedure performs better than the standard thresholtiogthm, the underseg-
mented tomogram still contains spurious segments that pay the final seg-
mentation result.

In this work we have increased the robustness of hysteressholding by
constraining the selection of seed voxels to the partiatharacteristics of mem-
branes, as described in the following. Membranes comprisigla number of
voxels connected in 3D. When the tomogram is viewed planplage along any
axis, the voxels of the membranes also appear connectedse thdividual 2D
planes. Therefore, a thresholt,, over the number of voxels that appear con-
nected in 2D planes helps to remove isolated points or marg@gments that
may arise as a result of the conventional undersegmentptaress Only sets

with a number of connected voxels higher thignare thus preserved. This area-
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thresholding process is applied planewise along all the &XeY and Z).Next,
the definite set of seeds is obtained through another sithitasholding proce-
dure, this time with a thresholg; over the volume, to discard 3D components
with less thariys; connected voxelsThe conventional hysteresis thresholding pro-
cess then proceeds (see Appendix B). This strategy allaatien of seeds that
are most representative of membranes (Bjgthereby improving the robustness

of the whole algorithm.

3.5. Global analysis

The result of the previous step is a logical map (i.e. /felge) indicating the
voxels of the tomogram that have been identified as membanesre precisely
planes, at a local scale. This step then aims to identifyegenented components
(sets of connected voxels labelled as true) and carry outl@aganalysis in order
to discern whether they are actual membranes.

A distinctive attribute shared by membranes is their reddyi large dimen-
sions. Therefore, the size (i.e. the number of voxels of treponent) can serve
as a major global descriptor for membranes. A threshoillthen introduced to
set the minimal number of voxels for a segmented componebé tconsidered
as membrane. This threshold is related\pin the previous step. If the tomo-
gram only contains one membrane, these two thresholds msiyrilar or equal.
If the tomogram contains several membranefiedent values ot, allow their

segmentation separately.

4. Validation

Validation of segmentation algorithms is dftiult topic, as already discussed
in the field Sandberg2007 Sandberg and Breg2007 Garduno et aJ.2008.
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Most of the segmentation works demonstrate the performafitee methods ac-
cording to illustrative visual resultsGarduno et al(2008 first addressed the
topic and proposed objective criteria to compare the autiomeethod versus the
“ground truth” given by manual segmentation. Other workgehproposed and
adapted metrics based on similar idelgyen and Ji2008 Moussavi et al.
2010.

The criteria defined bysarduno et al(2008 are strongly based on the over-
lap between the segmented data and the ground truth. Thisléematic for
relatively thin structures, such as membranes, whefferdnces of just one sin-
gle voxel in distance may spoil these criteria (e.g. thelapdvetween two hollow
spheres with one-voxel-thick walls, placed at the sameaeamd with a dference
in radius of just 1 voxel is null). This may be especially date when freehand
manual segmentation (where the delineation may not begaeis employed as
ground truth, as done in the present work.

For that reason, here we validate our segmentation methagifoy on the
outlined shapes. Quality metrics are defined based on tleviag features typi-

cally applied in shape analysi$dague1980:
e Centroid: centre of mass.

e Bounding box: centre, width and height of thealler rectangular box con-

taining the shape

e Axes (major and minor): length of the axes of the ellipse wit same

normalized second central moment as the shape.

The metrics reflecting the agreement between the featuteedid by our

14



method versus the ground truth are defined based on thevestaitor, as follows:

100l 1 iw(p)nvf,g(p)—vf,a(p)n 2
S wa(p) Vig(P)

wheref denotes one of the features described aboygs the estimated value
for propertyf in the ground truth, and , is the value for the result obtained by
our algorithm. The metrics are calculated planewise albeg< Y and Z axes, as
reflected by the indep in that equation. A weighted average is finally computed
over the whole set dfl, planes using the area of the ground truth shapes, denoted
by w,(p), as a weight.

Another feature commonly found in shape analysis is the @ohwull, which
is the smallest convex polygon that contains the shape. 3@éeithe hull allows
the application of the criteria defined Idarduno et al(2008 andUdupa et al.
(2009 ameliorating the problematic situation described ab&Ve.can then esti-
mate the sensitivity, i.e. the fraction of true positive®F points that have been
correctly classified as inside of the object) and the spdgifice. the fraction of
true negatives (TNF, points that have been correctly leftaduhe object). Let
Hy andH, bethe convex hull othe ground truth and the segmentation resulting
from our algorithm, respectively. These metrics are defugdg algebra of sets

as, respectively:

HaN H
TPF= % (13)
g
IHS N H|

where| - | denotes cardinality; represents the set intersection operation, and

AC denotes the complement of skt Note that TNF is influenced by the size of
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the tomogram Wdupa et al.2006. In this work, TPF and TNF are calculated
planewise along the X, Y and Z axes, and a weighted averageif/fcomputed,
as above (Eql2), to yield the actual values of sensitivity and specificiggspec-

tively.
5. Results

The segmentation algorithm was tested with several tonmagjtaken under
different experimental conditions, including cryo-tomogsaphd the use of con-
trast agents. The tomograms were preprocessed to resealenisity to a com-
mon range of [01], with high values representing electron dense objethey
were also cropped to focus on an area of interest. No othprquessing was ap-
plied to the tomograms (e.g. denoising). The optimal resu#ire obtained using
the same basic parameter configuration for hysteresishbidiag, in particular
t, € [0.25,0.35],t, € [0.05,0.15] andty, € [15, 35]. The values of the parameters
o, 1}, tyz andt,, however, depend on the specific dataset. Their values casale
ily estimated by inspection of the tomogram under studis the thickness of the
membranetyz andt, are the minimal cardinality for a set of 3D-connected voxels
to be considered as a membrane. Their values are similassumere than one
membrane are to be detected, in which daseused to distinguish among them.
t; is a density threshold and can be estimated directly fronrea af background

in the tomogram and is typically in the range3.5].

5.1. Dictyostelium discoideum

The first test dataset was a cryo-tomogranDofdiscoideuncell (Medalia
et al, 2002. It was obtained thanks to cryoET, where the SNR and candras

particularly poor. Figh shows the result of the fierent stages of the algorithm
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applied to the tomogram. A scale of = 3 was used for the scale-space (see
Fig. 3). A lower scale cannot completely remove spurious strestuA higher
scale would further smear out the actin filaments, still @reisg the membranes.

Fig. 5(a) presents the gaud® which actually quantifies the level of local
membrane-ness. However, it is important to note that thissme does depend
on the density level and, thus, there are some parts of thebnag® whereR
exhibits weak values. On the contramy in Fig. 5(c) (or more precisely the
ratio R?/S) only contains dierential information and, therefore, high strength is
shown throughout the membrane regardless of the densiig valiowever, the
side dfect is that other structures that do like planes at locall lals® produce
a high value ofM. The hysteresis thresholding procedure (FE@l-f)) and the
global analysis manage to extract the true membranes %), yellow). The
behaviour described in this paragraph can be readily obdemthe other datasets
too as this is an inherent feature of the algorithm.

The algorithm, as most of the segmentation methods, istsent the dfects
of the missing wedge. As seen in Fig(h), a region of the membrane appears
broken because the density fades away due to its specificdatien (the normal to
the membrane tends towards the beam direction). On the loéimel, the missing
wedge also makes the actin flaments look like planes at kxales. By using
a different value for the threshold on the size of the componignthese actin
filaments can also be extracted from the tomogram using tine segmentation

approach (pink).
5.2. Vaccinia virus

The performance of the algorithm was also tested with a toymegram of

Vaccinia virus Cyrklaff et al, 2005. The algorithm succeeded in segmenting
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both the outer and the core membrane by properly tuning ttepetelo, as seen
in Fig. 6(c). As mentioned above, the results afieeted by the missing wedge,
as reflected by the fact that the membranes appear open abgam direction.

A scale ofcc = 3 was applied to extract the outer membrane. For the core
membrane, however, a much higher value was necessary 6) because this
membrane actually comprises two layers, the inner one isistamt with a lipid
membrane whereas the outer is made up of a palisade of spikhserad to the
inner one Cyrklaff et al, 2005. These two layers, together with some material
at the inner facet, makes the boundary of the core rathek {(see Fig.6(a,b)),
thereby needing a higher scale to extract it separately. 6Ridso shows the in-
termediate results from some of thetdrent stages of the algorithR,(S, M).

Results from the stages of the hysteresis thresholdingharersin Fig.4.

5.3. Human immunodeficiency virus

The last cryo-tomogram contained HIV-1 virionBr{ggs et al, 200§ and
was taken from the EM databank (hffpmdatabank.org; entry emd-1155). The
tomogram required a scale of = 2 to segment the outer membranes. Fig.
presents the results of the algorithm, where tifeat of the missing wedge is
again apparent. In this particular dataset, segmentafitmanembranes of the
inner core was particularly challenging. This was causeithbyact that there was
dense material in the interior and in close contact to thésvadithe core, thereby

precluding their extraction through the two latest stephefalgorithm.

5.4. Golgi apparatus

This dataset was taken from the Cell Centered DataBase/(btgth.ucsd.edu;
entry 3632), which had an immunological synapse of cytatdxicell (Stinch-

combe et al.2006. To test the performance of the algorithm to segment mem-
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branes, we focused solely on a Golgi apparatus. We had $p&eigest in this
structure because the manual segmentation is availalkie &EDB site, which
allows us to make a quantitative evaluation, as describkxhvbe

The algorithm was applied at a scate= 2.2 and was capable of segment-
ing the sought structure as only one component includingisiérnae (Fig8).
The algorithm actually detects thefid@rent membranes, or any planar structure in
general, present in the tomogram such as those ofih®unding mitochondria
(Fig. 8(c)). By means of the threshold at the global analysis stage, the Golgi

apparatus is isolated.
5.5. Mitochondrion

A tomogram of mitochondrion was also test&®(kins et al.1997). The al-
gorithm, at a scale- = 1.7, delineated the outer membrane as well as the inner
cristae (pink), as shown in Fi@. In this particular case, it was not obvious to
clearly separate the outer membrane (yellow) from the atienbranous struc-
tures witht, because the interaction between them is very tight. As shawn

Fig. 9, their separatiomauseghat the outer membrane has to appear broken.

5.6. Mesoporous silica

In order to show that the algorithm developed in this workssful for electron
tomography in general, not only in life sciences, we chosatas#t from Mate-
rials sciences. Electron tomography of ordered mesopaitioa helps to reveal
its lattice structure and study the distribution of nantipke catalysts along the
nanopores of the silicaidgley et al, 2007). The study of the structure of such
silica is essential for the understanding of complex catalystems and their char-
acterization. Our algorithm is well suited to visualize thttice structure of the

silica in 3D directly from the raw tomogram as it easily segise¢he walls of the
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nanopores (Figl0). A simple density threshold directly allows identificatiof

the nanoparticles. In this tomogram, the algorithm workiesl scale ob- = 2.2.

5.7. Quantitative validation

To carry out a quantitative analysis of the performance e&ligorithm, we se-
lected the tomograms of Vaccinia virus and Golgi apparatunsake a comparison
against the manual segmentation undéfedent contrast conditions. In the for-
mer case, we did the delineation some time aggrklaff et al, 2005 Fernandez
et al, 2006, and here we have only considered the outer membrane ofrtbe.v
In the latter, the contours were available at the CCDB (Htipdb.ucsd.edu; en-
try 3632). We measured the metrics defined in Sectiand obtained the results
summarized in Tabl&. The algorithm turns out to be similar to manual annotation
in terms of shape analysis, with the quality indexes alwaghdr than 90%. In
particular, the centroid and the bounding box are definedgely (around 97%).
As far as the TPF and TNF metrics are concerned, the resutsneld suggest
that the method presented here is highly specific (TNF hittaer 97%). In other
words, the method successfully determines the regionsatieahot membranes.
Furthermore, these results also confirm that the methodyldyhsensitive (TPF

higher than 92%), which means it correctly delineates thembranes.

6. Discussion and conclusion

An algorithm to segment membranes in tomograms has beeenpegs It
relies on a simple local membrane model and the lodBdintial structure to de-
termine points whose neighbourhood resembles planedétifesThose points
are then further analyzed to determine which of them do #ygtoanstitute the

membranesThe performance of algorithm has been analyzed on a nunflber o
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mograms that may be considered representatives of staaexpedimental condi-
tions in electron tomography. In general, the algorithmgiasvn good behaviour
as the diferent membranous structures present in the tomogramsaressfully
detected.

A guantitative analysis has also been done comparing thétsexbtained by
our algorithm with manual segmentation over selected d&ga3 his comparison
has been based on several metrics already employed in ireggeestation and,
precisely in electron tomography. Nonetheless, some neatidins have been re-
quired and new metrics have had to be designed to deal witbetttieularities of
membranes (they are relatively thin structures that aredjly segmented as a
set of thin contours). The outcome of this analysis sugdkatour algorithm ex-
hibits a good level of specificity and sensitivity in detagtimembranes, even bet-
ter than other generic segmentation methods proposed firettiéGarduno et aJ.
2008. These results are remarkable, as automated segmentatbods tend to
'underestimate’ the object of interest compared to the rabapproachGarduno
et al, 2008, which may be especially true in manual delineation of finectures
as membranes.

The algorithm has turned out to be robust as far as parametegtis con-
cerned. For hysteresis thresholding, a quite similar cardition has been used in
all the tests. For other stages of the algorithm, howeverptrameters are highly
case specific. As mentioned, their tuning is intuitive aralrtlialue can easily be
estimated through simple preliminary observation of thedgram under study.

There are several key stages in the algorithm. The very feptis the scale-
space representation of the tomogram, which allows us tovd#athe low SNR

and contrast of tomograms and, further, to work precisellyascale of the object
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of interest. In principle, other more sophisticated deingi§lters could have been
used, namely anisotropic nonlineaffdsion. However, in our experience (results
not shown here), the results are similar to those obtainelinbgr scale-space
because this simple procedure helps to remove featurescatalewer than the
membranes of interest. Notwithstanding, these more cont@aoising methods
may be of great help for the design of detectors of other &tras much more
complex than membranes. This is another subject of res@aare conducting
NOW.

Another key step of the algorithm is the computation of thealgaugeR, a
detector of local plane-ness. Nevertheless, it stronghgdds on the density level.
As a consequence, we defined the membrane stréng#function reflecting the
local differential structure, that overcomes the limitationdRab act as a local
membrane detector. The later stages of the algorithm, tegssthresholding and
global analysis, are intended to integrate information laigher scale so that the
true membranes are definitely extracted. In these stagesetitral criterion is the
number of voxels constituting the membranes, and is geparmlgh to deal with
the variety of membranous structures that can be found irogpams. Future
extensions of the algorithm to detect more complex strestwill undoubtedly
require more sophisticated local detectors as well as mab®rmte global analy-
sis stages.

Despite the reliability that the algorithm has shown, ill $tas several limi-
tations. First of all, the féects of the missing wedge are present in the segmen-
tation results, as easily perceptible as membranes beiag alpng the beam di-
rection. Sorting out this problem is not a trivial task, tigbutsome kind of mod-

elling (Moussavi et al.2010 may alleviate or compensate for it. This problem
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also makes thin structures look like planes at local scaileh ss actin filaments
in theD. discoideuntomogram. The global analysis stages successfully delal wit
those false positives produced by the local detectdre dfects of the missing
wedge might be attenuated by settingandty, to different values according to

the direction Secondly, another weakness of the algorithm is tlicdity to

segment, as separate objectfiedtent membranous structures that are apposed to

each other, or interacting with some other dense mategahentioned with the
HIV and mitochondrion datasets. For these cases, more exrpteria could be
necessary during the global analysis stages.

The algorithm has been devised to deal with one single stadime. Sev-
eral rounds of the algorithm allow segmentation of struedithat require dier-
ent scales, as illustrated with the Vaccinia dataset. Camgfor the short term
include the development of a scale integration strategydbald be capable of
sweeping across multiple scales and automatically setgtiie proper ones for
the different target structures. Such an approach would increaselhstness of
the algorithm.

The algorithm has been implemented in MATLAB and the procgsime
ranges from minutes to a few hours, depending on the sizeedbthogram. We
are now developing a version in C that also makes use of higbrpgance tech-
niques to exploit modern multicore desktop®(nandez2008. Our hope is that
the resulting program is fast enough to be used with inteetdols for tomogram
interpretation.

Segmentation is currently one of the major bottlenecksenrttage processing
workflow of electron tomography. This method for membranknéation repre-

sents a step further towards (semi-)automated interpratat this field. Tak-
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ing into account that membranes constitute the naturatdioficells and the or-
ganelles and compartments within, their automated anatogedetection will be
invaluable for the analysis of the crowded and noisy envirents typically im-

aged by electron tomography. The combination of our algorivith other, either
generic or case-specific, segmentation methods and toekgl available\olk-

mann 2010 will contribute to facilitating interpretation of tomogms.
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Appendix A: Response of the membrane local detector to steps

The local gaugd for membranes introduced in Secti8r2 also generates a
peak for local structures that look like steps in the tomogfaee Fig. A.1). In
order to make the membrane detector robust, it is thus negessfind out and
somehow remove these false positives.

In Section3.3, the membrane strengi was introduced to give a measure of
the local membrane-ness. It is a ratio betwBéand the edge salien&. When
the values oR? andS for steps are analyzed, twofktirent regions can be found
(seeregions Aand B in Fig. A.1). Inregion A, steps exhibitmemely high value
of S compared td??, thereby significantly attenuating the membrane streijth
However, in region BR? andS may have values with similar magnitude, which
may produce an unwanted peakhNh The condition shown by membranes that
the slopes oR andS have opposite signs turns out to be useful to get rid of such

unwanted peaks.
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Appendix B: Improved hysteresis thresholding algorithm

Algorithm 1 — Improved hysteresis thresholding algorithm
N: neighbours with 6-connectivitys: step
B « getseedfM, ty, tno, tna)
H; « thresholdingM, t,)
t—1, -t
whilet > t, do
H, « dilation(B, N)
B« Hl N H2
te—t-—1g
end while

M denotes the input map, andt, are the undersegmenting and oversegment-
ing density thresholds, respectively, dpi the step used to progressively go from
t, to t, during the iterative algorithmthresholdinganddilation represent those
very well-known morphological operations. The neighbaarhused for dilation
is the 6-connectivity (i.e. the inmediate neighbours in Xantl Z).get seedge-
notes the procedure described in the main text by which thetimap is first un-
dersegmented by density-thresholding withnd then isolated points or marginal
segments are discarded by the area- and volume- threspgidicedures. The
former only preserves segments in 2D planes with a numbeomfiected vox-
els higher thary,. The latter considers the volume as a whole and discards 3D

components with less thdgs connected voxels (Figh).
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Figure L egends

Figure 1. Membrane model used for the design of the local detectorM@p-
brane model in 3D. (b) Density variation along the directi@npendicular to the
membrane wittD, = V27 andog = 1. (c) Second derivative,, of that mem-
brane modeld¢, = 1) after applying scale-space at scale= 1. (d) Gauges for
the density profile of a membrane witty = 1 at a scaler = 1 (blue) R? (red),
S (cyan) and membrane strength(green). The membrane profil,andM are

normalized in the range [Q]. R? keeps the scale relative &
Figure 2. General flow diagram of the algorithm for membrane detection

Figure3. Scale-space applied to a tomogranbadtyosleium discoideuwell (Medalia
et al, 2002. From left to right: an original 2D section of the tomograsoale-
space atr = 2,0 = 3 ando = 4, respectively. Dataset courtesy of Dr. O Medalia

and Dr. W Baumeister.

Figure 4. Example of seed selection on a tomogram of Vaccinia virus,ded

on the outer membrane. Top row: Components labelled acuptditheir areas

in three diferent 2D planes (along X, Y and Z). The components have ba&gn se
mented by an undersegmenting thresholding process. Tdietbeiss of the labels
is indicative of their area (see colormap on the right). Toeponents that un-
doubtedly belong to the membrane have a larger area (ldrgaty, connected
voxels) and appear as lighter colours. The other compoieose of which also

belong to the membrane) are shown in darker colours. Bottam The volume
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is considered as a whole and the procedure only preserves 8id components
with a high number of connected voxels (higher thg). In this row, the same
three planes along X, Y and Z shown in the top row are presdatedmparison.

There are still some gaps in the membrane, though. As theeatiomal hysteresis

thresholding progresses, the membrane is completelyedatd.

Figure 5. The membrane segmentation approach applied to a cryo-tamogf
D. discoideumA scale ofo- = 3 was used(a-f) show the same slice as in FB.
(a) GaugeR. (b) Edge saliency. (c) Membrane strengtM. (d) Result of the
undersegmentation process. (e) Candidates to be seedgsterdsis threshold-
ing. The colour is indicative of their size (see colormap ig.E). The actual
seeds are selected by means of the threshigjdandtys over the size in 2D and
3D, respectively. (f) Result of the hysteresis thresha@diihe same colormap is
used for the labels). The colour of actin filaments has beightaned on purpose
to make them noticeable in the background. (g,h) Twtedent views of the seg-
mentation result. By using a threshajdbn the size of the components in (f), the
membranes are definitely extracted, (yellow). Usingféedent threshold,, the
actin filaments can also be extracted (pink). Dataset ceyidéDr. O Medalia

and Dr. W Baumeister.

Figure 6. Segmentation of a VVaccinia virion obtained by cryoET. A el = 3

was used. (a) A slice of the original tomogram. (b) The samse §lom the scale-
space tomogram. (c) Result of the segmentation algoritrewed in 3D. The
algorithm managed to segment the outer membrane (yellow/}r@core mem-

brane (pink) using dierent values of the parametersandt,. (d) GaugeR, (e)
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edge saliencys and (f) membrane strengtl resulting from the application of

the algorithm.

Figure 7. Segmentation of a cryo-tomogram of HIV-1 virions. (a) A sliaf the
original tomogram. (b) The same slice from the tomogram atades- = 2 . (c)
Result of the segmentation algorithm applied to extracotiter membrane of the
virions, viewed in 3D. (d) GaugR. (e) Membrane strengti. (f,g) Detail for the
rightmost virion of the seed selection procedure for hyestisrthresholding, after

the application of thresholdg, andtys, respectively (see colormap in Fig).

Figure 8. Selected stages during segmentation of Golgi apparatué. gkce of
the original tomogram. (b) 3D view of the segmented striectc) Membrane
strengthM obtained with the segmentation algorithm at a seale 2.2. (d) Re-
sult from the hysteresis thresholding process. The colbtinedcomponents is

indicative of their size (see colormap in F&).

Figure 9. Segmentation of the membranous components of a mitoclondja)

A slice of the original tomogram. (b) 3D view of the segmeiatatesult, with the
outer membrane (yellow) and cristae (pink) highlightechtsato their extraction
using diferent values of the parametgr(c) Membrane strengtil obtained with
the segmentation algorithm at a scale- 1.7. (d) Result from the seed selection
for the subsequent hysteresis thresholding process ($eenap indicating the

size of the components in Fig). Dataset courtesy of Dr. GA Perkins.

34



Figure A.1. Gauges for the density profile of a step at a scale 2 (blue): R?
(red),S (cyan) and membrane strengdth(green). The step arfslare normalized

in the range [01]. R? keeps the scale relative & The scale used for the mem-
brane strengtiM is the same as that for théd curve in Fig.1 so as to facilitate
comparison. Note thd¥l is much lower than in the case of a true membrane. In
region B, the condition that the slopes®andS have opposite signs ensures that

M is null in that region.
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Figure 1: Membrane model used for the design of the localcti@te (a) Membrane model in
3D. (b) Density variation along the direction perpendictitethe membrane witBy = V27 and
oo = 1. (c) Second derivativeyy of that membrane moded{ = 1) after applying scale-space
at scales- = 1. (d) Gauges for the density profile of a membrane with= 1 at a scaler = 1
(blue) R? (red),S (cyan) and membrane strendth(green). The membrane profig,andM are
normalized in the range [@]. R? keeps the scale relative &
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Figure 2: General flow diagram of the algorithm for membraatedtion.
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Figure 3: Scale-space applied to a tomogranbaftyosleium discoideuroell (Medalia et al,
2002. From left to right: an original 2D section of the tomograsnale-space at = 2,0 = 3
ando = 4, respectively. Dataset courtesy of Dr. O Medalia and Dr. &MiBeister.
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Figure 4: Example of seed selection on a tomogram of Vacweinis, focused on the outer mem-
brane. Top row: Components labelled according to theirsarethree diferent 2D planes (along
X, Y and Z). The components have been segmented by an unde¥ségg thresholding process.
The brightness of the labels is indicative of their area ¢sgdermap on the right). The components
that undoubtedly belong to the membrane have a larger amege(lthariy, connected voxels) and
appear as lighter colours. The other components (some aftvwdiso belong to the membrane)
are shown in darker colours. Bottom row: The volume is cogrsd as a whole and the proce-
dure only preserves those 3D components with a high numbesrofected voxels (higher than
tns). In this row, the same three planes along X, Y and Z shownaertdlp row are presented for
comparison. There are still some gaps in the membrane, tholig the conventional hysteresis
thresholding progresses, the membrane is completelyeszéa.
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(e) ® @ " )

Figure 5: The membrane segmentation approach applied y@a@mogram oD. discoideumA
scale ofo- = 3 was used(a-f) show the same slice as in FB). (a) GaugeR. (b) Edge saliency
S. (c) Membrane strength. (d) Result of the undersegmentation process. (e) Caradidatbe
seeds for hysteresis thresholding. The colour is indieativtheir size (see colormap in Fid).
The actual seeds are selected by means of the threshgldadtys over the size in 2D and 3D,
respectively. (f) Result of the hysteresis thresholdihg @ame colormap is used for the labels).
The colour of actin filaments has been brightened on purpmseake them noticeable in the
background. (g,h) Two tlierent views of the segmentation result. By using a threstyad the
size of the components in (f), the membranes are definitehaeted, (yellow). Using a élierent
thresholdt,, the actin filaments can also be extracted (pink). Datasetesy of Dr. O Medalia
and Dr. W Baumeister.
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(d)

Figure 6: Segmentation of a Vaccinia virion obtained by &YVo0A scale ofc- = 3 was used.
(a) A slice of the original tomogram. (b) The same slice frdra scale-space tomogram. (c)
Result of the segmentation algorithm viewed in 3D. The atgor managed to segment the outer
membrane (yellow) and the core membrane (pink) usifigint values of the parametersand

ty. (d) GaugeR, (e) edge saliencg and (f) membrane streng¥i resulting from the application
of the algorithm.
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(d) (e) (® ()

Figure 7: Segmentation of a cryo-tomogram of HIV-1 virio(es. A slice of the original tomogram.
(b) The same slice from the tomogram at a seate 2 . (c) Result of the segmentation algorithm
applied to extract the outer membrane of the virions, vieme®D. (d) GaugeR. (e) Membrane
strengthM. (f,g) Detail for the rightmost virion of the seed selectiprocedure for hysteresis
thresholding, after the application of threshaigsandtys, respectively (see colormap in Fig).
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Figure 8: Selected stages during segmentation of Golgirappa (a) A slice of the original
tomogram. (b) 3D view of the segmented structure. (c) MemésarengthiM obtained with the
segmentation algorithm at a scate= 2.2. (d) Result from the hysteresis thresholding process.
The colour of the components is indicative of their size (s@ermap in Fig4).
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Figure 9: Segmentation of the membranous components ofaiandrion. (a) A slice of the
original tomogram. (b) 3D view of the segmentation resuithvthe outer membrane (yellow)
and cristae (pink) highlighted thanks to their extracti@ing diferent values of the parameter
ty. (c) Membrane strengti obtained with the segmentation algorithm at a seale 1.7. (d)
Result from the seed selection for the subsequent hystetesisholding process (see colormap
indicating the size of the components in F. Dataset courtesy of Dr. GA Perkins.
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Figure 10: The segmentation algorithm helps to reveal thiedestructure of ordered silica. (a) A
slice of the original tomogram. (b) Segmentation resulb(ire) superimposed on the same slice.
(c) Volume texture highlighting the lattice structure. gI) view of the segmented structure with
the silica (yellow) and the nanoparticles (red). Datasettesy of Dr. EPW Ward, Dr. TJV Yates

and Dr. PA Midgley.
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Figure A.1: Gauges for the density profile of a step at a seate 2 (blue): R? (red), S (cyan)
and membrane streng¥ (green). The step and are normalized in the range,[0]. R? keeps
the scale relative t&. The scale used for the membrane strengtls the same as that for thé
curve in Fig.1 so as to facilitate comparison. Note thatis much lower than in the case of a true
membrane. In region B, the condition that the slopeR ahdS have opposite signs ensures that
M is null in that region.
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Table 1: Quantitative analysis of the membrane segmentatgorithm vs. manual annotation

Bounding box Axes
Data Centre Width Height Centroid Major Minor TPF  TNF

Vaccinia 98.88 97.29 98.38 97.64 96.53 9535 92.63 98.01
Golgi 98.53 97.92 9641 98.51 90.27 93.02 92.20 97.90
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